EXHIBIT 4

Engineering Design Report

ATTACHMENT J

Thacker Pass Project Engineering Design Report Clay Tailings Filter Stack, Waste Rock Storage Facilities, Coarse Gangue Stockpile, Mine Facilities & Process Plant Stormwater Management

Prepared by:

NewFields Mining Design & Technical Services 9400 Station Street, Suite 300 Lone Tree, Colorado 80124

Revision 0

NewFields Project No. 475.0385.000 April 2, 2020

TABLE OF CONTENTS

1	INT	RODUCTION	1
	1.1	Scope of Work	1
	1.2	Project Background	1
		Project Overview	
		Use of this Report	
2		CHARACTERIZATION	
		Climate	
		Local and Regional Geology	
	2.3	Subsurface Conditions	
		2.3.1 Groundwater	
		2.3.2 Surface Water	
		2.3.3 Stormwater Controls	
	2.4	Seismic Hazard	
		2.4.1 Site Classification	
		2.4.2 Recommended Design Ground Motions	
		2.4.3 Other Seismic Hazards	
3		DTECHNICAL INVESTIGATION	
		2019 Field Investigations	
	3.2	Laboratory Testing Program	
		3.2.1 Index Properties	
		3.2.2 Moisture Content – Unit Weight Relationship	
		3.2.3 Corrosivity Potential	
	3.3	Clay Tailings Assessment	
		3.3.1 Clay Tailings Index Property Testing	
		3.3.2 Clay Tailings Laboratory Compaction Testing	
		3.3.3 Clay Tailings Shear Strength	
		Coarse Gangue Stockpile Assessment	
4	GRC	DWTH MEDIA STRIPPING AND STOCKPILES	.16
5		Y TAILINGS FILTER STACK (CTFS)	
		Mass Grading	
	5.2	Liner System	
		5.2.1 Liner Bedding	
	5.3	Underdrain System	
		5.3.1 Solution Collection Piping System	
		5.3.2 CTFS Stormwater Overflow Pipes	
		5.3.3 Overliner	
		5.3.4 Chimney Drain	
	5.4	Reclaim Pond	
		5.4.1 Leak Collection and Recovery System	
		5.4.2 Pond Pump Back System	
		Perimeter Haul Road	
		CTFS Diversion Channels	
6		ARSE GANGUE STOCKPILE (CGS)	
		CGS Sediment Pond	
7		STE ROCK STORAGE FACILITIES (WRSF)	
	7.1	West WRSF	
		7.1.1 West WRSF Sediment Pond	
	7.2	East WRSF	
		7.2.1 East WRSF Sediment Pond	.24

8	MIN	E FACILIT	IES	.24
	8.1	Mining R	oads	.24
	8.2	Mine Sto	rmwater Diversions	. 25
	8.3	Mine Fac	cilities Sediment Ponds	. 25
			Facility Sediment Pond #1	
			Facility Sediment Pond #2	
		8.3.3	Mine Sediment Pond #1	.26
9	PRO	CESS PLA	NT	.26
			Plant Entrance Roads	
			Plant Sediment Pond	
10			AL EVALUATION	
			undation Recommendations	
	10.2		S, and WRSF Stability Assessments	
			Material Properties	
			Model Development	
		10.2.3	Stability Analysis Results	.30
			Seismic Slope Deformation Analysis	
11	HAU	L AND AC	CCESS ROADS	.31
12	CLO	SURE		.32
13	REFE	ERENCES.		.34
LICT	OF 1	ABLES		
LIS I	OF I	ABLE2		
Tab	le 2-1	L: Design	Storm Events (24-hour duration)	4
Tab	le 2-2	2: Depth t	o Water Encountered in the NewFields 2019 Geotechnical Investigations	7
Tab	le 2-3	3: Probab	ilistic Design Accelerations	9
			ased Seismic Parameters	
			of Corrosivity Testing Potential	
			S OF LABORATORY INDEX TESTING	
			of Laboratory Compaction Testing	
			trength Properties	
Tab	le 10	-1: Prope	rties Used in the Stability Analyses	. 29
Tab	le 10	-2: CGS aı	nd WRSF Summary of Stability Analysis	. 30

LIST OF CLAY TAILINGS FILTER STACK & PROCESS PLANT STORMWATER DRAWINGS

A000	COVER SHEET, INDEX AND VICINITY MAP
A010	GENERAL PROJECT LAYOUT
A050	GEOTECHNICAL INVESTIGATION PLAN
A060	CTFS LAYOUT
A070	CTFS ISOPACH
A100	CTFS STACKED FACILITY LAYOUT

TABLE OF CONTENTS (Continued)

LIST OF CLAY TAILINGS FILTER STACK & PROCESS PLANT STORMWATER DRAWINGS (Cont'd)

A105	TYPICAL STACKING SECTIONS
A106	CTFS FACILITY SECTIONS (SHEET 1 OF 2)
A107	CTFS FACILITY SECTIONS (SHEET 2 OF 2)
A120	PERIMETER ROAD PLAN
A125	PERIMETER ROAD PLAN AND PROFILE (SHEET 1 OF 4)
A130	PERIMETER ROAD PLAN AND PROFILE (SHEET 2 OF 4)
A131	PERIMETER ROAD PLAN AND PROFILE (SHEET 3 OF 4)
A132	PERIMETER ROAD PLAN AND PROFILE (SHEET 4 OF 4)
A150	TEMPORARY STOCKPILE AREA PLAN
A152	CLAY TAILINGS STOCKPILE CONVEYOR CORRIDOR PLAN & PROFILE
A154	SALT STOCKPILE CONVEYOR CORRIDOR PLAN & PROFILE
A210	CTFS UNDERDRAIN PLAN
A215	UNDERDRAIN SECTIONS AND DETAILS (1 OF 2)
A216	UNDERDRAIN SECTIONS AND DETAILS (2 OF 2)
A220	CTFS RECLAIM POND GRADING AND PIPING PLAN
A221	CTFS RECLAIM POND SECTIONS AND DETAILS
A222	CTFS SOLUTION OUTLET CHANNEL PLAN AND PROFILE
A223	CTFS SOLUTION OUTLET CHANNEL SECTIONS AND DETAILS (1 OF 2)
A224	CTFS SOLUTION OUTLET CHANNEL SECTIONS AND DETAILS (2 OF 2)
A225	CTFS RECLAIM POND ACCESS ROAD PLAN AND PROFILE
A226	CTFS SOLUTION CHANNEL DETAILS
A227	PARSHALL FLUME SECTIONS AND DETAILS
A230	POND SECTIONS AND DETAILS (SHEET 1 OF 2)
A235	POND SECTIONS AND DETAILS (SHEET 2 OF 2)
A300	PROCESS PLANT SEDIMENT POND PLAN
A302	PROCESS PLANT SEDIMENT POND SECTIONS AND DETAILS (SHEET 1 OF 2)
A304	PROCESS PLANT SEDIMENT POND SECTIONS AND DETAILS (SHEET 2 OF 2)
A305	CTFS STORMWATER PLAN
A310	CTFS WEST DIVERSION CHANNEL PLAN & PROFILE (SHEET 1 OF 3)
A311	CTFS WEST DIVERSION CHANNEL PLAN & PROFILE (SHEET 2 OF 3)
A312	CTFS WEST DIVERSION CHANNEL PLAN & PROFILE (SHEET 3 OF 3)
A313	CTFS NORTH DIVERSION CHANNEL PLAN & PROFILE (SHEET 1 OF 3)
A314	CTFS NORTH DIVERSION CHANNEL PLAN & PROFILE (SHEET 2 OF 3)
A315	CTFS NORTH DIVERSION CHANNEL PLAN & PROFILE (SHEET 3 OF 3)
A320	CTFS WEST CHANNEL CULVERT SECTIONS (SHEET 1 OF 2)
A322	CTFS WEST CHANNEL CULVERT SECTIONS (SHEET 2 OF 2)
A324	PROCESS PLANT ENTRANCE ROAD CULVERT SECTIONS AND DETAILS
A400	CTFS INSTRUMENTATION PLAN
A410	CTFS INSTRUMENTATION PLAN SECTIONS & DETAILS

LIST OF CLAY TAILINGS FILTER STACK & PROCESS PLANT STORMWATER DRAWINGS (Cont'd)

A500	CTFS STAGE 1 STORMWATER PLAN
A510	CTFS STAGE 1 SECTIONS & DETAILS (1 OF 2)
A512	CTFS STAGE 1 SECTIONS & DETAILS (2 OF 2)
A600	WILDLIFE FENCING SECTIONS AND DETAILS

LIST OF WASTE ROCK STORAGE FACILITIES AND COARSE GANGUE STOCKPILE DRAWINGS

C000	COVER SHEET, INDEX AND VICINITY MAP
C010	OVERALL ULTIMATE PROJECT AND STORMWATER SITE PLAN
C050	GEOTECHNICAL INVESTIGATION PLAN
C105	WEST WRSF STORMWATER PLAN
C110	WEST WRSF SEDIMENT POND PLAN
C115	WEST WRSF SEDIMENT POND SECTIONS AND DETAILS (SHEET 1 OF 2)
C116	WEST WRSF SEDIMENT POND SECTIONS AND DETAILS (SHEET 2 OF 2)
C117	WEST WRSF POND ACCESS ROAD PLAN AND PROFILE
C118	WEST WRSF POND ACCESS ROAD SECTIONS AND DETAILS
C120	EAST WRSF STORMWATER PLAN
C121	EAST WRSF STORMWATER DETAILS
C125	EAST WRSF SEDIMENT POND PLAN
C130	EAST WRSF SEDIMENT POND SECTIONS AND DETAILS
C135	COARSE GANGUE STOCKPILE STORMWATER PLAN
C140	COARSE GANGUE STOCKPILE SEDIMENT POND PLAN
C143	COARSE GANGUE STOCKPILE SECTIONS AND DETAILS
C145	COARSE GANGUE STOCKPILE SEDIMENT POND SECTIONS AND DETAILS
C146	COARSE GANGUE STOCKPILE CULVERT SECTIONS
C150	FILTER DIAPHRAGM AND RISER PIPE SECTIONS AND DETAILS

LIST OF MINE SURFACE WATER CONTROL FEATURES DRAWINGS

000	COVER SHEET, INDEX AND VICINITY MAP
001	OVERALL MINE AREA STORMWATER SITE PLAN
002	CULVERT LOCATION AND WATERSHED MAP
FP1-1	FACILITY SEDIMENT POND #1 WATERSHED MAP
FP1-2	FACILITY SEDIMENT POND #1 PLAN VIEW
FP1-3	FACILITY SEDIMENT POND #1 CROSS SECTIONS AND DETAILS
FP2-1	FACILITY SEDIMENT POND #2 WATERSHED MAP
FP2-2	FACILITY SEDIMENT POND #1 PLAN VIEW
FP2-3	FACILITY SEDIMENT POND #1 CROSS SECTIONS AND DETAILS
MP1-1	MINE SEDIMENT POND #1 WATERSHED MAP SHEET 1 OF 2
MP1-2	MINE SEDIMENT POND #1 WATERSHED MAP SHEET 2 OF 2
MP1-3	MINE SEDIMENT POND #1 PLAN VIEW

TABLE OF CONTENTS (Continued)

LIST OF MINE SURFACE WATER CONTROL FEATURES DRAWINGS (Cont'd)

MP1-4	MINE SEDIMENT POND #1 CROSS SECTIONS AND DETAILS
FPD1-1	FACILITY SEDIMENT POND #1 DIVERSION WATERSHED MAP
FPD1-2	FACILITY SEDIMENT POND #1 DIVERSION PLAN AND PROFILE SHEET 1 OF 2
FPD1-3	FACILITY SEDIMENT POND #1 DIVERSION PLAN AND PROFILE SHEET 2 OF 2
FPD2-1	FACILITY SEDIMENT POND #2 DIVERSION WATERSHED MAP
FPD2-2	FACILITY SEDIMENT POND #2 DIVERSION PLAN AND PROFILE SHEET 1 OF 2
FPD2-3	FACILITY SEDIMENT POND #2 DIVERSION PLAN AND PROFILE SHEET 2 OF 2
ARD1-1	ANCILLARY ROAD #1 DIVERSION WATERSHED MAP
ARD1-2	ANCILLARY ROAD #1 DIVERSION PLAN AND PROFILE SHEET 1 OF 2
ARD1-3	ANCILLARY ROAD #1 DIVERSION PLAN AND PROFILE SHEET 2 OF 2
ARD2-1	ANCILLARY ROAD #2 DIVERSION WATERSHED MAP
ARD2-2	ANCILLARY ROAD #2 DIVERSION PLAN AND PROFILE SHEET 1 OF 3
ARD2-3	ANCILLARY ROAD #2 DIVERSION PLAN AND PROFILE SHEET 2 OF 3
ARD2-4	ANCILLARY ROAD #2 DIVERSION PLAN AND PROFILE SHEET 3 OF 3
CULV 01	CULVERT TYPICAL CROSS SECTIONS AND DETAILS

LIST OF APPENDICES

Appendix A – Design Criteria

Appendix A.1 – Design Criteria (NewFields)

Appendix B – Geotechnical Field Investigation

Appendix B.1 – Borehole Logs

Appendix B.2 – Test Pit Logs

Appendix B.3 – Geotechnical Investigation Factual Report (2019)

Appendix C – Laboratory Test Results

Appendix C.1 – Laboratory Testing Summary

Appendix C.2 – Particle Size Distribution

Appendix C.3 – Moisture Contents

Appendix C.4 – Natural Density

Appendix C.5 – Chemical Testing

Appendix C.6 – Tailings Assessment Technical Memorandum

Appendix C.7 – Tailings Laboratory Testing Results

Appendix C.8 – Coarse Gangue Stockpile Laboratory Testing Results

TABLE OF CONTENTS (Continued)

LIST OF APPENDICES (Cont'd)

Appendix D – Geotechnical Evaluation

Appendix D.1 – Plant Site Soils and Foundation Report

Appendix D.2 – Clay Tailings Filter Stack Stability Technical Memorandum

Appendix D.3 – Coarse Gangue Stockpile and Waste Rock Storage Facilities Stability Evaluation Technical Memorandum

Appendix D.4 – Deterministic Seismic Hazard Analysis Technical Memorandum

Appendix E – Hydrology and Hydraulic Calculations

Appendix E.1 – Channel and Culvert Design Summary

Appendix E.2 – Hydrology

Appendix E.2.1 – Watershed Figures

Appendix E.2.2 – HEC-HMS Design Calculations

Appendix E.3 – Hydraulics

Appendix E.3.1 – CTFS North Channel

Appendix E.3.2 – CTFS East Channel

Appendix E.3.3 – CTFS West Channel

Appendix E.3.4 – CGS

Appendix E.3.5 – East WRSF

Appendix E.3.6 – West WRSF

Appendix E.3.7 – Mine Facilities Diversions, Culverts and Ponds

Appendix E.3.8 – Pond Volume Calculations and Filling Curves

Appendix E.3.9 – Riser Pipe Sizing

Appendix E.3.10 - Culvert Sizing

Appendix E.3.11 – Pipe Crushing Calculations

Appendix E.3.12 – Rock Chute Calculations

Appendix E.3.13 – Climate Analysis Memo

Appendix F – Technical Specifications

Appendix F.1 – General

Appendix F.2 – Earthworks

Appendix F.3 – Geomembrane

Appendix F.4 – Geotextile

Appendix F.5 – Geonet

Appendix F.6 – HDPE Pipe

Appendix F.7 – CPe Pipe

Appendix F.8 – Stainless Steel Pipe

Appendix F.9 – Corrugated Metal Pipe

Appendix F.10 – Concrete

1 INTRODUCTION

NewFields Mining Design & Technical Services (NewFields) was commissioned by Lithium Nevada Corporation (LNC) to design the Clay Tailings Filter Stack (CTFS), East and West Waste Rock Storage Facilities (WRSF), Coarse Gangue Stockpile (CGS), Process Plant Ponds, and associated infrastructure in support of the application for a Water Pollution Control Permit (WPCP). Information presented in this report was prepared in accordance with the requirements outlined in the State of Nevada Regulations Governing the Design, Construction, Operation and Closure of Mining Operations, Nevada Administrative Code (NAC) 445A.

The Thacker Pass Project is located approximately 20 miles west-northwest of Orovada, 62 miles north-northwest of Winnemucca, between the Kings River Valley to the west, the Quinn River Valley to the east, the Montana Mountains to the north, and the Double H Mountains to the south in an area known as Thacker Pass. The elevation in the Project area ranges from approximately 4,200 to 5,650 feet above mean sea level (amsl). A location map is provided in on the cover of the **Drawings**.

1.1 Scope of Work

The general objectives of the project included the following elements:

- Establish design criteria (Appendix A) for use as a basis to complete the Project design;
- Complete geotechnical field investigations and laboratory testing to assess subsurface conditions and to develop input parameters for geotechnical evaluations of mine waste materials (Appendices B & C);
- Provide geotechnical evaluations for the Plant Site, CTFS, CGS and West and East WRSF (Appendix D);
- Complete a site wide hydrologic analysis;
- Complete hydraulic stormwater analysis and civil designs for the CTFS, Reclaim Pond and West and North Diversion Channels; CGS Sediment Pond; West and East WRSF sediment ponds, Process Plant entrance road culvert design; and review and stamp NA Coal's hydraulic and civil designs for the Mine Facilities sediment ponds, diversion channels and culverts. (Appendix E);
- Prepare Technical Specifications (Appendix F); and
- Generate drawings to support permitting and construction (Drawings).

1.2 Project Background

Subsurface exploration of the McDermitt Caldera and Thacker Pass Project area started in 1975. At this time, Chevron began a uranium exploration program in the volcanic rocks located throughout the McDermitt Caldera. The United States Geological Survey (USGS) notified Chevron on the presence of anomalous concentrations of lithium associated with the caldera. Chevron initiated a clay analysis program, which confirmed the presence of high lithium concentrations

using airborne gamma ray spectrometry, although their exploration program continued to focus on uranium (Advisian, 2018).

Chevron drilled 234 holes in the 1970s and 1980s that broadly outlined the lithium deposit. Between 1980 and 1987, Chevron conducted a drilling program that focused on lithium targets and conducted extensive metallurgical testing to determine the viability of extracting lithium from the clays.

In 2007, Western Lithium USA Corporation (WLC) began an exploration drilling program focused on the southern portion of the caldera. WLC drilled 232 exploration holes over the course of four years in the Project area, which identified an anomalously high-grade lithium deposit. As part of a merger, WLC officially changed its name to Lithium Americas Corporation (LAC) in March of 2016 and ownership of the Project was placed in LAC's Nevada-based subsidiary, LNC.

LNC continued exploration drilling in 2017 and 2018, drilling an additional 142 holes. The WLC/LNC drilling exploration program drilled a total of 374 HQ (2.5") core holes for a total of 113,951 feet with a range of depths from 20 feet to 760 feet. The average depth of drilling is 302 feet. The HQ core was drilled with either a truck or track mounted core rig capable of 1,500 feet of depth. The drilling proved a viable resource that is available for mining and extraction.

1.3 Project Overview

LNC proposes to construct, operate, reclaim, and close an open pit lithium mining and processing operation, the Thacker Pass Project, located on public lands in northern Humboldt County, NV. Pending the required authorizations and permits, construction for Phase 1 will commence in 2021 and mine production will begin in late 2022. Construction and operation will consist of the open pit mine, West and East WRSF, CGS, CTFS, stockpile areas, roads, ponds, diversion channels, diversion berms, processing facilities, and mine support facilities. **Appendix A** lists the design criteria used to design the facilities.

It is expected that approximately 50 million dry tons of ore will be mined from the open pit. Once the pit is opened and established, as the pit is mined, it will be concurrently backfilled with waste rock. Initially, excavation will start on the western side of the overall pit extents. The West WRSF will be located southwest of the pit and will store 26.4 M CY of excavated mine waste rock material and the East WRSF will be located to the east of the pit and store 5.8 M CY. The CGS, located southeast of the East WRSF, will have a storage capacity of approximately 26.1 M CY. Three growth media stockpiles will store material salvaged from proposed disturbance. Two of these stockpiles will be located southeast of the pit, near the ROM ore stockpile. The third growth media stockpile will be located northeast of the East WRSF.

The Mine Facilities Area located south of the pit and north of SR293, will consist of a truck shop, warehouse, fuel bay, wash station and other ancillary buildings. Stormwater for the area will

gravity flow to diversion channels and berms, which will direct flows into sediment ponds. Culverts will be used to convey flows under roads.

Located south of the pit and east of the Mine Facilities Area will be a run-of-mine (ROM) ore stockpile with a storage capacity of 0.5 M CY.

The ROM ore will be dozed into a conveyor trap and fed to an attrition scrubber which will separate the lithium-rich fine clay from the coarse low-grade material. The solids are mixed with water into slurry form and pumped to the Process Plant where the coarse-grained low-grade material (coarse gangue) is separated from the high grade fine-grained material that continues through the process plant. The coarse low-grade material will be stockpiled in the CGS. The Process Plant produces lithium carbonate and lithium hydroxide, which is sold on the market. The clay tailings, neutralization solids and various salts generated as a result of the processing will be sent to the CTFS.

The Sulfuric Acid Plant is located on the south end of the Process Plant and will generate sulfuric acid for use in the leaching process and will also generate steam for energy that will provide power to the project. Maintenance, laboratory, office, and other processing support facilities will be located in this general area as well.

The CTFS will be located east of the Process Plant and is designed to store 70 M CY of structural and non-structural tailings with the capability to expand. The design storage capacity is based on an initial tailings production rate of approximately 2.75 M dry tons per year for up to 25 years.

The base of the CTFS will have an 80-mil high-density polyethylene (HDPE) double-sided textured liner placed above a layer of liner bedding and overlain with collection pipes and a 2-foot thick layer of overliner. A perimeter road will be built around the facility. No solution will be applied to the CTFS; however, seepage that is squeezed from the clay tailings during the consolidation process and any precipitation that falls on the facility will be collected by an underdrain collection system. The underdrain system is designed to provide positive drainage toward a reclaim pond located south of the CTFS. Solution from the reclaim pond will be pumped to the Process Plant as make-up water or left to evaporate.

Upgradient stormwater will be directed around project facilities through diversion channels and into natural drainage ways. Runoff generated from disturbed areas such as the CGS, and East and West WRSF, Mine Facilities Area or Process Plant Area will be routed into sediment basins before release to existing drainage ways. The stormwater plan details and calculations are included in **Appendix E**.

1.4 Use of this Report

This report has been prepared exclusively for LNC. No third party, other than NewFields, shall be entitled to rely on any information, conclusions, opinions or other information contained herein without the express written consent of LNC.

Supporting data upon which our recommendations are based are presented in the following sections of this report. The recommendations presented herein are governed by NewFields' interpretation of the physical properties of the soils encountered in the field investigation, projected groundwater conditions, and the layout and design data generated and discussed in this report. If subsurface conditions other than those described in this report are encountered, or if project details are changed, NewFields should be informed so that our recommendations can be reviewed and amended, as necessary.

2 SITE CHARACTERIZATION

2.1 Climate

Precipitation data from various frequency storm events were obtained using the National Oceanic and Atmospheric Administration (NOAA) Atlas 14 Point Precipitation Frequency Estimates at the mine location from the NOAA website. Average monthly evaporation values for the Rye Patch Dam weather station (approximately 85 miles south-southeast of the project Thacker Pass), were obtained from the Western Regional Climate Center (WRCC) website. Average monthly precipitation data was collected from LNC's site climate monitoring station and compared with the other nearby stations. Reported precipitation, and evaporation values, and storm events are summarized in the Design Criteria in **Appendix A**. **Table 2-1** presents values for the various storm events used in the design.

Table 2-1: Design Storm Events (24-hour duration)

Recurrence Interval (years)	Precipitation Depth (inches)
2	1.13
25	1.96
100	2.48
500	3.12

From NOAA Atlas 14: Latitude: 41.696° N and Longitude: 118.02° W; Elevation = 4,622.8 ft (2018)

2.2 Local and Regional Geology

The Thacker Pass Project is located in north-central Nevada at the northern end of the Basin and Range tectonic province. Regional geology stretches from southern Oregon to Mexico and is characterized by a series of extension-related normal faults trending roughly north-south resulting in a repetitive series of mountain ranges separated by valleys. The project site is bounded to the north by the Montana Mountains; to the south by the Double H Mountains; to the west by the Kings River Valley; and to the east by the Quinn River Valley.

Local geology of the Thacker Pass Project is controlled by the McDermitt Volcanic Field, a volcanic complex containing four large calderas (or "super volcanoes") that formed in the middle Miocene. The McDermitt Volcanic Field is located within the southeastern-propagating swarm of volcanism from the Steens Mountain into north-central Nevada. The largest and southeastern most caldera of the McDermitt Volcanic Field, the McDermitt Caldera, hosts the ore body of the Thacker Pass Project. Prior to collapse of the McDermitt Caldera at 16.33 million years ago (Ma), volcanism in the northern portion of the McDermitt Volcanic Field and locally small volumes of lavas erupted near the present-day Oregon-Nevada border. These lavas and the flood basalts are exposed along walls of the McDermitt Caldera and are approximately 16.5 to 16.3 million years old (Advisian, 2018).

A large lake formed in the caldera basin following the eruptions in the McDermitt Volcanic Field. Associated caldera lake sediments that host the Thacker Pass deposit were deposited on top of the horsts and grabens formed during the faulting associated with the Tuff of Thacker Creek. The lake captured sediments that were eroded from the surrounding drainages.

Lacustrine claystone sediments which host lithium ore are found intimately interbedded with thin, repetitive water lain ash sequences. Ash layers are well sorted, medium to coarse sized lapilli grains deposited across wide extents, particularly in the Southwest Basin where thick sequences of basal ash beds were encountered across multiple exploration boreholes. Diagenesis at depth has silicified claystone beds in finely laminated, mudstone sequences. The ratio of ash to claystone in these lacustrine units is a continuum, with thick sequences of ash beds found more abundantly in basal lacustrine deposits in the Southwest Basin Area, and greater components of claystone found in the open pit footprint. The rhyolitic Tuff of Long Ridge is found underlying lacustrine sediments and is present in latite textures of felsic phenocrysts to a fine-grained groundmass. In some instances, the Tuff of Long Ridge was deposited as viscous lava, forming flows and pseudo bedding planes. These deposits are referred to as Rheomorphic Tuffs.

2.3 Subsurface Conditions

A preliminary site investigation was completed by AMEC in 2011. NewFields conducted a site investigation in February 2019 that included 31 boreholes and 29 test pits. Four of the boreholes were extended to depths between 100 and 150 feet below ground surface (bgs). The other

twenty-seven were extended to depths of 30 to 50 feet bgs. Another site investigation was completed in December 2019 that included five additional boreholes to 100 feet depth and 21 additional test pits.

Subsurface conditions can generally be classified as a thin veneer of growth media, approximately 12 inches to 24 inches in thickness, overlying alluvium overburden consisting of loose to very dense fine to coarse sands and gravels with varying amounts of clay, silt, sand and gravel overlying residuum composed of slightly weathered to highly weathered basalt. In the open pit area, the alluvium directly overlies claystone with varying amounts of interbedded ash (AMEC, 2011). Throughout the site, thin seams and lenses of low plastic clay and silt were observed in select borings at relatively shallow depths. The thickness of alluvium overburden varies significantly across the site, with recorded thicknesses between 10 feet to over 65 feet.

There is no general trend of overburden thickness or bedrock elevation across the site, primarily due to the degree of weathering and the basalt depositional process.

The site generally slopes to the South-southeast at approximately 4 to 6 percent gradient with isolated slopes up to 15 to 20 percent gradient. Based upon the topography there is significant relief across the entire project; approximately 400 feet of elevation change across the pit area, approximately 160 feet of change across the CTFS, 400 feet of change across the East WRSF and CGS, and approximately 70 feet of elevation change across the Process Plant site. **Appendix D** contains the full geotechnical investigation results.

2.3.1 Groundwater

Prior to 2018, LNC had six active monitoring wells; these wells continue to be monitored and recorded on a quarterly basis. Additional wells were installed at strategic locations in August 2018 by Piteau Associates for groundwater monitoring. The results show the groundwater levels between 70 and 180 feet below ground surface (bgs) in the pit area.

- Groundwater generally flows from north to south-southwest, following the general topographic trend. Groundwater elevations have remained steady over the monitoring period, indicating that the groundwater conditions are at steady state.
- NewFields encountered groundwater in five deep borings during the two site investigations completed in 2019.
 - In BH19-02 groundwater was encountered at a depth of 93 feet bgs,
 - BH19-04 at 93 feet,
 - BH19-05 at 83 feet,
 - BH19-33 at 60 feet,
 - BH-34 at 97 feet,
 - BH19-35 at 90 feet.

The remaining boreholes did not encounter groundwater. Based on the geotechnical investigation, groundwater is not anticipated in the upper 50 feet bgs. In general, groundwater is not expected to influence construction and operation of the process plant, CTFS, East and West WRSF and CGS. Refer to the **Table 2-2** for borehole depth to groundwater findings by NewFields in 2019. All boreholes not included in the table did not encounter groundwater. **Appendix D** includes compete geotechnical investigation results.

Table 2-2: Depth to Water Encountered in the NewFields 2019 Geotechnical Investigations

Piezometer or Borehole	Depth to Groundwater (feet)	Ground Water Elevation (feet amsl)
BH19-02	93.2	4835.1
BH19-04	92.5	4632.9
BH19-05	83.5	4715.4
BH19-33	60.2	4623.8
BH19-34	97.5	4728.5
BH19-35	90.3	4626.7

2.3.2 Surface Water

The topographical arrangement and site terrain straddles the southern end of the Humboldt Range. Surface water drains into two hydrographic basins: Quinn River Basin to the east and Kings River to the west. The CTFS, CGS, East WRSF, Process Plant Facilities and the east half of the Mine Facilities area are located entirely within the Quinn River Basin, as shown on Figure 000 in Appendix E.2. The West WRSF and the western edge of the Mine Facilities Area is located within the Kings River Basin. The pit straddles the hydrographic basin boundary. The surface water at the Project Area is associated with outflow from ephemeral creeks and runoff from precipitation as a result of storm events and snowmelt. Most surface drainages at the site are ephemeral and flow seasonally or during storm events or sustained periods of heavy precipitation. A small section of Pole Creek crosses the Plan of Operation (POO) boundary at its northeast corner; it is not located near any planned mine facilities. On the western edge of the project site, a small section of Thacker Creek crosses the POO boundary. No area within 1,300 feet of the creek will be disturbed in the current mine plan. Several existing natural drainages enter the property boundary from the north and traverse the project site. These drainages and runoff from the site discharge to one of the two existing drainage ways located just north of southern plan of operations boundary, roughly parallel to SR 293. The drainage way east of the hydrographic boundary flows east into Crowley Creek. The drainage within the Kings River Basin flows west into Thacker Creek. Surface water delineation and subsequent consultation with the United States Army Corps of Engineers (USACE) has determined there are no Waters of the

United States (WOTUS) within or immediately adjacent to the Project Area (USACE, 2019). The current Jurisdictional Determination was approved on February 8, 2019 and is included in **Attachment I** of the WPCP. A summary of the stormwater design plan and its supporting calculations are located in **Appendix E**.

2.3.3 Stormwater Controls

Stormwater controls have been designed to route upgradient runoff around the proposed project infrastructure and to accommodate and contain on-site runoff from design storm events. The intent of the stormwater controls is to:

- Divert non-contact water (i.e. water that has not come in contact with disturbed ground or process solutions) around the project facilities and discharge to downstream watercourses.
- Convey sediment-laden runoff (i.e. water that comes off stripped surfaces and roadways) as necessary to sediment collection basins prior to discharging to downstream watercourses.
- Contain precipitation from a design storm event that has come in contact with process solution.

For all surface water controls, the hydrological modeling was performed using HEC-HMS, a precipitation-runoff simulation computer program developed by the USACE to calculate the magnitude and timing of the peak flows and volumes resulting from specific storm events. HEC-15 (FHWA, 2005) was then used to estimate channel flow depths and riprap sizing based on the cross-sectional geometry, minimum channel profile slope, and peak flows. The required channel depths and riprap sizing were determined for each channel segment longitudinal slope. In steep sections of the channels, a rock chute calculation was completed based on Natural Resources Conservation Service (NRCS, 1998) design procedures to determine the appropriate channel dimensions and riprap sizing.

2.4 Seismic Hazard

NewFields completed a seismic hazard assessment on July 18, 2019. The results are presented in **Appendix D**. Probabilistic ground motions associated with various risk levels were assessed using the USGS unified hazard tool. The hazard tool application is based on the 2014 USGS national seismic hazard maps and adjusts for the site soil class. The reported peak ground acceleration (PGA) for a 2 percent and 10 percent chance of exceedance in 50 years, which corresponds to a return period of 475 years and 2,475 years, are presented in **Table 2-3**. Deaggregation of the seismic hazard indicates that the mean event is a 6.6 moment magnitude at 14 miles from the site.

Table 2-3: Probabilistic Design Accelerations

Return Period	Reported PGA (g)
475-Year	.09
2,475-Year	.26

2.4.1 Site Classification

The results of the geotechnical subsurface investigation near the process facilities and CTFS (NewFields, 2019) determined that the upper 100 feet consist of 20 to 60 feet of very dense silty sand and gravel fan deposits overlying weathered basalt. The deepest boring near the proposed pit, which is west of the CTFS, was 50 feet and consisted of dense to very densely bedded ash and clay with average Standard Penetration Test (SPT) resistance (N value) of greater than 50 blows per foot. In accordance with the 2015 IBC and ASCE 7-16, the site classifies as very dense soil and soft rock, Site Class C.

The maximum considered earthquake response accelerations at short and long periods, S_S and S_1 , respectively, were determined using an online calculator provided from the Structural Engineers Association of California (SEAC) (SEAC, 2019). All relevant seismic design values for structures are listed in **Table 2-4**.

Table 2-4: Code Based Seismic Parameters

Site Soil Class	С
Mapped MCE $_{R}$, five (5) percent damped, spectral response acceleration parameter at short periods (Site Class C), S_{S}	0.50g
Mapped MCE _R , five (5) percent damped, spectral response acceleration parameter at a period of one (1) second (Site Class B), S_1	0.18g
Design, five (5) percent damped, spectral response acceleration parameter at short periods, S _{DS}	0.43g
Design, five (5) percent damped, spectral response acceleration parameter at period of one (1) second, S_{D1}	0.18g

2.4.2 Recommended Design Ground Motions

Ground motions associated with design-level earthquakes were developed for the project site using both site specific code-based procedures and publicly available information from the United States Geological Survey (USGS). Based on all the available information, NewFields recommends the following:

 Earthen structures (such as the CTFS) should be designed considering a MCE PGA equal to 0.44g based on the most conservative results of the Deterministic Seismic Hazard Analysis (DSHA) in

Appendix D.4 and a OBE of 0.09g based on the 475-year return probabilistic event. This is in compliance with the NAC guidelines; and

 Design of structures should be completed using the code based spectral response parameters listed in Table 2-4.

2.4.3 Other Seismic Hazards

Potential seismic hazards for any site include ground rupture, slope instability, seismic induced settlement, and liquefaction or strain softening of subsurface deposits. Ground rupture is not expected to be a hazard for the project site or associated facilities since near-surface faulting and active faults are not documented within the project site. Liquefaction, which can occur within loose, saturated granular deposits, is not expected to be a hazard for the project site due to the depth to groundwater and the dense conditions in the near surface overburden. Similarly, potential seismic settlement from liquefaction of saturated, deep deposits is not expected based on our understanding of the subsurface conditions.

3 GEOTECHNICAL INVESTIGATION

As previously discussed, a Prefeasibility Study (PFS) level site investigation was completed for the development of the Thacker Pass Project (AMEC, 2011). The study included a site investigation and subsequent geotechnical recommendations including preliminary geotechnical recommendations for the open pit and foundation and earthwork recommendations for the various facilities associated with the project.

The general location of the process plant and individual structures orientated on the various process plant pads have been altered since the PFS was completed. In February and December 2019, NewFields completed geotechnical investigations to assess the geotechnical conditions in the subsurface near the West and East WRSF, Mine Facilities, CGS, Process Plant and CTFS.

In general, sufficient data is available to suitably characterize the subsurface beneath the majority of the site, but additional data may be necessary to confirm conditions beneath the sulfuric acid plant.

The locations of the NewFields 2019 borings and test pits associated with the recent investigation, as well the previous investigation, are shown on **Drawing A050**.

3.1 2019 Field Investigations

A site investigation was completed by AMEC in 2011 based on an initial project site layout (AMEC, 2011). The project elements subsequently changed and as a result, NewFields completed an additional site investigation between February and April 2019, which included 31 boreholes and 29 test pits. A supplementary site investigation was completed within the footprint of the CTFS in December 2019. This program consisted of five boreholes extended to depths of 100 feet and

21 test pits. The boreholes were advanced using a CME-850 track-mounted drill rig, and each borehole was drilled with 4.25-inch diameter hollow stem auger in soil and diamond bit rock coring methods when in bedrock. Eight boreholes were extended to depths of 100 to 150 feet below ground surface (bgs), with the remaining twenty-seven boreholes extended to depths of 30 to 50 feet bgs. Test pits were excavated with a CAT 320E excavator to depths of 7 to 19 feet bgs. NewFields logged the lithologies and characteristics of subsurface materials based on recovery from the driven samples, soil cuttings brought to the surface on the auger flights and excavator buckets and recovered rock core. All boreholes were abandoned in accordance with the Nevada Administrative Code (NAC) 534 for Underground Water and Wells. The geotechnical borings which did not encounter groundwater were abandoned by backfilling the holes with bentonite from the terminal depth to within 20 feet of the ground surface. Boreholes were then backfilled with neat cement grout to the ground surface. Water was encountered in five boreholes, which were subsequently backfilled from terminal depth to the ground surface with a neat cement grout, in accordance with the NAC 534 regulations.

The borehole and test pit logs summarize the results of material classifications and observations made at each borehole or test pit location. These records include drilling or excavation depth, description of each strata encountered, strata delineation, estimates of strata density, and location of samples retained for laboratory analysis. The logs represent our interpretation of the contents of the field logs and the results of the laboratory tests on select field samples. Borehole and test pit as-installed locations and logs are presented in **Appendices B.1** and **B.2**.

Drawing A050 shows the location of the geotechnical investigation completed at the site. The results of NewFields Geotechnical Investigation were presented in a factual report (October 2019) and presented in **Appendix B.3.**

3.2 Laboratory Testing Program

Soil and rock samples obtained during the field investigation were labeled, packaged and transported to the NewFields laboratory in Elko, Nevada where the majority of the soil testing was completed. Bulk samples tested for corrosivity potential were sent to Sunland Analytical Laboratory. Samples obtained from the field investigation were tested for index properties, natural moisture and unit weight, specific gravity of soil solids, moisture content/unit weight relationships, and corrosivity potential. Individual laboratory data sheets are presented in **Appendix C** and summarized in **Table C-1**. The results of the NewFields Laboratory Testing were presented in a factual report (October, 2019) and presented in **Appendix B.3**

Soil classification involved particle size analyses and Atterberg limits which were used to divide soils into groups such that the engineering properties of the soils within each group are similar. Each sample was categorized according to the Unified Soil Classification System (USCS), which is based on the material gradation and plasticity.

3.2.1 Index Properties

The index properties of soils were evaluated by particle size analyses and Atterberg limits tests. Results indicate that the materials encountered were predominantly composed of fine to coarse grained silty sand with varying amounts of gravel particles.

Atterberg limits results indicate the plasticity index (PI) ranges from non-plastic to high plasticity with the majority of fine-grained materials exhibiting non-plastic behavior. Based on the measured gravimetric water content, the majority of the plastic materials are at or below the plastic limit. The samples yielded an average moisture content of 13.5 percent as measured on a dry weight-basis (i.e. geotechnical definition). The apparent specific gravity of soil solids was measured as 2.54.

3.2.2 Moisture Content – Unit Weight Relationship

The relationships between unit weight (density) and moisture content was established for a bulk sample using Proctor compaction test procedure. The modified Proctor test (ASTM D1557) was performed on a bulk test pit sample to determine the maximum dry unit weight and the corresponding optimum moisture content. The sample yielded a maximum dry unit weight of 78.3 pcf and an optimum moisture content of 34.0 percent.

3.2.3 Corrosivity Potential

Laboratory soil resistivity, pH, and water-soluble sulfates and chlorides tests were conducted on soils obtained from select areas to assess their corrosivity potential, and results are presented in **Table 3-1**.

Sample	Depth (ft)	Material Type pH		Resistivity (ohm-cm)	Sulfates (ppm)	Chlorides (ppm)
BH19-12	2.5-6.5	Silty SAND (SM)	7.65	150	691.9	1246.9
BH19-13	7.5-10.5	Silty SAND (SM)	7.88	780	45.5	103.2
BH19-26	10-11.5	SAND (SW-SM) with gravel and silt	7.85	750	295.2	97.2

Table 3-1: Results of Corrosivity Testing Potential

The average pH of the native soil was approximately 7.8, which is considered mildly alkaline. The measured resistivity ranged from 150 to 750 ohm-cm, which indicates the soil has a high corrosion potential for steel (American Petroleum Institute, 1991). The average measured chlorides ranged from 97 to 1247 parts per million (ppm), which indicates the soil is mildly corrosive to corrosive to steel. The measured water-soluble sulfates in the soil ranged from 46

to 690ppm, which indicates negligible sulfate exposure for concrete (American Concrete Institute, 1994).

3.3 Clay Tailings Assessment

Samples of leached solids (LFilterCake), neutralization solids (NFilterCake), and sulfate salts (Salt) were provided by LNC and transported to the NewFields AMRL/AASHTO accredited laboratory in Elko, Nevada where the material testing was conducted. Select laboratory tests were performed on individual components (LFilterCake, NFilterCake, and Salt) along with testing performed on composite filtercake samples both with and without salt. The composite filtercake samples are identified as the "tailings" that will be stored in a geomembrane lined facility at the project site. The results of NewFields Tailings Assessment were presented in a Technical Memorandum, TM-07 (December 2019) and are presented in **Appendix C.6.**

The tailings with salt samples were reconstituted at a ratio of 64.1 percent LFilterCake, 17.3 percent NFilterCake, and 18.6 percent Salt, as measured by dry weight. The salts were hydrated with 11.1 percent tap water prior to reconstitution with the tailings. The tailings without salt samples were reconstituted at a ratio of 78.7 percent LFilterCake and 21.3 percent NFilterCake, as measured by dry weight.

It should be noted that all moisture contents presented in this memorandum were completed as per ASTM D2216 and are reported on a dry basis (Weight of water/Weight of dry solids) as this is the common reporting practice for geotechnical reporting.

Index testing included moisture content and Atterberg limits testing, which were used to assess the relationship between as-received moisture and the materials plasticity. Moisture content — unit weight relationships were developed from bulk samples of tailings, both with and without salt. Strength properties of tailings are estimated based upon Unconsolidated Undrained (UU) and Consolidated Undrained (CU) triaxial testing. This laboratory testing program included:

- Atterberg Limits (ASTM D4318)
- Natural Moisture Content (ASTM D2216)
- Modified Proctor Moisture Unit Weight Relationship (ASTM D1557)
- Unconsolidated Undrained Triaxial Compression (ASTM D2850)
- Consolidated Undrained Triaxial Compression (ASTM D4767)

Individual laboratory testing results for the clay tailings are summarized in **Tables 3-2**, **3-3** and **3-4**. Individual laboratory data sheets are presented in **Appendix C.7**.

3.3.1 Clay Tailings Index Property Testing

The index properties of the materials were evaluated by particle size analysis, moisture content and Atterberg limits testing. The Atterberg limits test was used to measure the moisture content

of the upper and lower limits of the range in which the soil is in the plastic state and are only performed on the soil fraction passing the No. 40 sieve (0.42 mm). The moisture content at the upper limit is known as the liquid limit (LL) and the moisture content at the lower limit is designated as the plastic limit (PL). The numerical difference between the LL and the PL, termed the plasticity index (PI), is a measure of the soil plasticity. Generally, soils that exhibit a PI between 5 and 10 are low plasticity, between 10 and 20 correlate to medium plasticity and between 20 and 40 correlate to high plasticity. Particle size analysis and Atterberg limits results indicate that the materials classify as an elastic silt (MH) with varying amounts of fine sand and medium plasticity.

Samples of the individual components were preserved at their as-received moisture content by double sealing bulk samples in airtight plastic bags and storing in sealed buckets. Gravimetric moisture contents for all samples tested ranged between 55 and 75-percent. Most materials had a moisture content above their LL, with the exception of the tailings material without salt.

Material	Liquid Limit	Plastic Limit	Plasticity Index	As-Received Moisture Content
LFilterCake	53	40	13	55.7
NFilterCake	64	47	18	68.5
Salt	-	-	1	74.1
Tailings w/Salt	51	40	11	60.9
Tailings w/out Salt	71	59	12	59.3

Table 3-2: RESULTS OF LABORATORY INDEX TESTING

3.3.2 Clay Tailings Laboratory Compaction Testing

Two moisture-unit weight relationship tests using the modified Proctor method (ASTM D1557) were completed on bulk samples of tailings, one without salt and one with salt. The samples yielded maximum dry unit weights ranging from 70 to 72 pounds per cubic foot (pcf) and optimum moisture contents (OMCs) ranging from 45 to 46 percent. In general, the sample with salt yielded a higher dry unit weight and lower moisture content.

Table 3-3: Results of Laboratory Compaction Testing

	Laboratory Compaction			
Material	Maximum Dry Unit Weight (pcf)	Optimum Moisture Content (%)		
Tailings w/out Salt	70.1	46.0		

Tailings with Salt	72.4	45.3
	<i>,</i> =	.5.5

3.3.3 Clay Tailings Shear Strength

The shear strength of remolded tailings samples were measured by triaxial compression testing under isotropic Unconsolidated Undrained (UU) and Consolidated Undrained (CU) conditions. A bulk sample of tailings without salt was air dried to the OMC and six individual specimens were selected. Three of the tailings specimens were mixed with the salt and three were kept without salt. A second bulk sample of tailings was air dried to three percent over OMC and two tailings specimens were reconstituted with salt. All eight of these tailings specimens were then remolded at 95 percent of the maximum dry unit weight into 2.8-inch diameter by 5.6-inch tall test specimens.

The UU samples were confined at 25 pounds per square inch (psi) during testing while the CU samples were backpressure saturated and consolidated at 25 and 50 psi, respectively. Mohr-Coulomb strength parameters were developed from the test measurements as shown in **Table 3 - 4**. Consolidated, drained parameters (effective stress) were calculated by subtracting the measured internal pore pressure from the chamber and axial applied stresses.

UU Triaxial CU Triaxial Testing Testing Dry Unit Moisture **Effective Stress Total Stress** Undrained Material Weight Content Shear Friction **Friction** (pcf) (%) Cohesion Cohesion Strength Angle Angle (psf) (psf) (psf) (degrees) (degrees) **Tailings** 66.6 45 40 65 19 400 6300 Tailings + Salt 68.8 45 40 180 20 390 700 42 0 22 0 Tailings+ Salt 66.6 54

Table 3-4: Shear Strength Properties

3.4 Coarse Gangue Stockpile Assessment

A sample of Coarse Gangue Stockpile (CGS) material was provided by LNC and transported to the NewFields AMRL/AASHTO accredited laboratory in Elko, Nevada for testing. Select laboratory testing was performed on this sample to obtain engineering parameters for the CGS stability analysis presented in **Appendix D.3**. The laboratory testing program for this sample included:

- Grain Size Distribution (ASTM D422)
- Atterberg Limits (ASTM D4318)
- Direct Shear (ASTM D3080)

Laboratory testing results and individual data sheets for the CGS material are located in **Appendix C.8**.

4 GROWTH MEDIA STRIPPING AND STOCKPILES

Growth media consisting of soils and alluvium will be salvaged from the footprint of proposed disturbances during initial construction and throughput the Project area as mining progresses. Where present, growth media will be stripped and stockpiled for use in future reclamation and closure activities. Growth media will be stockpiled in three major stockpiles.

Growth media stockpiles will be constructed with slopes no steeper than 3H:1V. LNC will implement measures to mitigate erosion, weathering, and leaching of salts and nutrients during storage of growth media. LNC will seed the growth media stockpiles if necessary to create a temporary vegetative cover, which binds the soil and limits loss due to wind and water erosion of the stockpile to avoid increased sediment concentration in surface runoff. All stockpile areas will be constructed with erosion control measures to reduce sediment from leaving the stockpile site.

5 CLAY TAILINGS FILTER STACK (CTFS)

Lithium processing will produce tailings comprised of acid leach filter cake (clay material), neutralization filter cake, magnesium sulfate salt and sodium/potassium sulfate salts, collectively referred to as clay tailings. LNC proposes to place the clay tailings in the CTFS, which will be a permanent lined storage facility, located east of the process plant.

LNC will convey tailings material from the tailings filter press located in the filtration and neutralization building at the process plant to the CTFS. Clay tailings and the collective salt wastes will be transported via two separate conveyors from the process plant and will form two distinct stockpiles within the CTFS footprint. Material from these temporary stockpiles will be placed on the CTFS in conformance with the stacking plan. The conveyor system will be able to transport an average of 500 dry tons per hour during initial production with a potential to increase if required.

Approximately 70 M CY of clay tailings will be placed on the CTFS. The CTFS will be constructed with a structural zone in the exterior of the facility and a non-structural zone in the interior. An interior non-structural zone will be constructed with layers of tailings and salts compacted at 85% of Modified Maximum Dry Density (MMDD) as determined by ASTM D1557. Surrounding this core, a structural zone will be constructed at 95% compaction of MMDD and with 4H:1V sideslopes. The structural zone will be stacked against the nonstructural zone at a slope of 1H:1V with a 3 feet thick chimney drain between them that extends from the overliner layer to the surface. The chimney drain will consist primarily of sands and gravels to provide a hydraulic break between the two zones to dissipate potential pore pressure. The CTFS will be fully lined with an

HDPE geomembrane and underlain with a six-inch liner bedding material. The facility will include an underdrain seepage collection system between the geomembrane and the clay tailings, which will allow seepage water and stormwater to drain to the reclaim pond.

5.1 Mass Grading

The CTFS mass grading will generally follow the native ground that slopes from northwest to southeast at slopes ranging between three and six percent with an average slope of around 3.5 percent. Most of the fill will be placed in the natural drainages that traverse the site and for the perimeter roads around the facility. Most of the cut is in the channels, the Reclaim Pond and along ridgelines across the facility. Drawing A070 shows isopach shading indicating the cut and fill thicknesses of the CTFS and the north and west diversion channels.

The perimeter access road around the CTFS is 32 feet wide with 2.5H:1V slopes. The perimeter haul road is 128 feet wide with 2.5H:1V slopes. The throughway is 80 feet wide with six-foothigh safety berms along fill areas. The road is a minimum five feet high as measured from the inside toe and crest and is sloped inwards towards the pad at two percent as shown on Drawing A107.

Cell divider berms located in the interior of the CTFS are there to separate the facility into stages and maintain containment of stormwater runoff solution in the event of a significant storm event. The cell divider berms are made of common fill approximately 4.5 feet high and rounded for an approximate total width of 34 feet wide. They extend from the north perimeter berm to the south channel with the exception of the divider berm between Cell 1 and Cell 2 which at a natural ridgeline that can be used as a divider berm. Drawings A215 and A216 show the cell divider berm sections.

After the major cut and fills within the facility are completed, the upper 6-inches of the exposed fill or cut surface shall be scarified, moisture conditioned and compacted to provide a liner bedding for the geomembrane. If the existing ground is rocky and does not consist of fine-grained materials smaller than 3/4-inch then material will have to borrowed and placed over the rocky surface.

5.2 Liner System

The CTFS has been designed with a single liner system consisting of 80-mil HDPE double-sided textured geomembrane layer over top of the liner bedding layer.

5.2.1 Liner Bedding

The liner bedding will consist primarily of insitu or borrowed fined grained materials moisture conditioned and compacted to form a smooth firm surface for which to place the geomembrane. Laboratory testing will be performed on liner bedding samples prior to (Control tests) and during

construction (Record tests). In-situ moisture/density tests will be completed to assure conformance to the specifications as outlined in **Appendix F**.

The HDPE geomembrane will be textured on both sides to increase the frictional resistance between the liner bedding and overliner materials that will be in contact with the geomembrane. Geomembrane materials will be subjected to testing at the plant site by the manufacturer as well as conformance testing performed by a third-party laboratory to ensure quality. During installation, the liner will be subjected to a QA/QC testing and inspection program as outlined in the Technical Specifications included in **Appendix F**.

A QA/QC program will be implemented during installation to ensure that the geomembrane is installed according to the manufacturer's recommendations, to monitor the integrity of the seams; and to ensure that the minimum thickness of the overlying cover materials (overliner) is maintained.

5.3 Underdrain System

Precipitation that falls upon the CTFS will seep through the tailings and be collected by the underdrain system and directed to the Reclaim Pond. A seepage calculation was completed which showed a maximum seepage rate of up to 74 gpm could flow to the Reclaim Pond at ultimate facility buildout as a result of tailings consolidation. The seepage calculation is presented in **Appendix E**. The underdrain system consists of a network of collection pipes placed on top of the geomembrane and a layer of overliner material placed over the pipes. No solution will be applied to the CTFS other than for periodic surface dust suppression; therefore, the only fluid collected by the underdrain system will be stormwater, natural infiltration or pore water squeezed out of tailings due to long-term consolidation of the tailings material. The facility is divided into six cells of similar size for permanent placement of tailings plus one cell in the southwest corner used for temporary clay tailings and salt stockpiles but the underdrain systems for all the cells are connected.

5.3.1 Solution Collection Piping System

The solution collection piping system will consist of four-inch diameter dual wall smooth interior perforated corrugated polyethylene (CPe) (ADS N-12 equivalent) secondary collection pipes located on the geomembrane and spaced 200 feet apart in a herringbone pattern. The secondary collection pipes drain to a 12-inch diameter dual wall smooth interior perforated (CPe) (ADS N-12 equivalent) collection header pipe situated in the topographic low points of each cell in the CTFS as shown on Drawing A210. The collection header pipes connect into a 12-inch diameter dual wall smooth interior perforated CPe pipe that runs along the channel on the south side of the CTFS. At the CTFS solution outlet channel the 12-inch dual walled perforated CPe pipe connects to a solid 12-inch diameter HDPE DR 17 underdrain outlet pipe which will convey flow

into a Parshall Flume for measuring the seepage flow rate and then into the CTFS Reclaim Pond as shown on Drawing A222.

5.3.2 CTFS Stormwater Overflow Pipes

Seven 36-inch diameter HDPE DR 17 stormwater overflow pipes are located at the CTFS Solution Outlet Channel approximately 24 inches above the invert of the 12-inch diameter underdrain outlet pipe. These pipes are designed to convey the CTFS stormwater runoff during a 100-year/24-hour storm event under the haul road and into the CTFS Solution Outlet Channel, which then drains into the Reclaim Pond.

5.3.3 Overliner

The Overliner layer consists of a 24-inch thick drainage medium consisting of minus 1.5-inch sand and gravel mixture that covers the surface of the HLP as shown on Drawings A215 and A216. This single layer will provide protection to the geomembrane during tailings placement and will have a high transmissivity to promote lateral drainage of seepage and stormwater runoff from the CTFS. Overliner will initially be processed from native soils on site and later the coarse gangue stockpile can be used as an overliner source as the material will consist of washed sands.

5.3.4 Chimney Drain

A chimney drain was designed to separate the tailings in the structural zone from the non-structural zone. The non-structural zone will consist primarily of salts and also contain tailings with elevated moisture contents due to weather or upset conditions in the process plant. The chimney drain will consist primarily of sand and serve as a hydraulic break to relieve potential pore pressure built up between the two zones. Piezometers will be installed on either side of the chimney drain to monitor pore pressures in each zone as shown on Drawings A400 and A410.

5.4 Reclaim Pond

Stormwater collected by the underdrain system will be directed to the Reclaim Pond. The pond is a double geomembrane lined pond with an operating capacity of 9.2 million gallons, can store a 100-year, 24-hour storm event runoff volume of 17.8 million gallons and has 3.6 million gallons of storage available in the top 3 feet of freeboard. The total pond volume to the crest is 30.6 million gallons.

The reclaim pond will be double lined with a 60-mil HDPE double-sided textured geomembrane liner on bottom overlain by a 200-mil thick layer of geonet and an 80-mil HDPE double-sided textured geomembrane liner above the geonet. Water collected in the pond will not be discharged as part of the stormwater management. The water will be pumped to the processing plant to be used as make-up water for processing operations or will evaporate. The pond will be

equipped with a leak detection and recovery system consisting of a collection sump between the two liners and a riser pipe laid along one of the slopes, providing access for monitoring and recovering any leakage through the primary liner.

5.4.1 Leak Collection and Recovery System

Stormwater collected by the underdrain system will be directed to the Reclaim Pond. The Reclaim Pond has a sump located in the southeast corner. The sump is a total of five feet deep with the lower 2 feet of the sump being the leak collection and recovery sump (LCRS) and the upper 3 feet serving as the pond surface water sump. The LCRS is between the primary and secondary geomembranes and the pond surface water sump is located above the primary geomembrane. The LCRS has bottom dimensions of ten feet by ten feet with 2.5H:1V slopes and has select gravel wrapped in geotextile on top of the secondary geomembrane. A 12-inch diameter HDPE DR 21 pipe with slots cut into the lower ten feet is positioned into the LCRS, which serves as a pump sleeve. A submersible pump will be positioned inside of the pump sleeve and connected to a discharge pipe that will pump leakage from between the layers to the crest of the pond and back onto the primary geomembrane. Drawing A230 shows a section of the LCRS sump.

5.4.2 Pond Pump Back System

The upper three feet of the five-foot-deep CTFS Reclaim Pond sump is a recessed sump above the primary geomembrane that allows the sloping pumpback system to evacuate water out of the pond. The sloping pumpback system is a submersible pump attached to an 8-inch diameter HDPE pipe sleeved inside of an 18-inch diameter HDPE pipe, which serves as a pump sleeve. The pump will pump water out of the pond through the 8-inch pipe back to the Leaching Tanks in the Process Plant if required. The pumpback pipe was designed to pump out 500 gallons per minute. The pump will be designed by the Process Plant designer based on operational preferences. The 18-inch diameter HDPE pipe sleeve will be held down by sheet of 80-mil HDPE liner ballasted with two concrete filled six-inch diameter HDPE pipes. At the crest of the pond the 18-inch diameter HDPE pipe transitions to a flanged stainless-steel pipe that is braced and welded to a steel plate embedded into a six feet wide by six feet long by three feet deep reinforced concrete anchor block. Drawings A235 shows a section of the pond sump and sloping pumpback system.

5.5 Perimeter Haul Road

A perimeter road will be constructed around the CTFS, providing access to and containment of the facility. Along the northern and eastern perimeters of the CTFS, the road will have a crest elevation at least five feet above the top of the geomembrane and a crest width of 32 feet. On the western side of the CTFS, including the area adjacent to the temporary tailings stockpile area, the perimeter road will have a typical crest width of 131 feet (80-ft driving width) and a crest elevation at least eight feet above the top of geomembrane. Along the southern CTFS perimeter,

a solution collection channel of varying depth will run along the inside perimeter of the haul road. The CTFS perimeter road in this section will have a crest elevation nine feet above the bottom-of-channel (top of geomembrane) and crest width of 131 feet.

All sections of the CTFS perimeter haul road will be constructed with 2.5H:1V side slopes and safety berms on both sides of the roadway crest. The HDPE double-sided textured geomembrane will be extended from the CTFS base grading, up the inside embankment of the road, and will be anchored into the roadway crest on the embankment-side of the CTFS-side safety berm. Wearing course will consist of an 18-inch thick layer on the haul road surface and a six-inch thick layer on the access road surface.

5.6 CTFS Diversion Channels

Two diversion channels were designed to the north and west of the CTFS to divert stormwater runoff of undisturbed areas around the facility. The stormwater diversions are designed with a maximum 2.5H:1V cut and fill slopes and can convey stormwater runoff from a 500-year/24-hour storm event. The diversion channel varies from 30 feet to 60 feet in width and 2.5H:1V slopes as defined on Drawing A311. There are three culvert crossings designed for the CTFS West Diversion Channel. One is for haul truck traffic entering into the CTFS and the other two are for conveyor crossings from the Process Plant for the clay tailings stockpile and the salt stockpile. A layout of the conveyor crossings is shown on Drawing A305. The channel armoring requirements are shown on Drawing A310.

The CTFS North Diversion Channel is approximately 80 feet wide with 2.5H:1V slopes and diverts water around to the east side of the CTFS. The riprap requirements for the channel are shown on Drawing A313.

The hydrology calculations for each stormwater diversion are provided in Appendix E.

6 COARSE GANGUE STOCKPILE (CGS)

Coarse gangue is produced in the classification stage of the mineral processing and is conveyed into the CGS after going through a dewatering process. LNC will convey the coarse gangue material to the CGS located east of the open pit. The gangue material will include lithium content whose economic value cannot be extracted at this time with a rate of return meeting LNC's criteria, using the proposed technique.

The CGS will be placed above existing ground that has been stripped of one foot of growth media. The stripped growth media will be placed in the growth media stockpile. The coarse gangue material will be placed directly onto prepared subgrade. The stockpile is expected to accommodate approximately 26M CY of material during the first 10 years of operation, and with the ability to expand. The design basis, calculations, design drawings and specifications for the coarse gangue stockpile are included in **Appendix A.**

The CGS is currently conservatively designed per a stacking plan provided by LNC with 50 ft lift heights and 75.5 ft benches graded between each lift to provide an overall stacking slope of 5.5H:1V and intermediate lift slopes of 4H:1V as shown on Drawing C135. Additional stability analysis completed by NewFields show that the coarse gangue sand stockpile can be stacked to 3H:1V slopes and still meet the minimum stability factor of safety if the sands are adequately dewatered during the classification process. Additional strength testing of the coarse gangue material will be conducted during operations and side slope requirements may change in the future. Geochemistry and transport analysis completed by SRK and Piteau shows that the CGS does not require a liner at the foundation.

6.1 CGS Sediment Pond

Stormwater runoff from the CGS will drain to the low point on the south side of the facility and through two 54-inch diameter corrugated metal pipes (CM) into the CGS Sediment Pond as shown on drawing C135.

The CGS Sediment Pond is designed to contain runoff from a 2-year/24-hour storm event and slowly drain over a period of three days through the perforations in the 42-inch diameter HDPE DR 17 riser pipe. Runoff from storm events up to 25-year/24-hour can flow out the top opening of the riser pipe, which has steel mesh over it to keep potential debris from getting lodged inside. The sediment pond is designed to store two feet of sediment and have three feet of freeboard above the spillway invert. Storm events greater than 25-year/24-hour and up to 100-year storm events will drain out of the overflow spillway into the CTFS West Diversion Channel. The peak flow from a 100-year/24-hour storm event can pass through the spillway with one foot of freeboard to the crest of the pond. Drawing C140 shows the layout of the CGS Sediment Pond. Sediment will be removed from the facility once the sediment design capacity has been reached.

Riprap is installed at the inlet and outlets of the sediment pond. The riprap size and thickness is shown on Drawing C140. A layer of non-woven geotextile will be installed beneath all riprap.

7 WASTE ROCK STORAGE FACILITIES (WRSF)

Waste rock material generated from the open pit mining operation will be placed in two proposed WRSFs, located west and east of the pit as shown on Drawing C010. LNC plans to haul waste rock to either WRSF based on operational requirements such as capacity and haul cycle efficiency. The Thacker Pass waste rock and ore have a low potential for acid generation, according to the results of the static testing (NPR greater than 3 for all material types) and confirmed with the kinetic testing program. For this reason, the WRSFs were designed as unlined facilities. The design criteria for the WRSFs is included in **Appendix A** and the stability analysis evaluation is included in Appendix D. Calculations for the sediment ponds are included in **Appendix E**.

7.1 West WRSF

The West WRSF area is 160 acres and is designed with a storage capacity of 26.4M CY at 3.5H:1V slopes. The maximum thickness is 275 feet and the existing topography at the base slopes from north to southwest.

Waste rock will be placed in the West WRSF during of the initial stages of mine operation and will shift later to the East WRSF once it has reached maximum capacity. The WRSF facility will be placed above existing ground that has been stripped of one foot of growth media. The stripped growth media will be placed in the growth media stockpile.

7.1.1 West WRSF Sediment Pond

Stormwater runoff from the West WRSF will drain to the low point in the southwest corner of the facility into the West WRSF Sediment Pond as shown on drawing C105.

The north half of the West WRSF Sediment Pond is in cut and the south half is in fill. The south embankment is 15ft wide with upstream and downstream slopes at 2.5H:1V. The cut slopes on the north side of the pond are at 2.5H:1V. The pond is designed to contain runoff from a 100-year/24-hour storm event to reduce the potential for stormwater runoff in disturbed areas from flowing into Thacker Creek, which is located approximately 2,000 feet to the southwest. The sediment pond is designed to store two feet of sediment and have three feet of freeboard above the spillway invert. Storm events greater than the 100-year/24-hour storm events will drain out of the overflow spillway onto natural ground. The peak flow from a 500-year/24-hour storm event can pass through the spillway with one foot of freeboard to the crest of the pond. Drawing C110 shows the layout of the West WRSF Sediment Pond.

Water draining into the pond will be left to evaporate or infiltrate into the ground. A submersible pump can also be used to pump out water within the pond as well. Sediment will be removed from the facility once the sediment design capacity has been reached.

Riprap is installed at the inlet and outlet of the sediment pond. The riprap size and thickness are shown on Drawing C110. A layer of non-woven geotextile will be installed beneath all riprap.

7.2 East WRSF

The East WRSF area is 137 acres and is designed with a storage capacity of 5.8 M CY at 3.5H:1V slopes with potential to expand. The maximum design thickness is 75 feet and the existing topography at the base slopes from northwest to southeast.

Based on the current mining plan the waste rock from the pit will be placed in the East WRSF during the later stages of mine operation after the West WRSF has reached maximum capacity. The WRSF facility will be placed above existing ground that has been stripped of one foot of topsoil. The stripped topsoil will be placed in the growth media stockpile.

7.2.1 East WRSF Sediment Pond

Stormwater runoff from the East WRSF will drain to the low point in the south corner of the facility into the East WRSF Sediment Pond as shown on drawing C120.

The northern portion of the East WRSF Sediment Pond is in cut and the southern portion is in fill, which ties into the crest of the haul road. The south embankment is a minimum of 15ft wide with upstream and downstream slopes at 2.5H:1V. The cut slopes on the north side of the pond are at 2.5H:1V.

The East WRSF Sediment Pond is designed to contain runoff from a 2-year/24-hour storm event and slowly drain over a period of three days through the perforations in the 36-inch diameter HDPE DR 11 riser pipe. Runoff from storm events up to 25-year/24-hour can flow out the top opening of the riser pipe, which has steel mesh over it to keep potential debris from getting lodged inside. The sediment pond is designed to store two feet of sediment and have three feet of freeboard above the spillway invert. Flows greater than those generated by 25-year/24-hr storm event will drain out of the overflow spillway, across the haul road and into a natural drainage. The peak flow from a 100-year/24-hour storm event can pass through the spillway with one foot of freeboard to the crest of the pond. Drawing C125 shows the layout of the East WRSF Sediment Pond. Sediment will be removed from the facility once the sediment design capacity has been reached.

Riprap is installed at the inlet and outlets of the sediment pond. The riprap size and thickness are shown on Drawing C125. A layer of non-woven geotextile will be installed beneath all riprap.

8 MINE FACILITIES

The mine facilities that are being designed by others will be located southeast of the mine pit as shown in the **Drawings** and will be accessed via the mine facilities access road from SR 293. The main mine facilities area consists of a parking lot, shop/office building, fuel island, wash bay, tire pad and storage area, substation, and ready line.

The ROM stockpile and two of the three growth media stockpiles will be located within the mine facilities area as well, east of the main mine facilities. LNC will haul ore recovered from open pit operation to the ROM stockpile located south of the pit. LNC proposes to construct and operate mineral processing facilities in the attrition scrubbing and classification areas to separate the lithium-rich, fine clay material from the coarse gangue.

8.1 Mining Roads

Mine access and haul roads have been designed to provide access to from the pit to the Mine Facilities Area. The access roads are designed for small equipment traffic and haul roads are designed for large haul truck traffic and other support equipment. Numerous culverts have been designed around the mine facilities area as shown on Drawing 002. The culvert summary shown

on Drawing CULV01 provides the drainage area, flow rate, culvert length, elevations, slope, diameter, and number of culverts in the Mine Facilities area. The hydrology calculations for each culvert are provided in Appendix E.

8.2 Mine Stormwater Diversions

Stormwater diversion channels and berms have been designed to direct stormwater runoff from undisturbed areas around the Mine Facilities and to direct stormwater runoff from disturbed areas into the sediment ponds. The stormwater diversions are designed with 3H:1V cut and fill slopes and can convey stormwater runoff from a 100-year/24-hour storm event. A layout of the diversion channels and berms in the Mine Facilities area is shown on Drawing 002. The diversion channel characteristics such as peak flow rate, dimensions, slope, velocity, riprap size and thickness are included in their respective drawings in the Mine Surface Water Control Features drawing set. The hydrology calculations for each stormwater diversion are provided in Appendix E.

8.3 Mine Facilities Sediment Ponds

Three sediment ponds were designed for the mine facilities area: Facility Sediment Pond #1, Facility Sediment Pond #2 and Mine Sediment Pond #1. The cut and fill slopes for each facility are 3H:1V for the pond area and the spillway side slopes are at 4H:1V. The southern portion of the facilities are in fill and the northern portions are in cut. The embankment crest widths are 15 feet wide. All of the sediment ponds are designed to contain runoff from a 2-year/24-hour storm event and slowly drain over a period of three days through the perforations in the 36-inch diameter HDPE riser pipe. Runoff from storm events up to 25-year/24-hour can flow out the top opening of the riser pipe, which has steel mesh over it to keep potential debris from getting lodged inside. Flows greater than those generated by a 25-year/24-hr storm event will drain out of the overflow spillway into the natural drainages. The peak flow from a 100-year/24-hour storm event can pass through the spillway with at least one foot of freeboard to the crest of the pond. Drawing 002 shows the location of each of the sediment ponds. Sediment will be removed from the pond basins once the sediment design capacity has been reached.

8.3.1 Facility Sediment Pond #1

Stormwater runoff from the west end of the mine shop/office facility area and the area directly south of the pit will drain into Facility Sediment Pond #1. A diversion channel to the north of the pond and a diversion berm to the east of the pond direct stormwater runoff into the pond. The sediment pond was designed to store three feet of sediment and has three feet of freeboard above the spillway invert. The peak flow from a 100-year/24-hour storm event can pass through the spillway with a minimum of one foot of freeboard to the crest of the pond. Riprap is installed at the inlets and riser pipe outlet of the sediment pond. The pond water elevations, volumes,

riprap size and thickness are shown on Drawing FP1-2. A layer of non-woven geotextile will be installed beneath all riprap.

8.3.2 Facility Sediment Pond #2

Stormwater runoff from the eastern portion of the mine shop/ office facility area, ROM Stockpile and Scrubber Pad will drain into Facility Sediment Pond #2. A diversion channel to the west of the pond and a diversion berm to the north of the pond will direct stormwater runoff into the pond. The sediment pond was designed to store three feet of sediment and has 2.5 feet of freeboard above the spillway invert. The peak flow from a 100-year/24-hour storm event can pass through the spillway with a minimum of one foot of freeboard to the crest of the pond. The pond water elevations, volumes, riprap size and thickness are shown on Drawing FP2-2. A layer of non-woven geotextile will be installed beneath all riprap.

8.3.3 Mine Sediment Pond #1

Stormwater runoff from the northeastern portion of the Pit and newly constructed haul roads will drain into the Mine Sediment Pond #1. The sediment pond is located in a natural drainage and was designed to store four feet of sediment and has 3.5 feet of freeboard above the spillway invert. The peak flow from a 100-year/24-hour storm event can pass through the spillway with a minimum of one foot of freeboard to the crest of the pond. Riprap is installed at the inlets and outlets of the sediment pond. The pond water elevations, volumes, riprap size and thickness are shown on Drawing MP1-3. A layer of non-woven geotextile will be installed beneath all riprap.

9 PROCESS PLANT

The Process Plant is designed by others and will be located south of the CGS and west of the CTFS as shown on Drawing A010 and will be accessed via two separate roads from SR 293. One entrance will be for reagent delivery trucks and the other entrance will be for all others. The Process Plant will process lithium rich fine clay and produce clay tailings and sulfate salts, which will be conveyed to the temporary stockpile area at the CTFS. The lithium carbonate and lithium hydroxide will be sold as concentrate.

9.1 Process Plant Entrance Roads

The Process Plant entrance roads are separated to keep reagent truck traffic separated from all other traffic at the process plant. While the roads have separate entrances at SR 293, they come together when crossing the main natural drainage south of the Process Plant as shown on Drawing A010. Culverts were designed along the entrance road to pass the runoff from a 25-year/24-hour storm event. For larger storm events, water will flow over the road.

There are three areas where culverts were designed along the entrance road. The largest is just north of SR293 where the road crosses the main drainage south of the site. Seven 60-inch diameter culverts are required to convey water under the road. The downstream slope of the road has riprap for erosion protection for larger storm events where water will flow over the road. A layout of the drainage crossing is presented on Drawing A324.

Hydrology and Hydraulic calculations for the culverts and the watershed map is provided in **Appendix E.**

9.2 Process Plant Sediment Pond

The Process Plant Sediment Pond is located in a natural drainage southeast of the Process Plant. The sediment pond is designed to contain runoff from a 2-year/24-hour storm event and slowly drain over a period of three days through the perforations in the 24-inch diameter HDPE riser pipe. Runoff from storm events up to 25-year/24-hour can flow out the top opening of the riser pipe, which has steel mesh over it to keep potential debris from getting lodged inside. Storm events greater than 25-year/24-hour frequency will drain out of the overflow spillway into the natural drainages. The peak flow from a 100-year/24-hour storm event can pass through the spillway with a minimum of one foot of freeboard to the crest of the pond. Drawing A300 shows the layout of the sediment pond. Sediment will be removed from the pond basin once the design capacity has been reached.

The sediment pond was designed to store two feet of sediment and has two feet of freeboard above the spillway invert. Riprap is installed at the inlets and riser pipe outlet of the sediment pond. The pond water elevations, volumes, riprap size and thickness are shown on Drawing A300. A layer of non-woven geotextile will be installed beneath all riprap.

10 GEOTECHNICAL EVALUATION

This section summarizes our geotechnical recommendations based on the proposed construction and subsurface conditions encountered beneath the CTFS, CGS, WRSF, and Process Plant. Design parameters and a discussion of geotechnical considerations related to construction of the various components of these facilities are included herein.

At this time, information regarding the Process Plant building types, foundation types and structural loads are not available. All recommendations provided herein are preliminary and will be revised when further information becomes available.

10.1 Plant Foundation Recommendations

The results of NewFields Process Plant Site Soil and Foundation Report were presented in a summary report (November 2019) that is included in **Appendix D.1.**

10.2 CTFS, CGS, and WRSF Stability Assessments

The results of the stability analyses for the CTFS, CGS, and WRSF are presented in the following subsections along with descriptions of the material properties and seismic parameters used in the stability models. The results of NewFields Stability Assessments were presented in a Technical Memorandum, TM-08 (January 2020) and TM-09 (February 2020) and are included in **Appendices D.2 and D.3.**

Stability analyses were performed using the computer program SLIDE v8 by RocScience. SLIDE is a two-dimensional slope stability program for evaluating circular or noncircular failure surfaces in soil or rock slopes using limit equilibrium methods. The Spencer's method, which is appropriate for all slope geometries and soil profiles, was utilized within the stability model and assumes all interslice forces are parallel and have the same inclination. The factor of safety can be defined generally as the resisting forces along a potential failure plane divided by the gravitational and dynamic driving forces. Both static and seismic conditions were analyzed.

In July 2019, NewFields completed a deterministic seismic hazard analysis of the Thacker Pass site, which is presented in **Appendix D.4**. The analysis involved review of regional geology and using the unified hazard tool software program from USGS to determine site classification and peak ground acceleration. The corresponding PGA for the 475-year (OBE) and 2,475-year (MDE) events are 0.09g and 0.26g, respectively. Based on these seismic hazard parameters, and the Hynes-Griffin and Franklin analytical method, a reduced pseudostatic seismic coefficient of 0.13g (one-half of the PGA) is valid and was used to evaluate for post closure pseudostatic conditions.

To assess the stability of slopes during seismic loadings, a pseudostatic approach was used where the potential slide mass is subjected to an additional, destabilizing horizontal force which represents the effect of earthquake motions and is directly related to the PGA. Very simply, the seismic force is the weight of the slide mass multiplied by a horizontal pseudostatic earthquake coefficient (k_H). Since the earthquake motion is not a constant, horizontal destabilizing force, using the full PGA for k_H has been shown to be overly conservative. Hynes-Griffin and Franklin (1984) discussed the concept that using one-half of the PGA for the horizontal pseudostatic earthquake coefficient more closely simulates actual earthquake loading, and with the resulting minimum factor of safety being equal to at least 1.0, slope deformations will be within tolerable limits. Thus, a seismic coefficient equal to one-half the PGA, or 0.13g, was adopted for the pseudostatic stability analyses.

The CTFS, CGS and WRSFs have each been evaluated as an engineered structure and designed as a waste rock storage facility. Minimum acceptable factors of safety for static and pseudostatic conditions were established as 1.3 and 1.05, respectively. The results of the stability analyses are presented in **Appendices D.2** and **D.3**.

10.2.1 Material Properties

Design parameters utilized in the stability evaluations for the CTFS and CGS were conservatively selected based upon laboratory index and strength test data in conjunction with observations from the field investigation and historical experience with similar materials. Design parameters utilized for the stability evaluations for the WRSFs were conservatively selected based upon previous reporting and experience with similar materials. The claystone material is reported by AMEC to have an International Society for Rock Mechanics (ISRM) hardness of S6/R0 and a Rock Quality Designation (RQD) ranging from 0 to 91. This implies that once excavated the material may exhibit engineering behavior similar to a stiff soil rather than a competent or intact rock. The AMEC report also states that the claystone appears to weather and breakdown into a high plastic soil upon exposure to the elements. The engineering parameters for the facility foundations were developed from laboratory index and strength test data in conjunction with observations from the field investigation, previous reporting by others, and historical experience with similar materials.

Material properties used in the stability analysis were based on available laboratory test data and experience with similar materials. Based upon triaxial laboratory testing results, the cohesion within the tailings materials is very sensitive to relatively small changes in moisture contents. For this reason, any effects that cohesion may have on strength have been assumed to be negligible for this stability analysis. It is recommended that long term monitoring and testing be performed to ensure that these assumptions are correct. The material properties used in the stability analyses are summarized in the following paragraphs and in **Table 9-1**.

Table 10-1: Properties Used in the Stability Analyses

Material	Unit Weight (pcf)	Friction Angle (degrees)	Cohesion (psf)
Alluvium – Foundation	110	32	0
Drainage Layer	110	35	0
Liner Interface	110	16	0
Non-Structural Tailings	90	16	0
Structural Tailings	100	20	0
Coarse Gangue Material	110	31	0
Waste Rock (Claystone – Clay Soil)	100	18	200

10.2.2 Model Development

Both static and pseudostatic loadings were evaluated for a critical cross section through the ultimate CTFS, CGS and WRSF configurations. This critical location was selected based upon existing topography, proposed grading of the facility foundations (if required) and proposed grading of the facility slopes. The locations of the critical cross sections are presented in **Appendices D.2** and **D.3**. During pseudostatic analysis the tailings material parameters are reduced to account for strain softening during potential deformation.

10.2.3 Stability Analysis Results

Results of the slope stability analyses for the cross sections under consideration are summarized in **Table 10-2** and figures presented in **Appendices D.2** and **D.3**. These figures detail the critical cross section and the failure planes with the lowest factors of safety. Based on this evaluation, the CTFS, CGS and WRSF's will remain stable for static loading conditions. The initial slopes and benches for the East and West WRSF and CGS were provided by North American Mining who is completing the mining plan for LNC. Stability analysis was completed on these facility configurations and it was determined that the slopes used in the design of the East WRSF and CGS may be overly conservative. Since the initial analysis was completed, NewFields completed additional analysis, which shows the East WRSF could be constructed at a steeper slope of 3.5H:1V. Preliminary results also show that 3H:1V slopes are achievable for the coarse gangue stockpile while meeting the minimum factor of safety. Additional samples should be collected during initial operations to determine if steepening the slopes is possible so the facility footprint can be reduced.

Table 10-2: CGS and WRSF Summary of Stability Analysis

Location	Static FoS	Pseudostatic OBE FoS	Pseudostatic MDE FoS
CTFS – Overall Stability	1.3	-	0.7
CGS – Overall Stability (5.5H:1V)	3.6	2.3	2.0
CGS – Inter-Bench Stability (4H:1V)	2.6	1.9	1.7
CGS – Overall Stability (3H:1V)	1.9	1.5	1.3
East WRSF – Overall Stability (5.5H:1V)	2.9	1.7	1.4
East WRSF – Inter-Bench Stability (4H:1V)	2.2	1.5	1.3
West WRSF – Overall Stability (3.5H:1V)	1.3	0.9	0.8

^{*}The current design thickness of the East WRSF is only 75 feet but to allow stable slopes for potential future expansion, the facility will be constructed to the same slope as the West WRSF given the materials will be the same.

Pseudostatic loading conditions indicated that the factor of safety could be less than 1.05 for the CTFS and West WRSF under both the OBE and MDE events and thus a deformation analysis was completed to estimate potential slope movements as presented in **Section 10.2.4**.

10.2.4 Seismic Slope Deformation Analysis

Since the pseudostatic stability evaluation for the CTFS and West WRSF resulted in calculated minimum factors of safety less than 1.05 for the OBE and MDE event, potential seismic deformations of the facility slopes were evaluated using a simplified method. Bray and Travasarou developed a semi-empirical relationship for estimating the magnitude and probability of permanent slope displacements that utilizes a non-linear, fully coupled stick-slip sliding block model to estimate dynamic performance of soil slopes. The response spectrum and moment magnitude of the design earthquake were based on data obtained from the USGS.

Results of the CTFS deformation analysis indicate that for the MDE event, potential slope displacements between 17 to 32 inches could be expected. This estimate is for movement along the entire slope length for the maximum height of 400 feet. It is our professional opinion that these slope movements are acceptable and any potential slope deformation from the MDE seismic event would not result in an excursion of the tailings outside containment.

Results of the WRSF deformation analysis indicate that for the OBE and MDE events potential slope movements between five and 50 inches could be expected. This estimate is for movement along the entire slope length for the maximum thickness of 275 feet. This amount of displacement may cause minor surficial sloughing but will not impact the overall integrity of the facility. Since the West WRSF potential slope movements were acceptable, the same slope was designed for the East WRSF.

11 HAUL AND ACCESS ROADS

LNC will primarily use haul trucks in the Project area for the following activities:

- Movement of ore to the ROM stockpile
- Movement of waste rock material to the WRSFs (during the first years of operation)
- Movement of tailings and salt from the temporary stockpiles to the CTFS.

The haul road maximum gradient will be less than ten percent with an 80-foot road throughway width. Roads will be sloped away from the centerline with the exception of the CTFS perimeter haul roads and have a wearing course thickness of 18 inches. Haul roads in the mine area will be constructed according to MSHA standards. Secondary access roads will be approximately 32 feet in width with a minimum 1.5 percent grade from the centerline and have a wearing course thickness of six inches.

Facility entrance roads off SR293 will be classified as private roads. All site roads will allow for emergency vehicle access minimum requirements. The Process Plant road layout is designed to support the anticipated site traffic for construction, operations and maintenance requirements of the facility. The design considers anticipated vehicle traffic, equipment turning requirements and clearances and ensures access requirements are met.

LNC will construct ditches on the side of roads to capture road runoff as needed. Runoff from haul and secondary roads will be collected and routed to stormwater sediment ponds as needed. Dust control measures used for road grading will include watering before and after grading activities and reduction of equipment speeds during operations, if necessary. Chemical treatment may be used for additional dust suppression.

12 CLOSURE

The Tentative Plan for Permanent Closure (TPPC) is included as **Attachment Q** in the WPCP submittal. The temporary closure plan is included as **Attachment P** of the WPCP submittal; however, no temporary or seasonal closures of the mine are planned during its operation. The following provides a summary of the closure activities described in the TPPC.

Closure and major reclamation activities will occur in the first two years following cessation of mining. Monitoring and maintenance will continue for five years post closure until the final bond release. Post-production reclamation activities will include recontouring, cover placement, placement of growth media, seeding activities, and removal of infrastructure and fluid management.

Throughout the Project's operational phase, concurrent reclamation will occur in areas where final configurations are complete. LNC will begin reclamation activities at the earliest practicable time within areas of the Project that are considered inactive, without potential, or completed. Early initiation of reclamation will stabilize soil, reduce dust, and naturalize runoff.

Earthwork reclamation will ensure that potential visual impacts resulting from development of the proposed Project are minimized. Regraded stockpile slopes will be covered by a layer of growth media. Cover over the clay tailings will include a compacted clay layer overlain with cover soil. This cover soil will consist of coarse gangue or benign pit waste rock with growth media. Growth media will be salvaged from the growth media stockpiles. The proposed reclamation seed mix and application rates are included in **Attachment Q** of the WPCP. The seed mix is designed to provide species that can exist in the environment of northwestern Nevada. The Noxious and Invasive Weed Management Plan, provided in the Plan of Operations, outlines the strategies for proactively preventing noxious and invasive weeds.

In accordance with NAC 445A, the permanent stormwater diversions that will remain during the post-closure period will be designed to handle the 500-year/24-hour design storm event at closure. Regraded slope angles, revegetation (e.g., growth media placement), and BMPs will limit erosion and reduce sediment in runoff. Silt fences, waddles, sediment traps, and other BMPs will help prevent migration of eroded material until reclaimed slopes and exposed surfaces have demonstrated erosional stability.

In general, facility reclamation practices will include decommissioning, demolition, waste removal, backfilling, regrading, placing growth media, and revegetating Project facility areas.

Reclamation efforts will occur on both an interim and, whenever possible, concurrent basis throughout the Project's operational phase. Specific reclamation activities for the main Project infrastructure are further described in **Attachment Q** of the WPCP.

13 REFERENCES

Advisian. Technical Report on the Pre-Feasibility Study for the Thacker Pass. February 2018

AMEC. Prefeasibility Study Level Geotechnical Study Report. AMEC Project No. 10-417-00961. March 2011.

American Concrete Institute 1994 (page14)

ASCE-7, Minimum Design Loads for Buildings and Other Structures (ASCE/SEI 7-10). American Society of Civil Engineers, Reston, Virginia. 2010

ASTM, American Society for Testing and Materials. 2019.

Bray, Jonathan D, and Thaleia Travasarou (2007), "Simplified Procedure for Estimating Earthquake Induced Deviatoric Slope Displacements" Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 133, pp 381-392.

FHWA Publication Number: IF-05-114. HEC 15 Design of Roadside Channels with Flexible Linings, Third Edition. 2014

Hynes-Griffin, M.E. and Franklin, A.G. (1984), Rationalizing the Seismic Coefficient Method, Final Report GL-84-13, U.S. Army Corps of Engineers, Washington, D.C.

IBC. International Building Code 2015, International Code Council, Inc.

NAC. Nevada Administrative Code 534, Underground Water and Wells.

NCRS. Rock_Chute.xls based on Robinson, Rice and Kadavy, "Design of Rock Chutes" ASAE Vol. 41 (3), pp. 621-626, 1998

NOAA, Atlas 14, http://hdsc.nws.noaa.gov/hdsc/pfds/

RocScience, Inc. Slide Version 8, Computer Program.

SEAC. Structural Engineers Association of California, Office of State Wide Health Planning and Development, U.S. Seismic Design Maps. https://seismicmaps.org/. 2019.

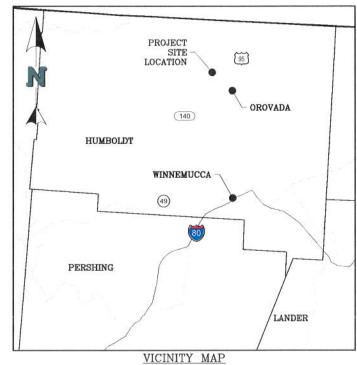
USDOT FHWA, "Hydraulic Engineering Circular No. 15, Third Edition" September 2005

USGS. United States Geological Survey – Earthquake Hazards Program, Unified Hazard Tool. https://earthquake.usgs.gov/hazards/interactive/. 2019

Western Regional Climate Center (WRCC) https://wrcc.dri.edu/

DRAWINGS

DRAWINGS


NewFields A-Series

Clay Tailings Filter Stack and Process Plant Stormwater

LITHIUM NEVADA CORP. **THACKER PASS PROJECT CLAY TAILINGS FILTER STACK AND PROCESS PLANT STORMWATER**

ISSUED FOR CONSTRUCTION APRIL 02, 2020

	DRAWING LIST	
DWG NO.	DRAWING TITLE	REV
A000	COVER SHEET, INDEX AND VICINITY MAP	Το
THE WAY	PROJECT LAYOUT AND GENERAL EARTHWORKS	
A010	GENERAL PROJECT LAYOUT	0
A050	GEOTECHNICAL INVESTIGATION PLAN	0
A060	CTFS LAYOUT	0
A070	CTFS ISOPACH	0
A100	CTFS STACKED FACILITY LAYOUT	0
A105	TYPICAL STACKING SECTIONS	0
A106	CTFS FACILITY SECTIONS (SHEET 1 OF 2)	0
A107	CTFS FACILITY SECTIONS (SHEET 2 OF 2)	0
A120	PERIMETER ROAD PLAN	0
A125	PERIMETER ROAD PLAN AND PROFILE (SHEET 1 OF 4)	0
A130	PERIMETER ROAD PLAN AND PROFILE (SHEET 2 OF 4)	0
A131	PERIMETER ROAD PLAN AND PROFILE (SHEET 3 OF 4)	0
A132	PERIMETER ROAD PLAN AND PROFILE (SHEET 4 OF 4)	0
A150	TEMPORARY STOCKPILE AREA PLAN	0
A152	CLAY TAILINGS STOCKPILE CONVEYOR CORRIDOR PLAN & PROFILE	0
A154	SALT STOCKPILE CONVEYOR CORRIDOR PLAN & PROFILE	0
	UNDERDRAIN CONVEYANCE AND SOLUTION PONDS	
A210	CTFS UNDERDRAIN PLAN	0
A215	UNDERDRAIN SECTIONS AND DETAILS (1 OF 2)	0
A216	UNDERDRAIN SECTIONS AND DETAILS (2 OF 2)	0
A220	CTFS RECLAIM POND GRADING AND PIPING PLAN	0
A221	CTFS RECLAIM POND SECTIONS AND DETAILS	0
A222	CTFS SOLUTION OUTLET CHANNEL PLAN AND PROFILE	0
A223	CTFS SOLUTION OUTLET CHANNEL SECTIONS AND DETAILS (1 OF 2)	0
A224	CTFS SOLUTION OUTLET CHANNEL SECTIONS AND DETAILS (2 OF 2)	0

	DRAWING LIST	
DWG NO.		REV
A225	CTFS RECLAIM POND ACCESS ROAD PLAN AND PROFILE	0
A226	CTFS SOLUTION CHANNEL DETAILS	0
A227	PARSHALL FLUME SECTIONS AND DETAILS	0
A230	POND SECTIONS AND DETAILS (SHEET 1 OF 2)	0
A235	POND SECTIONS AND DETAILS (SHEET 2 OF 2)	0
	STORMWATER	
A300	PROCESS PLANT SEDIMENT POND PLAN	0
A302	PROCESS PLANT SEDIMENT POND SECTIONS AND DETAILS (SHEET 1 OF 2)	0
A304	PROCESS PLANT SEDIMENT POND SECTIONS AND DETAILS (SHEET 2 OF 2)	0
A305	CTFS STORMWATER PLAN	0
A310	CTFS WEST DIVERSION CHANNEL PLAN & PROFILE (SHEET 1 OF 3)	0
A311	CTFS WEST DIVERSION CHANNEL PLAN & PROFILE (SHEET 2 OF 3)	0
A312	CTFS WEST DIVERSION CHANNEL PLAN & PROFILE (SHEET 3 OF 3)	0
A313	CTFS NORTH DIVERSION CHANNEL PLAN & PROFILE (SHEET 1 OF 3)	0
A314	CTFS NORTH DIVERSION CHANNEL PLAN & PROFILE (SHEET 2 OF 3)	0
A315	CTFS NORTH DIVERSION CHANNEL PLAN & PROFILE (SHEET 3 OF 3)	0
A320	CTFS WEST CHANNEL CULVERT SECTIONS (SHEET 1 OF 2)	0
A322	CTFS WEST CHANNEL CULVERT SECTIONS (SHEET 2 OF 2)	0
A324	PROCESS PLANT ENTRANCE ROAD CULVERT SECTIONS AND DETAILS	0
	INSTRUMENTATION	
A400	CTFS INSTRUMENTATION PLAN	0
A410	CTFS INSTRUMENTATION PLAN SECTIONS & DETAILS	0
	CTFS PHASING	
A500	CTFS STAGE 1 STORMWATER PLAN	0
A510	CTFS STAGE 1 SECTIONS & DETAILS (1 OF 2)	0
A512	CTFS STAGE 1 SECTIONS & DETAILS (2 OF 2)	0
	FENCING	
A600	WILDLIFE FENCING SECTIONS AND DETAILS	0

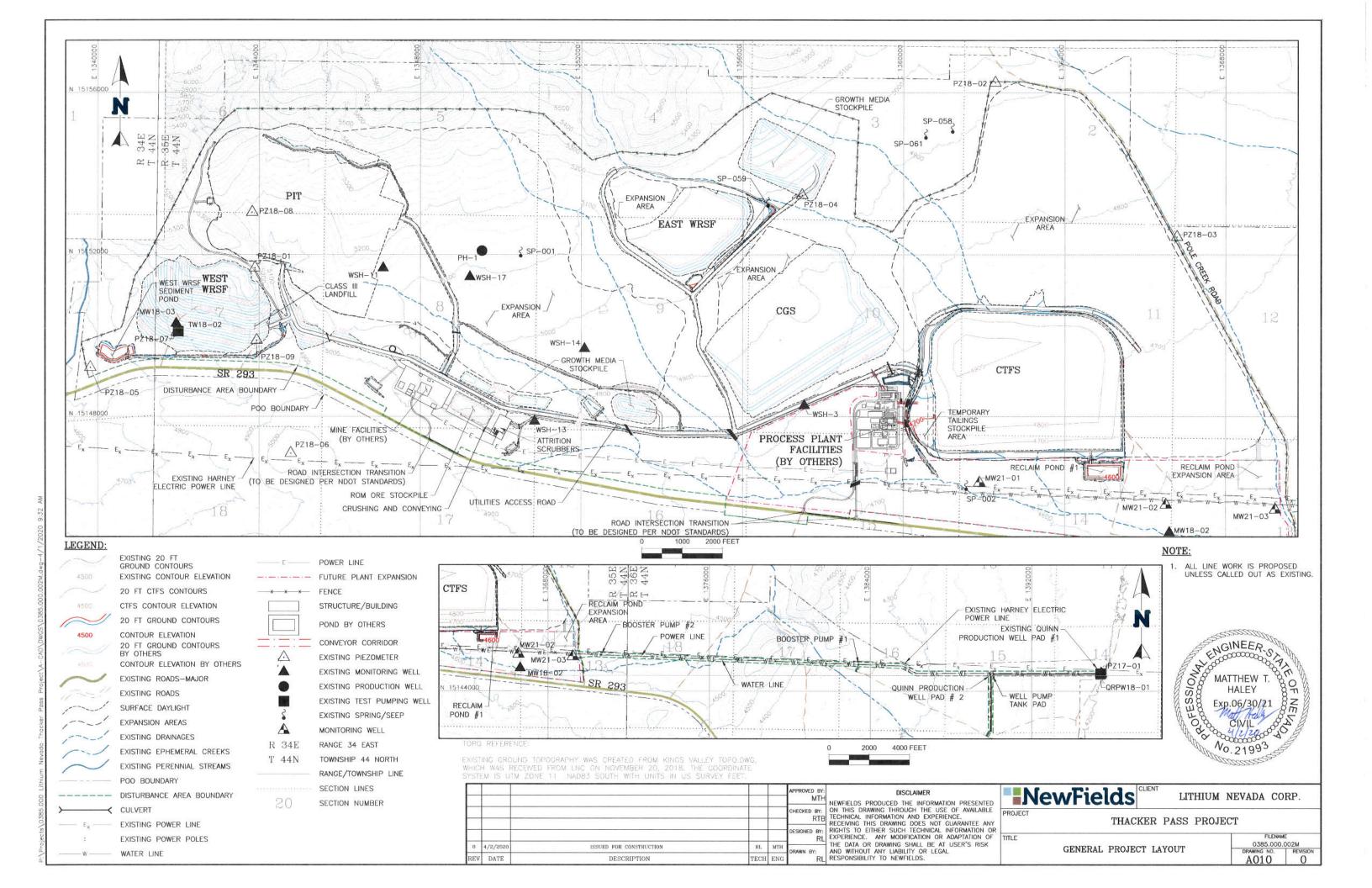
TEXT ABBREVIATIONS:

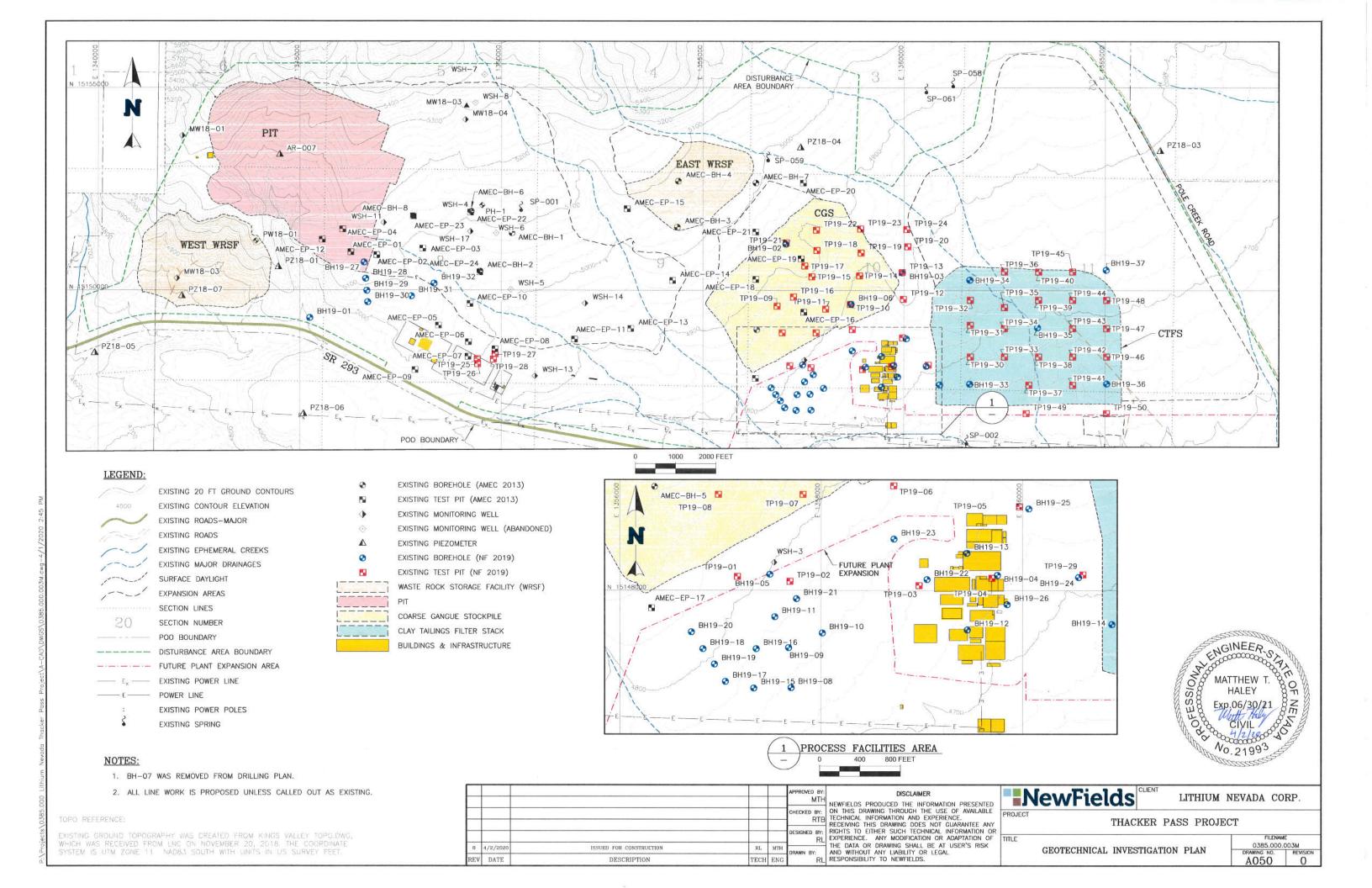
CGS - COARSE GANGUE STOCKPILE ← CENTERLINE CPeP – CORRUGATED POLYETHYLENE PIPE CS – CARBON STEEL CTFS – CLAY TAILINGS FILTER STACK DIA - DIAMETER DR - DIMENSION RATIO FT - FOOT GM - GROWTH MEDIA MW – GROWIT MEDIA
HDPE – HIGH DENSITY POLYETHYLENE
LHCSL – LOW HYDRAULIC CONDUCTIVITY SOIL LAYER
MW – MONITORING WELL PH — EXISTING PRODUCTION WELL POO — PLAN OF OPERATIONS PZ — PIEZOMETER

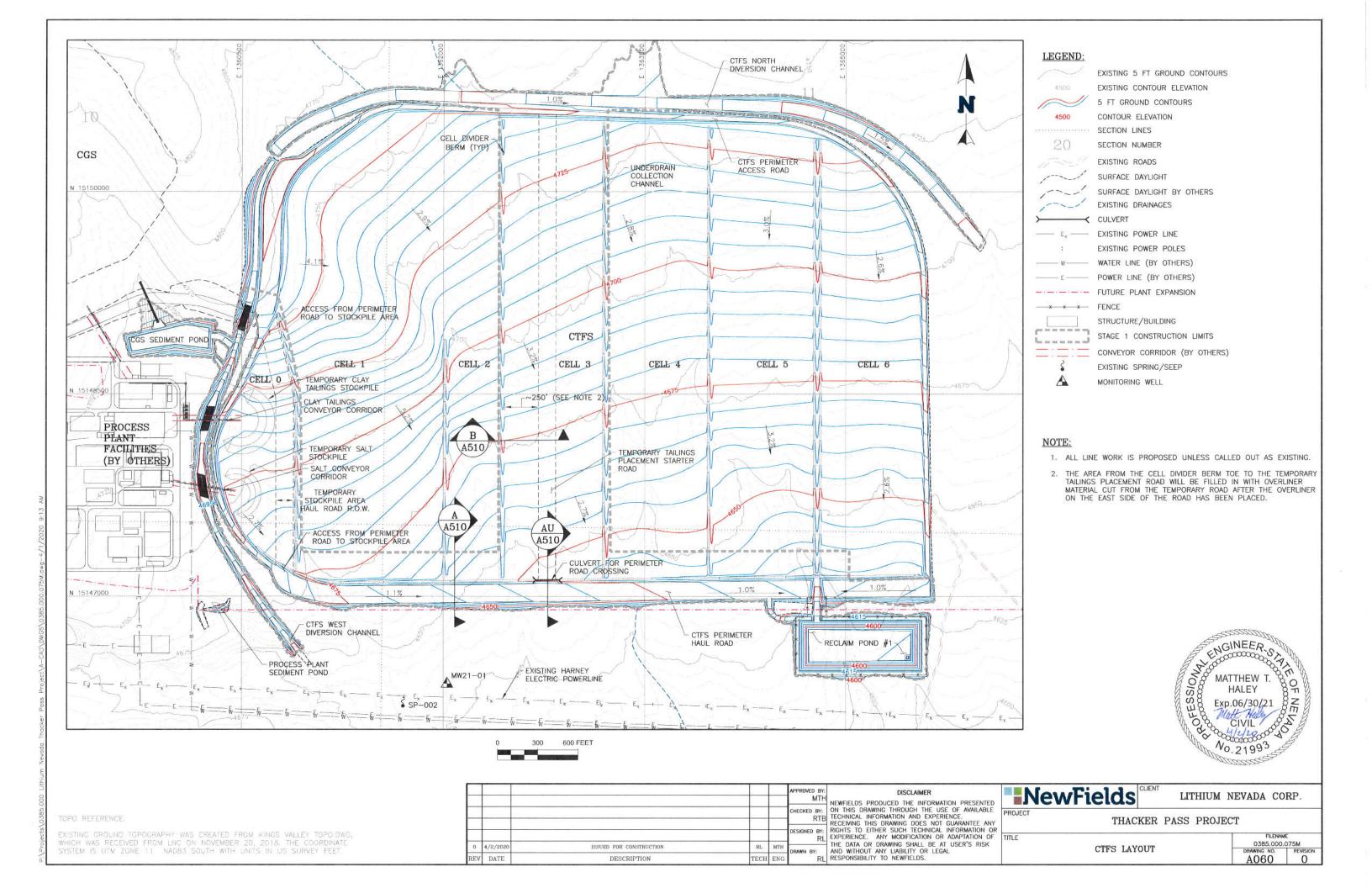
QRPW - QUINN RIVER PRODUCTION WELL ROW - RIGHT OF WAY ROM - RUN OF MINE SR - STATE ROUTE

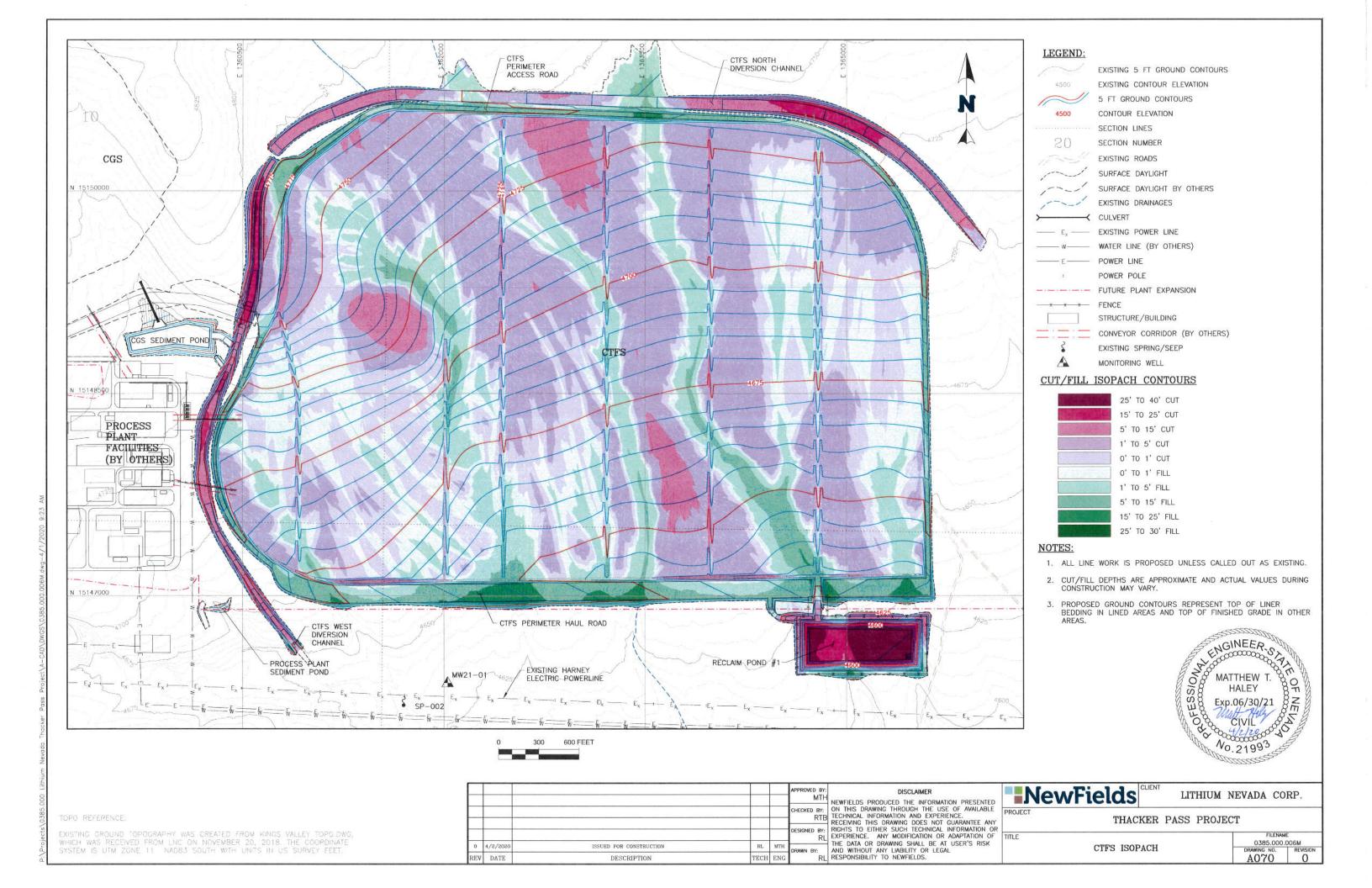
STD WT - STANDARD WEIGHT
TW - EXISTING TEST PUMPING WELL TYP - TYPICAL

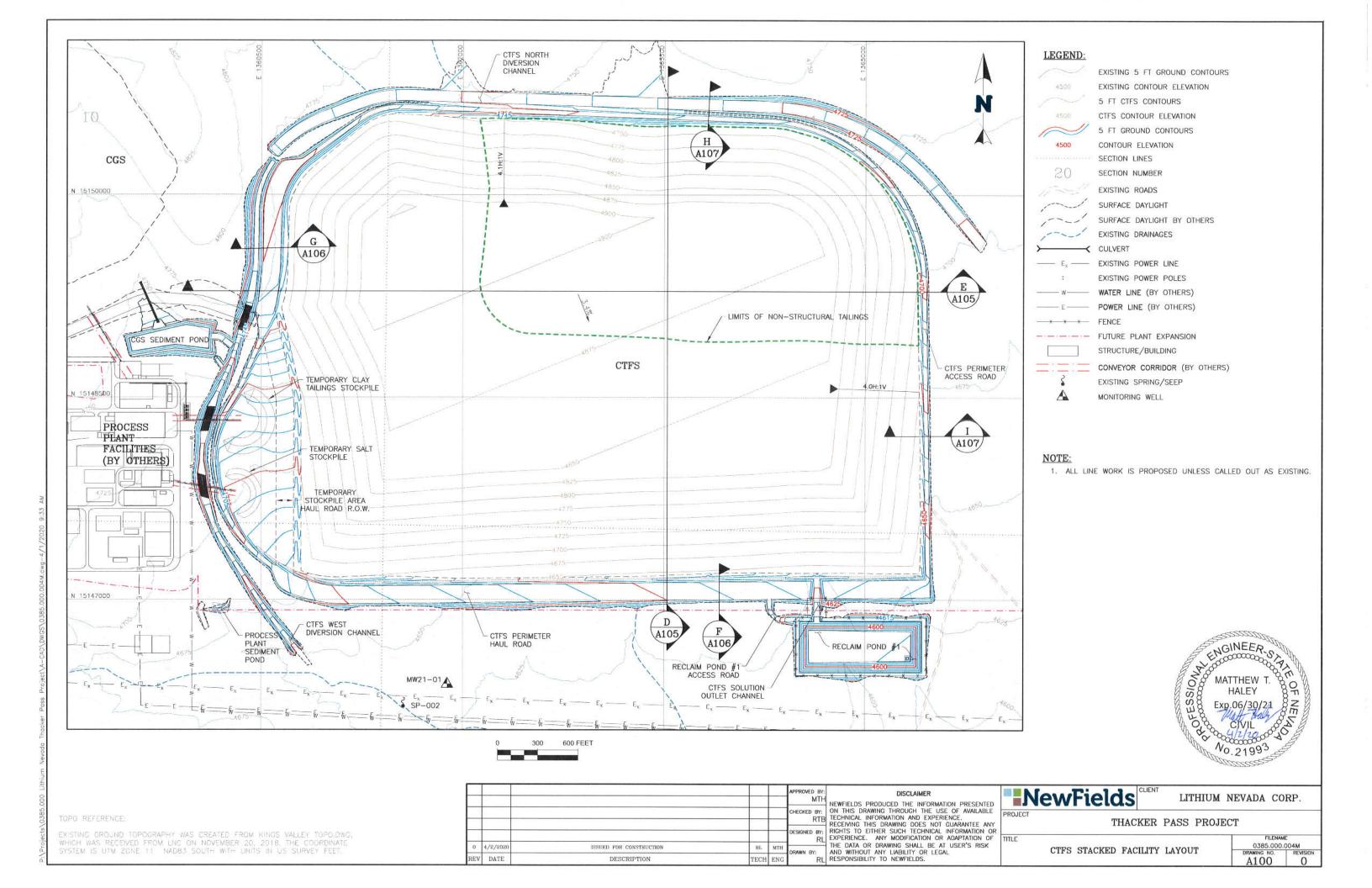
VFD - VARIABLE FREQUENCY DRIVE WRSF - WASTE ROCK STORAGE FACILITY WSH - EXISTING MONITORING WELL WSE - WATER SURFACE ELEVATION

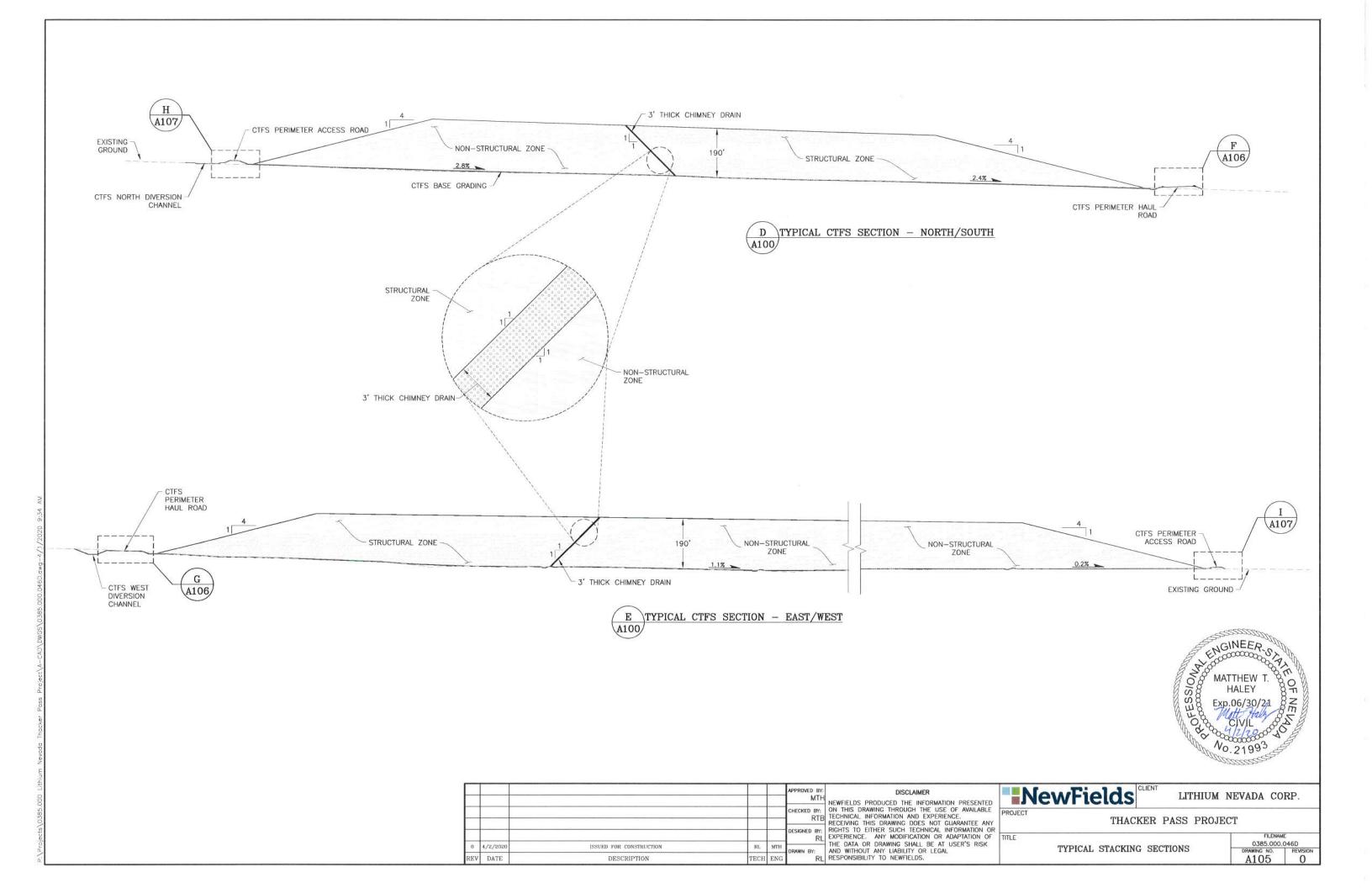


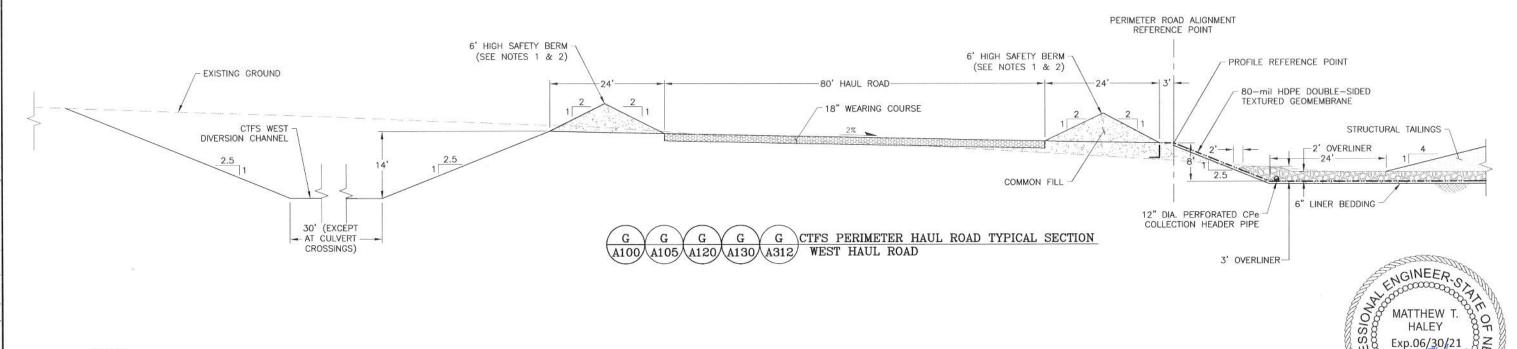

OWNER:


LithiumNevada


LITHIUM NEVADA CORP. 3685 LAKESIDE DRIVE **RENO, NEVADA 89509**


9400 Station Street, Suite 300, Lone Tree, CO 80124 Phone: (720) 508.3300 www.newfields.com



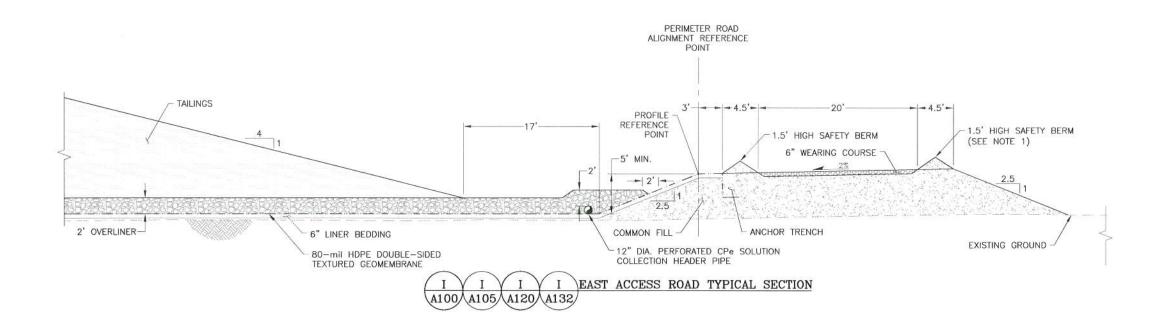


NOTES:

- 1. A SAFETY BERM IS ONLY REQUIRED IN FILL SITUATIONS.
- A 2 FOOT WIDE BERM BREAK SHALL BE PROVIDED EVERY 50 LINEAR FEET OF BERM FOR STORMWATER RUNOFF ON THE DOWNSLOPE SIDE OF THE ROAD. THE BERM ON THE UPSLOPE SIDE WILL NOT NEED A BERM BREAK.

					APPROVED BY:
					CHECKED BY: RTE
					DESIGNED BY:
0	4/2/2020	ISSUED FOR CONSTRUCTION	RL	MTH	DRAWN BY:
REV	DATE	DESCRIPTION	TECH	ENG	RL

DISCLAIMER


EWFIELDS PRODUCED THE INFORMATION PRESENTED IN THIS DRAWING THROUGH THE USE OF AVAILABLE ECHNICAL INFORMATION AND EXPERIENCE. ECHIVING THIS DRAWING DOES NOT GUARANTEE ANY IGHTS TO EITHER SUCH TECHNICAL INFORMATION OR XPERIENCE. ANY MODIFICATION OR ADAPTATION OF THE DATA OR DRAWING SHALL BE AT USER'S RISK ND WITHOUT ANY LIABILITY OR LEGAL ESPONSIBILITY TO NEWFIELDS.

NewFields

LITHIUM NEVADA CORP.

THACKER PASS PROJECT

CTFS FACILITY SECTIONS (SHEET 1 OF 2)

NOTES:

- 1. A SAFETY BERM IS ONLY REQUIRED IN FILL SITUATIONS.
- A BERM BREAK SHALL BE PROVIDED EVERY 50 LINEAR FEET OF BERM FOR STORMWATER RUNOFF.
- 3. THE SURFACE OF PROPOSED FINISHED GRADE SHOULD CONSIST OF FINE GRAINED MATERIAL — EITHER NATIVE OR PROCESSED MATERIALS. THE PURPOSE OF THE LINER BEDDING IS TO PROVIDE A RELATIVELY SMOOTH SURFACE FREE OF ROCK PROTRUSIONS FOR THE OVERLYING GEOMEMBRANE LINER.

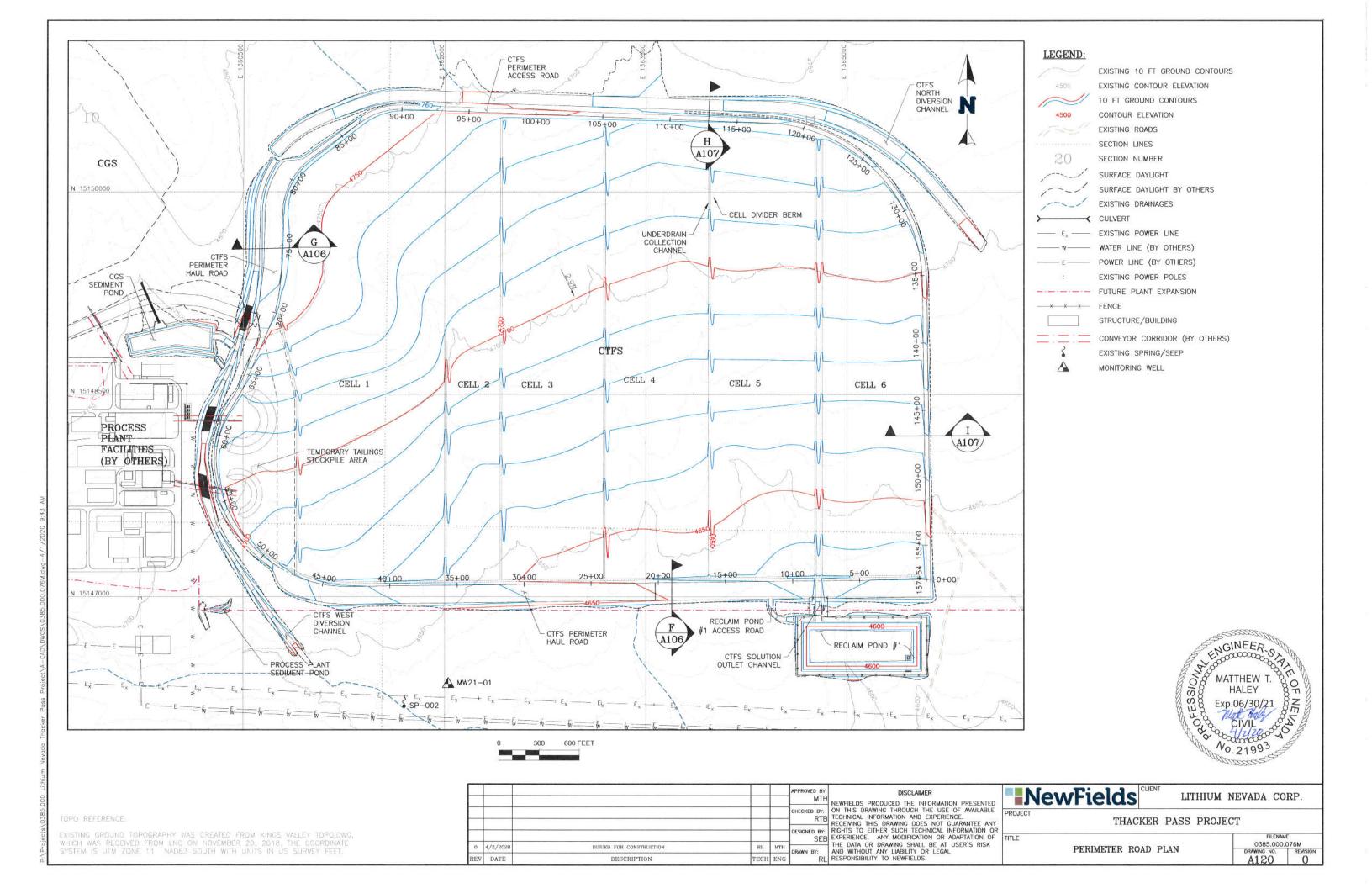
					APPROVED BY
					CHECKED BY:
					DESIGNED BY
0	4/2/2020	ISSUED FOR CONSTRUCTION	RL	мн	DRAWN BY:
REV	EV DATE DESCRIPTION		TECH	ENG	R

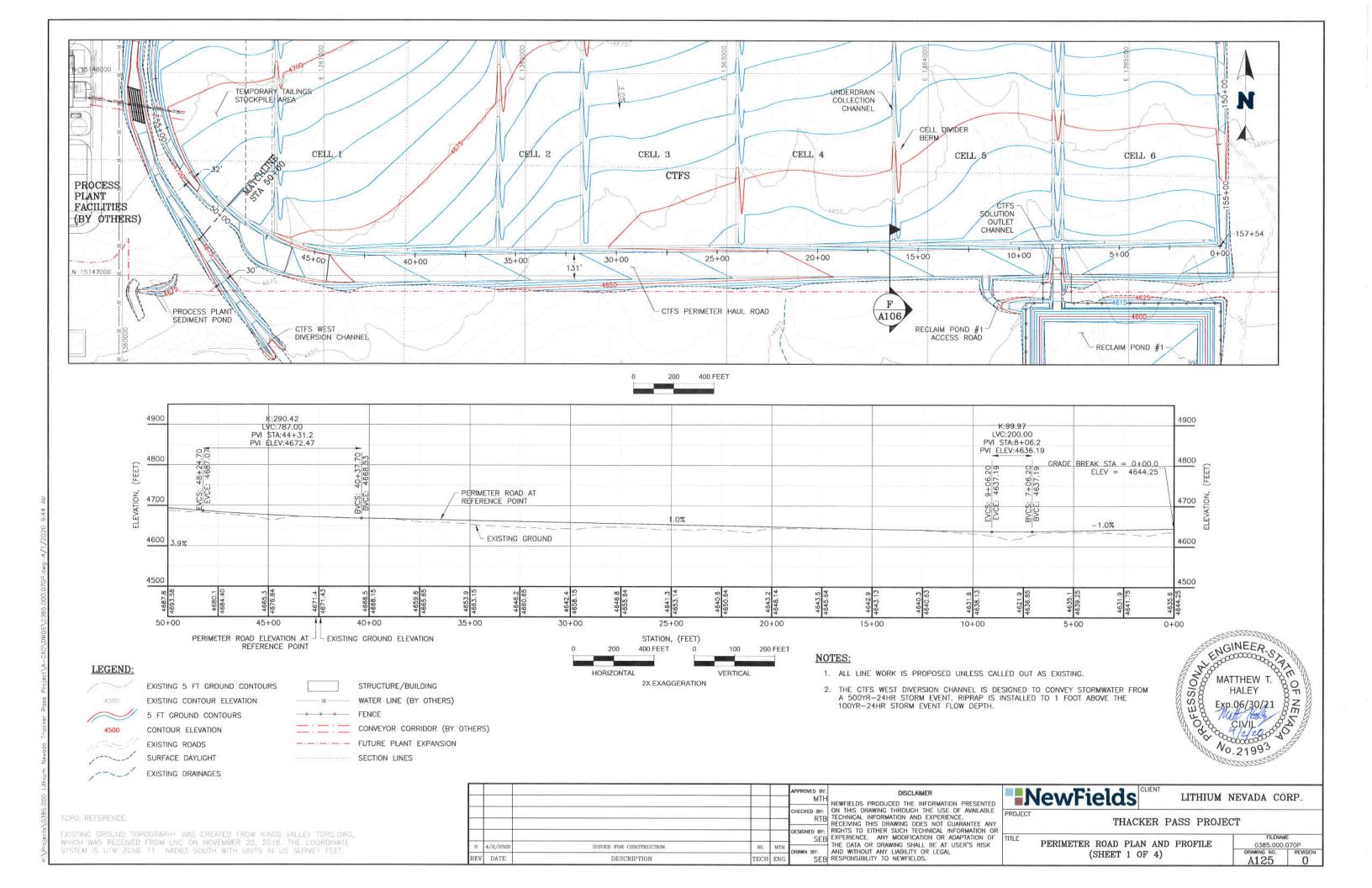
DISCLAIMER

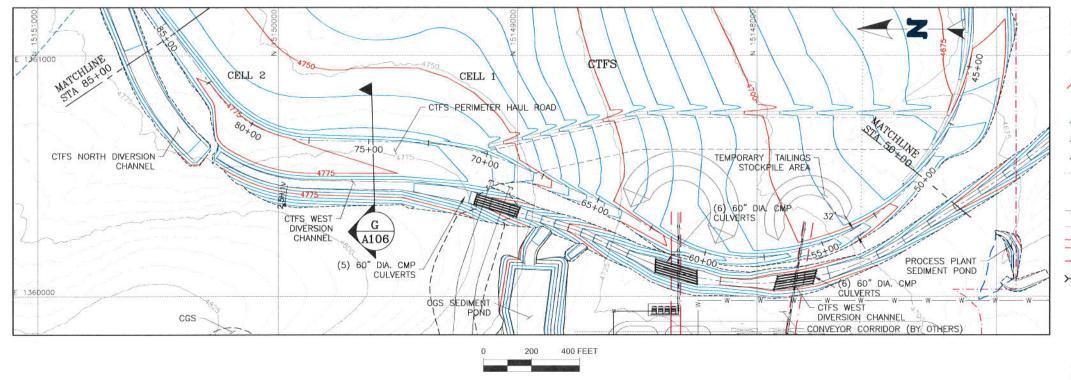
NEWFIELDS PRODUCED THE INFORMATION PRESENTED ON THIS DRAWING THROUGH THE USE OF AVAILABLE TECHNICAL INFORMATION AND EXPERIENCE.
RECEIVING THIS DRAWING DOES NOT GUARANTEE ANY RIGHTS TO EITHER SUCH TECHNICAL INFORMATION OR EXPERIENCE. ANY MODIFICATION OR ADAPTATION OF THE DATA OR DRAWING SHALL BE AT USER'S RISK AND WITHOUT ANY LIABILITY OR LEGAL RESPONSIBILITY TO NEWFIELDS.

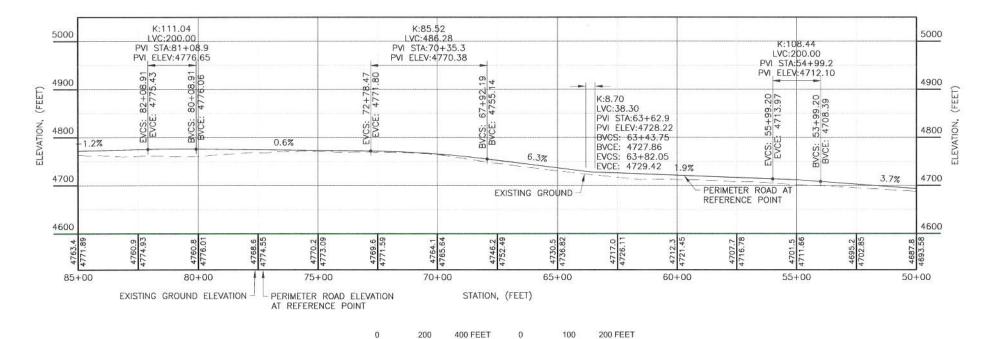
NewFields

LITHIUM NEVADA CORP.

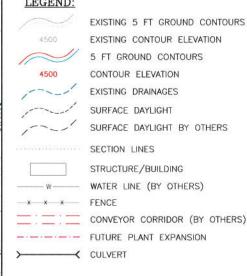

ENGINEER.S


Exp.06/30/21


THACKER PASS PROJECT


CTFS FACILITY SECTIONS (SHEET 2 OF 2)

| FILENAME | 0385,000,040D | DRAWING NO. | REVISION | R



2X EXAGGERATION

VERTICAL

HORIZONTAL

LEGEND:

NOTES:

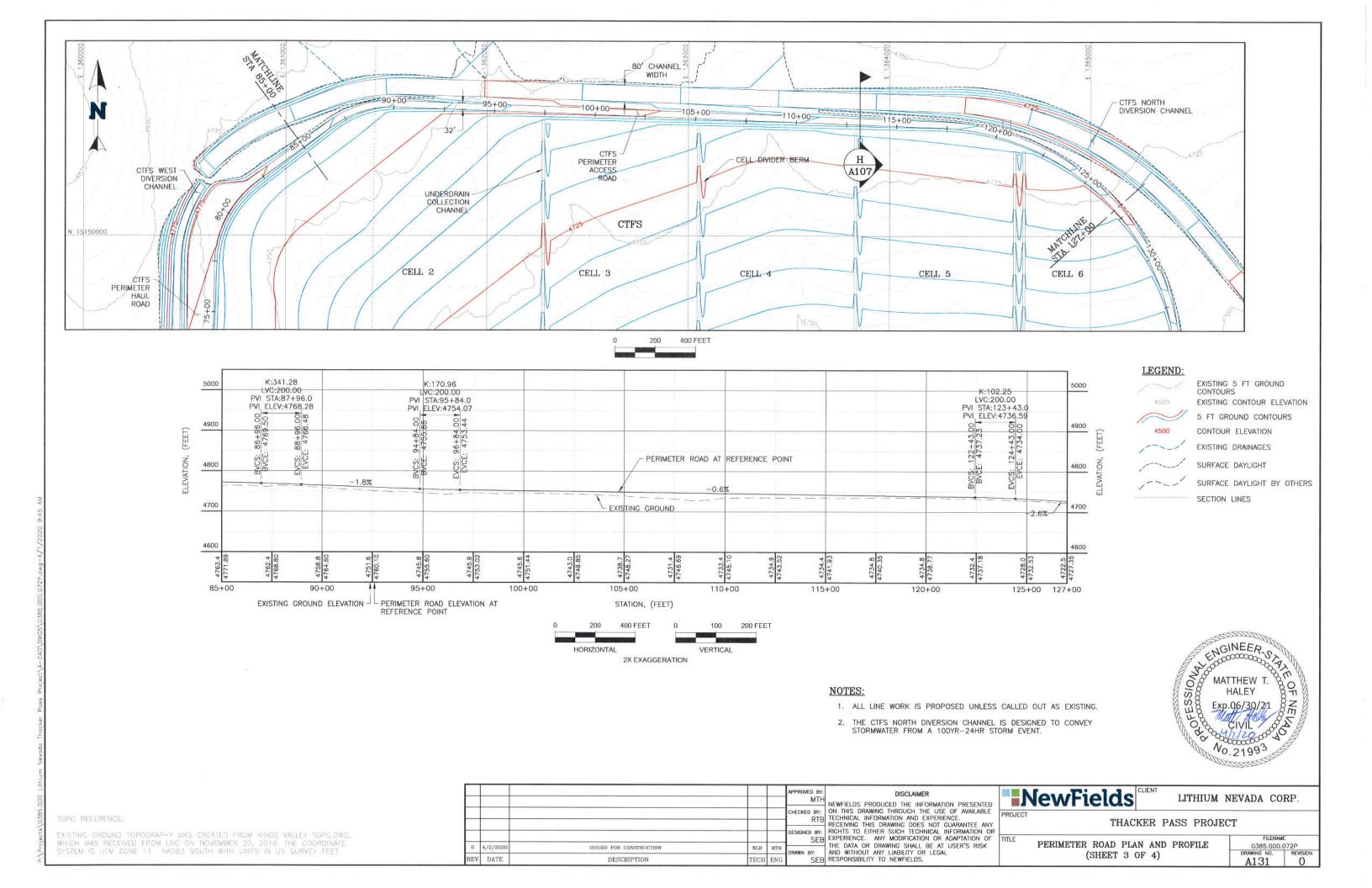
- 1. ALL LINE WORK IS PROPOSED UNLESS CALLED OUT AS EXISTING.
- 2. THE CTFS WEST DIVERSION CHANNEL IS DESIGNED TO CONVEY STORMWATER FROM A 500YR-24HR STORM EVENT. RIPRAP IS INSTALLED TO ONE FOOT ABOVE THE 100YR-24HR STORM EVENT FLOW DEPTH.

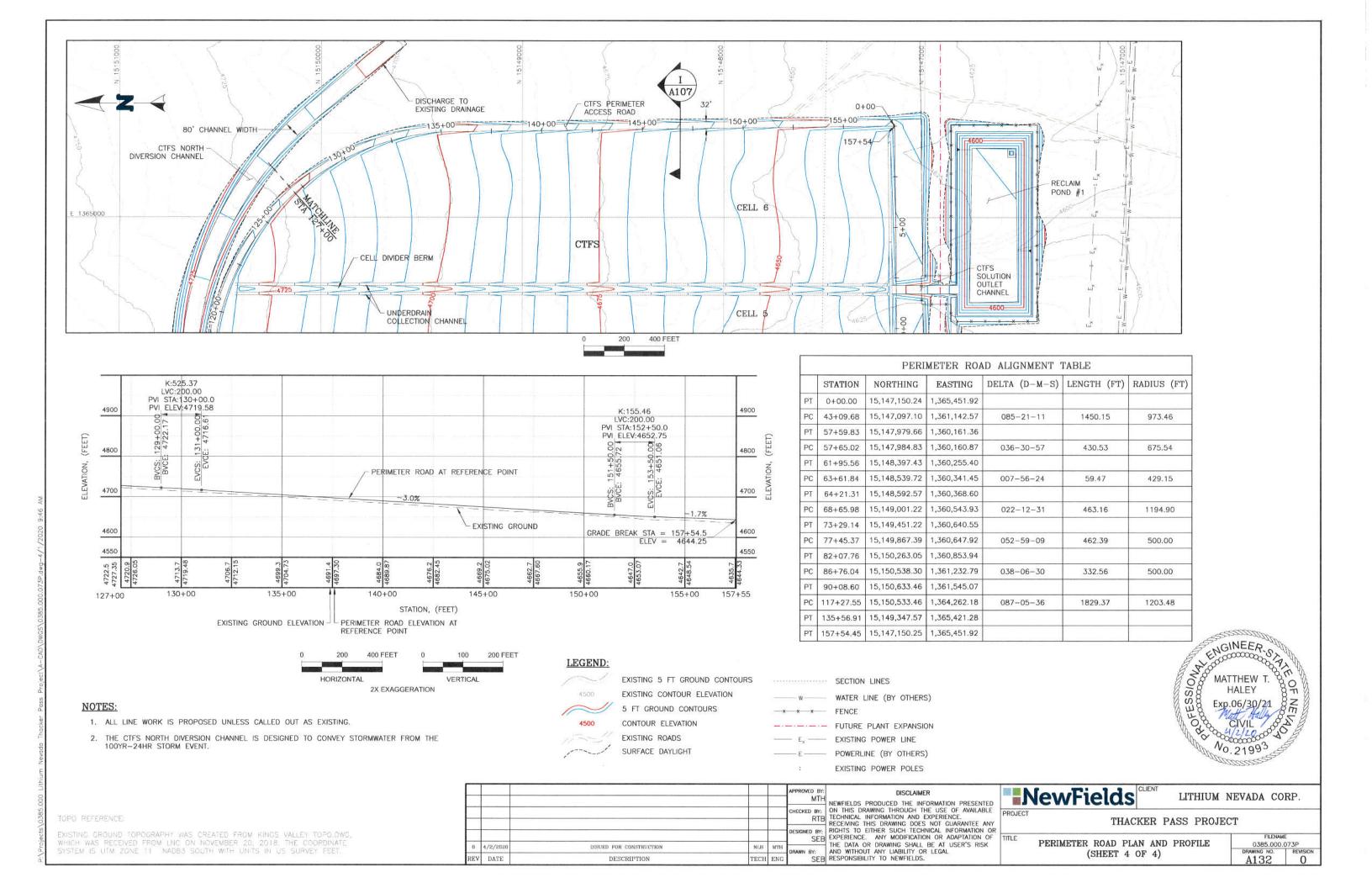
		T		
STARTING STATION	ENDING STATION	ROAD WIDTH (FT		
0+00	47+01.20	131		
47+01.20	49+26.20	TRANSITION		
49+26.20	55+39.20	32		
55+39.20	55+89.20	TRANSITION		
55+89.20	60+81.20	15		
60+81.20	61+31.20	TRANSITION		
61+31.20	67+56.20	32		
67+56.20	69+81.20	TRANSITION		
69+81.20	81+10.00	131		
81+10.00	86+10.00	TRANSITION		
86+10.00	157+54.46	32		

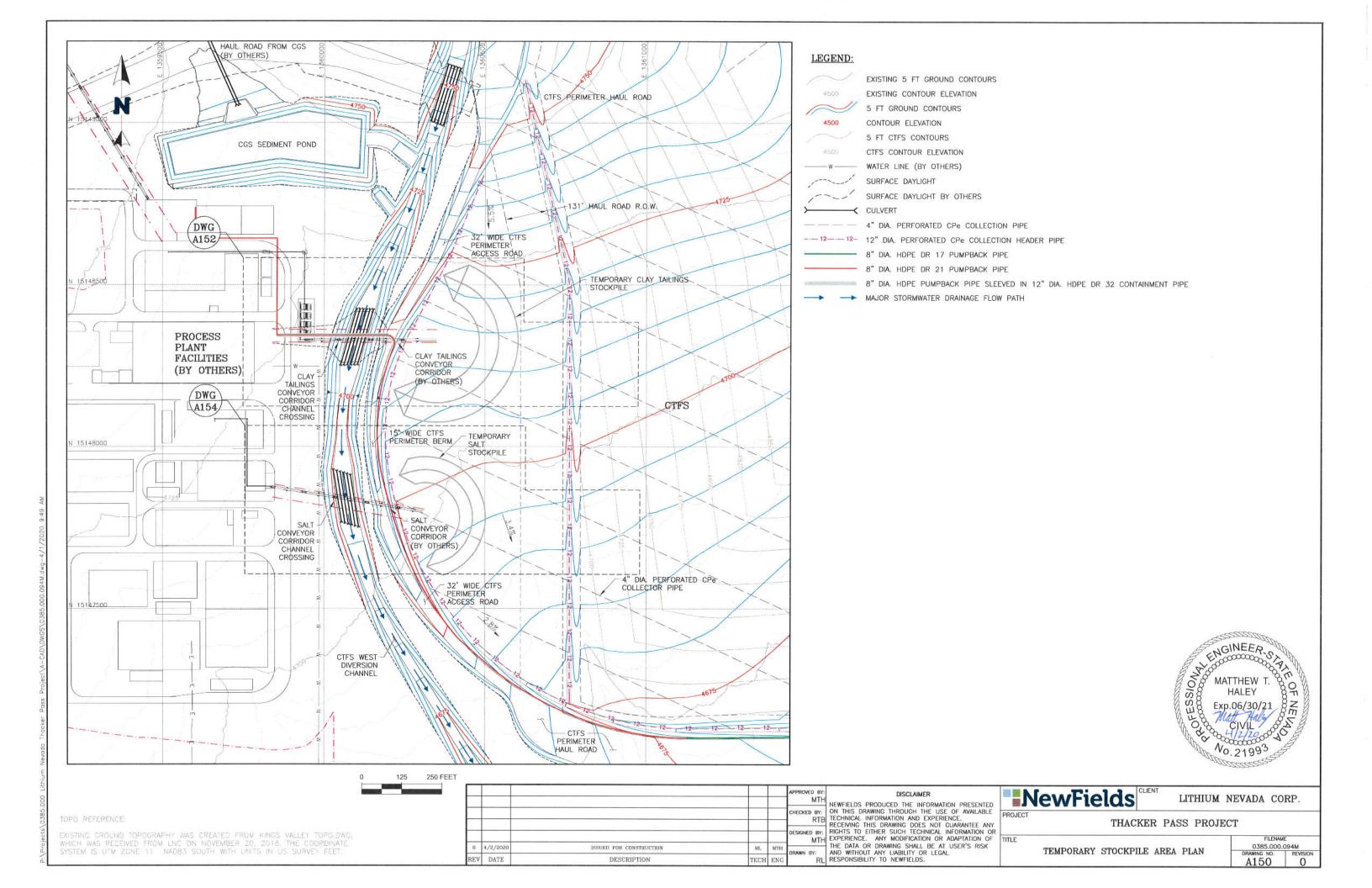
EXISTING GROUND TOPOGRAPHY WAS CREATED FROM KINGS VALLEY TOPOLDWG, WHICH WAS RECEIVED FROM LNC ON NOVEMBER 20, 2018. THE COORDINATE SYSTEM IS UTW ZONE 11 NAD83 SOUTH WITH UNITS IN US SURVEY FEET.

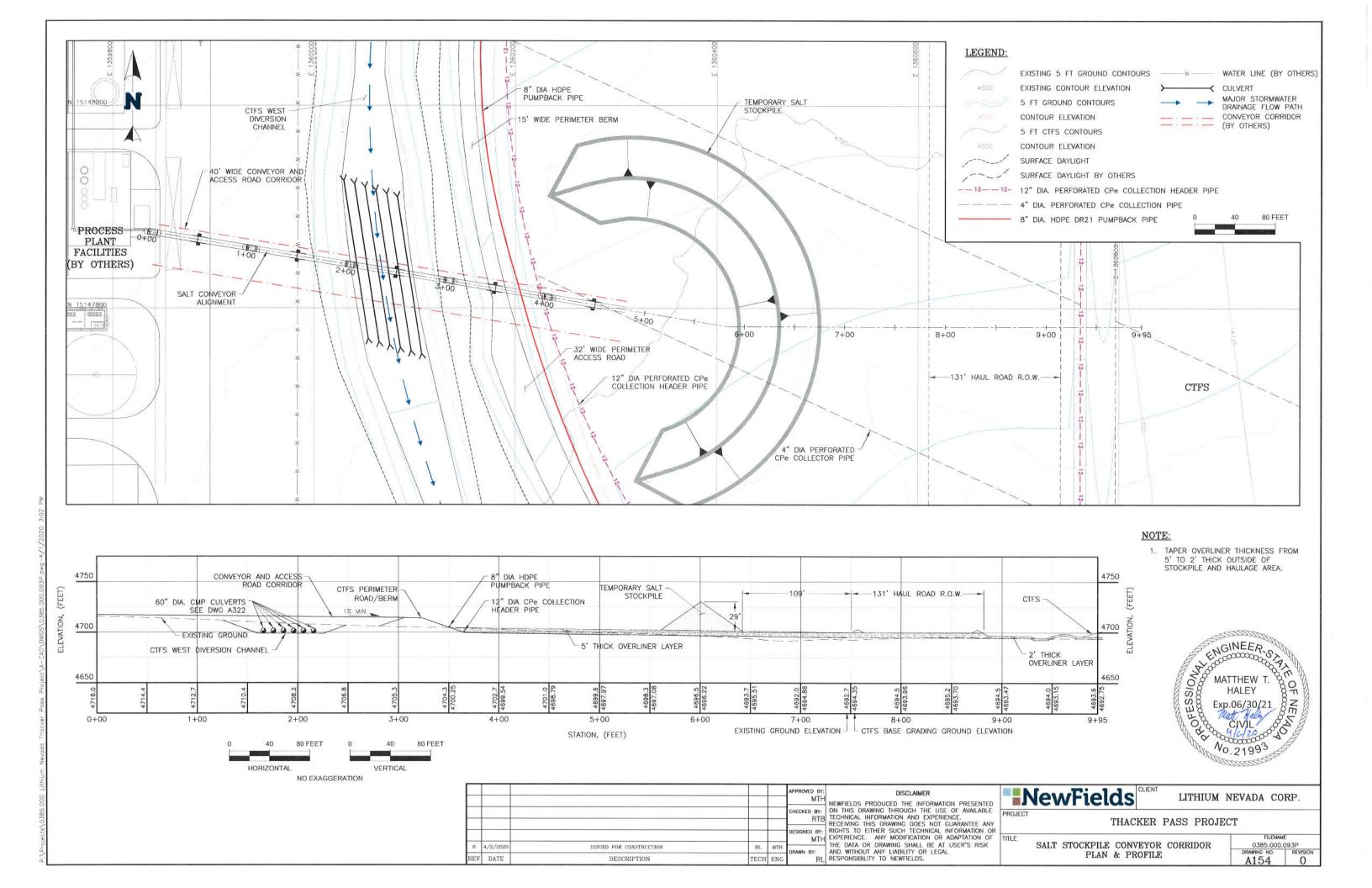
					APPROVED BY: MTH	DISCLAIMI NEWFIELDS PRODUCED THE INI
					CHECKED BY: RTB	ON THIS DRAWING THROUGH T TECHNICAL INFORMATION AND RECEIVING THIS DRAWING DOES
					DESIGNED BY: SEB	RIGHTS TO EITHER SUCH TECH EXPERIENCE. ANY MODIFICATION
0	4/2/2020	ISSUED FOR CONSTRUCTION	NLB	мтн	DRAWN BY:	THE DATA OR DRAWING SHALL AND WITHOUT ANY LIABILITY O
REV	DATE	DESCRIPTION	TECH	ENG		RESPONSIBILITY TO NEWFIELDS

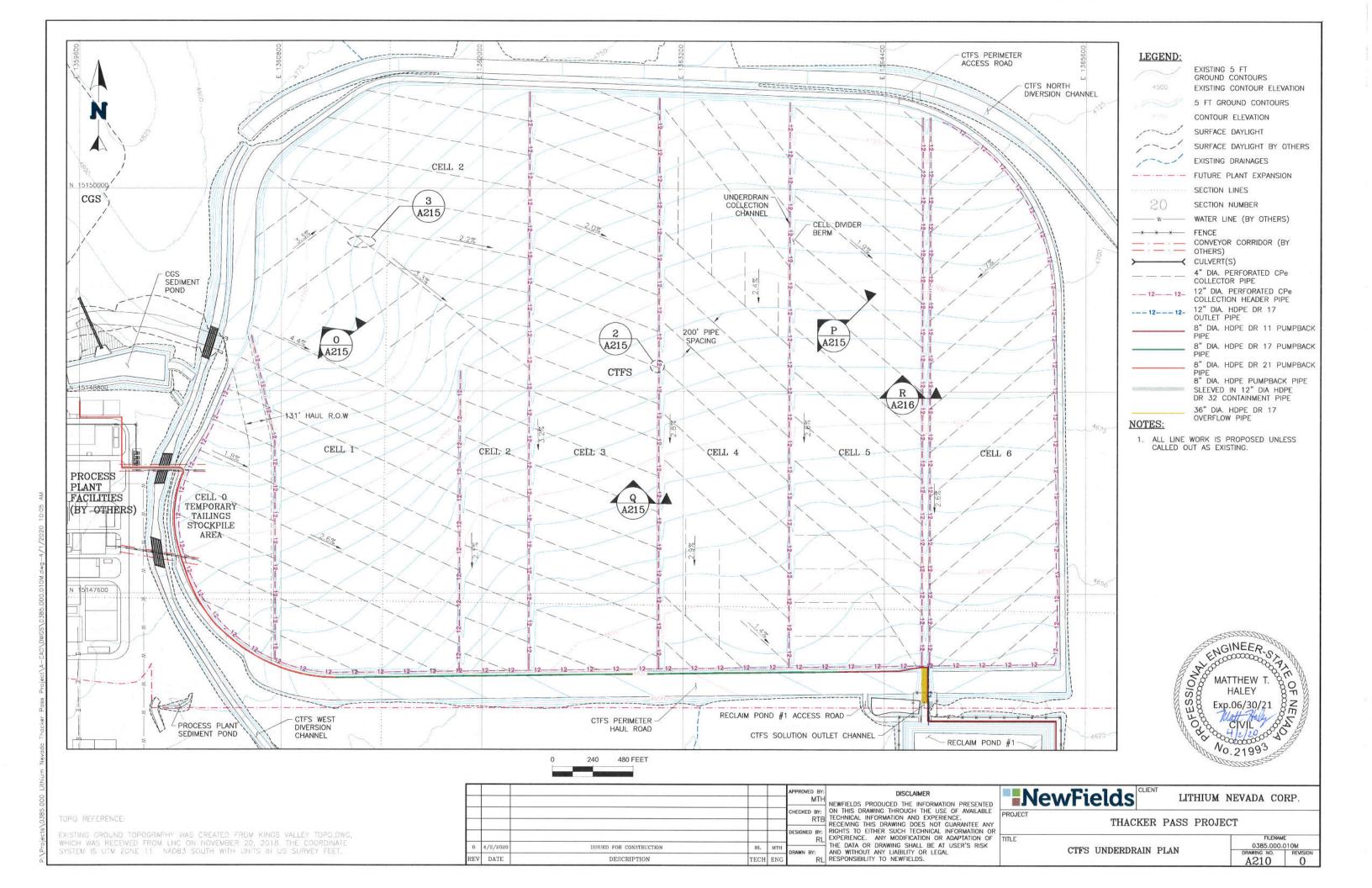
DISCLAIMER IEWFIELDS PRODUCED THE INFORMATION PRESENTED IN THIS DRAWING THROUGH THE USE OF AVAILABLE ECHNICAL INFORMATION AND EXPERIENCE. RECEIVING THIS DRAWING DOES NOT GUARANTEE ANY RIGHTS TO EITHER SUCH TECHNICAL INFORMATION OR XPERIENCE. ANY MODIFICATION OR ADAPTATION OF HE DATA OR DRAWING SHALL BE AT USER'S RISK ND WITHOUT ANY LIABILITY OR LEGAL

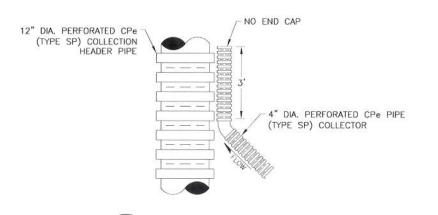

NewFields

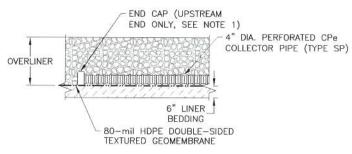

LITHIUM NEVADA CORP.

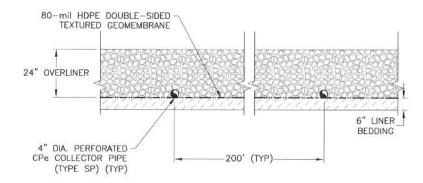

THACKER PASS PROJECT


PERIMETER ROAD PLAN AND PROFILE (SHEET 2 OF 4)

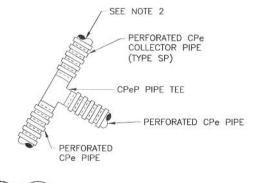

FILENAME 0385.000.065P
DRAWING NO. REV
A130

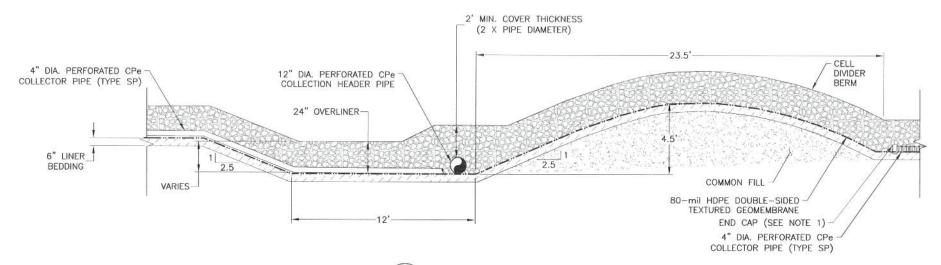






2 PIPE INTERSECTION


A210/


O TYPICAL CPe PIPE TERMINATION A210

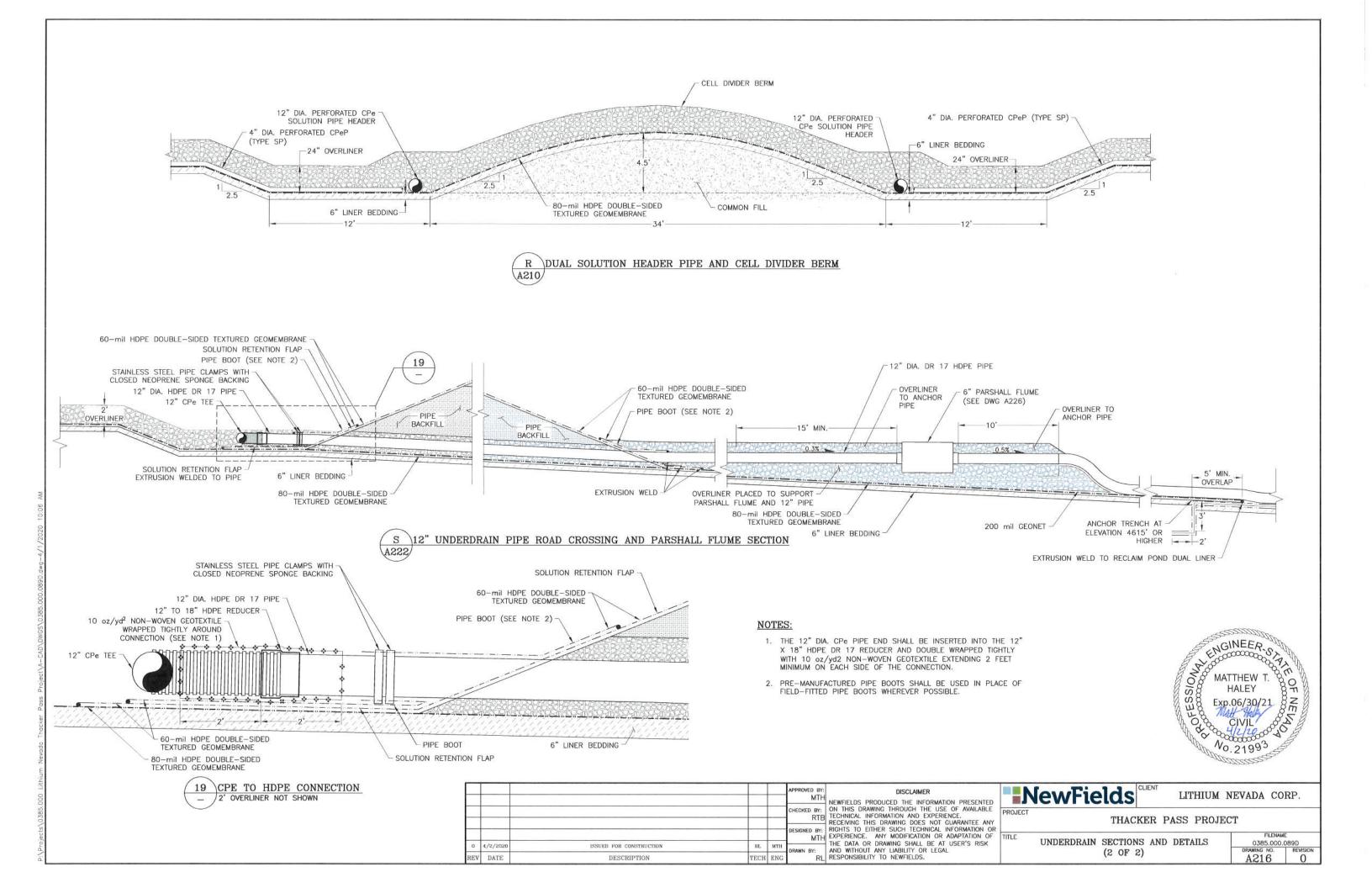
P TYPICAL 4" DIA. PERFORATED CPe COLLECTOR PIPE SECTION

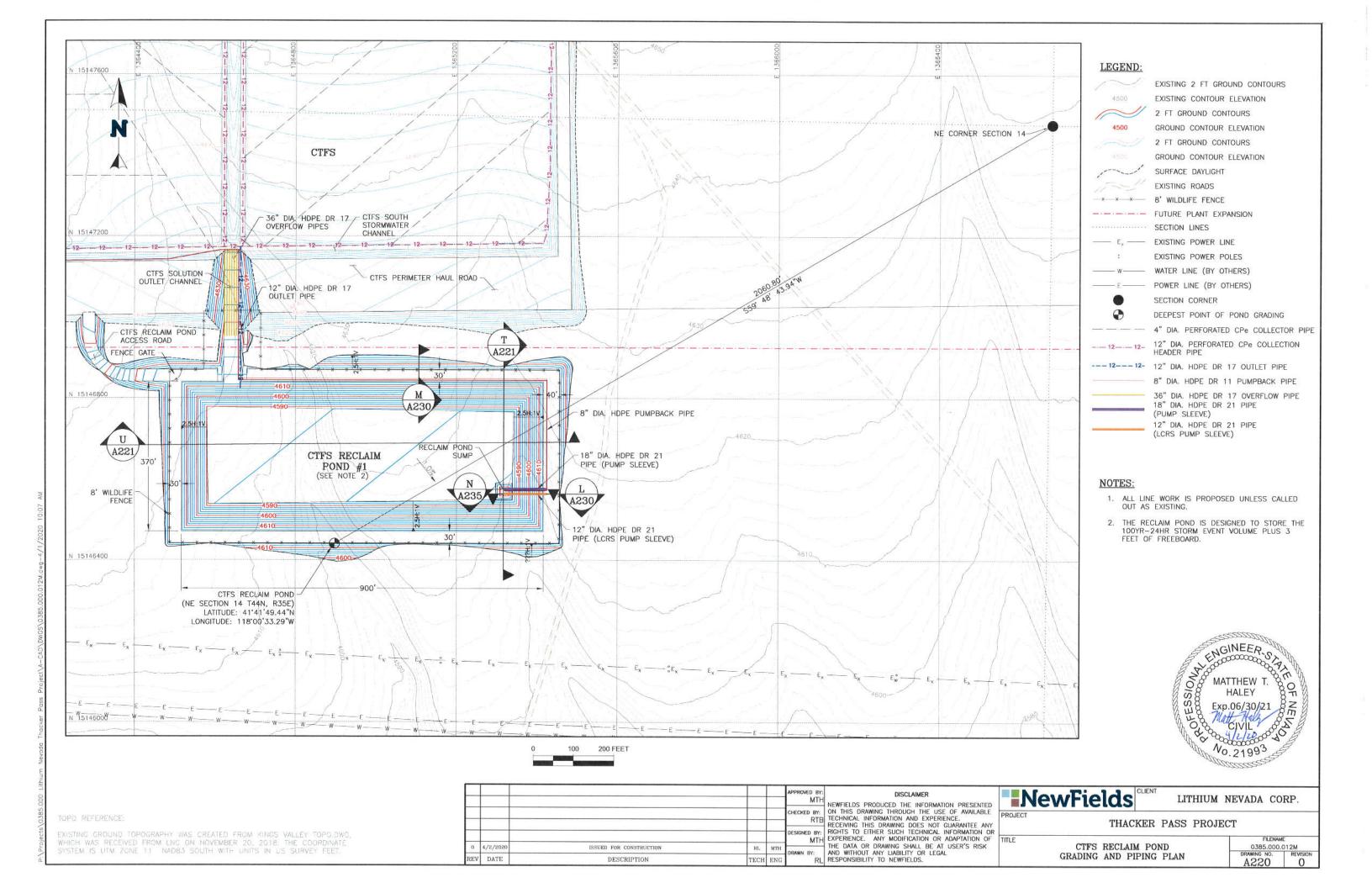
'ION

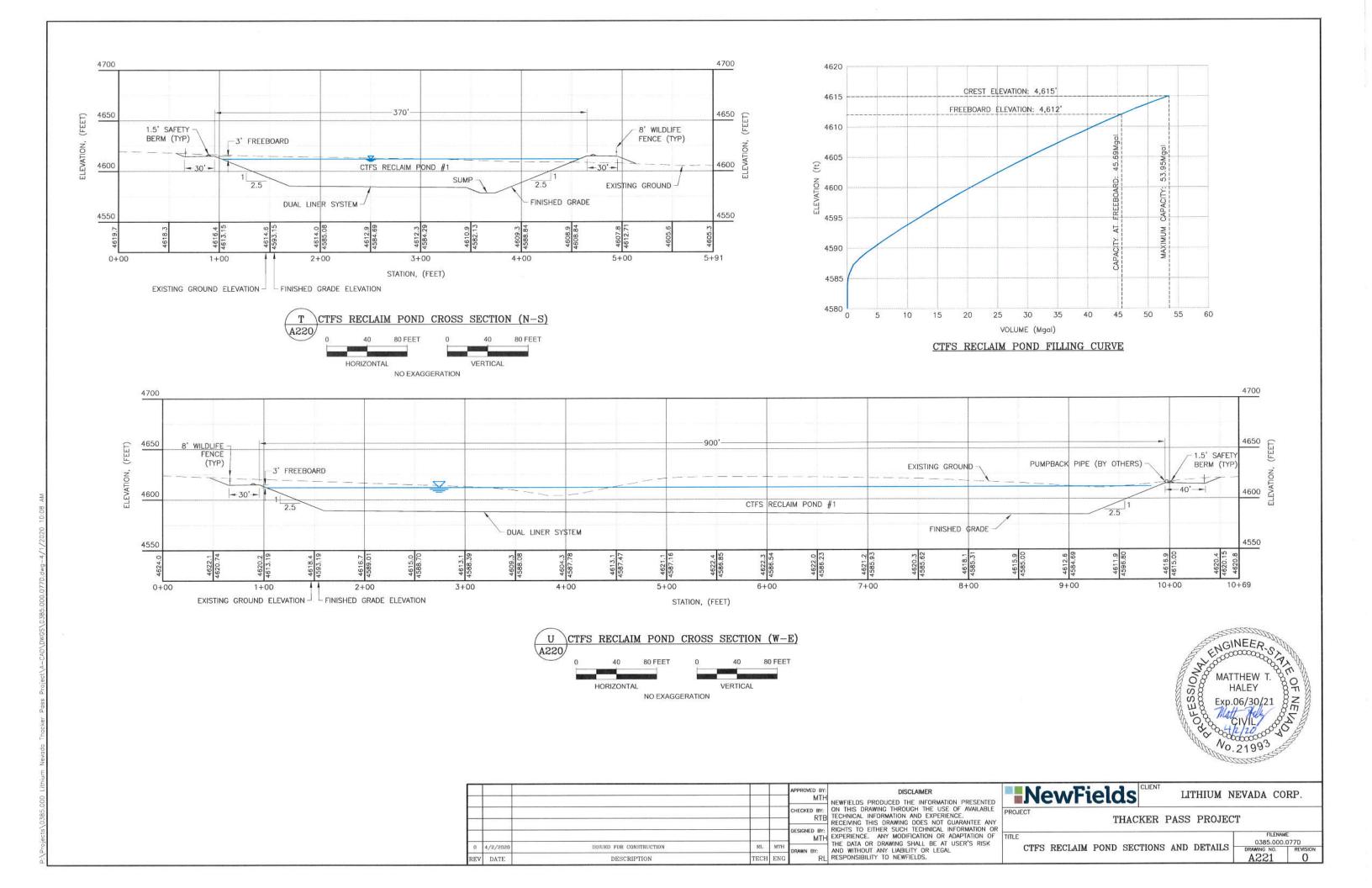
TYPICAL TEE CPE PIPE INTERSECTION

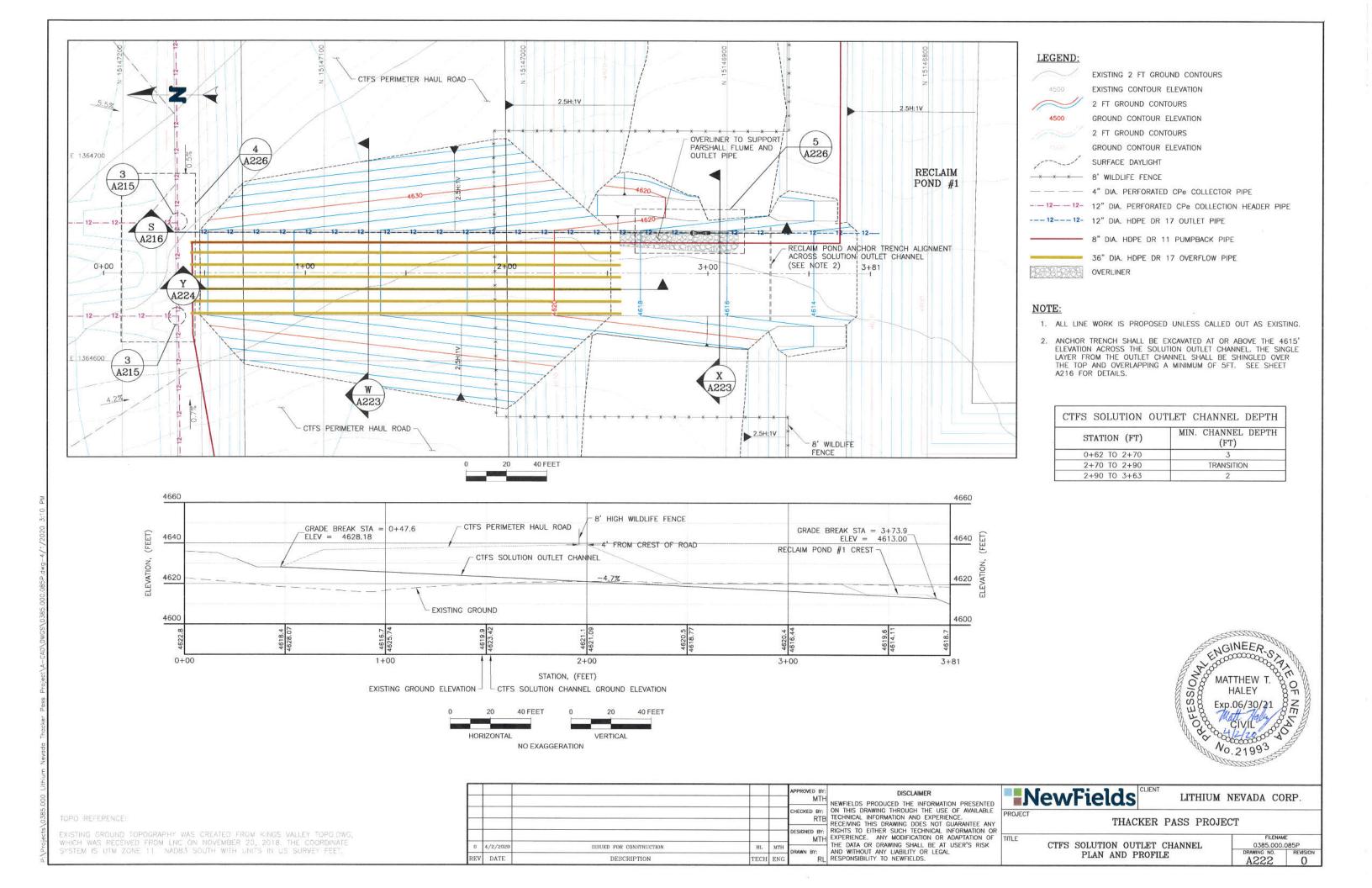
Q TYPICAL UNDERDRAIN COLLECTION CHANNEL AND CELL DIVIDER BERM

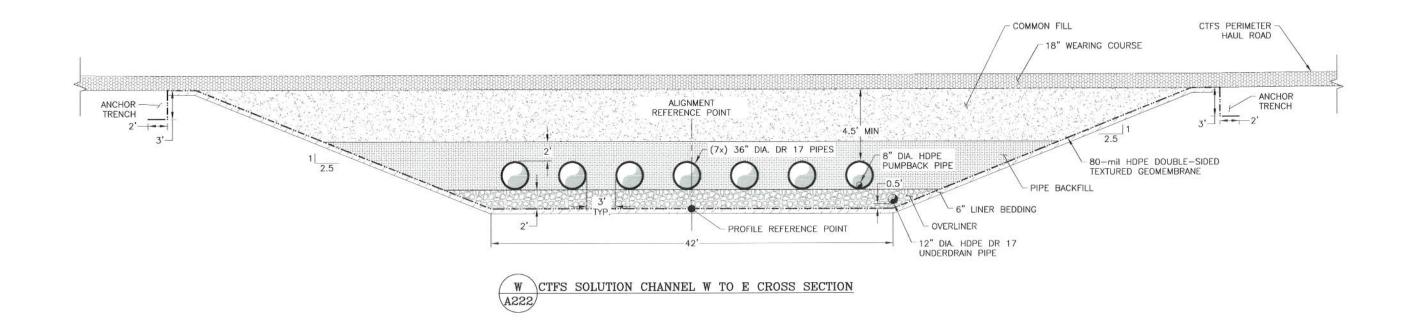
NOTES:

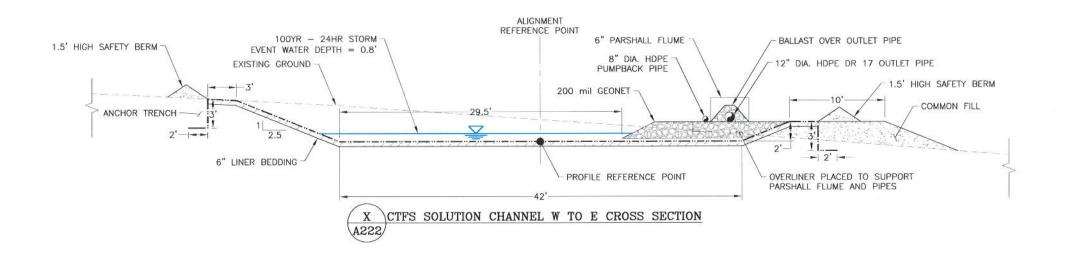

- 1. ALL UPGRADIENT ENDS OF PIPES SHALL BE CAPPED.
- 2. PIPE DIAMETER AS SHOWN ON PLAN VIEW.

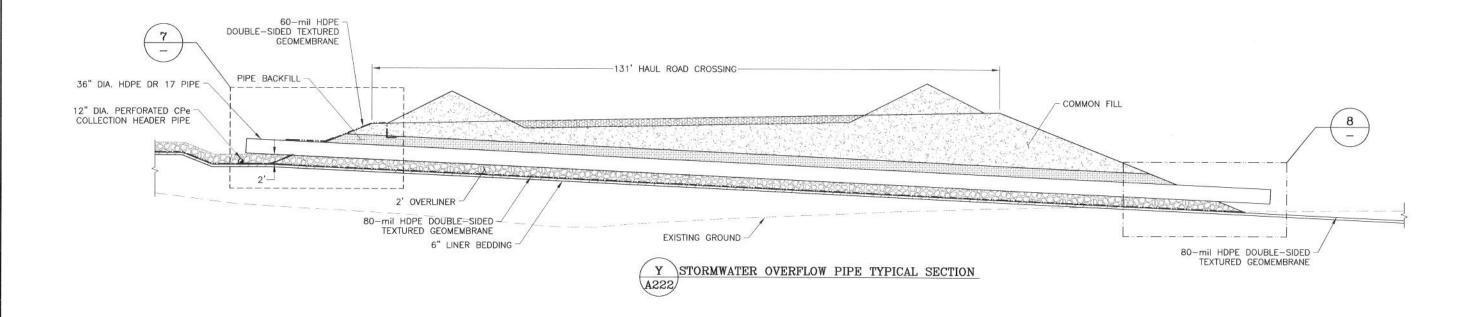

A210 A222

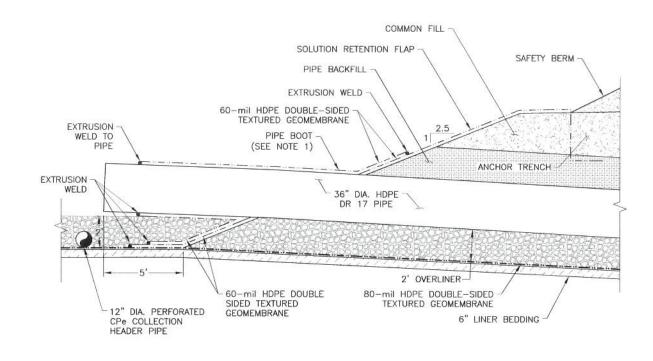


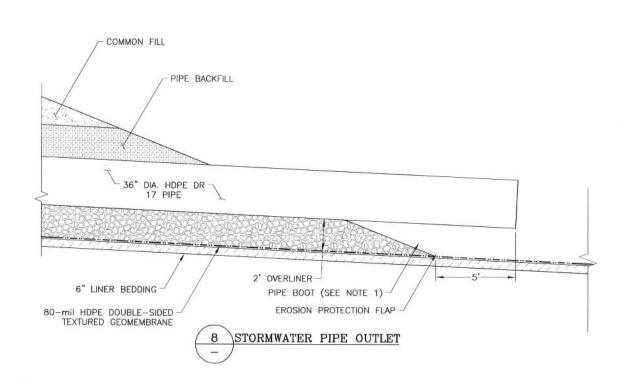

				APPROVED BY:	DISCLAIMER NEWFIELDS PRODUCED THE INFORMATION PRESENTED ON THIS DRAWING THROUGH THE USE OF AVAILABLE		NewFields LITHIUM	NEVADA CORP.
				RTB DESIGNED BY:	TECHNICAL INFORMATION AND EXPERIENCE. RECEIVING THIS DRAWING DOES NOT GUARANTEE ANY RIGHTS TO EITHER SUCH TECHNICAL INFORMATION OR		THACKER PASS PROJE	CCT
0 4/2/202	20 ISSUED FOR CONSTRUC	TION RL	мтн	RL DRAWN BY:	EXPERIENCE. ANY MODIFICATION OR ADAPTATION OF THE DATA OR DRAWING SHALL BE AT USER'S RISK AND WITHOUT ANY LIABILITY OR LEGAL	TITLE	UNDERDRAIN SECTIONS AND DETAILS	FILENAME 0385.000.020M DRAWING NO. REVISION
REV DATE	DESCRIPTION	TECH	HENG		RESPONSIBILITY TO NEWFIELDS.		(1 OF 2)	A215 0


THE POINT OF THE THE TAX AND AN UNITED TO THE CONTROL OF THE CONTR








						DISCLAIMER NEWFIELDS PRODUCED THE INFORMATION PRESENTED		NewFields CLIENT	LITHIUM NEV	ADA CORP.
					RTB	ON THIS DRAWING THROUGH THE USE OF AVAILABLE TECHNICAL INFORMATION AND EXPERIENCE. RECEIVING THIS DRAWING DOES NOT GUARANTEE ANY RIGHTS TO EITHER SUCH TECHNICAL INFORMATION OR	PROJEC	THACKER PAS	SS PROJECT	
0	4/2/2020	120 ISSUED FOR CONSTRUCTION	RL	мтн	МТН		TITLE	CTFS SOLUTION OUTLET CHA		FILENAME 0385,000,090D PRAWING NO. REVISION
REV	DATE	E DESCRIPTION	TECH	ENG		RESPONSIBILITY TO NEWFIELDS.		SECTIONS AND DETAILS (I C	Jr &)	A223 0

Projects \ 0.385.000 Lithium Nevada Thacker Pass Project \ \ A - CAD\ DWGS\ 0.385.000.090D. dwg - 4/1/2020 10:45 AM

UPSTREAM SOLUTION RETENTION FLAP

MATTHEW T. ON HALEY

Exp.06/30/21

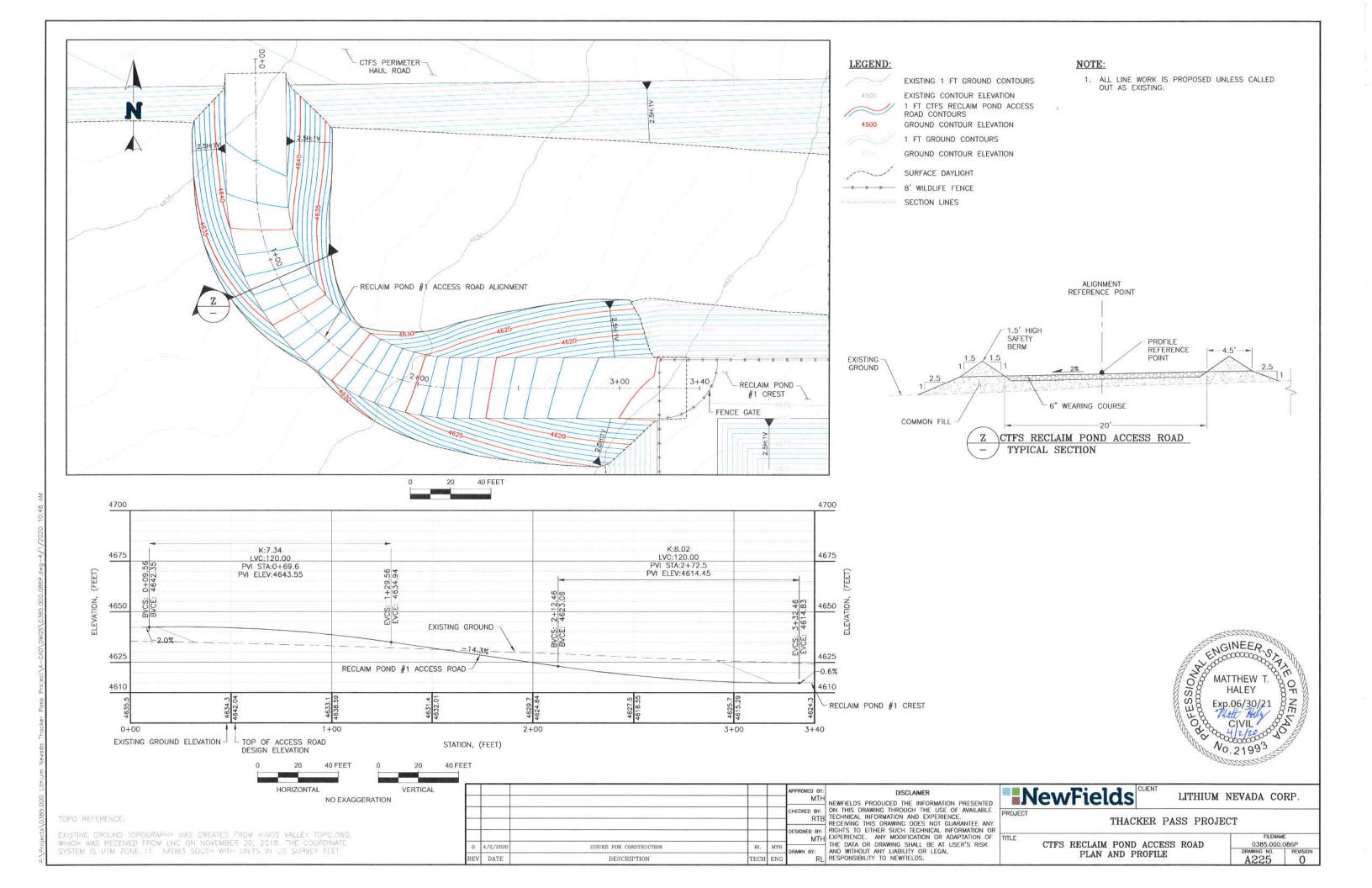
CIVIL

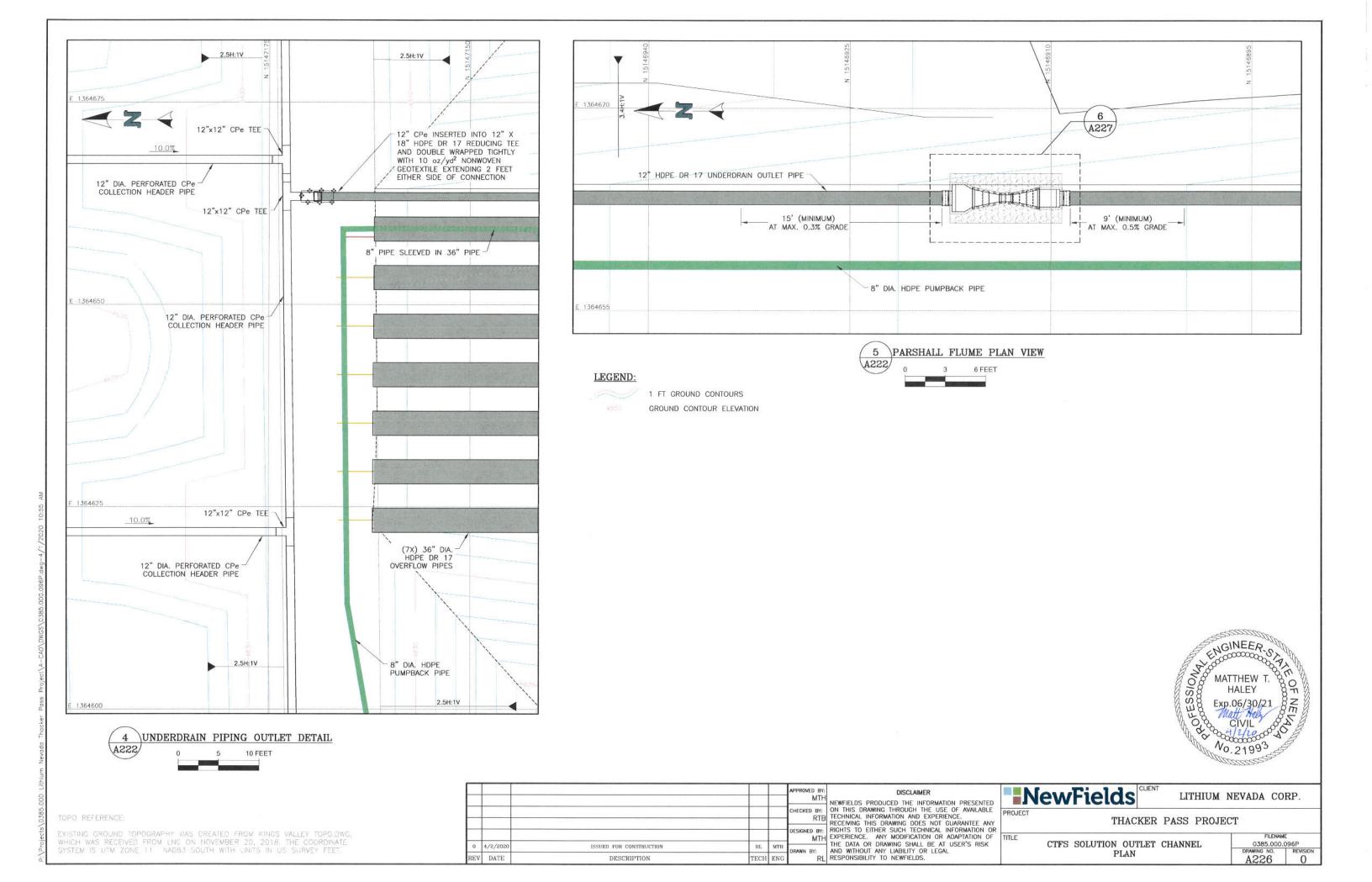
Vo. 21993

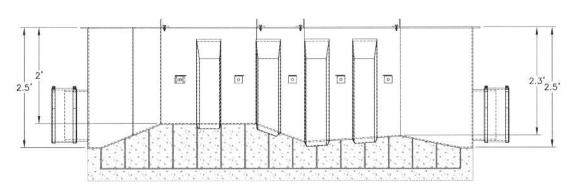
NOTES:

 PRE-MANUFACTURED PIPE BOOTS SHALL BE USED IN PLACE OF FIELD-FITTED PIPE BOOTS WHEREVER POSSIBLE.

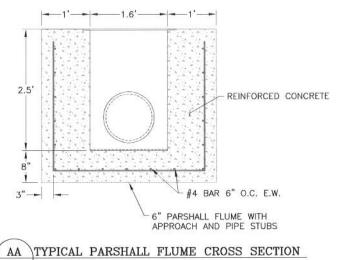
				APPROVED BY:	DISCLAIMER NEWFIELDS PRODUCED THE INFORMATION PRESENTED
				CHECKED BY: RTB	ON THIS DRAWING THROUGH THE USE OF AVAILABLE TECHNICAL INFORMATION AND EXPERIENCE.
					RECEIVING THIS DRAWING DOES NOT GUARANTEE ANY RIGHTS TO EITHER SUCH TECHNICAL INFORMATION OF EXPERIENCE. ANY MODIFICATION OR ADAPTATION OF
/2/2020	ISSUED FOR CONSTRUCTION	RL	MTH	DRAWN BY:	THE DATA OR DRAWING SHALL BE AT USER'S RISK AND WITHOUT ANY LIABILITY OR LEGAL
DATE	DESCRIPTION	TECH	ENG		RESPONSIBILITY TO NEWFIELDS.


NewFields


LITHIUM NEVADA CORP.


THACKER PASS PROJECT

CTFS SOLUTION OUTLET CHANNEL SECTIONS AND DETAILS (2 OF 2)


FILENAME
0385,000,095D
DRAWING NO. REVISION
A224
0

AB TYPICAL PARSHALL FLUME LONG SECTION

(-)

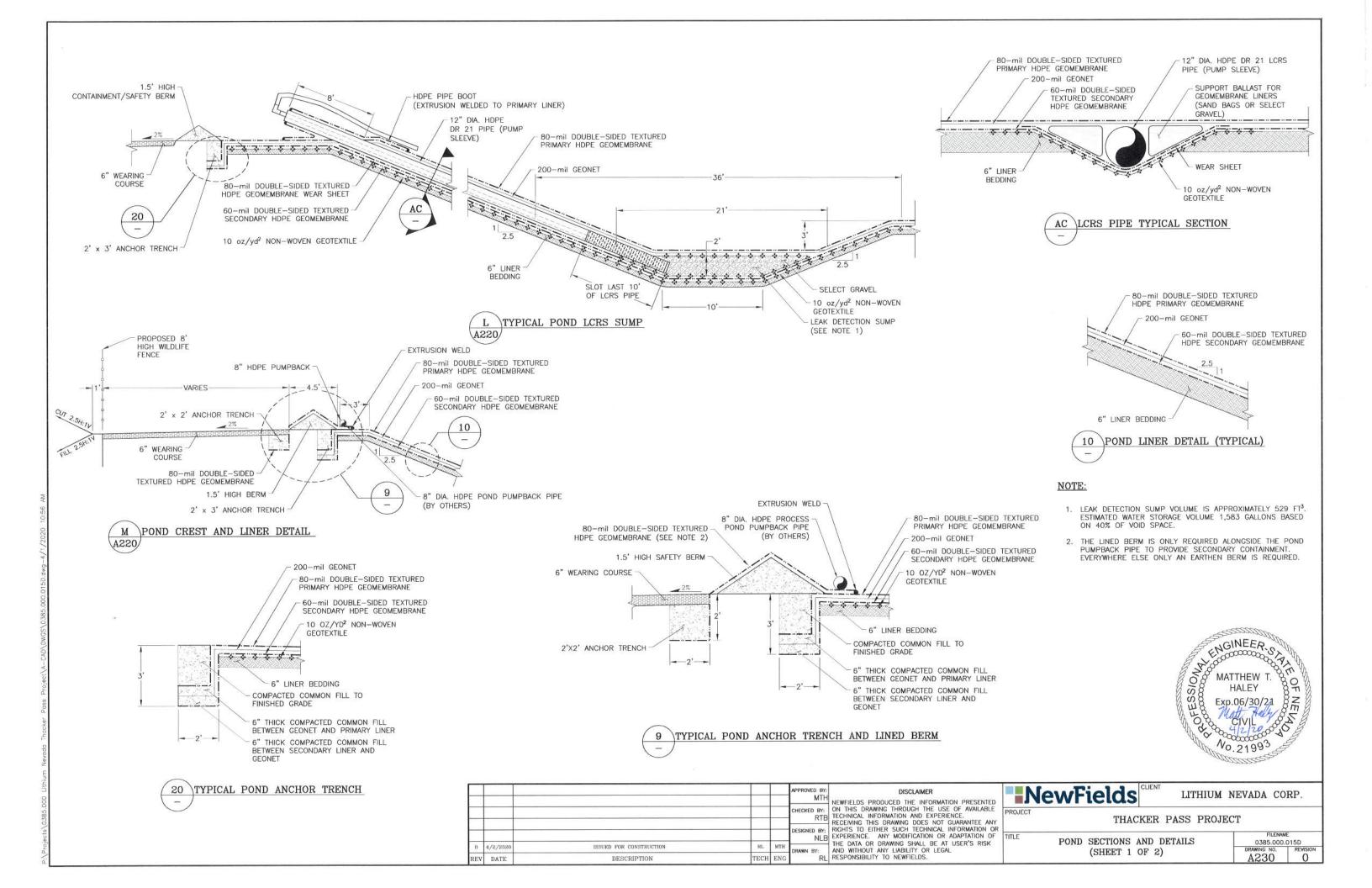
NOTES:

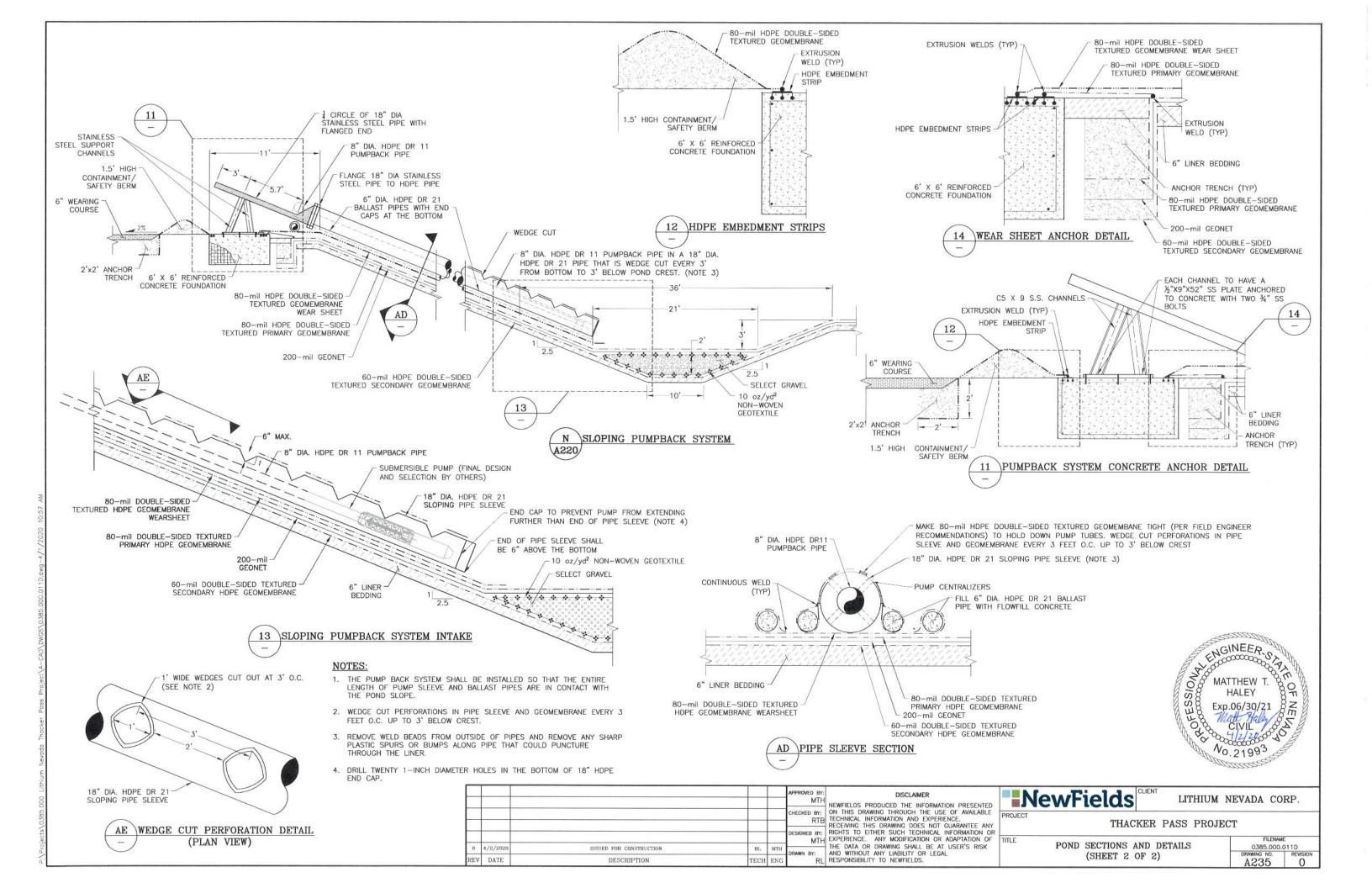
- PARSHALL FLUME SHALL HAVE INLET AND OUTLET ADAPTERS AND STUBS, OR APPROVED EQUIVALENT.
- FLUME SHALL BE INSTALLED LEVEL, BOTH END—TO—END AND SIDE—TO—SIDE, BY USING A BUBBLE LEVEL.
- 3. PIPES SHALL BE BURIED FOR A MINIMUM OF 20 FEET ON BOTH ENDS OF FLUME ONCE CONSTRUCTION IS COMPLETE.
- 4. A MINIMUM OF 0.3% AND A MAXIMUM OF 0.5% SLOPE SHALL BE MAINTAINED FOR A MINIMUM DISTANCE OF 15 FEET UPSTREAM AND 10 FEET DOWNSTREAM OF FLUME.
- 5. CONTRACTOR SHALL PROVIDE THE ENGINEER WITH SHOP DRAWINGS OF THE CONCRETE ENCASEMENT FOR APPROVAL PRIOR TO THE START OF FLUME CONSTRUCTION.
- 6. INSTALLATION SHALL FOLLOW MANUFACTURER RECOMMENDATIONS.
- FLUME NEEDS TO BE STRAPPED DOWN OR WEIGHTED DOWN TO PREVENT FLOATING DURING CONCRETE POUR.

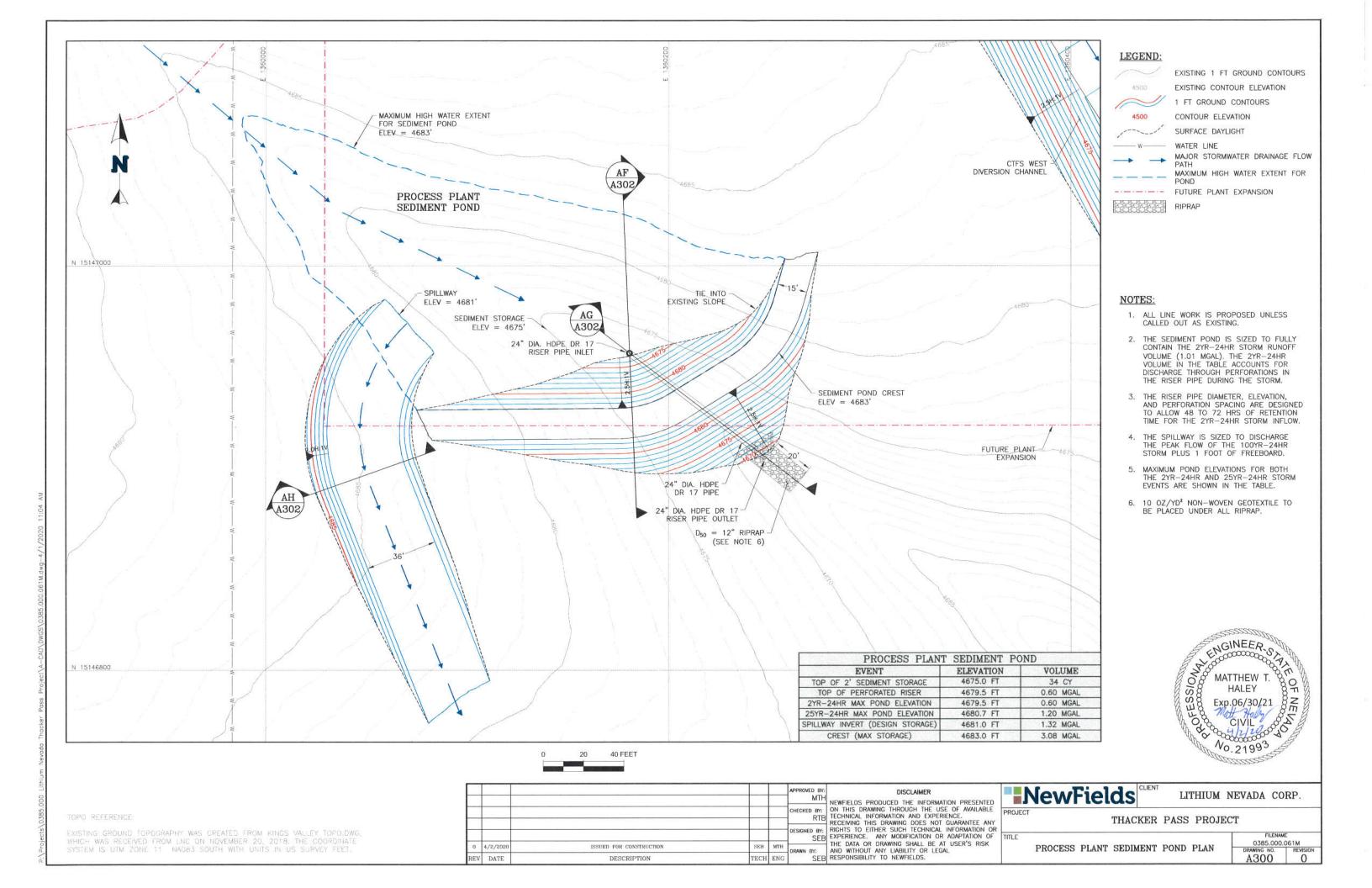
					APPROVED BY
					CHECKED BY: RTE
					DESIGNED BY:
0	4/2/2020	ISSUED FOR CONSTRUCTION	RL	MTH	DRAWN BY:
REV	DATE	DESCRIPTION	TECH		

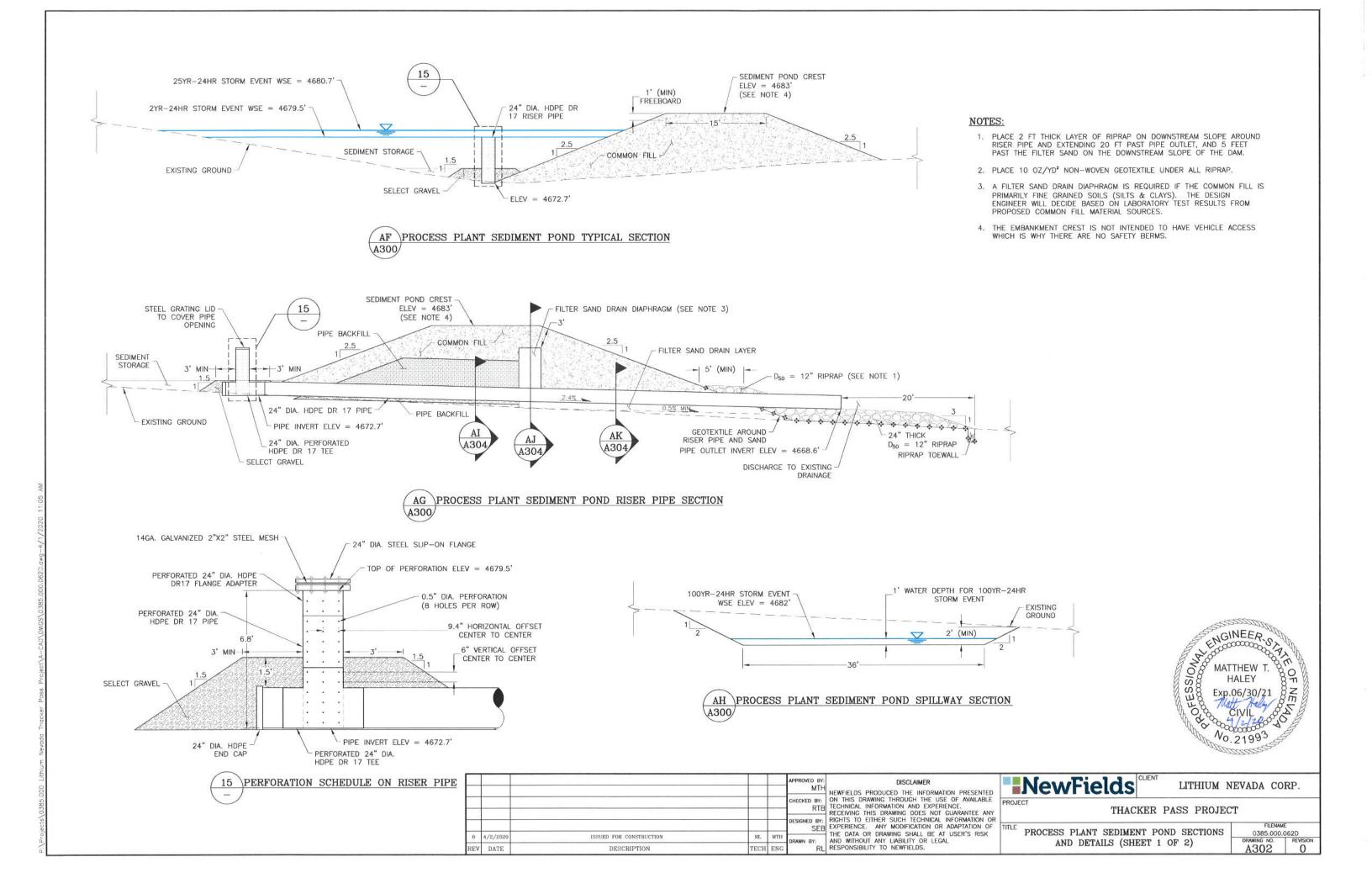
DISCLAIMER

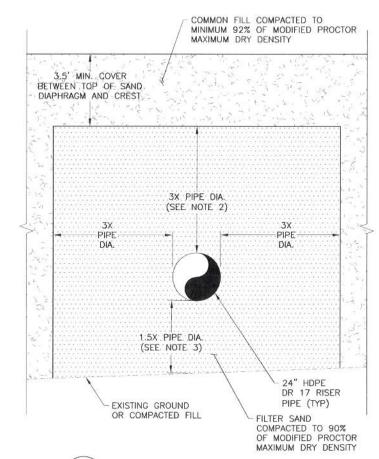
NEWFIELDS PRODUCED THE INFORMATION PRESENTED ON THIS DRAWING THROUGH THE USE OF AVAILABLE TECHNICAL INFORMATION AND EXPERIENCE.

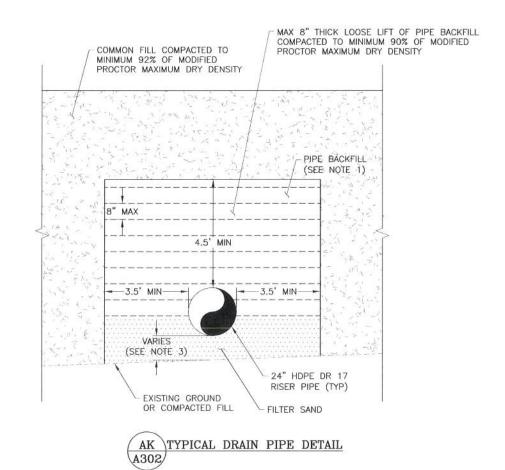

RECEIVING THIS DRAWING DOES NOT GUARANTEE ANY RIGHTS TO EITHER SUCH TECHNICAL INFORMATION OR EXPERIENCE. ANY MODIFICATION OR ADAPTATION OF THE DATA OR DRAWING SHALL BE AT USER'S RISK AND WITHOUT ANY LIABILITY OR LEGAL RESPONSIBILITY TO NEWFIELDS.




LITHIUM NEVADA CORP.


THACKER PASS PROJECT


PARSHALL FLUME SECTIONS AND DETAILS FILENAME
0385,000,092D
DRAWING NO. REVISION
A227 0



TYPICAL DRAIN DIAPHRAGM DETAIL A302

NOTES:

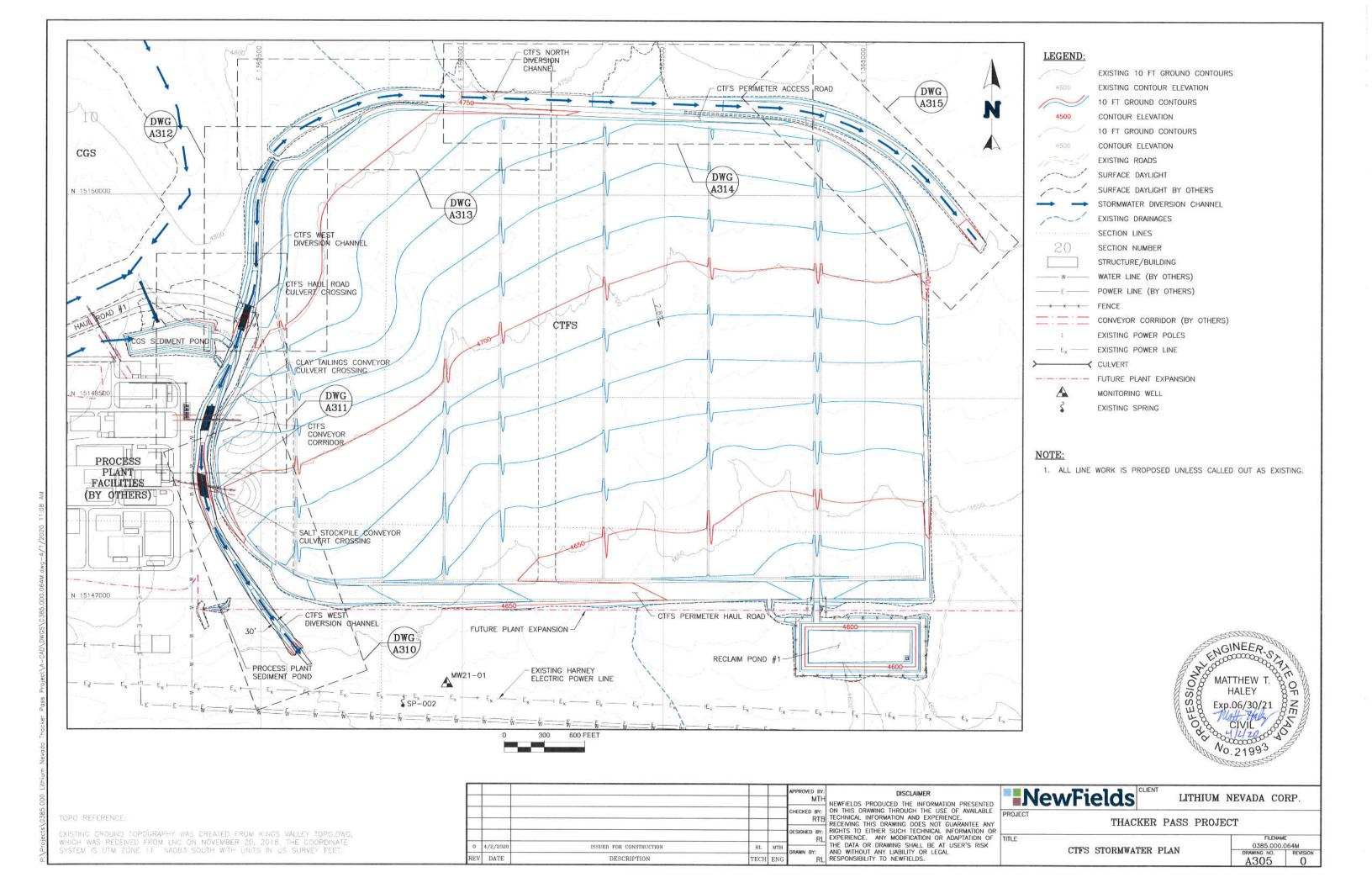
AI

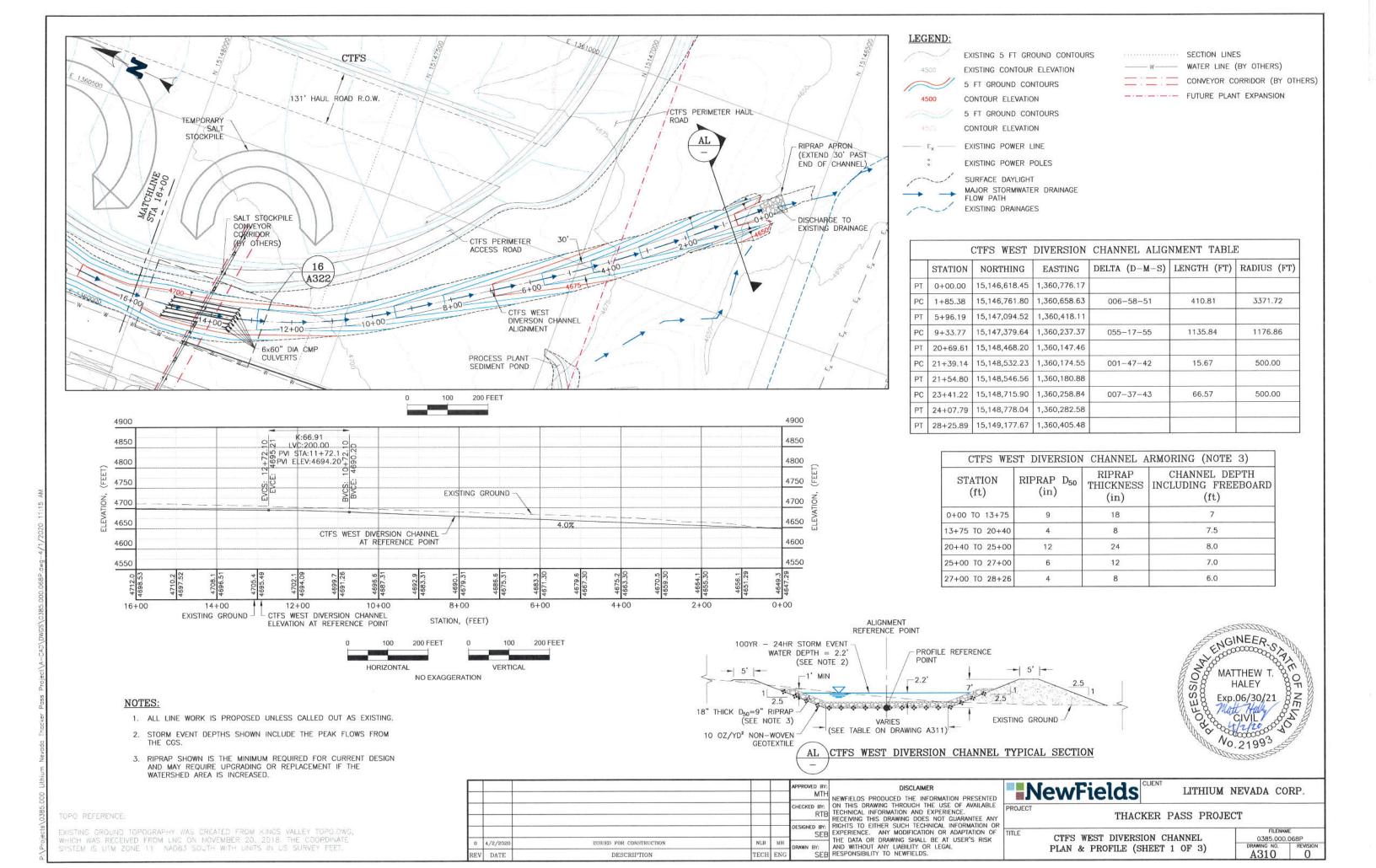
A302

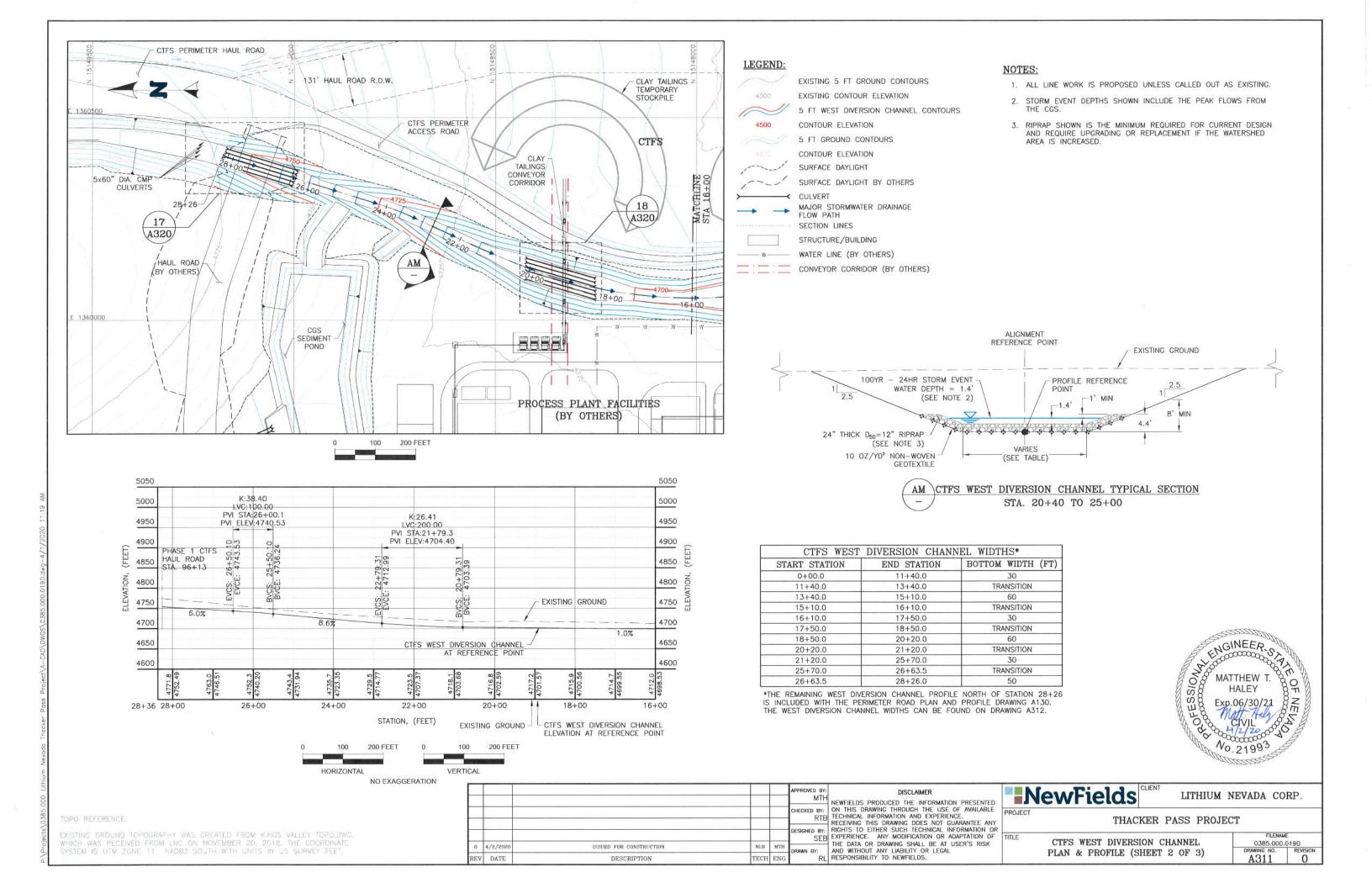
1. USE HAND OPERATED COMPACTION EQUIPMENT IN THE PIPE BACKFILL AND FILTER SAND ZONES.

TYPICAL DRAIN PIPE DETAIL

- 2. TOP OF DIAPHRAGM SHALL BE THE LOWER OF 3X THE PIPE DIAMETER ABOVE THE PIPE OR THE POND SPILLWAY ELEVATION.
- 3. FILTER SAND BELOW PIPE SHALL BE 1.5X PIPE DIAMETER IF THE PIPE IS IN FULL MATERIAL. IF THE PIPE IS AT OR BELOW THE NATURAL GROUND ELEVATION A MINIMUM OF 1-FOOT OF FILTER SAND
- 4. A FILTER SAND DRAIN DIAPHRAGM IS REQUIRED IF THE COMMON FILL IS PRIMARILY FINE GRAINED SOILS (SILTS AND CLAYS). THE DESIGN ENGINEER WILL DECIDE BASED ON LABORATORY TEST RESULTS FROM PROPOSED COMMON FILL MATERIAL SOURCES.


_					APPROVED BY:	DISCLAIMER NEWFIELDS PRODUCED THE INFORMATION PRESENTED
						ON THIS DRAWING THROUGH THE USE OF AVAILABLE TECHNICAL INFORMATION AND EXPERIENCE.
						RECEIVING THIS DRAWING DOES NOT GUARANTEE ANY RIGHTS TO EITHER SUCH TECHNICAL INFORMATION OR EXPERIENCE. ANY MODIFICATION OR ADAPTATION OF
0	4/2/2020	ISSUED FOR CONSTRUCTION	RL	МН	DRAWN BY:	THE DATA OR DRAWING SHALL BE AT USER'S RISK AND WITHOUT ANY LIABILITY OR LEGAL
REV	DATE	DESCRIPTION	TECH			RESPONSIBILITY TO NEWFIELDS.


NewFields DISCLAIMER EWFIELDS PRODUCED THE INFORMATION PRESENTED N THIS DRAWING THROUGH THE USE OF AVAILABLE CCHNICAL INFORMATION AND EXPERIENCE.

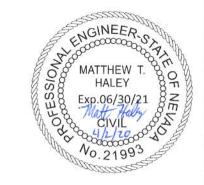

LITHIUM NEVADA CORP.

THACKER PASS PROJECT

PROCESS PLANT SEDIMENT POND SECTIONS AND DETAILS (SHEET 2 OF 2) FILENAME
0385.000.018D
DRAWING NO. REVISION A304 0

LEGEND:

EXISTING 5 FT GROUND CONTOURS 4500 EXISTING CONTOUR ELEVATION 5 FT WEST DIVERSION CHANNEL CONTOURS 4500 CONTOUR ELEVATION 5 FT GROUND CONTOURS CONTOUR ELEVATION SURFACE DAYLIGHT SURFACE DAYLIGHT BY OTHERS CULVERT → MAJOR STORMWATER DRAINAGE FLOW PATH × × × FENCE


- 1. ALL LINE WORK IS PROPOSED UNLESS CALLED OUT AS EXISTING.
- 2. STATION 28+26 FOR THE WEST DIVERSION CHANNEL IS LINED UP WITH STATION 69+97 OF THE CTFS PERIMETER ROAD ALIGNMENT.
- REFER TO THE PROFILE ON DWG A130, STA 69+97 TO 80+40 FOR THE NORTHERN SECTION OF THE CTFS WEST DIVERSION CHANNEL DESIGN.
- 4. RIPRAP SHOWN IS THE MINIMUM REQUIRED FOR CURRENT DESIGN AND MAY REQUIRE UPGRADING OR REPLACEMENT IF THE WATERSHED AREA IS

CT	FS WEST DIV	ERSION CHAI	NNEL ARMORING
STATION* (ft)	RIPRAP D ₅₀ (in)	RIPRAP THICKNESS (in)	MIN CHANNEL DEPTH INCLUDING 1' FREEBOARD (ft)
69+97 TO 80+40	NOT REQUIRED	NOT REQUIRED	5

*STATIONS ARE REFERENCING THE CTFS PERIMETER ROAD ALIGNMENT

CTFS WES	ST DIVERSION CHA	NNEL WIDTHS
START STATION*	END STATION*	BOTTOM WIDTH (ft)
69+97.0	70+55.0	50
70+55.0	73+55.0	TRANSITION
73+55.0	80+40.0	30

*STATIONS ARE REFERENCING THE CTFS PERIMETER ROAD ALIGNMENT

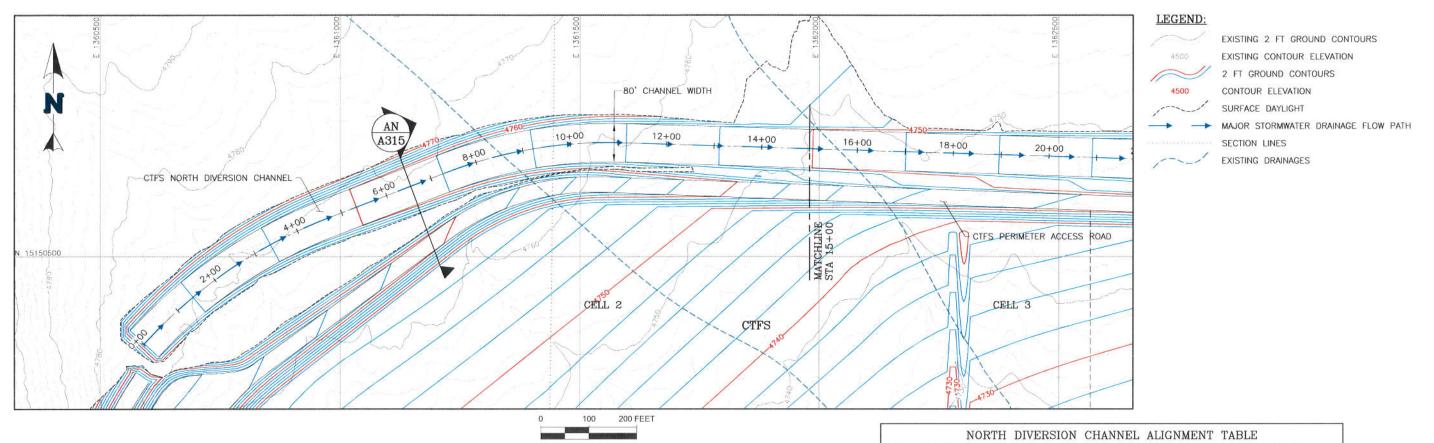
EXISTING GROUND TOPOGRAPHY WAS CREATED FROM KINGS VALLEY TOPO.OWG, WHICH WAS RECEIVED FROM LNC ON NOVEMBER 20, 2018. THE COORDINATE SYSTEM IS UTM ZONE 11 NAD83 SOUTH WITH UNITS IN US SURVEY FEET.

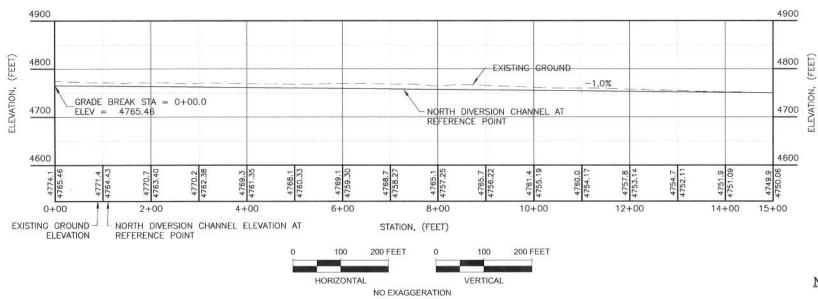
					APPROVED BY
					CHECKED BY:
					DESIGNED BY:
0	4/2/2020	ISSUED FOR CONSTRUCTION	RI.	MTH	DRAWN BY:
REV	DATE	DESCRIPTION	TECH	ENG	RL

DISCLAIMER

HTH NEWFIELDS PRODUCED THE INFORMATION PRESENTED ON THIS DRAWING THROUGH THE USE OF AVAILABLE TECHNICAL INFORMATION AND EXPERIENCE.

RECEIVING THIS DRAWING DOES NOT GUARANTEE ANY RIGHTS TO EITHER SUCH TECHNICAL INFORMATION OR EXPERIENCE. ANY MODIFICATION OR ADAPTATION OF THE DATA OR DRAWING SHALL BE AT USER'S RISK AND WITHOUT ANY LIABILITY OR LEGAL RESPONSIBILITY TO NEWFIELDS.

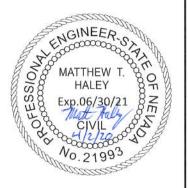



LITHIUM NEVADA CORP.

THACKER PASS PROJECT

CTFS WEST DIVERSION CHANNEL PLAN & PROFILE (SHEET 3 OF 3)

FILENAME 0385.000.100P DRAWING NO. REVISION A312 0



				1 2 2	2 W	0.00
	STATION	NORTHING	EASTING	DELTA (D-M-S)	LENGTH (FT)	RADIUS (FT)
PT	0+00.00	15,150,317.89	1,360,590.15			
PC	0+13.44	15,150,327.72	1,360,599.31	026-06-10	454.28	997.15
PT	4+67.72	15,150,579.32	1,360,972.84			
PC	7+35.29	15,150,674.83	1,361,222.79	022-41-20	371.60	938.39
PT	11+06.89	15,150,736.19	1,361,586.83			
PC	38+04.53	15,150,652.54	1,364,283.17	048-35-35	1416.13	1669.75
PT	52+20.65	15,150,048.60	1,365,517.40			
PT	55+91.27	15,149,763.16	1,365,753.79			

C'	TFS NORTH I	DIVERSION CHAN	NEL ARMORING
STATION (ft)	RIPRAP D ₅₀ (in)	RIPRAP THICKNESS (in)	MIN CHANNEL DEPTH INCLUDING 1' FREEBOARD (ft)
0+00 TO 14+00	NOT REQUIRED	NOT REQUIRED	2.5
14+00 TO 44+00	NOT REQUIRED	NOT REQUIRED	3.5
44+00 TO 55+91	6	12	4

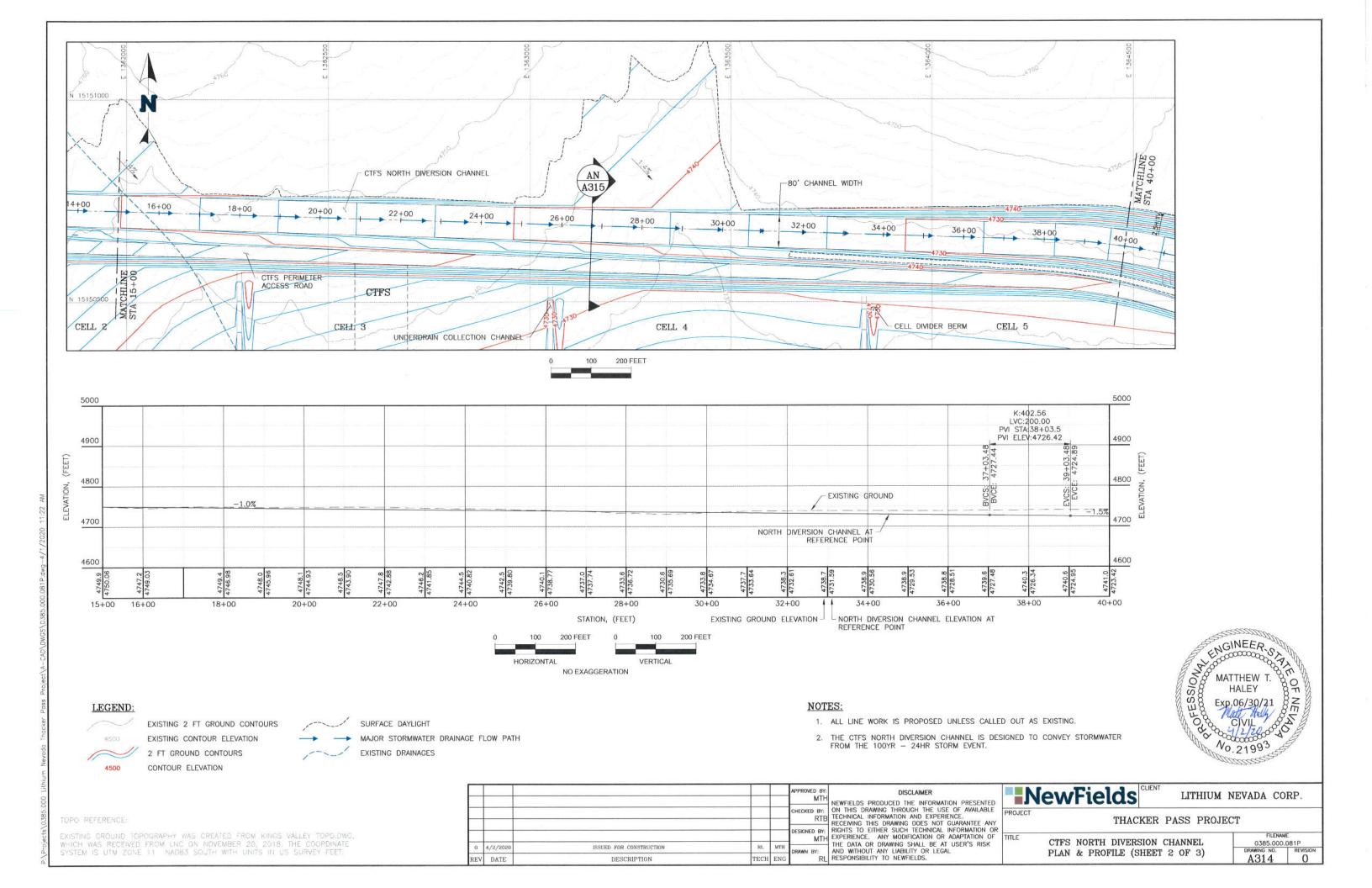
NOTES:

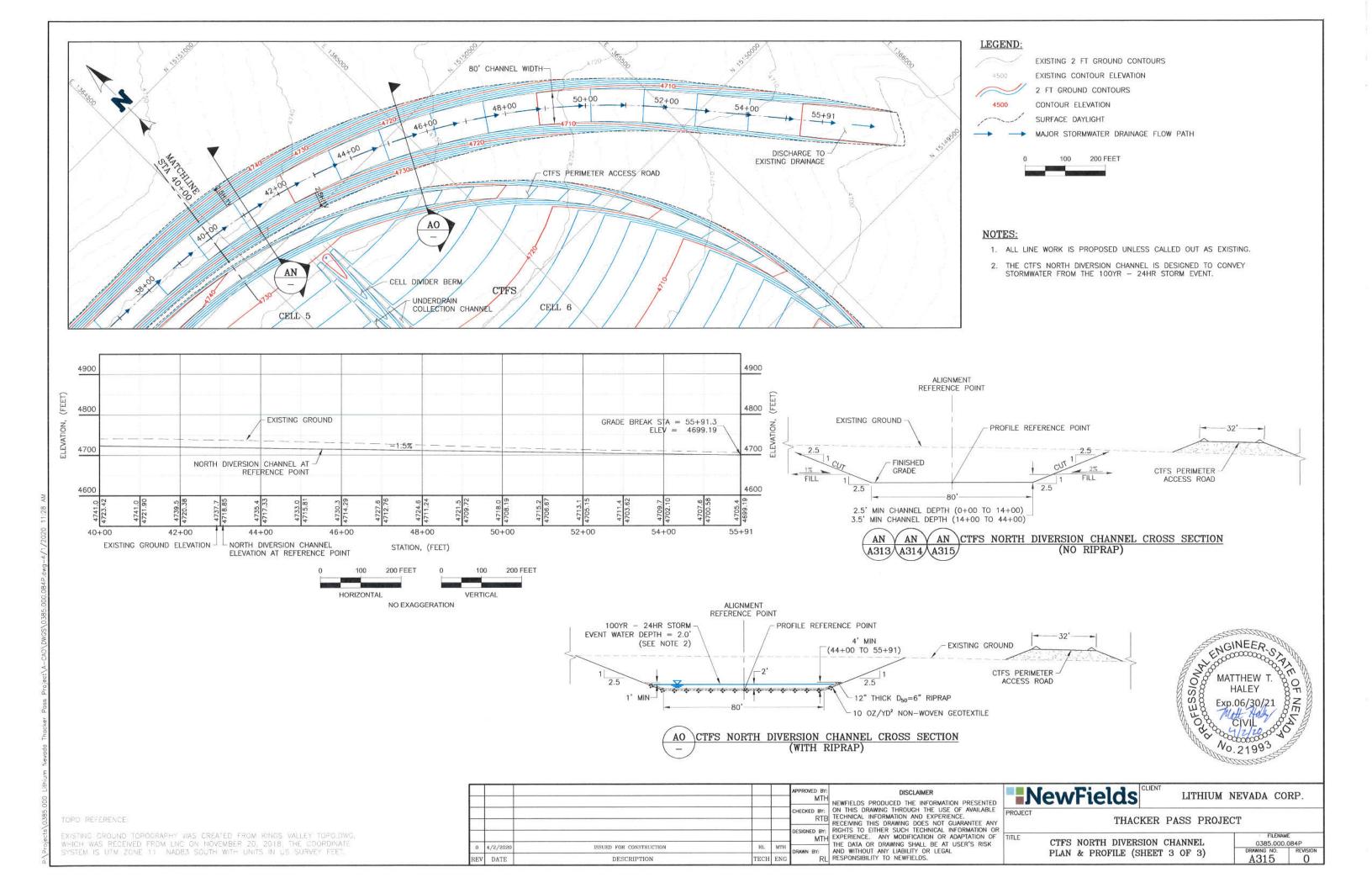
- 1. ALL LINE WORK IS PROPOSED UNLESS CALLED OUT AS EXISTING.
- 2. THE CTFS NORTH DIVERSION CHANNEL IS DESIGNED TO CONVEY STORMWATER FROM THE 100YR 24HR STORM EVENT.

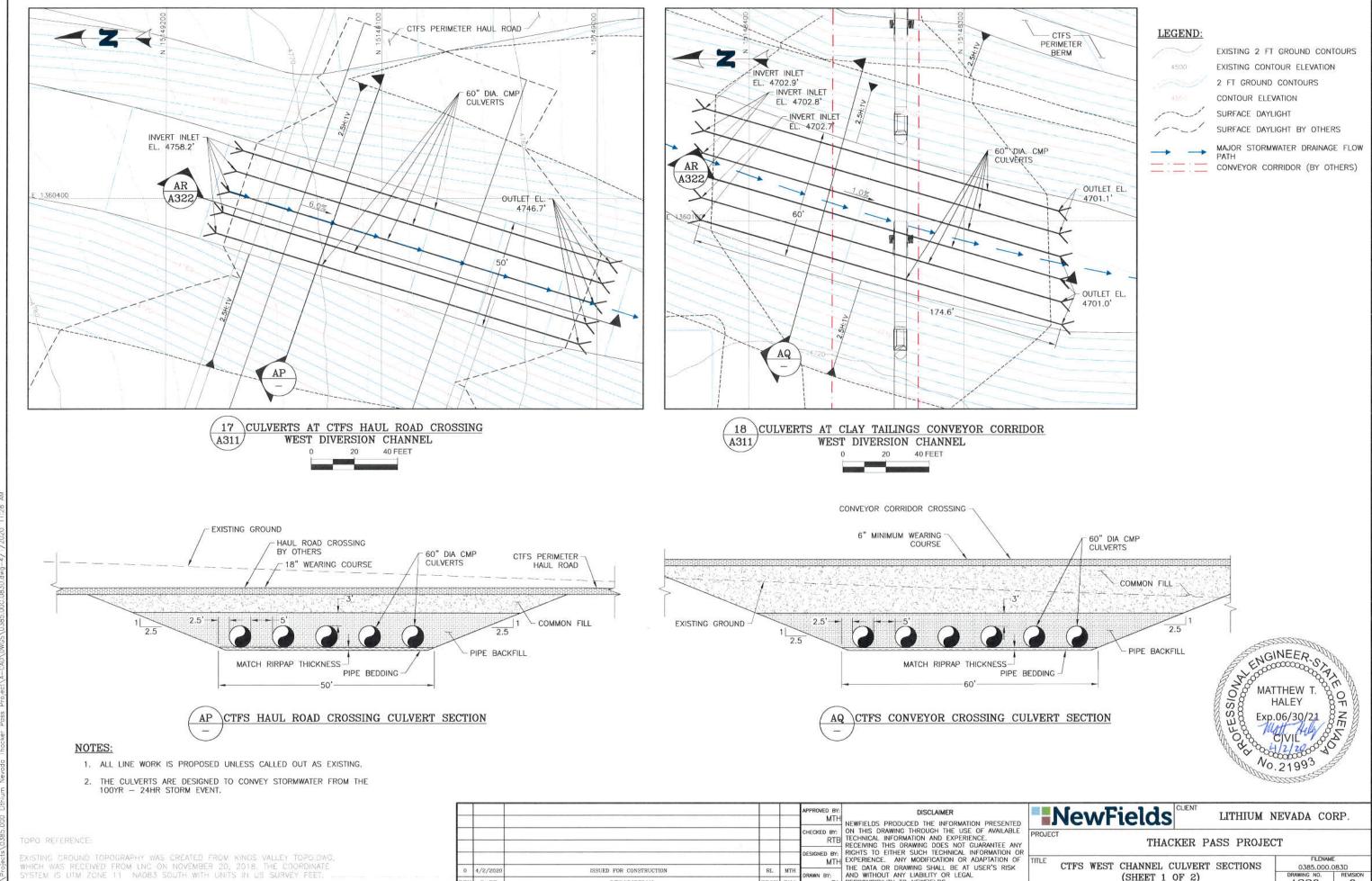
TOPO				

EXISTING GROUND TOPOGRAPHY WAS CREATED FROM KINGS VALLEY TOPO.DWG, WHICH WAS RECEIVED FROM LNC ON NOVEMBER 20, 2018. THE COORDINATE SYSTEM IS UTM ZONE 11 NAD83 SOUTH WITH UNITS IN US SURVEY FEET.

				_	
					APPROVED BY: MTH
					CHECKED BY: RTB
					DESIGNED BY:
0	4/2/2020	ISSUED FOR CONSTRUCTION	NLB	MTH	DRAWN BY:
REV	DATE	DESCRIPTION	TECH		RL


NewFields DISCLAIMER DISCLAIMER NEWFIELDS PRODUCED THE INFORMATION PRESENTED ON THIS DRAWING THROUGH THE USE OF AVAILABLE TECHNICAL INFORMATION AND EXPERIENCE. RECEIVING THIS DRAWING DOES NOT GUARANTEE ANY RIGHTS TO EITHER SUCH TECHNICAL INFORMATION OR EXPERIENCE. ANY MODIFICATION OR ADAPTATION OF THE DATA OR DRAWING SHALL BE AT USER'S RISK AND WITHOUT ANY LIABILITY OR LEGAL RESPONSIBILITY TO NEWFIELDS.


LITHIUM NEVADA CORP.


THACKER PASS PROJECT

CTFS NORTH DIVERSION CHANNEL PLAN & PROFILE (SHEET 1 OF 3)

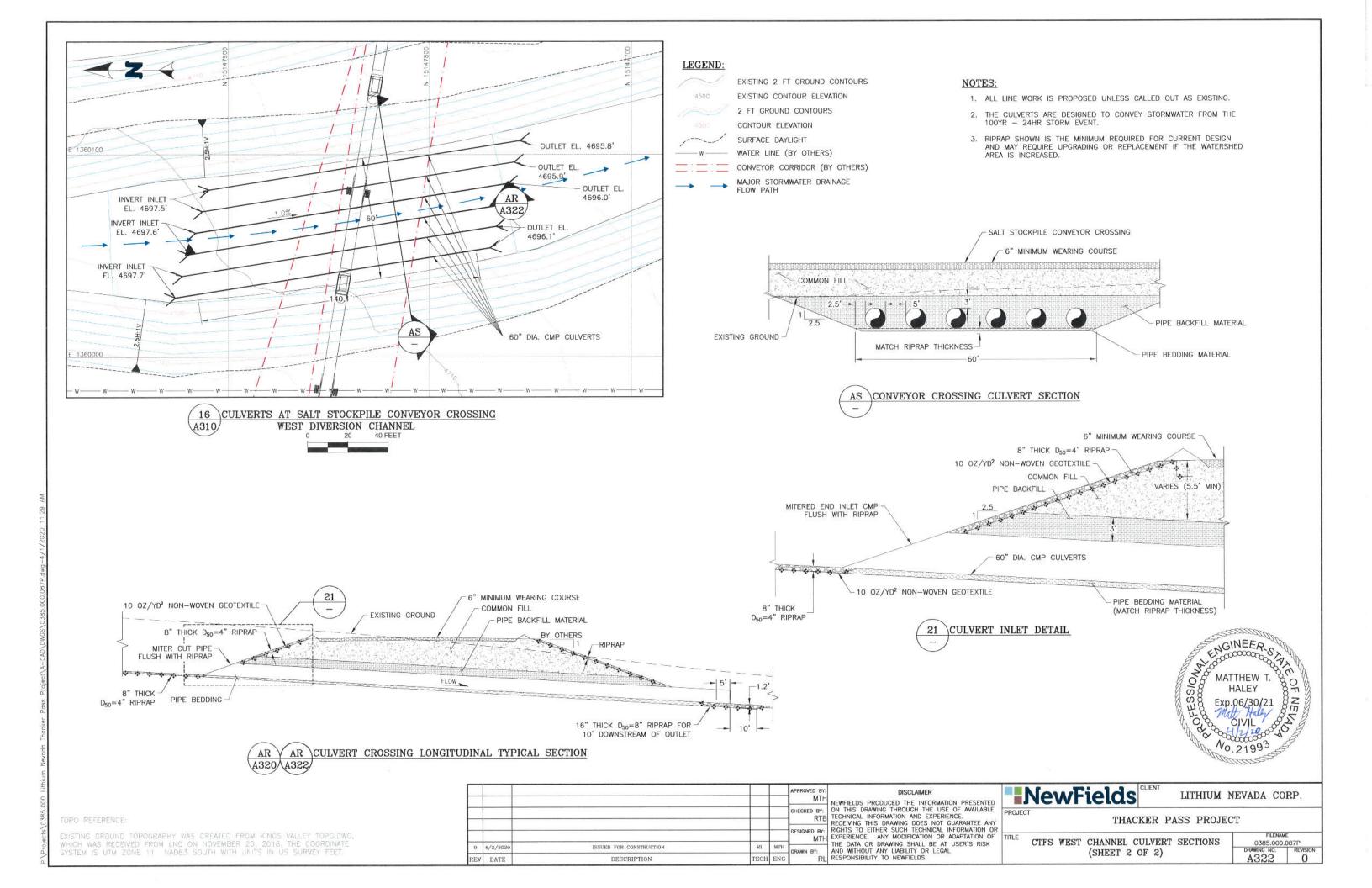
FILENAME 0385.000.074P DRAWING NO. | REV A313 0

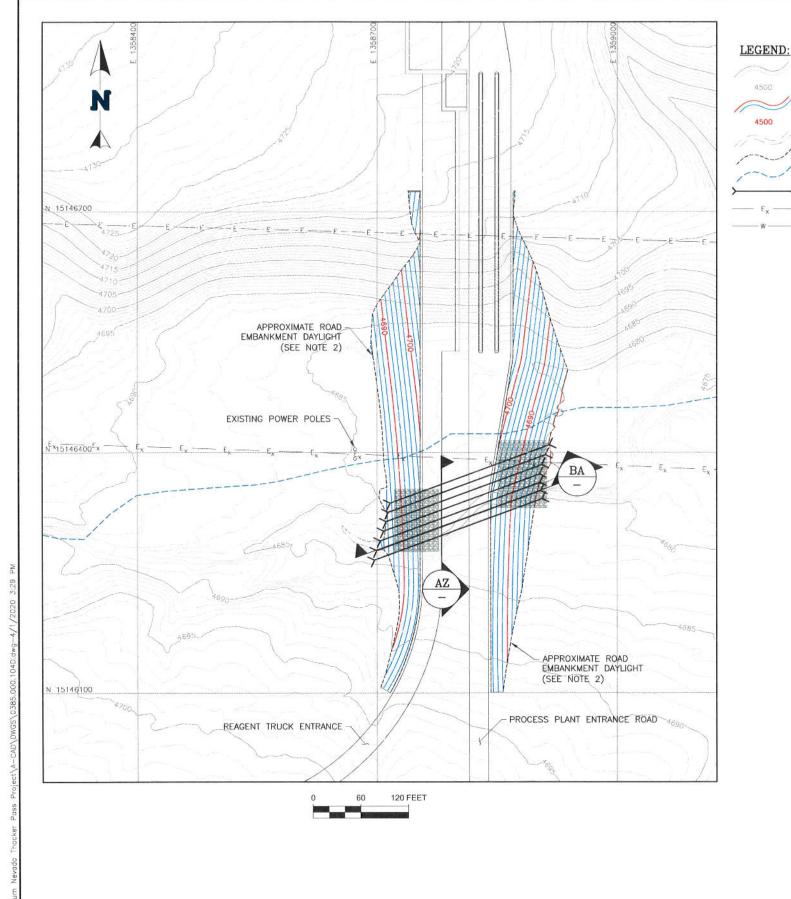
4/2/2020

REV DATE

ISSUED FOR CONSTRUCTION

DESCRIPTION


0385,000,083D
DRAWING NO. REVI


REVISION

CTFS WEST CHANNEL CULVERT SECTIONS

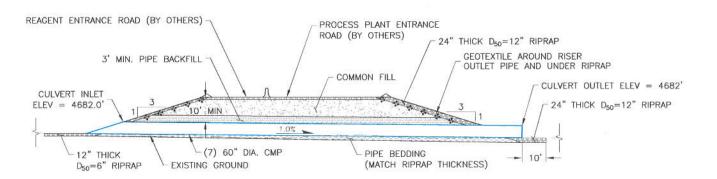
(SHEET 1 OF 2)

THE DATA OR DRAWING SHALL BE AT USER'S RISK AND WITHOUT ANY LIABILITY OR LEGAL RESPONSIBILITY TO NEWFIELDS.

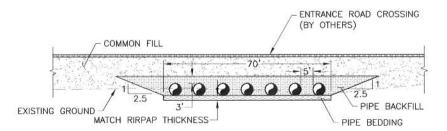
NOTE:

EXISTING 1 FT GROUND CONTOURS

EXISTING CONTOUR ELEVATION


1 FT GROUND CONTOURS

CONTOUR ELEVATION EXISTING ROADS SURFACE DAYLIGHT EXISTING DRAINAGES


EXISTING POWER LINE WATER LINE (by others)

CULVERT

- 1. ALL LINE WORK IS PROPOSED UNLESS CALLED OUT AS EXISTING.
- 2. A MINIMUM ROADWAY CREST ELEVATION OF 4697' IS REQUIRED ACROSS THE EXISTING DRAINAGEWAY TO PROVIDE ADEQUATE HEADWATER DEPTH. A CONSTANT ROADWAY ELEVATION, AS SHOWN, IS ASSUMED FOR DESIGN PURPOSES. ACTUAL ROADWAY ELEVATIONS AND GRADING WILL BE DESIGNED BY OTHERS AND MAY IMPACT THE REQUIRED CULVERT LENGTHS.

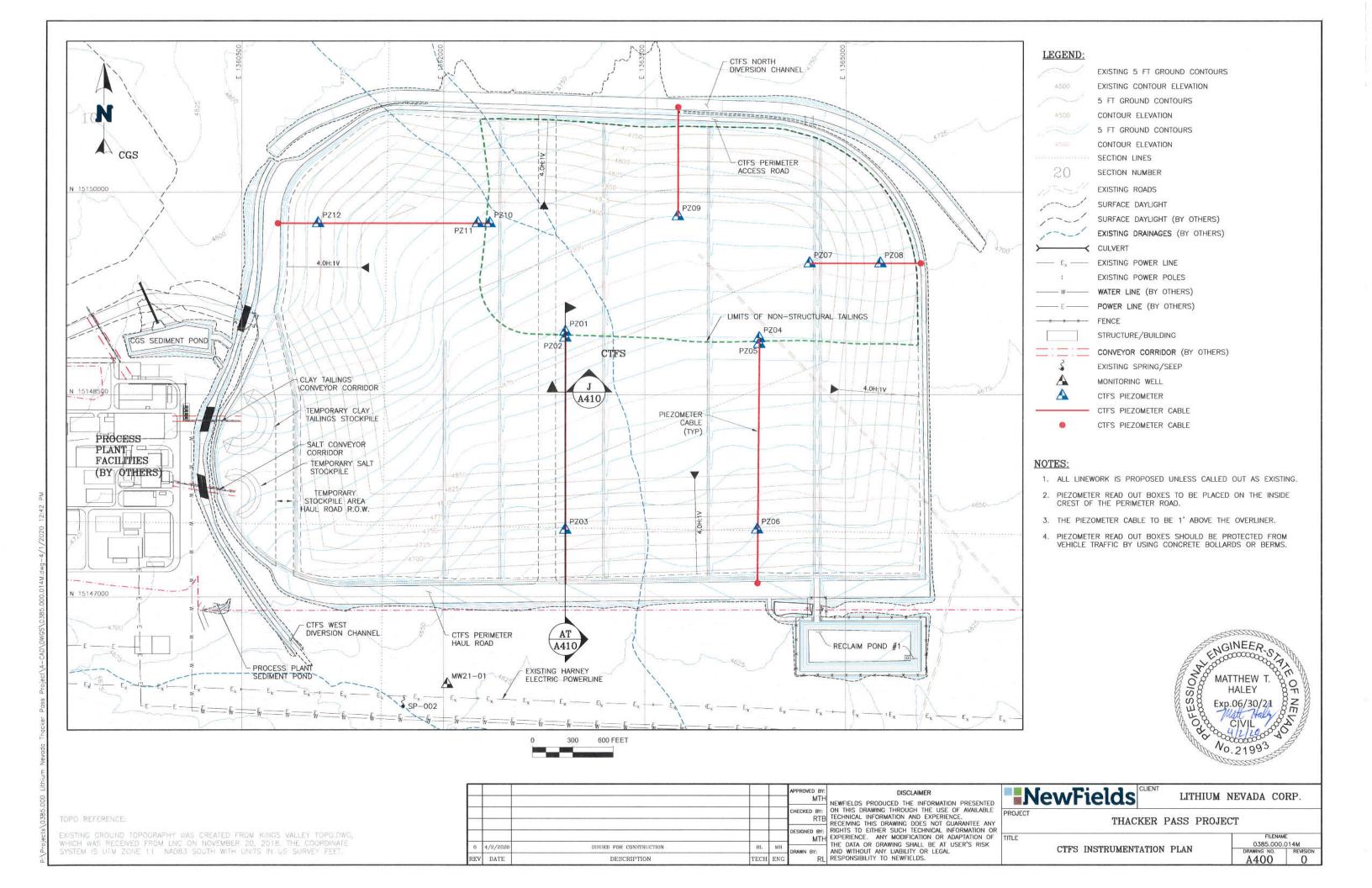
BA PROCESS PLANT ENTRANCE ROAD CULVERT SECTION

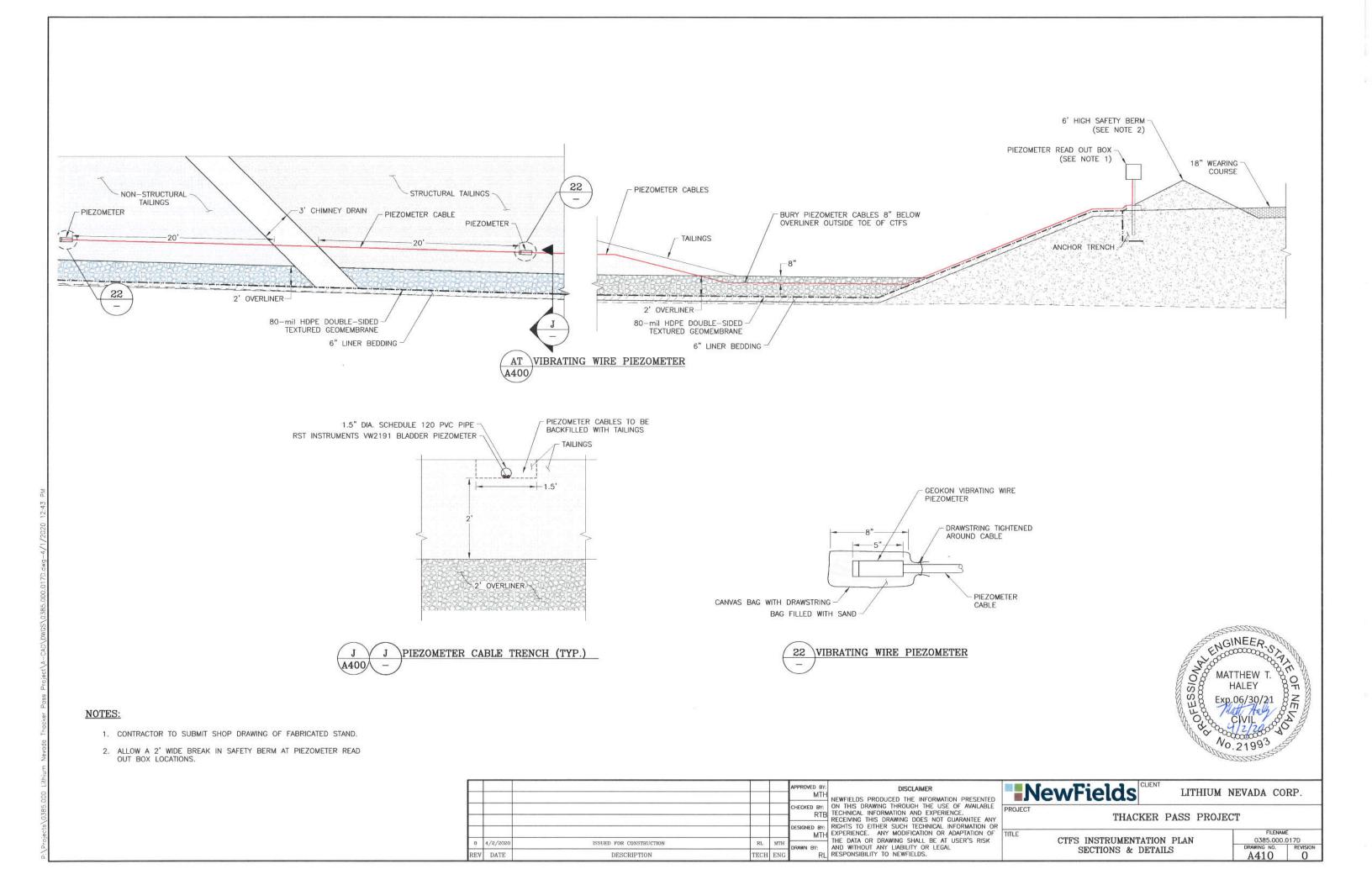
PROCESS PLANT ENTRANCE ROAD CULVERT SECTION

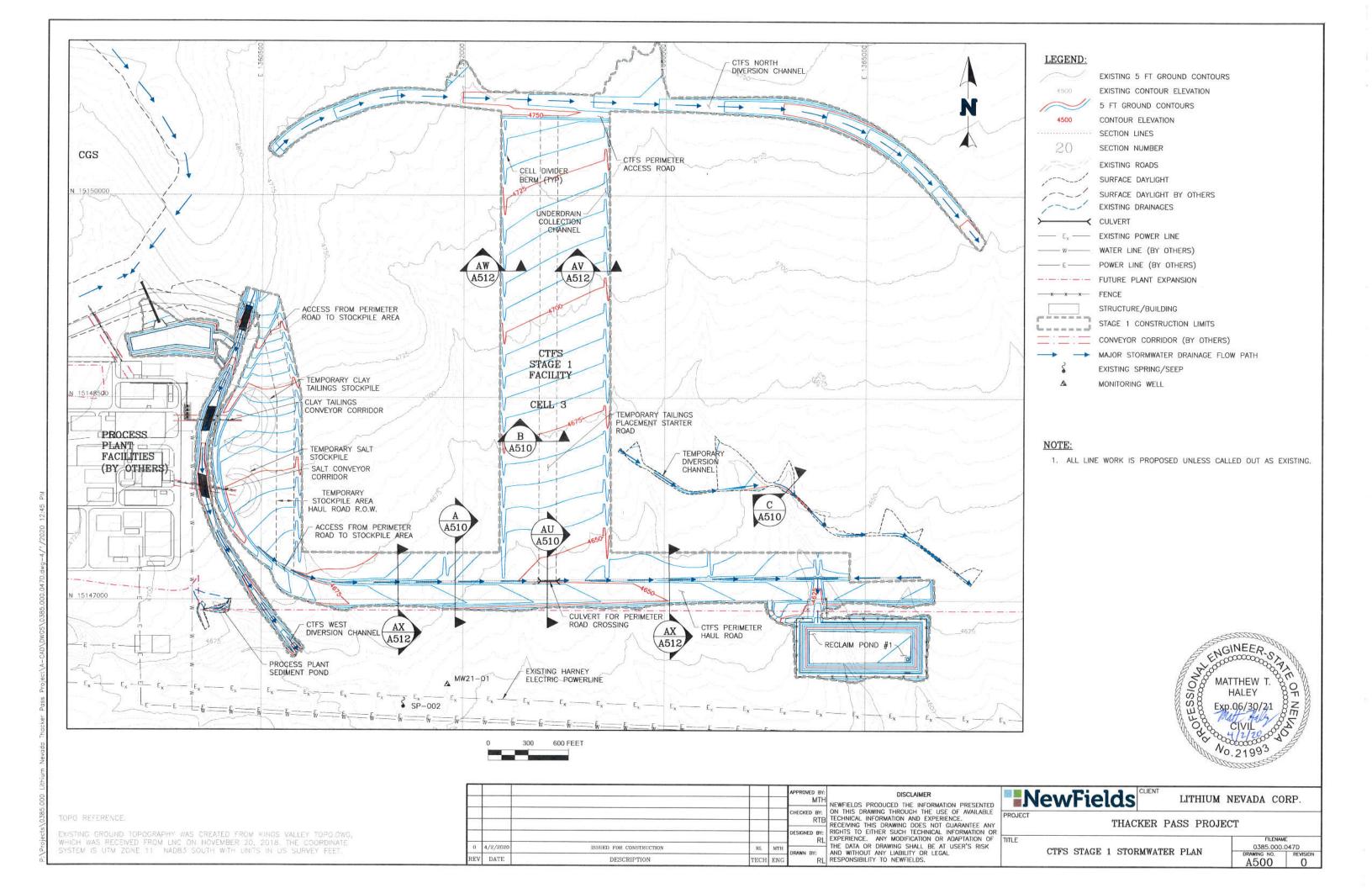
					APPROVED BY: MTH
					CHECKED BY: RTB
					DESIGNED BY:
0	4/2/2020	ISSUED FOR CONSTRUCTION	RL	MTH	DRAWN BY:
REV	DATE	DESCRIPTION	TECH	ENG	RL

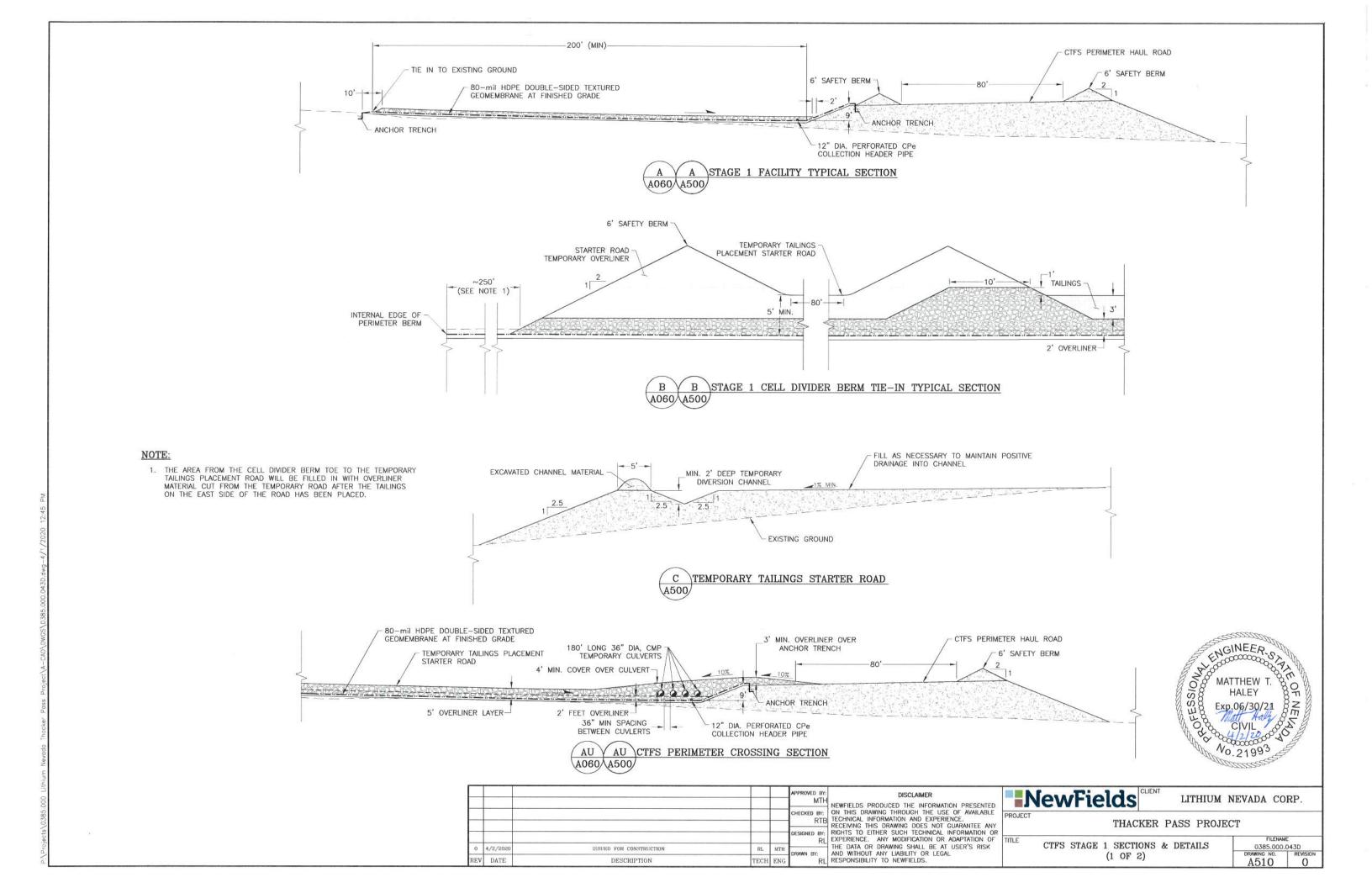
DISCLAIMER NEWFIELDS PRODUCED THE INFORMATION PRESENTED ON THIS DRAWING THROUGH THE USE OF AVAILABLE TECHNICAL INFORMATION AND EXPERIENCE.

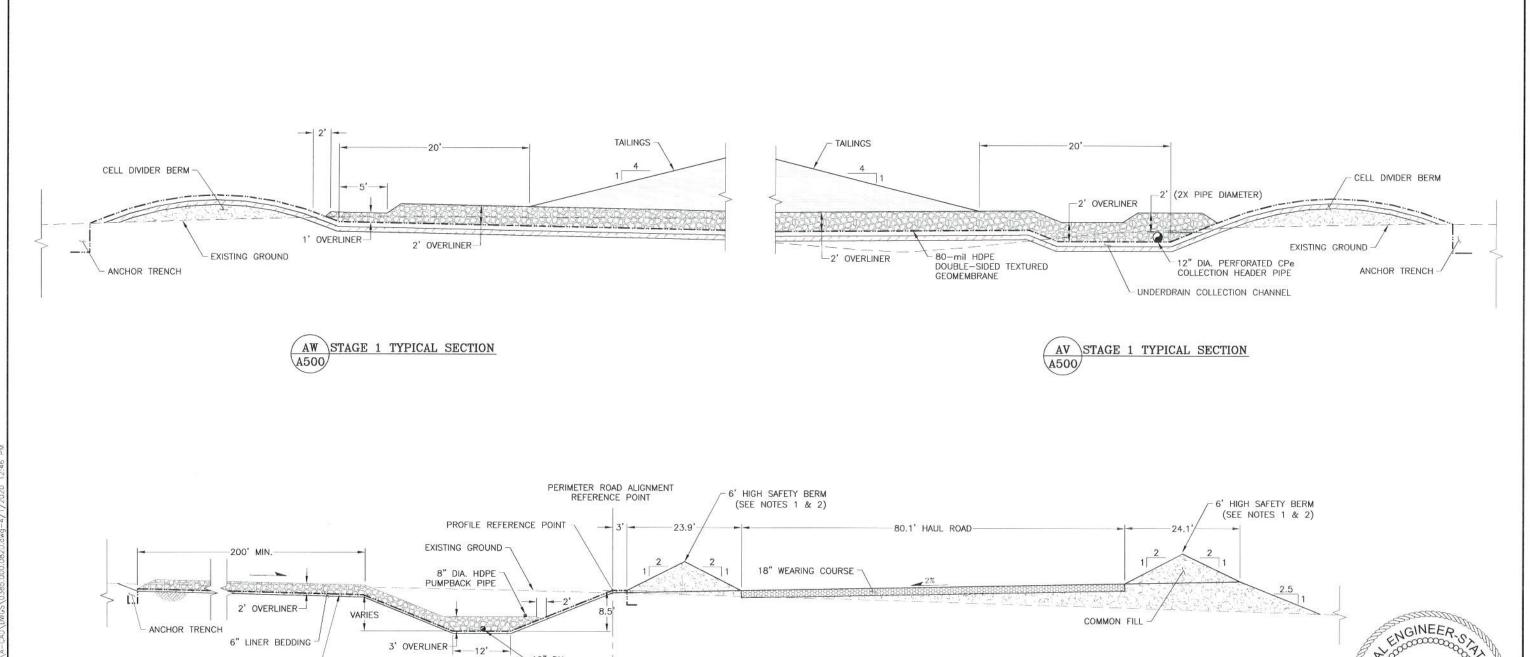
TECHNICAL INFORMATION AND EXPERIENCE.
RECEIVING THIS DRAWING DOES NOT GUARANTEE ANY
RIGHTS TO EITHER SUCH TECHNICAL INFORMATION OR
EXPERIENCE. ANY MODIFICATION OR ADAPTATION OF THE DATA OR DRAWING SHALL BE AT USER'S RISK AND WITHOUT ANY LIABILITY OR LEGAL RESPONSIBILITY TO NEWFIELDS.

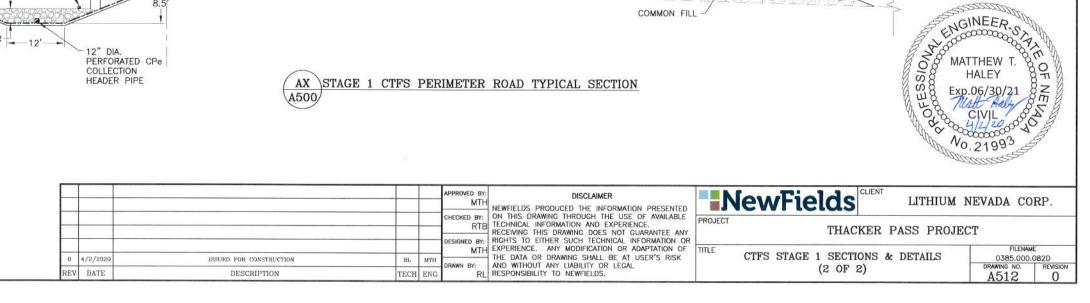


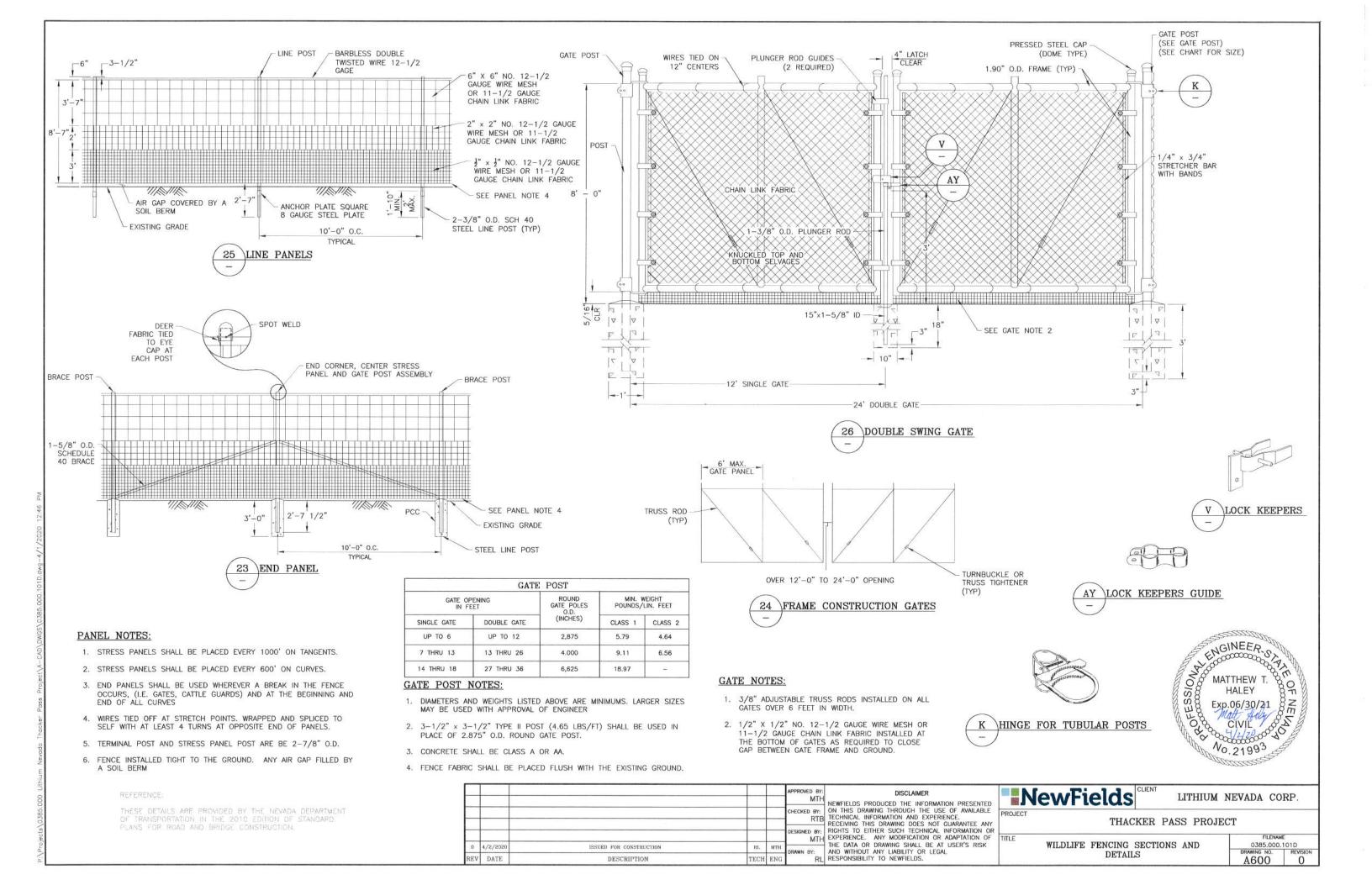

LITHIUM NEVADA CORP.


THACKER PASS PROJECT


PROCESS PLANT ENTRANCE ROAD CULVERT SECTIONS AND DETAILS

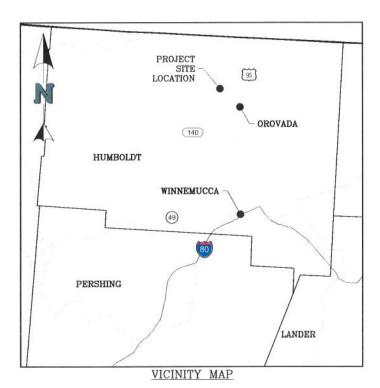

FILENAME 0385.000.104D A324 0





80-mil HDPE DOUBLE-SIDED -TEXTURED GEOMEMBRANE

DRAWINGS NewFields C-Series Waste Rock Storage Facilities and Coarse Gangue Stockpile


LITHIUM NEVADA CORP. THACKER PASS PROJECT WASTE ROCK STORAGE FACILITIES AND COARSE GANGUE STOCKPILE

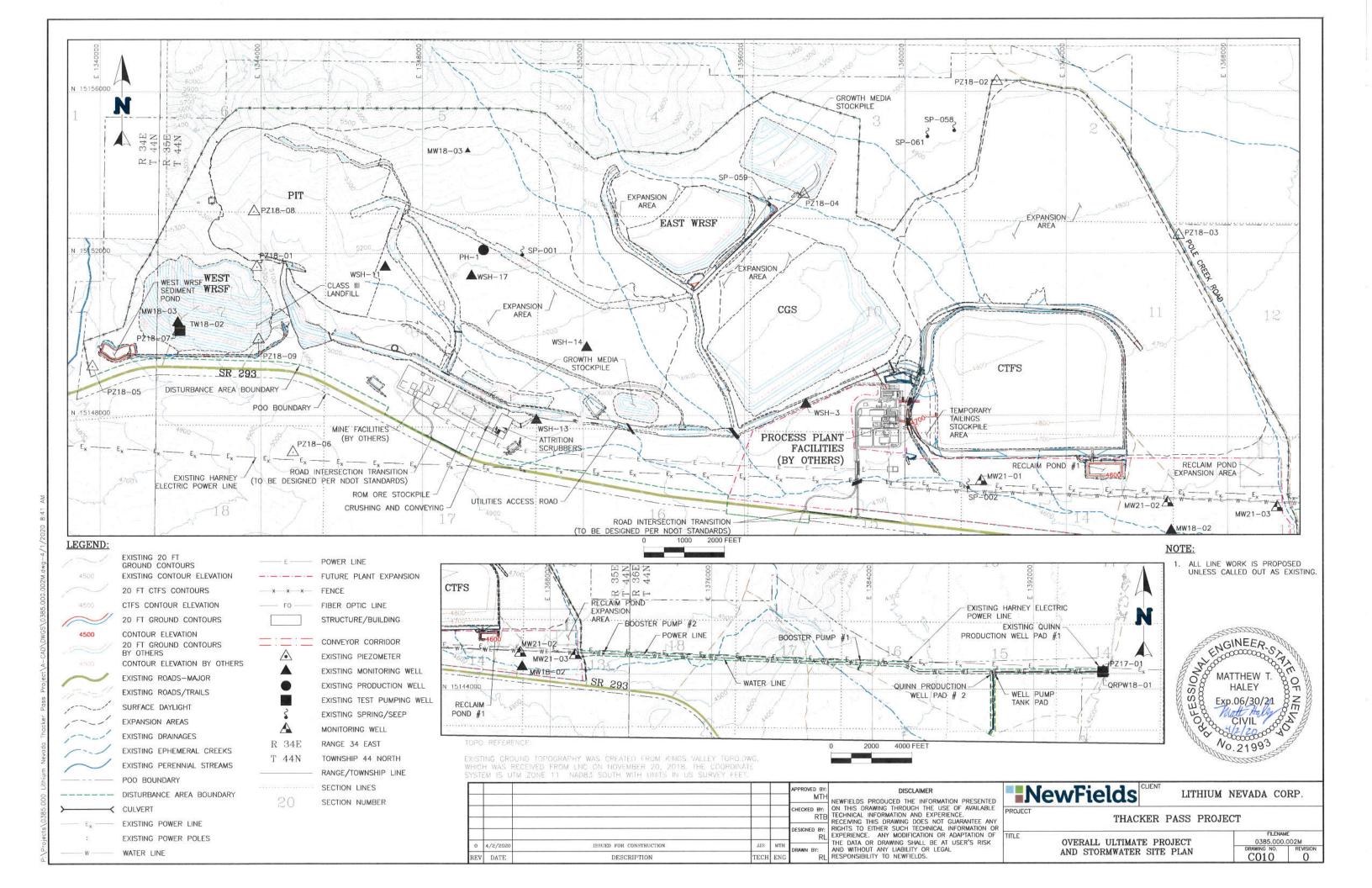
ISSUED FOR CONSTRUCTION APRIL 02, 2020

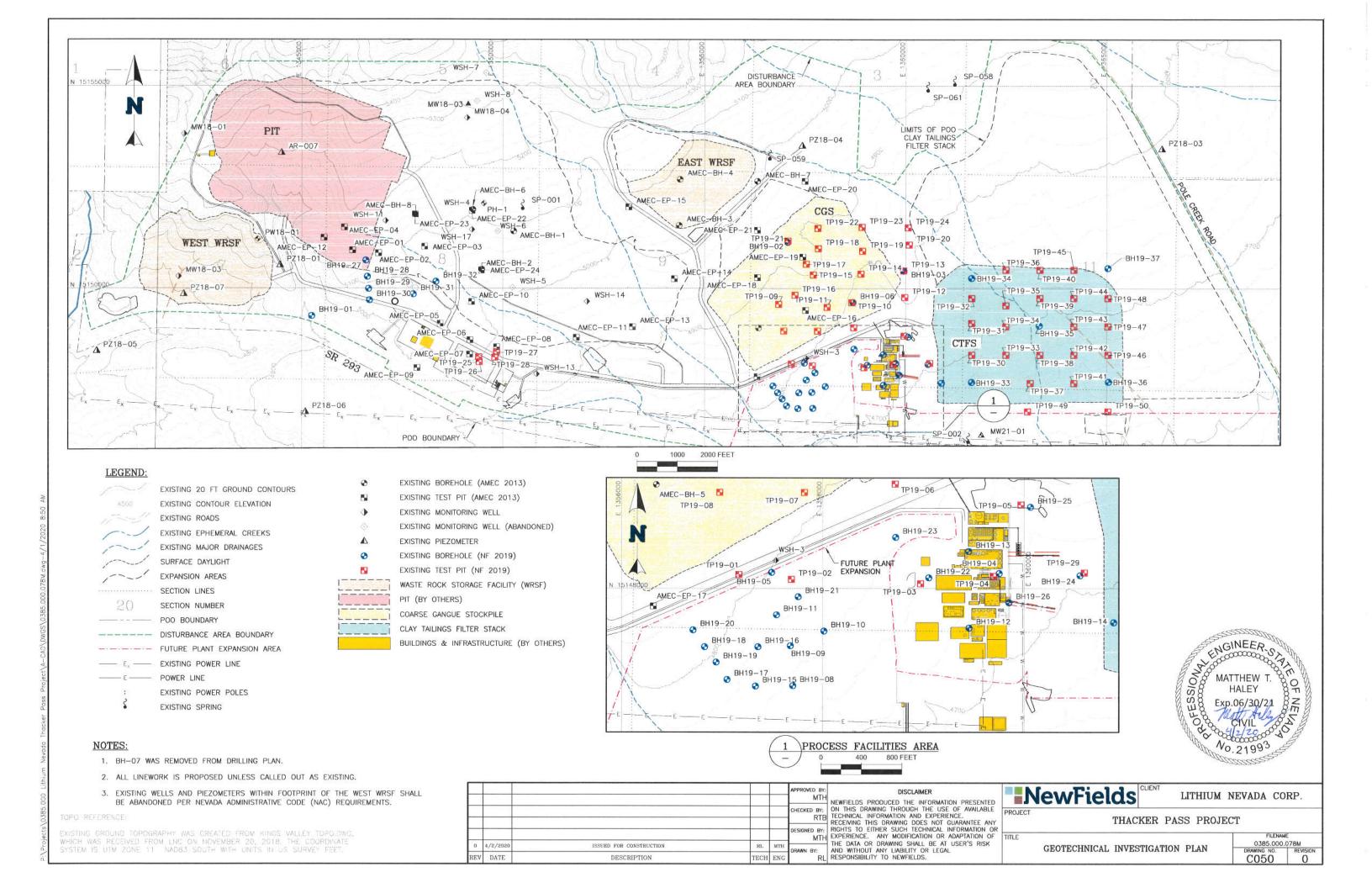
	DRAWING LIST	
DWG NO.	DRAWING TITLE	REV
C000	COVER SHEET, INDEX AND VICINITY MAP	0
C010	OVERALL ULTIMATE PROJECT AND STORMWATER SITE PLAN	0
C050	GEOTECHNICAL INVESTIGATION PLAN	0
C105	WEST WRSF STORMWATER PLAN	0
C110	WEST WRSF SEDIMENT POND PLAN	0
C115	WEST WRSF SEDIMENT POND SECTIONS AND DETAILS (SHEET 1 OF 2)	0
C116	WEST WRSF SEDIMENT POND SECTIONS AND DETAILS (SHEET 2 OF 2)	0
C117	WEST WRSF POND ACCESS ROAD PLAN AND PROFILE	0
C118	WEST WRSF POND ACCESS ROAD SECTIONS AND DETAILS	0
C120	EAST WRSF STORMWATER PLAN	0
C121	EAST WRSF STORMWATER DETAILS	0
C125	EAST WRSF SEDIMENT POND PLAN	0
C130	EAST WRSF SEDIMENT POND SECTIONS AND DETAILS	0
C135	COARSE GANGUE STOCKPILE STORMWATER PLAN	0
C140	COARSE GANGUE STOCKPILE SEDIMENT POND PLAN	0
C143	COARSE GANGUE STOCKPILE SECTIONS AND DETAILS	0
C145	COARSE GANGUE STOCKPILE SEDIMENT POND SECTIONS AND DETAILS .	0
C146	COARSE GANGUE STOCKPILE CULVERT SECTIONS	0
C150	FILTER DIAPHRAGM AND RISER PIPE SECTIONS AND DETAILS	0

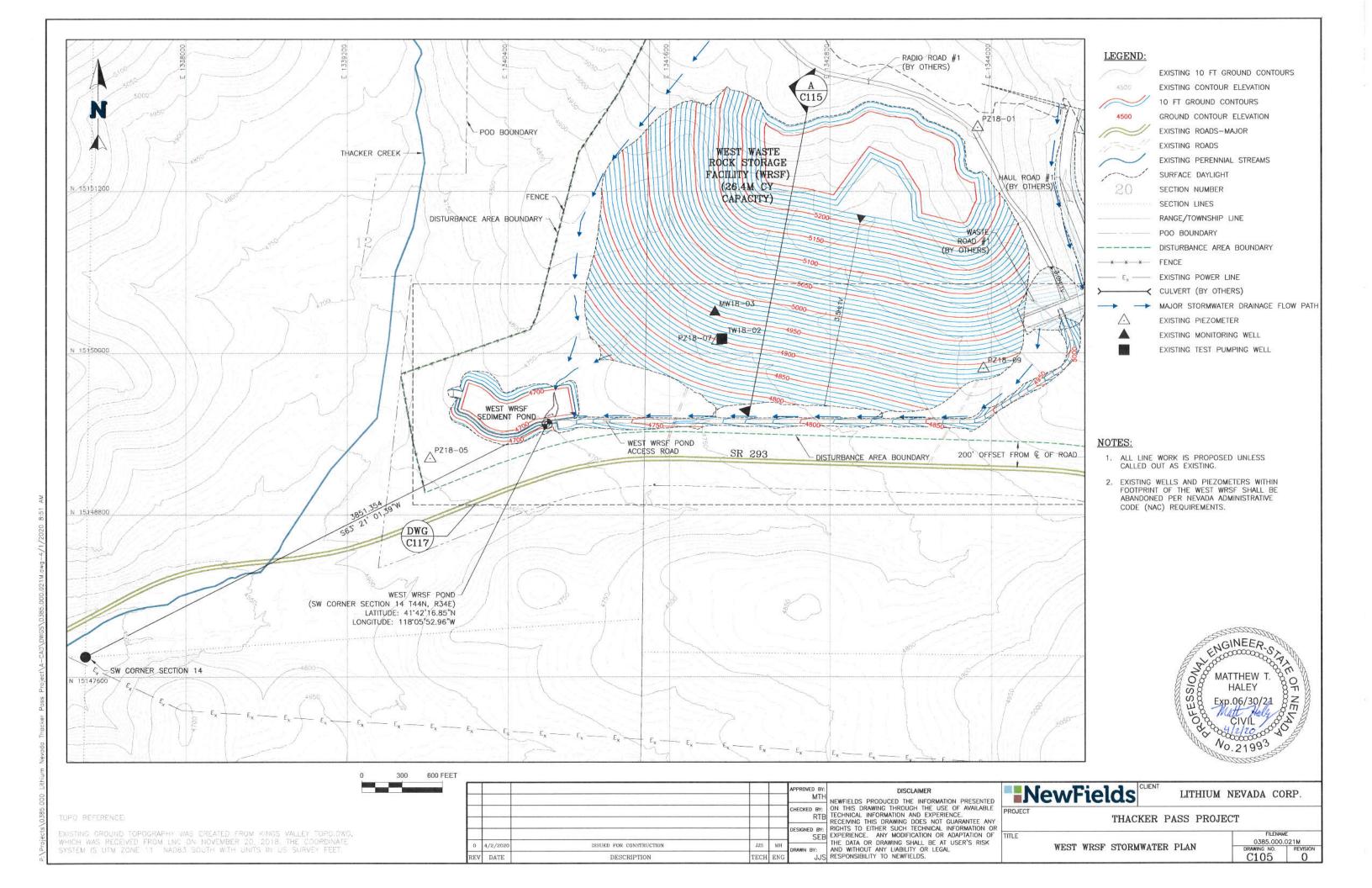

owner: Lithium Nevada

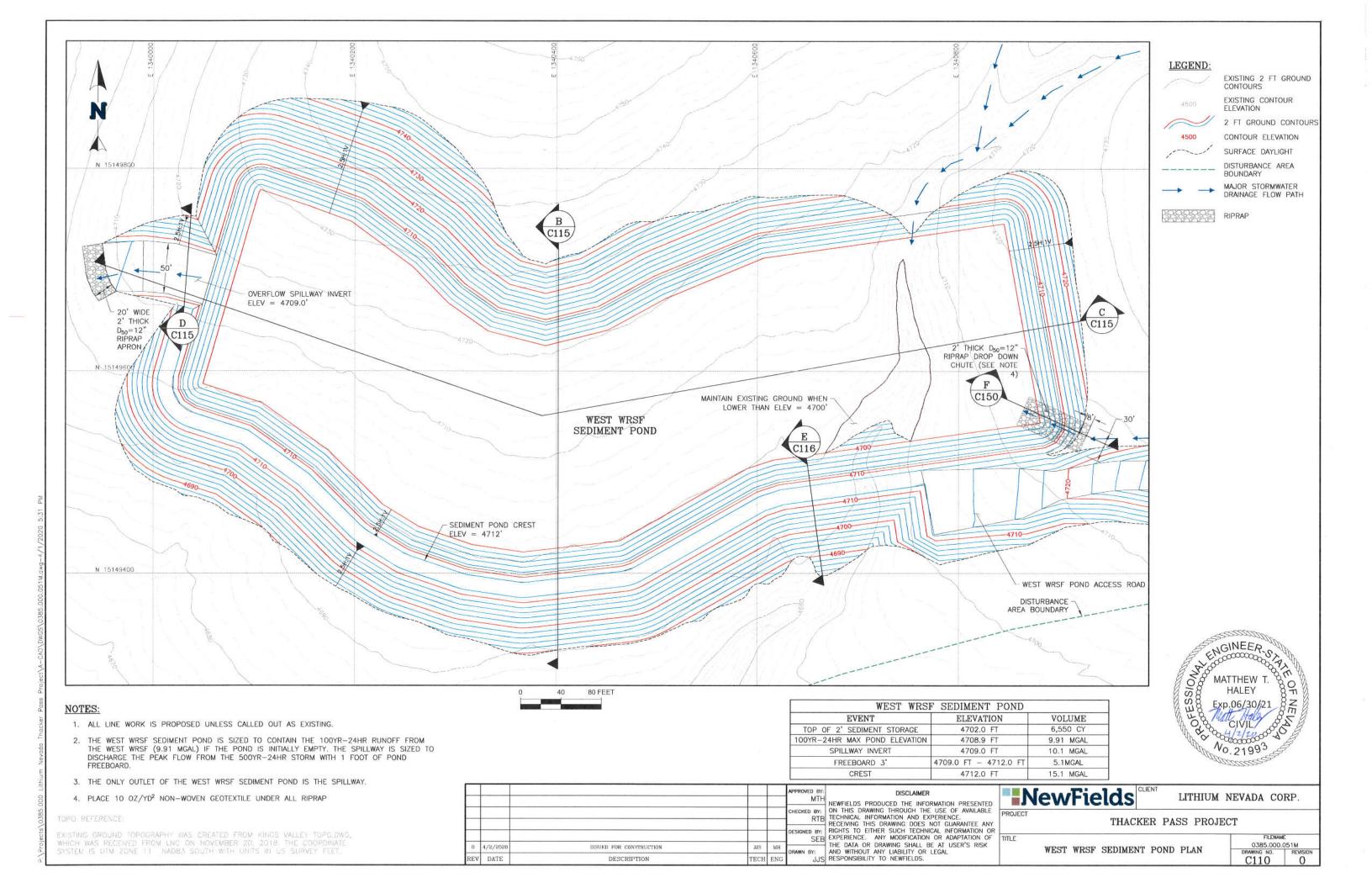
LITHIUM NEVADA CORP. 3685 LAKESIDE DRIVE RENO, NEVADA 89509

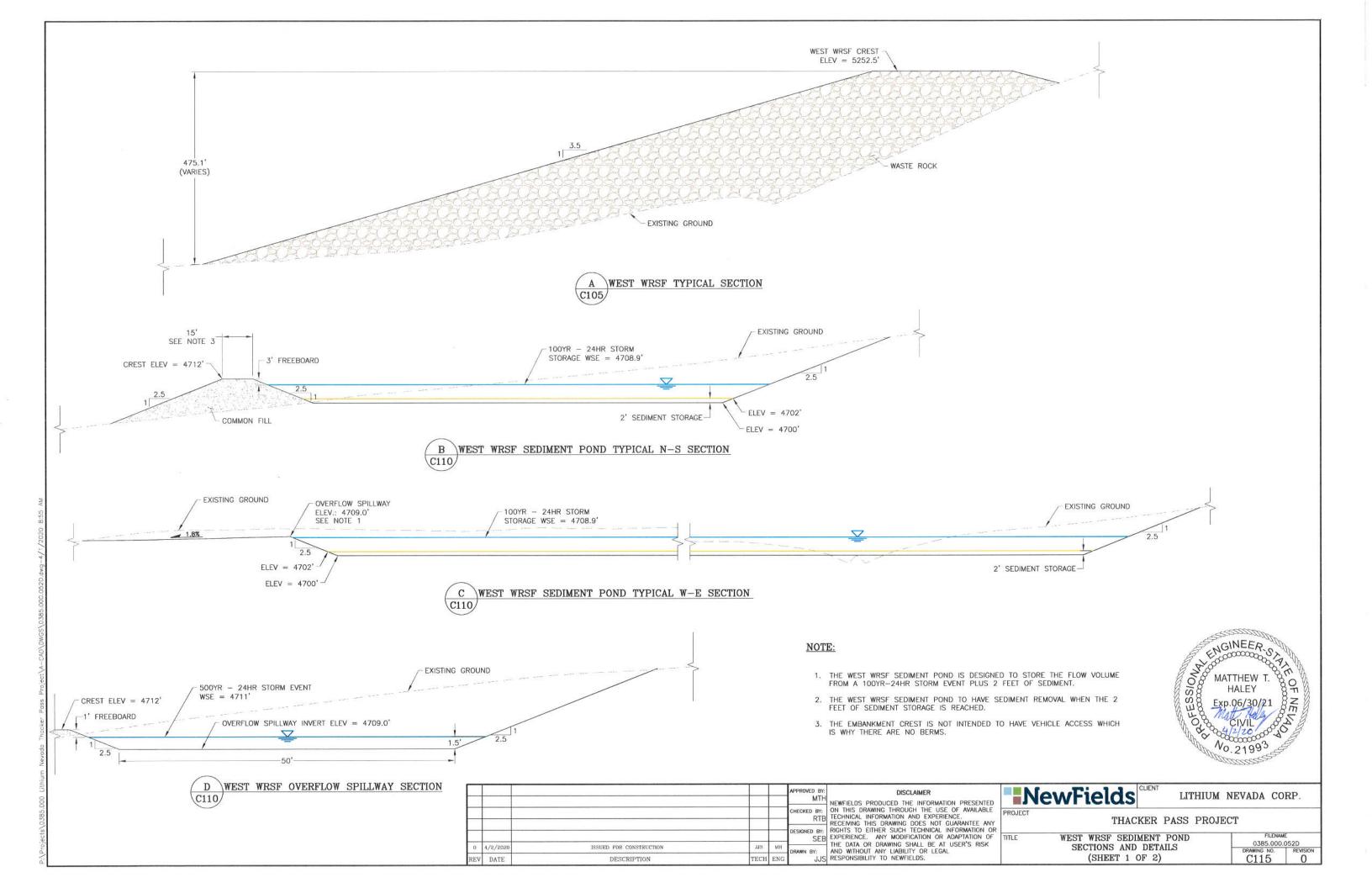
TEXT ABBREVIATIONS:

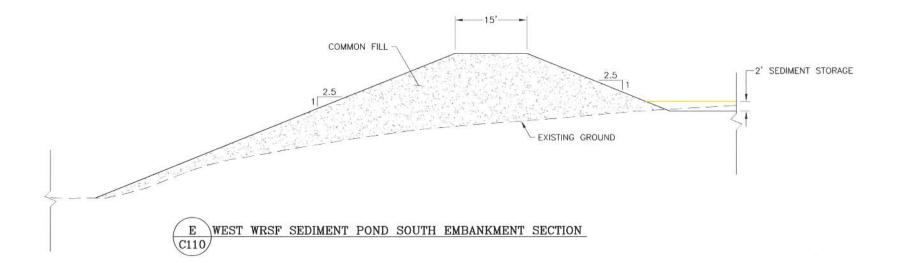

CGS - COARSE GANGUE STOCKPILE ← CENTERLINE
 CPeP − CORRUGATED POLYETHYLENE PIPE
 CS − CARBON STEEL CTFS - CLAY TAILINGS FILTER STACK CY - CUBIC YARD DIA - DIAMETER DR - DIMENSION RATIO GM - GROWTH MEDIA HDPE - HIGH DENSITY POLYETHYLENE LHCSL - LOW HYDRAULIC CONDUCTIVITY SOIL LAYER MW - MONITORING WELL PH - EXISTING PRODUCTION WELL POO - PLAN OF OPERATIONS PZ - PIEZOMETER QRPW - QUINN RIVER PRODUCTION WELL ROM - RUN OF MINE SR - STATE ROUTE STD WT - STANDARD WEIGHT TW - EXISTING TEST PUMPING WELL TYP - TYPICAL VFD - VARIABLE FREQUENCY DRIVE WRSF - WASTE ROCK STORAGE FACILITY WSH - EXISTING MONITORING WELL

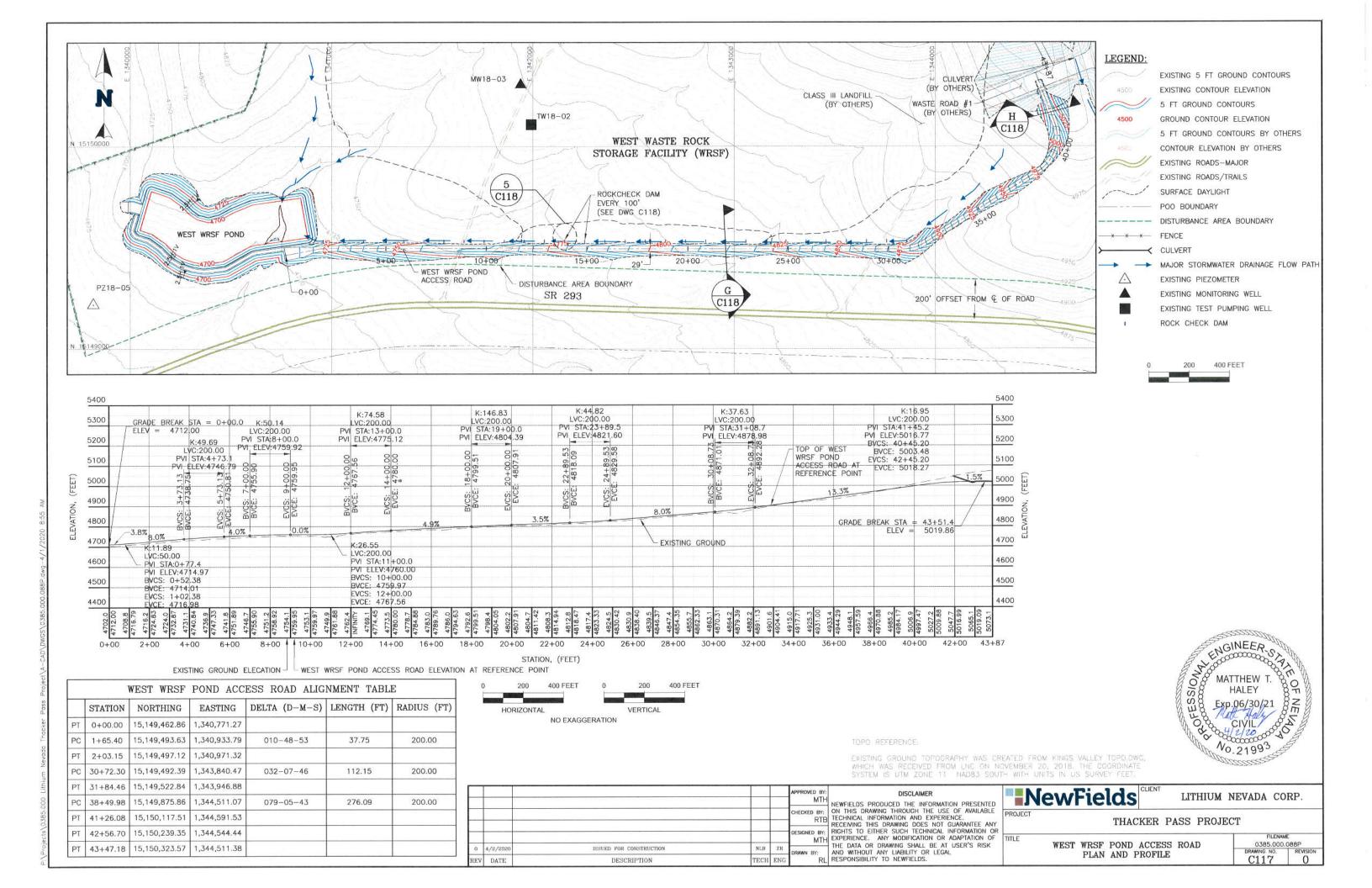


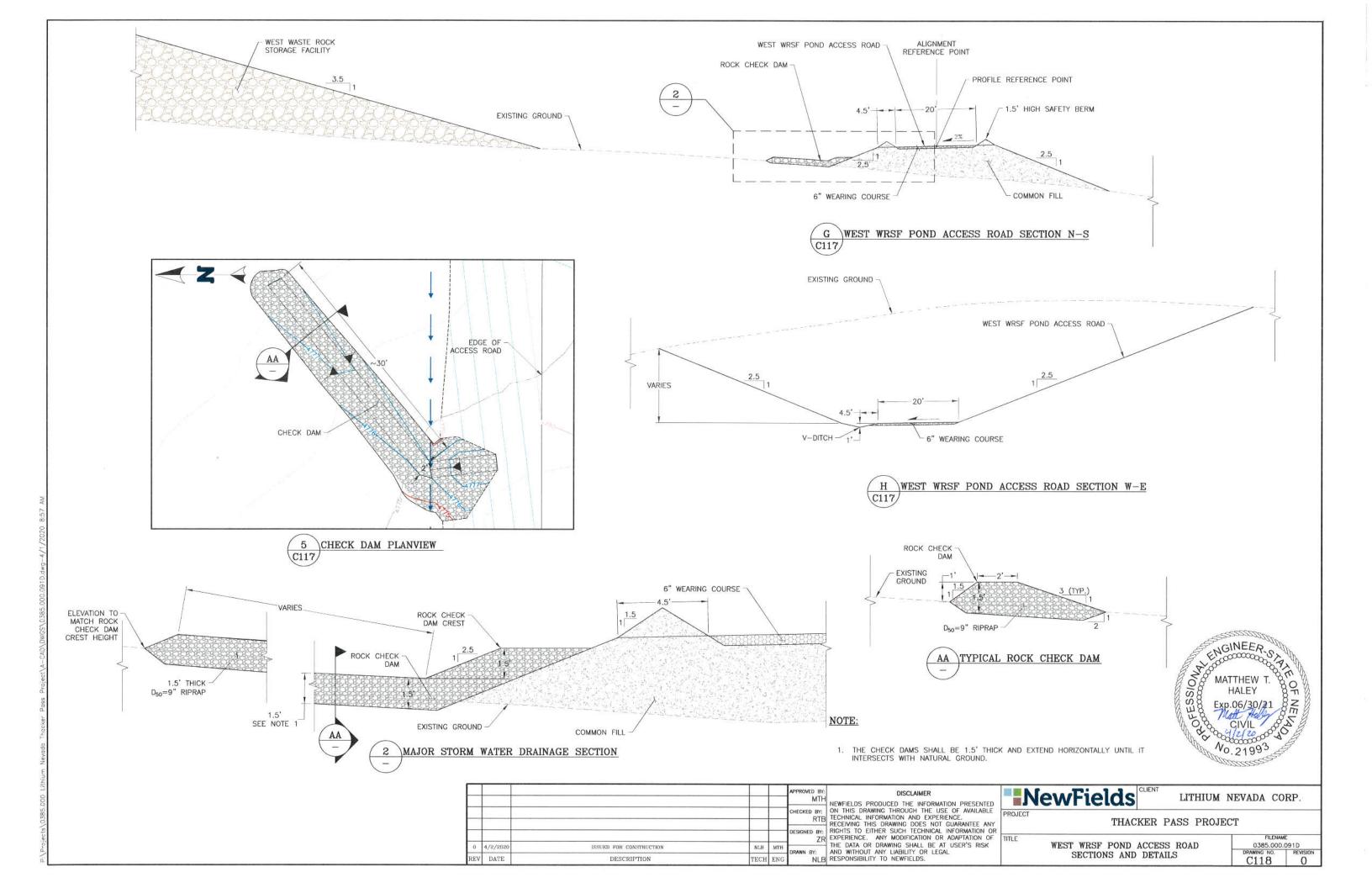

WSE - WATER SURFACE ELEVATION

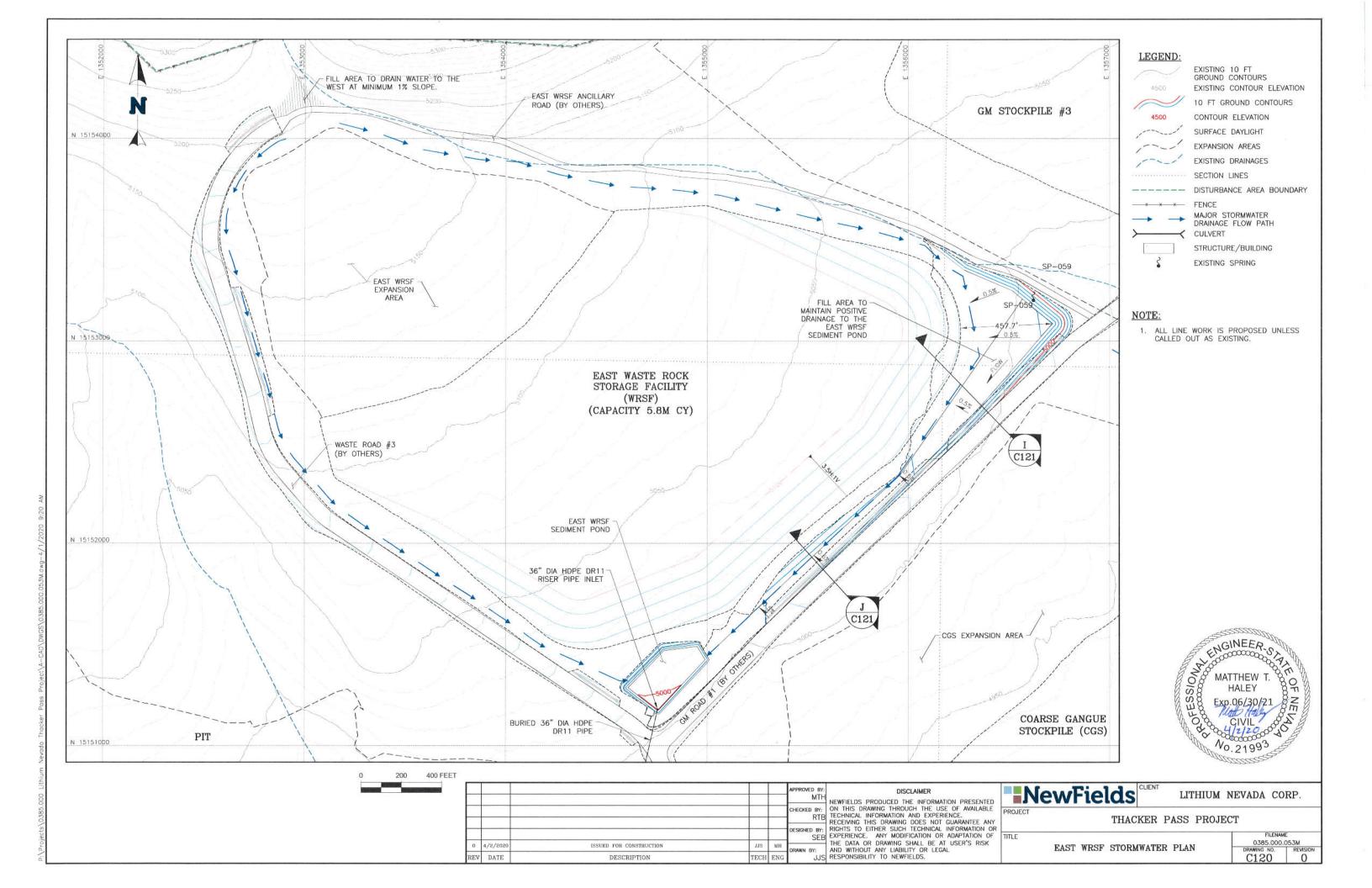


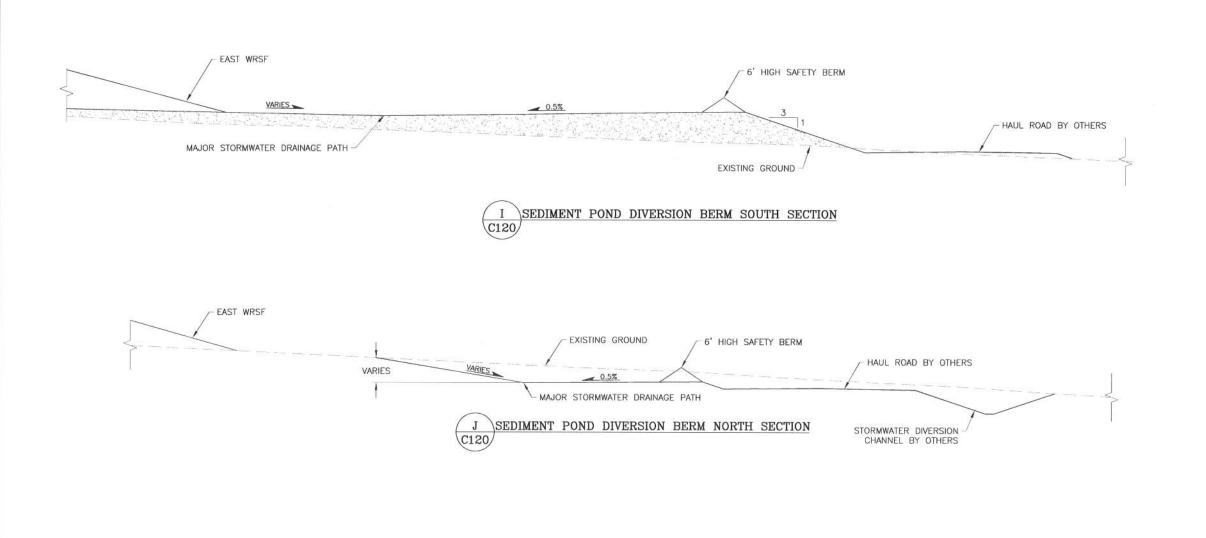

9400 Station Street, Suite 300, Lone Tree, CO 80124 Phone: (720) 508.3300 www.newfields.com



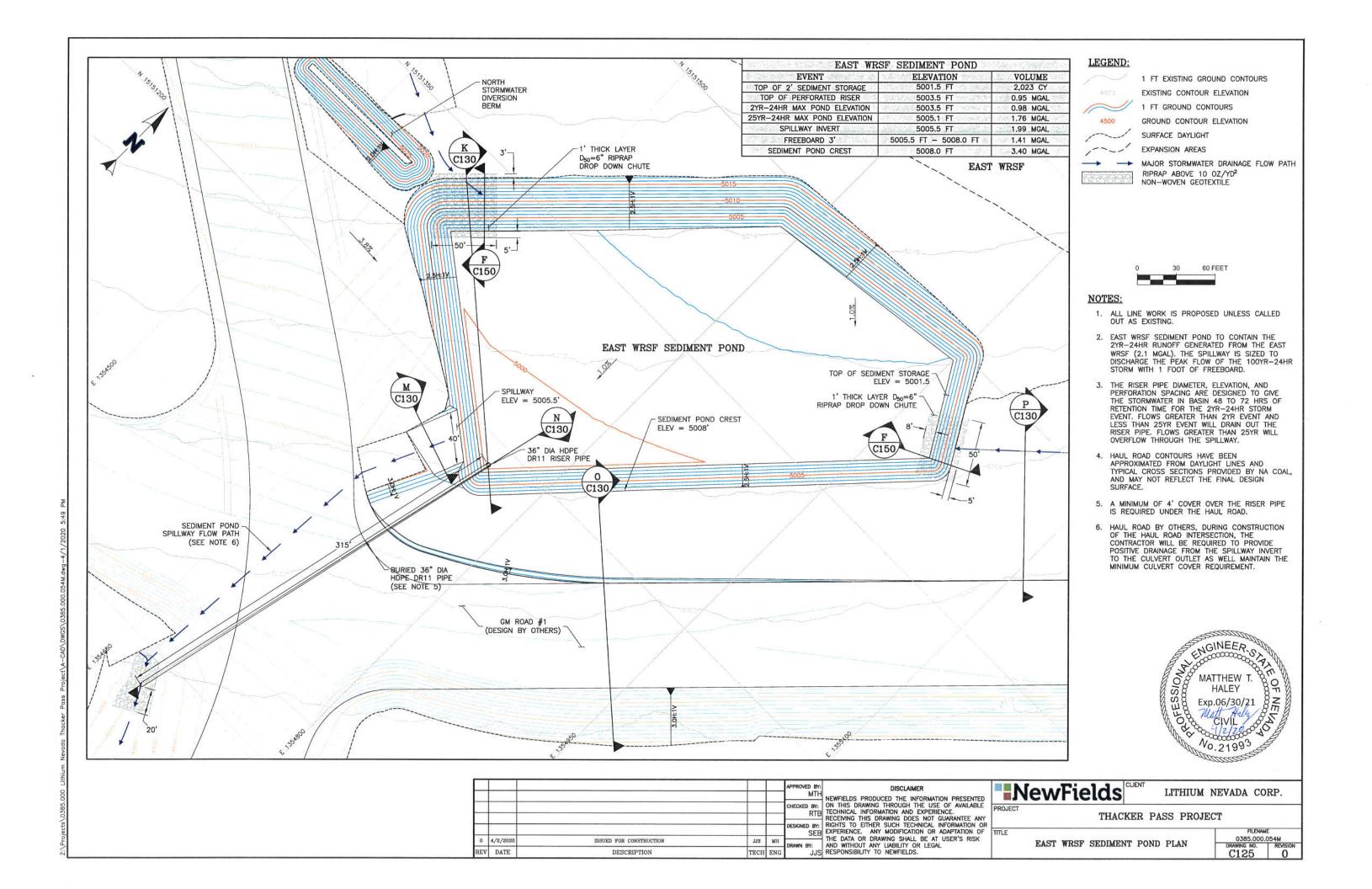


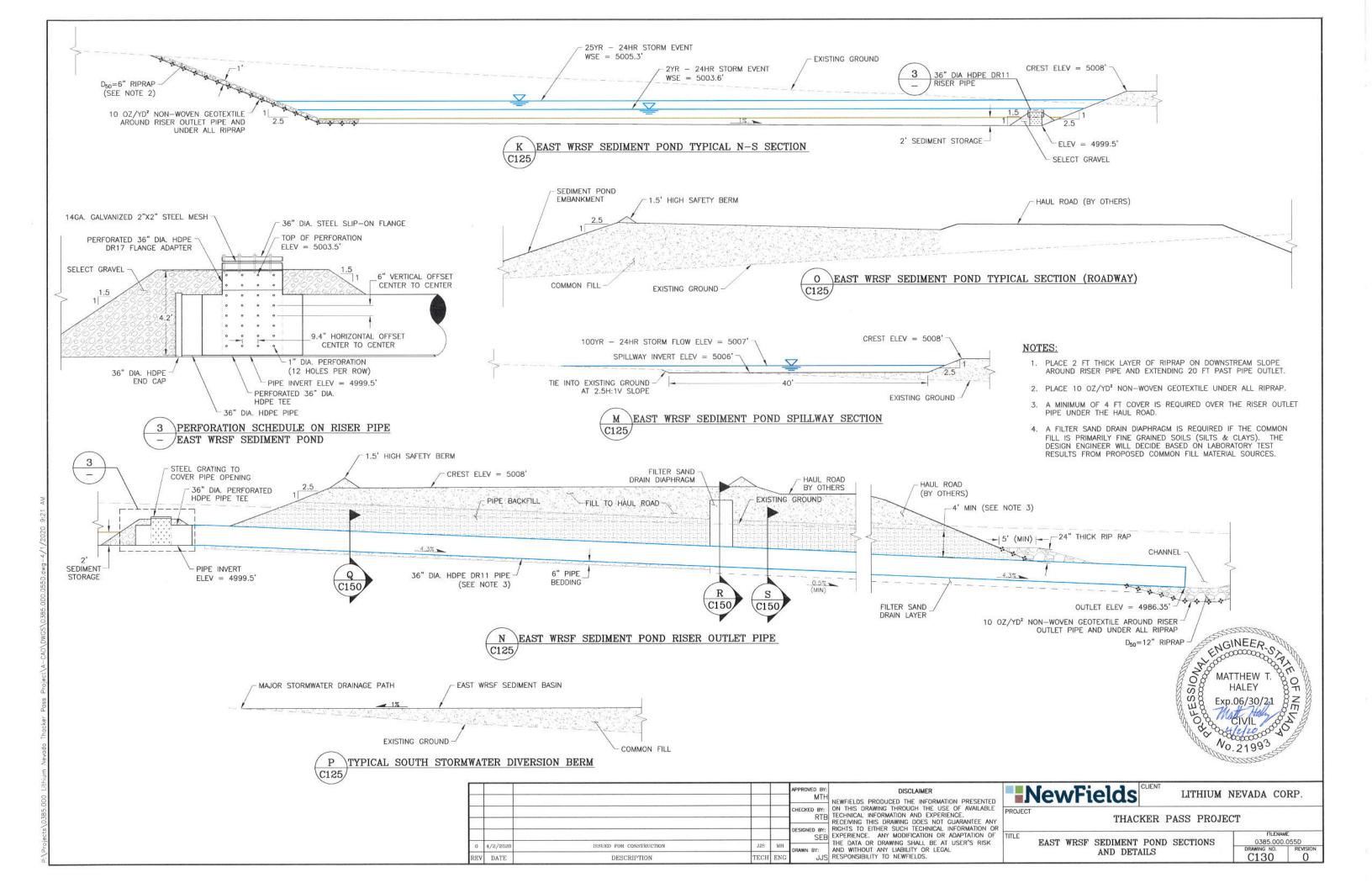

NOTE:

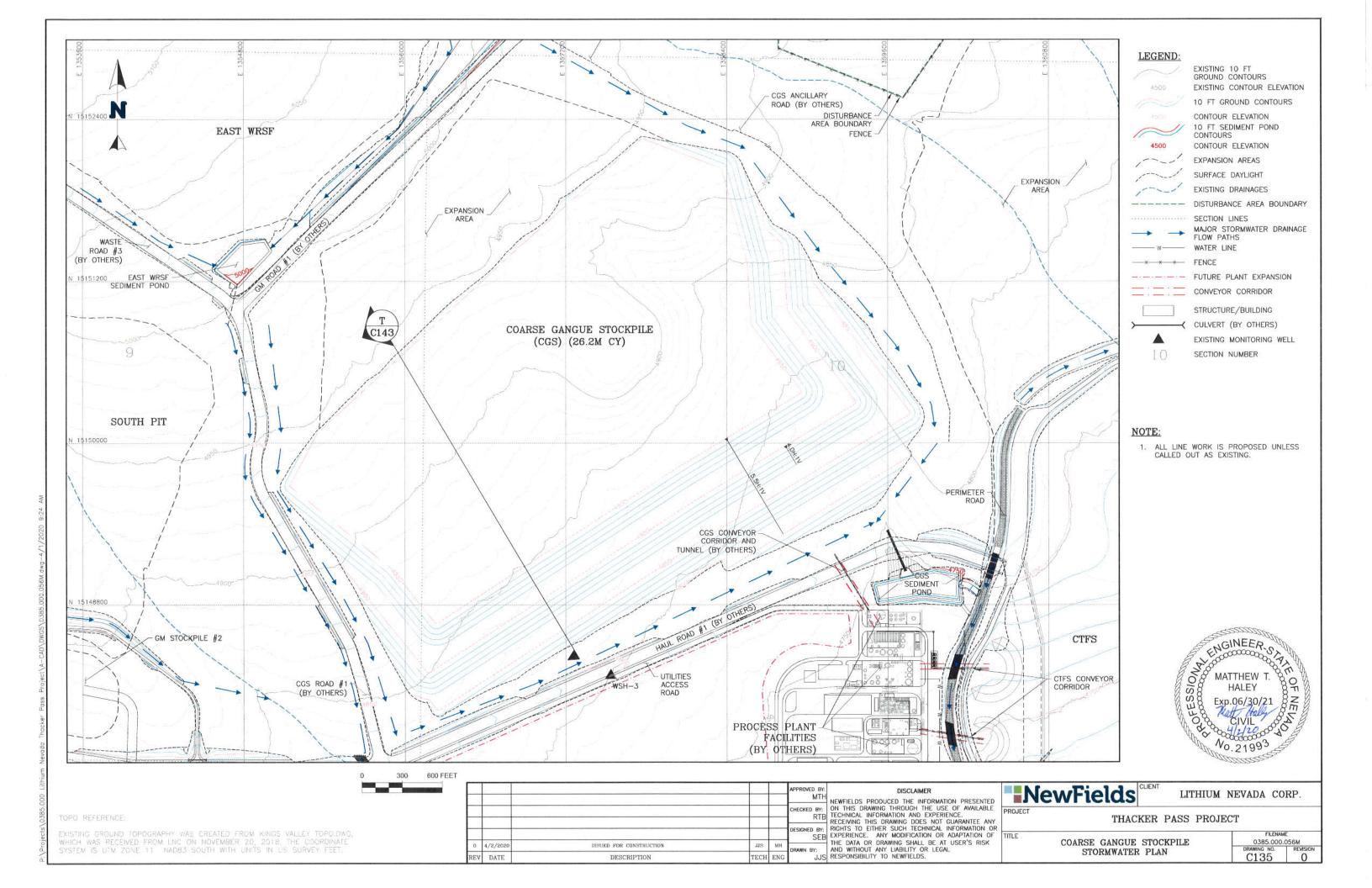

- THE WEST WRSF SEDIMENT POND IS DESIGNED TO STORE THE FLOW VOLUME FROM A 100YR-24HR STORM EVENT PLUS 2 FEET OF SEDIMENT. SUMPS PUMP TO BE USED TO PUMP OUT WATER IF STORAGE CAPACITY IS NEEDED.
- 2. THE WEST WRSF SEDIMENT POND TO HAVE SEDIMENT REMOVAL WHEN THE 2 FEET OF SEDIMENT STORAGE IS REACHED.
- 3. THE EMBANKMENT CREST IS NOT INTENDED TO HAVE VEHICLE ACCESS WHICH IS WHY THERE ARE NO BERMS.

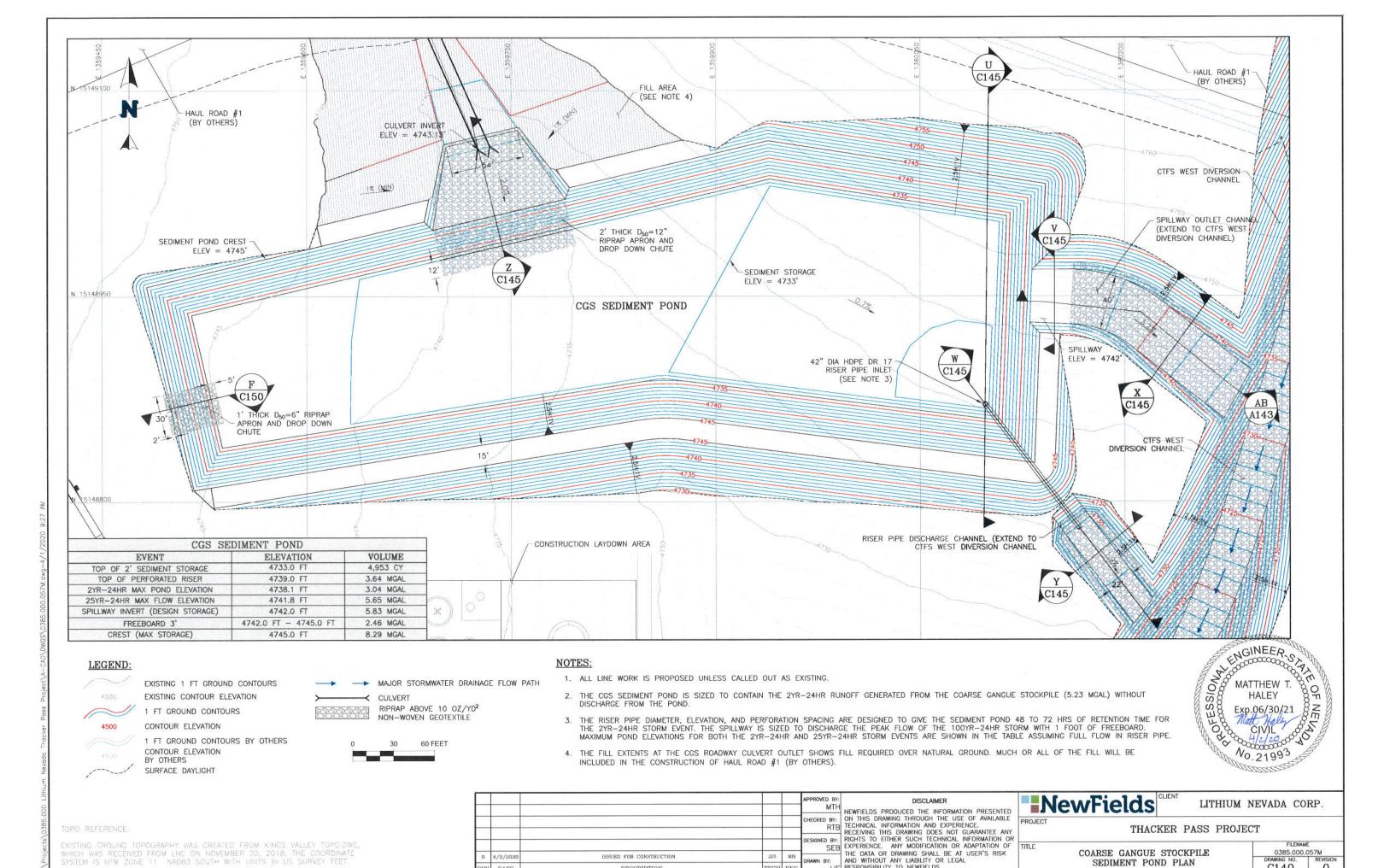


					APPROVED B	NEWFIELDS PRODUCED THE INFORMATION PRESENTED	-N	ewFields LITHIU	JM NEVADA CORP.
					RT	ON THIS DRAWING THROUGH THE USE OF AVAILABLE TECHNICAL INFORMATION AND EXPERIENCE. RECEIVING THIS DRAWING DOES NOT GUARANTEE ANY RIGHTS TO EITHER SUCH TECHNICAL INFORMATION OF	PROJECT	THACKER PASS PR	OJECT
0	4/2/2020	ISSUED FOR CONSTRUCTION	R	L MTE		EXPERIENCE. ANY MODIFICATION OR ADAPTATION OF THE DATA OR DRAWING SHALL BE AT USER'S RISK		WEST WRSF SEDIMENT POND SECTIONS AND DETAILS	FILENAME 0385.000.097D
REV	DATE	DESCRIPTION	TE	CH ENG	DRAWN BY:	AND WITHOUT ANY LIABILITY OR LEGAL RESPONSIBILITY TO NEWFIELDS.		(SHEET 2 OF 2)	C116 REVISIO









					APPROVED BY:	DISCLAIMER NEWFIELDS PRODUCED THE INFORMATION PRESENTED	NewFields	LITHIUM	NEVADA CO	ORP.		
					RTB DESIGNED BY: MTH	RTB DESIGNED BY: MTH	ON THIS DRAWING THROUGH THE USE OF AVAILABLE TECHNICAL INFORMATION AND EXPERIENCE. RECEIVING THIS DRAWING DOES NOT GUARANTEE ANY RIGHTS TO EITHER SUCH TECHNICAL INFORMATION OR		THACKER PASS PROJECT			
0	4/2/2020	ISSUED FOR CONSTRUCTION	RL	мтн			МТН	МТН	EXPERIENCE. ANY MODIFICATION OR ADAPTATION OF THE DATA OR DRAWING SHALL BE AT USER'S RISK	TITLE	WATER DETAILS	
REV	REV DATE DESCRIPTION		H ENG	DRAWN BY:	AND WITHOUT ANY LIABILITY OR LEGAL RESPONSIBILITY TO NEWFIELDS.	EAST WRSF STORM	WAIER DETAILS	C121	REVISIO			

0 4/2/202

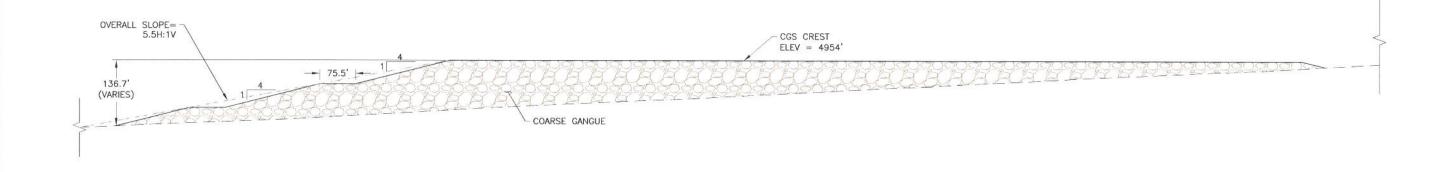
REV DATE

ISSUED FOR CONSTRUCTION

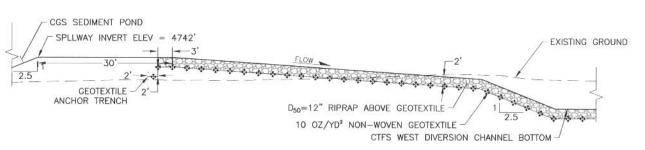
DESCRIPTION

BY: AND WITHOUT ANY LIABILITY OR LEGAL

JJS RESPONSIBILITY TO NEWFIELDS.

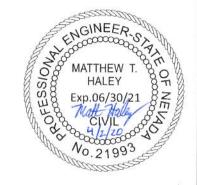

TECH ENG

0385.000.057M DRAWING NO. REV


C140

COARSE GANGUE STOCKPILE

SEDIMENT POND PLAN



T C135

COARSE GANGUE STOCKPILE TYPICAL SECTION

AB CGS SEDIMENT POND SPILLWAY SECTION C140

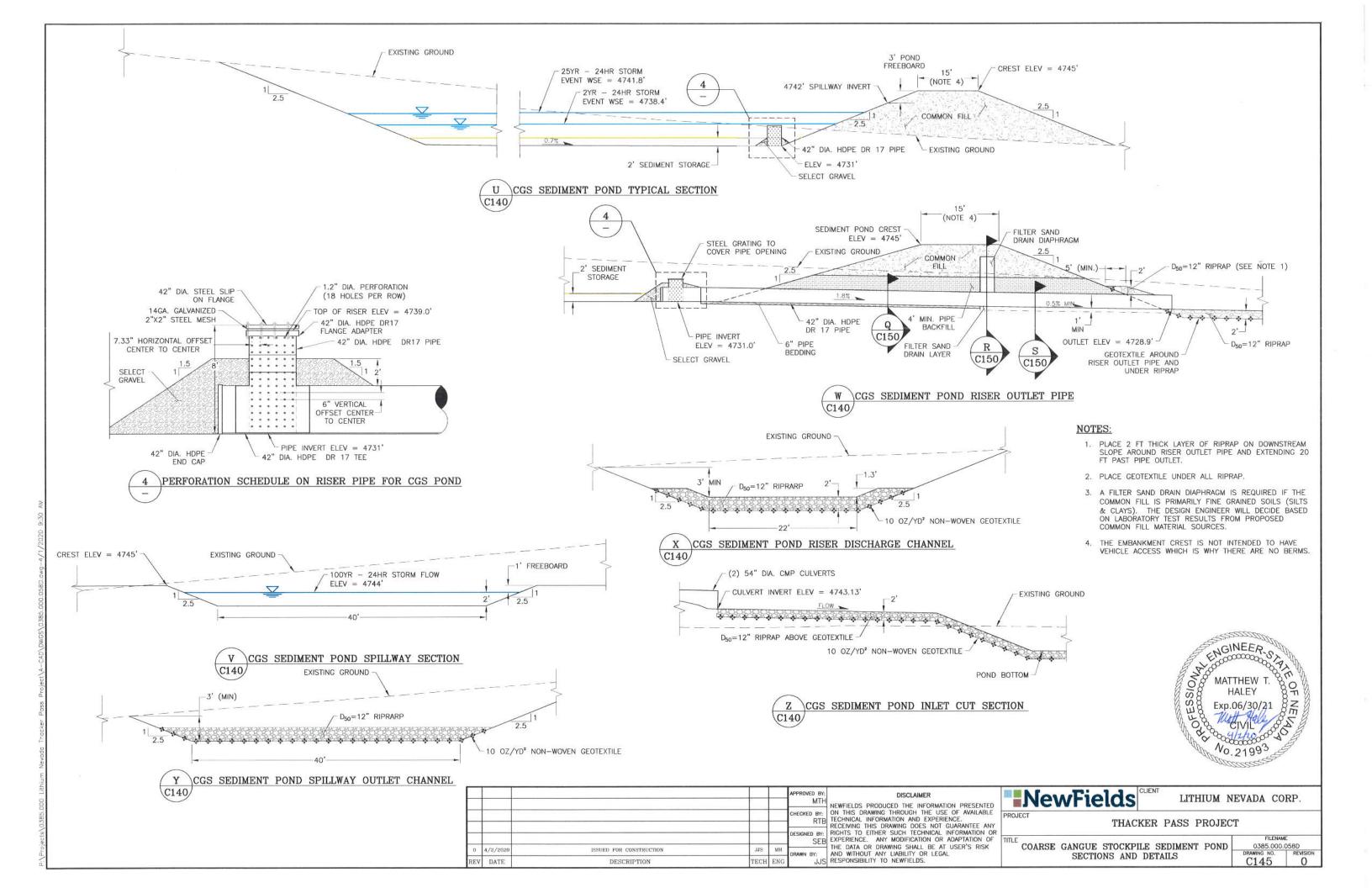
					APPROVED BY:
					CHECKED BY:
					DESIGNED BY:
0	4/2/2020	ISSUED FOR CONSTRUCTION	RL	мн	DRAWN BY:
REV	DATE	DESCRIPTION	TECH		RL

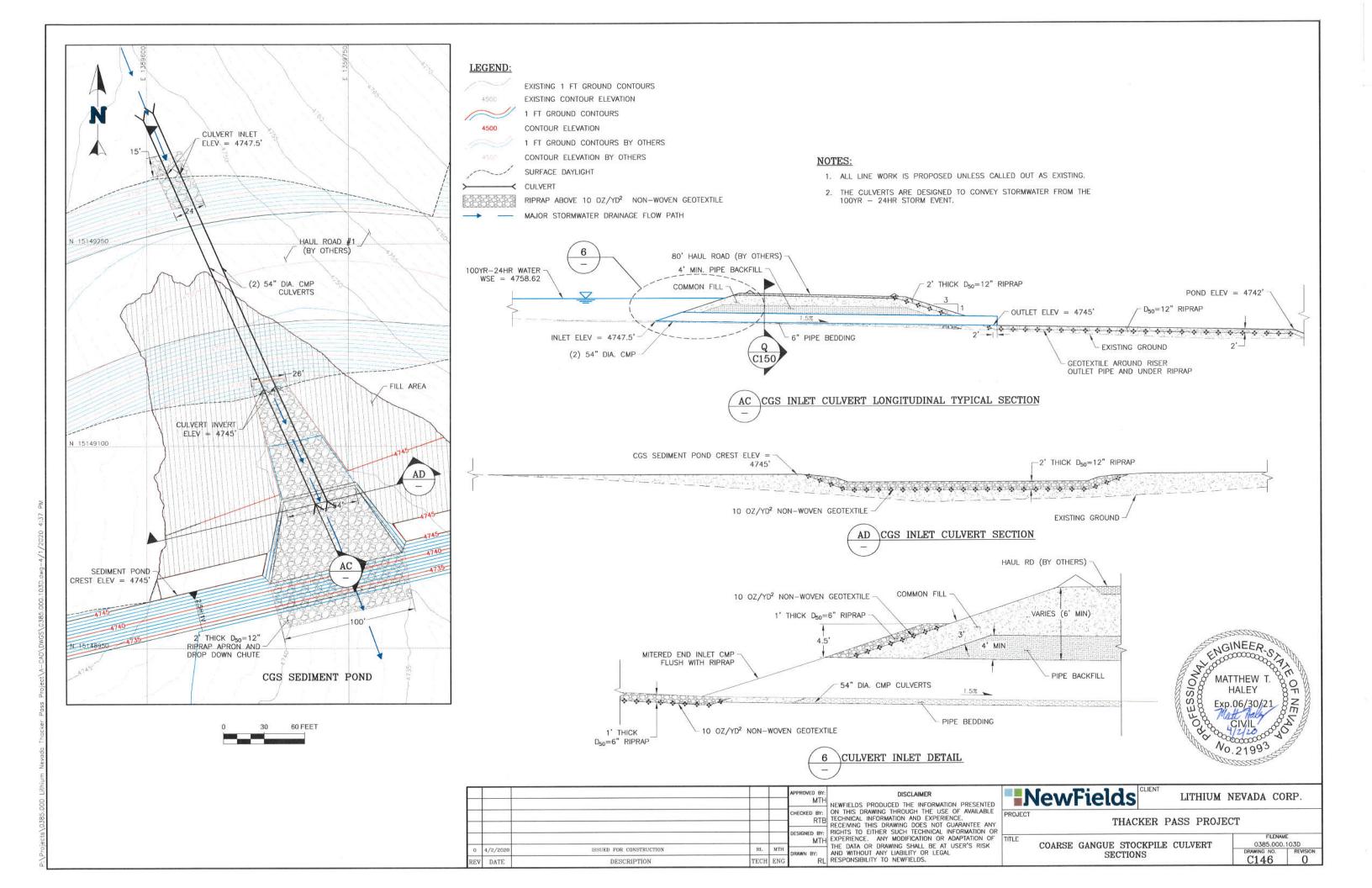
DISCLAIMER

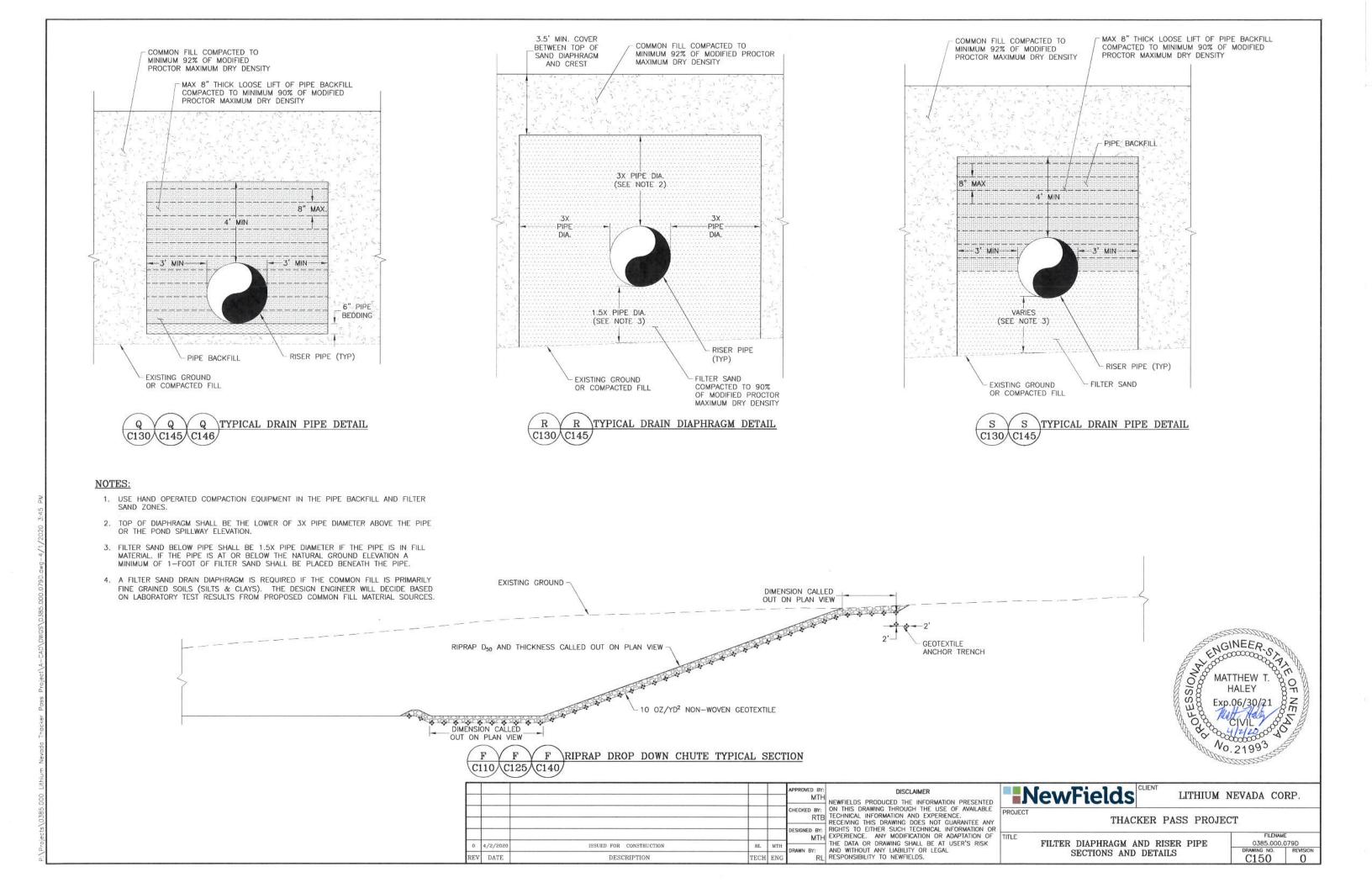
IEWFIELDS PRODUCED THE INFORMATION PRESENTED IN THIS DRAWING THROUGH THE USE OF AVAILABLE ECHNICAL INFORMATION AND EXPERIENCE.
ECEIVING THIS DRAWING DOES NOT GUARANTEE ANY INCHTS TO EITHER SUCH TECHNICAL INFORMATION OR XPERIENCE. ANY MODIFICATION OR ADAPTATION OF HE DATA OR DRAWING SHALL BE AT USER'S RISK IND WITHOUT ANY LIABILITY OR LEGAL ESPONSIBILITY TO NEWFIELDS.

NewFields

LITHIUM NEVADA CORP.


THACKER PASS PROJECT


COARSE GANGUE STOCKPILE SECTIONS AND DETAILS 0385,000,071D


DRAWING NO. REVISION

C143 0

. Property 0385 000 1: Fright Newado Thomas Property A-CANONGS 000 0710 dwg-4/1/2020 9:28 A

DRAWINGS North American Mining Mine Surface Water Control Features

TEXT ABBREVIATIONS:

TYP - TYPICAL

CGS - COARSE GANGUE STOCKPILE 4 - CENTERLINE CPeP - CORRUGATED POLYETHYLENE PIPE CS - CARBON STEEL CTFS - CLAY TAILINGS FILTER STACK CY - CUBIC YARD DIA - DIAMETER DR - DIMENSION RATIO FT - FOOT GM - GROWTH MEDIA HDPE - HIGH DENSITY POLYETHYLENE LHCSL - LOW HYDRAULIC CONDUCTIVITY SOIL LAYER MW - MONITORING WELL PH - EXISTING PRODUCTION WELL POO - PLAN OF OPERATIONS PZ - PIEZOMETER QRPW - QUINN RIVER PRODUCTION WELL ROM - RUN OF MINE SR - STATE ROUTE STD WT - STANDARD WEIGHT TW - EXISTING TEST PUMPING WELL

Lithium Nevada

VFD - VARIABLE FREQUENCY DRIVE WRSF - WASTE ROCK STORAGE FACILITY

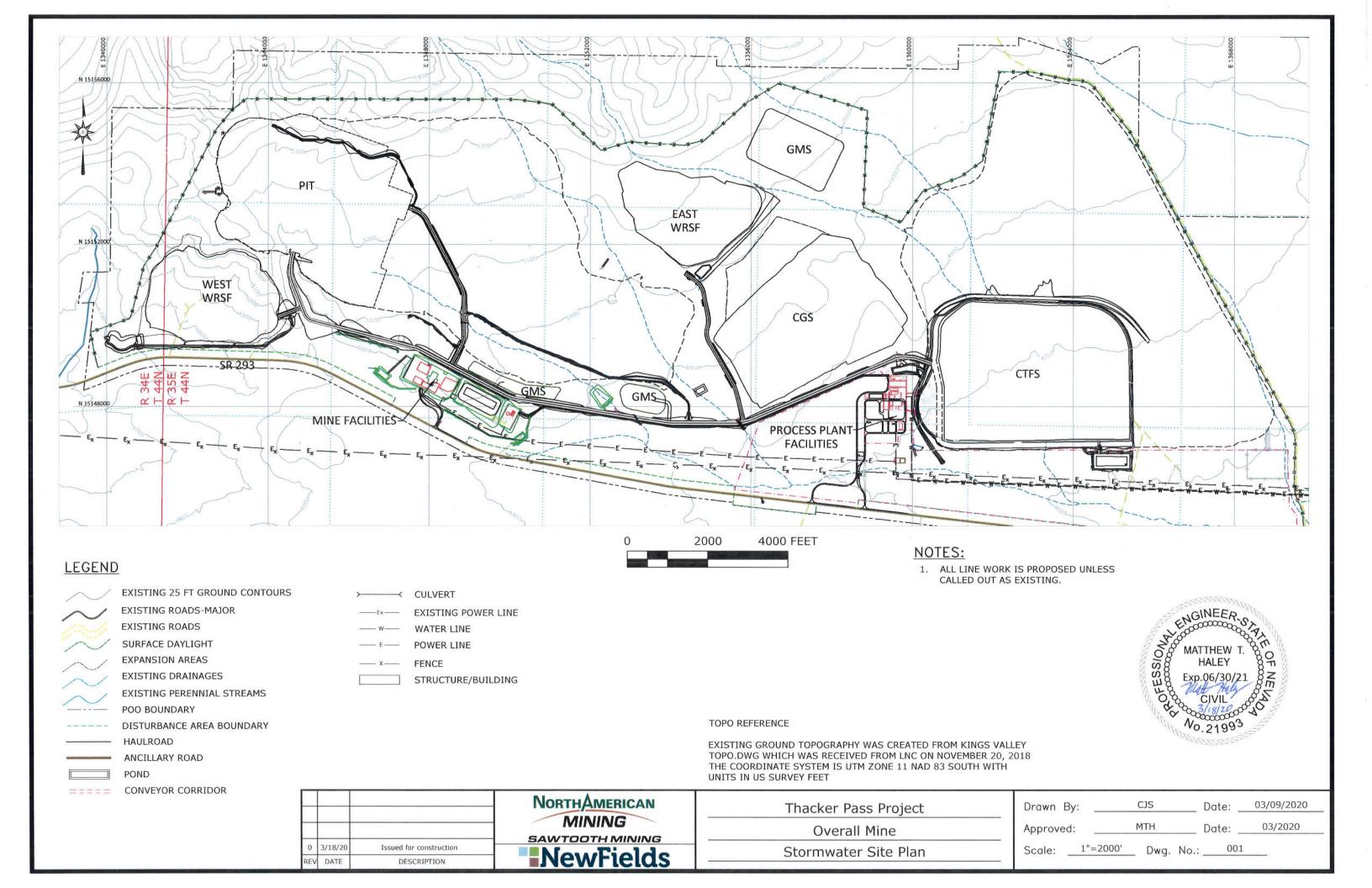
WSH - EXISTING MONITORING WELL WSE - WATER SURFACE ELEVATION

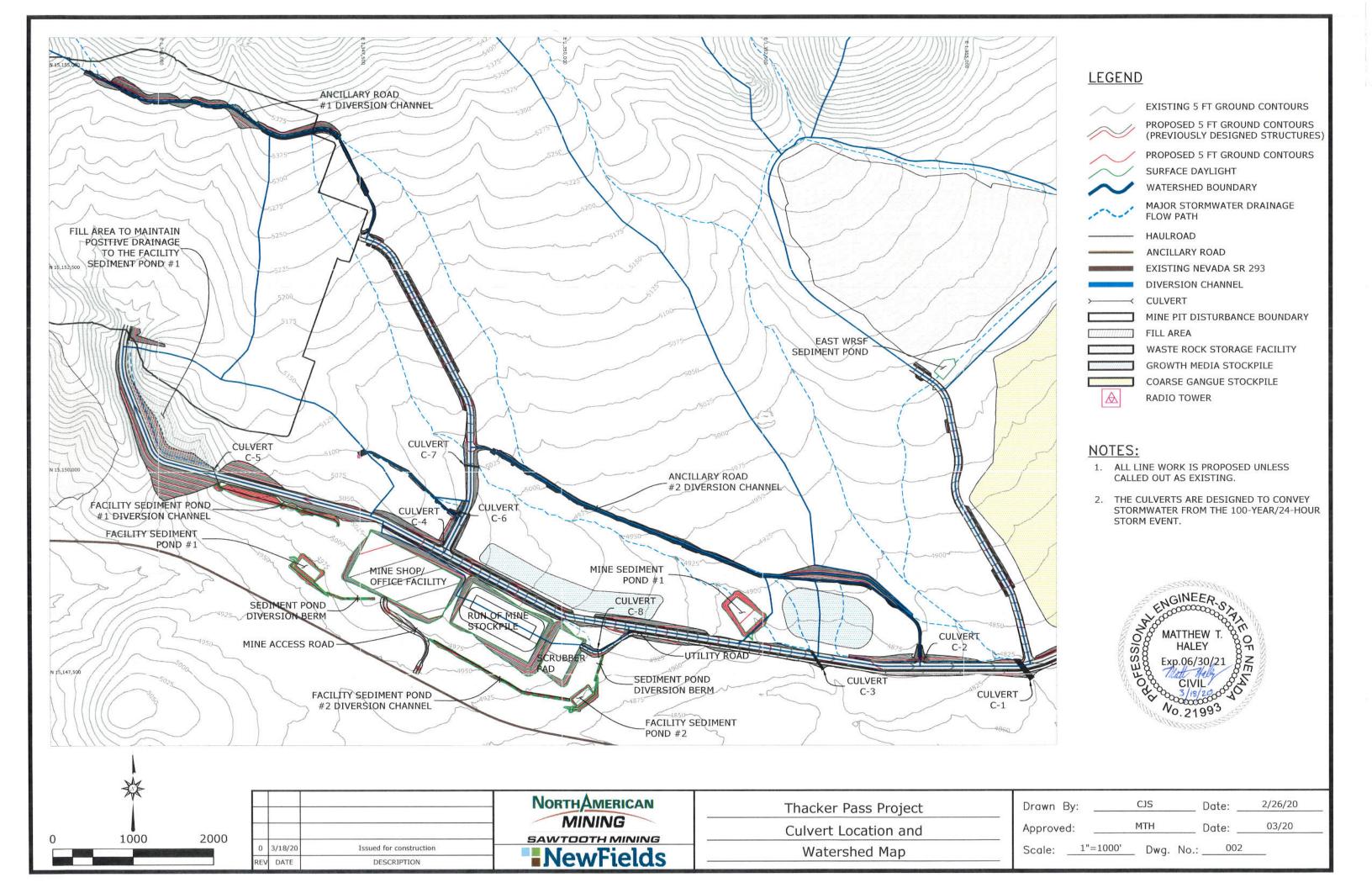
LITHIUM NEVADA CORP. 3685 LAKESIDE DRIVE RENO, NEVADA 89509

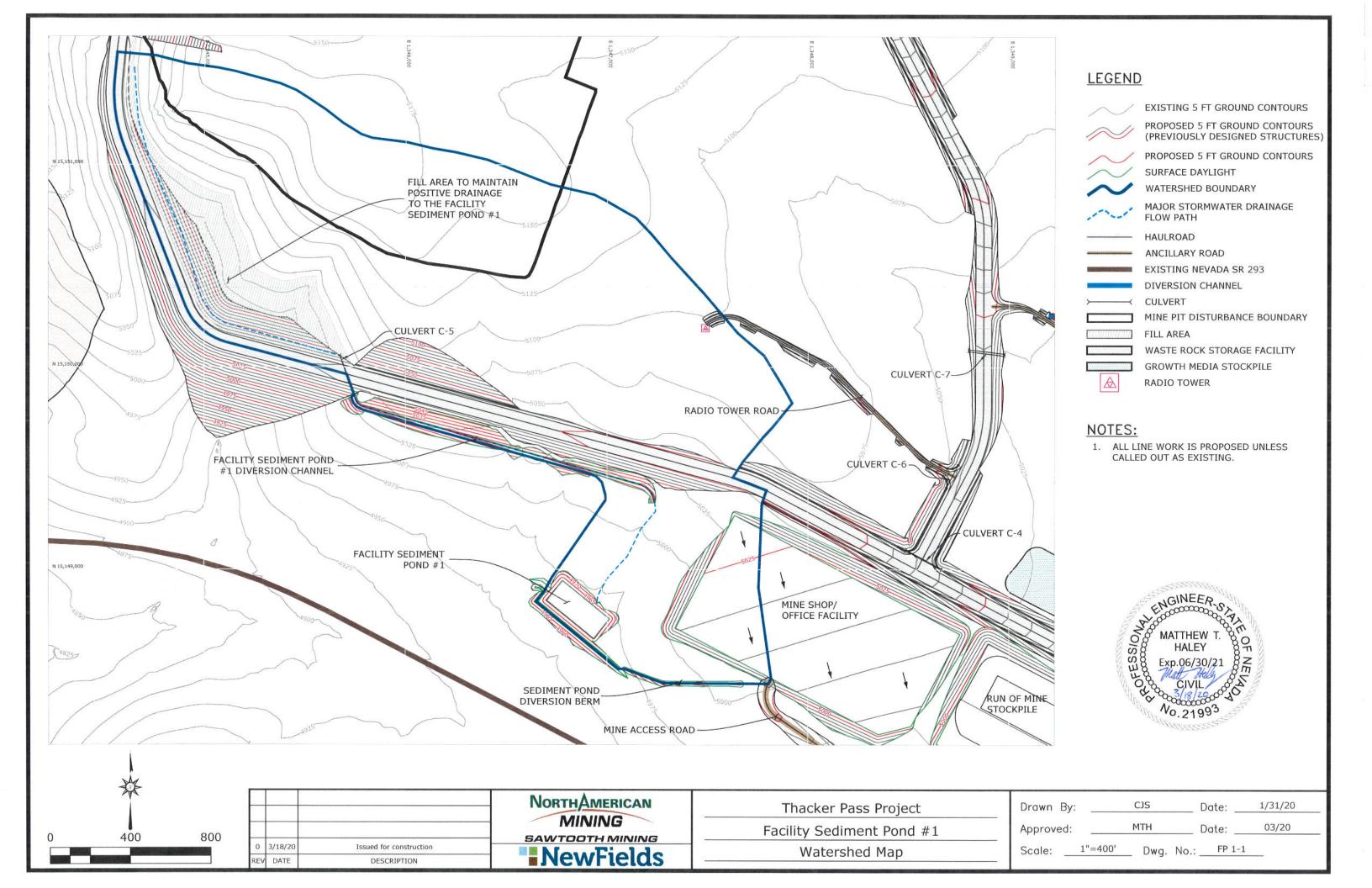
LITHIUM NEVADA CORP. THACKER PASS PROJECT MINE SURFACE WATER CONTROL FEATURES

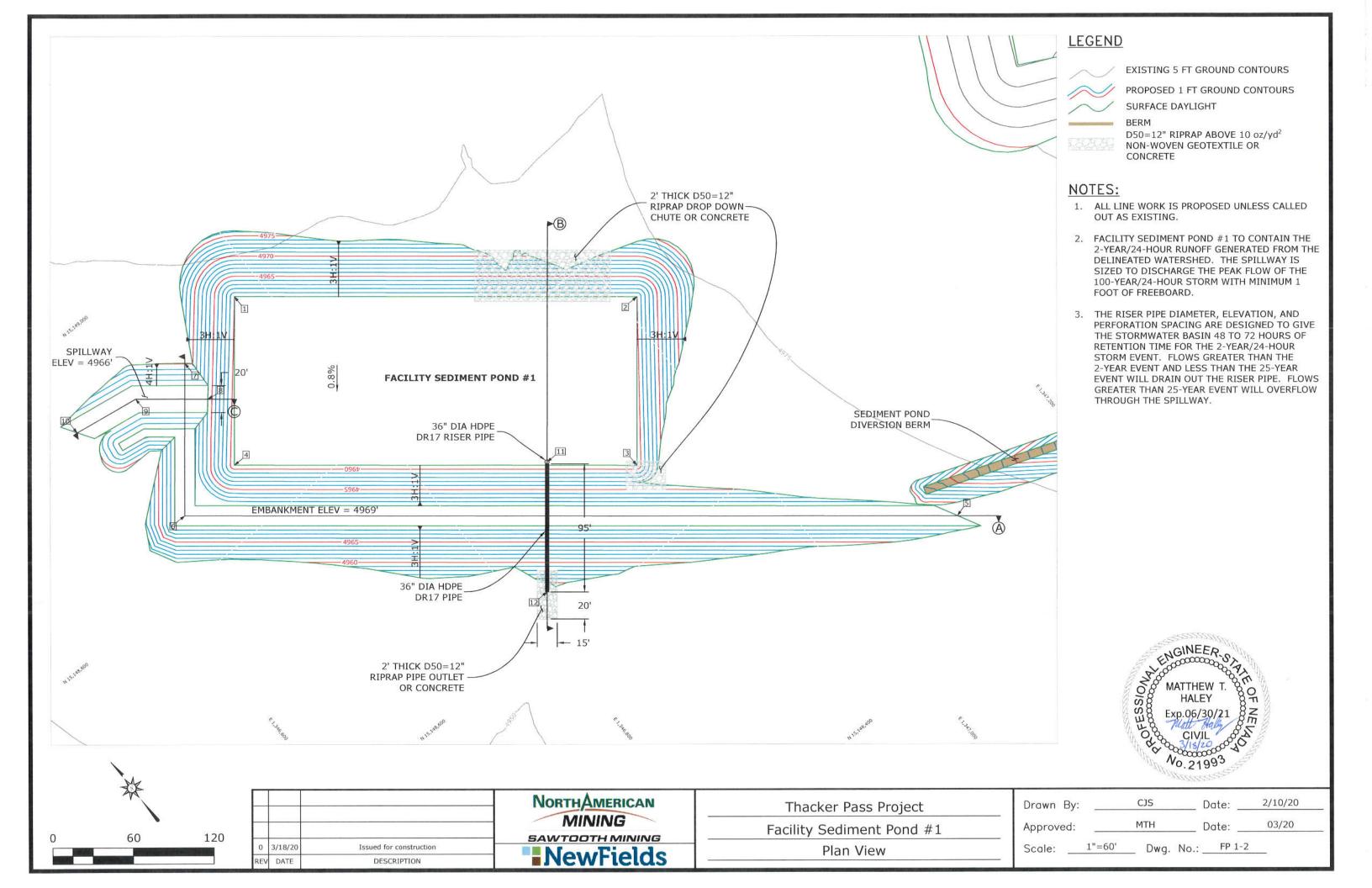
ISSUED FOR CONSTRUCTION MARCH 18, 2020

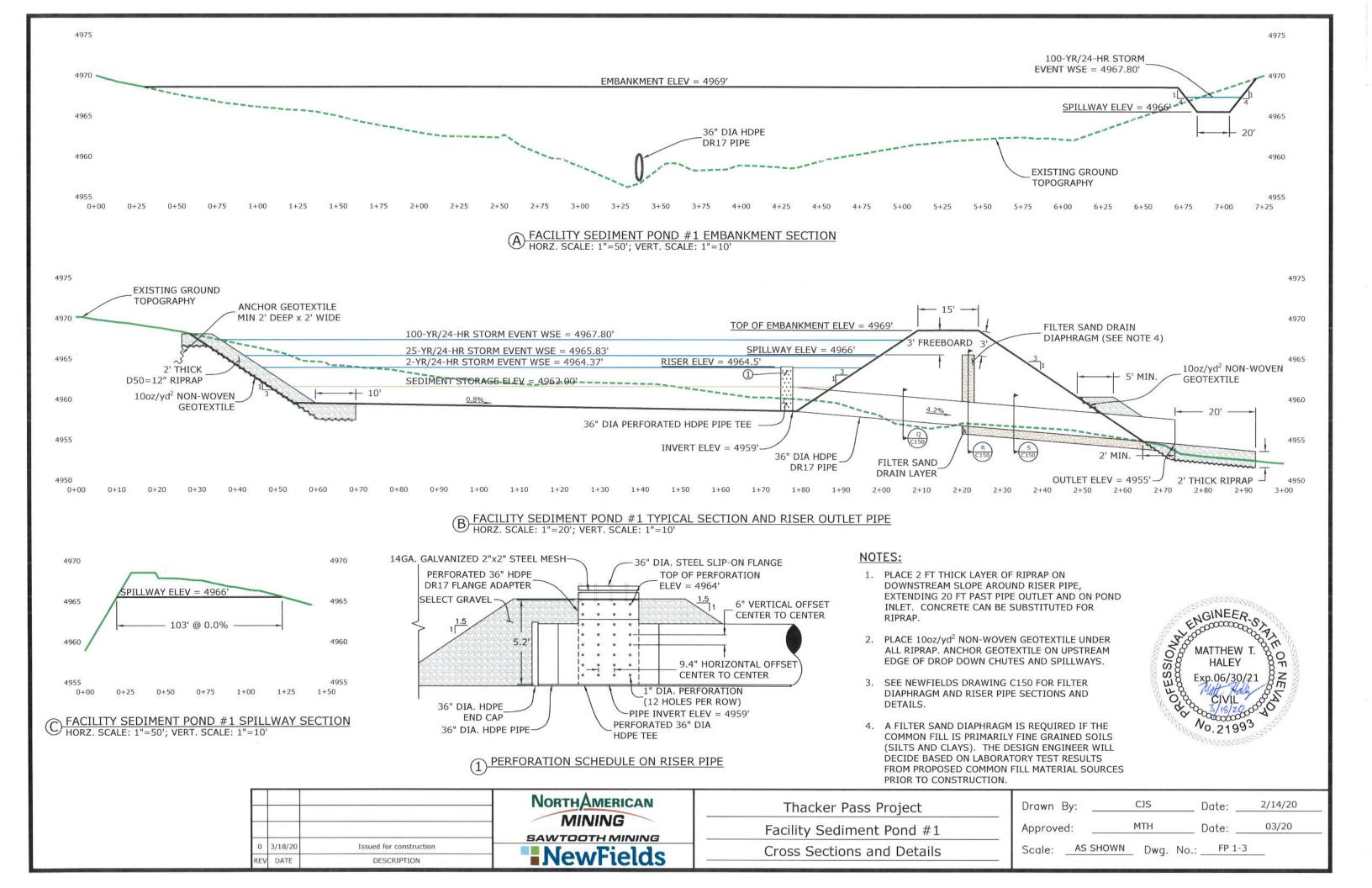
DRAWING LIST		
DWG NO.	DRAWING TITLE	REV
000	COVER SHEET, INDEX, AND VICINITY MAP	0
001	OVERALL MINE STORMWATER SITE PLAN	0
002	CULVERT LOCATION AND WATERSHED MAP	0
FP 1-1	FACILITY SEDIMENT POND #1 WATERSHED MAP	0
FP 1-2	FACILITY SEDIMENT POND #1 PLAN VIEW	0
FP 1-3	FACILITY SEDIMENT POND #1 CROSS SECTIONS AND DETAILS	0
FP 2-1	FACILITY SEDIMENT POND #2 WATERSHED MAP	0
FP 2-2	FACILITY SEDIMENT POND #2 PLAN VIEW	0
FP 2-3	FACILITY SEDIMENT POND #2 CROSS SECTIONS AND DETAILS	0
MP 1-1	MINE SEDIMENT POND #1 WATERSHED MAP SHEET 1 OF 2	0
MP 1-2	MINE SEDIMENT POND #1 WATERSHED MAP SHEET 2 OF 2	0
MP 1-3	MINE SEDIMENT POND #1 PLAN VIEW	0
MP 1-4	MINE SEDIMENT POND #1 CROSS SECTIONS AND DETAILS	0
FPD 1-1	FACILITY SEDIMENT POND #1 DIVERSION WATERSHED MAP	0
FPD 1-2	FACILITY SEDIMENT POND #1 DIVERSION PLAN AND PROFILE SHEET 1 OF 2	0
FPD 1-3	FACILITY SEDIMENT POND #1 DIVERSION PLAN AND PROFILE SHEET 2 OF 2	0
FPD 2-1	FACILITY SEDIMENT POND #2 DIVERSION WATERSHED MAP	0
FPD 2-2	FACILITY SEDIMENT POND #2 DIVERSION PLAN AND PROFILE SHEET 1 OF 2	0
FPD 2-3	FACILITY SEDIMENT POND #2 DIVERSION PLAN AND PROFILE SHEET 2 OF 2	0
ARD 1-1	ANCILLARY ROAD #1 DIVERSION WATERSHED MAP	0
ARD 1-2	ANCILLARY ROAD #1 DIVERSION PLAN AND PROFILE SHEET 1 OF 2	0
ARD 1-3	ANCILLARY ROAD #1 DIVERSION PLAN AND PROFILE SHEET 2 OF 2	0
ARD 2-1	ANCILLARY ROAD #2 DIVERSION WATERSHED MAP	0
ARD 2-2	ANCILLARY ROAD #2 DIVERSION PLAN AND PROFILE SHEET 1 OF 3	0
ARD 2-3	ANCILLARY ROAD #2 DIVERSION PLAN AND PROFILE SHEET 2 OF 3	0
ARD 2-4	ANCILLARY ROAD #2 DIVERSION PLAN AND PROFILE SHEET 3 OF 3	0
CULV 01	CULVERT TYPICAL CROSS SECTIONS AND DETAILS	0

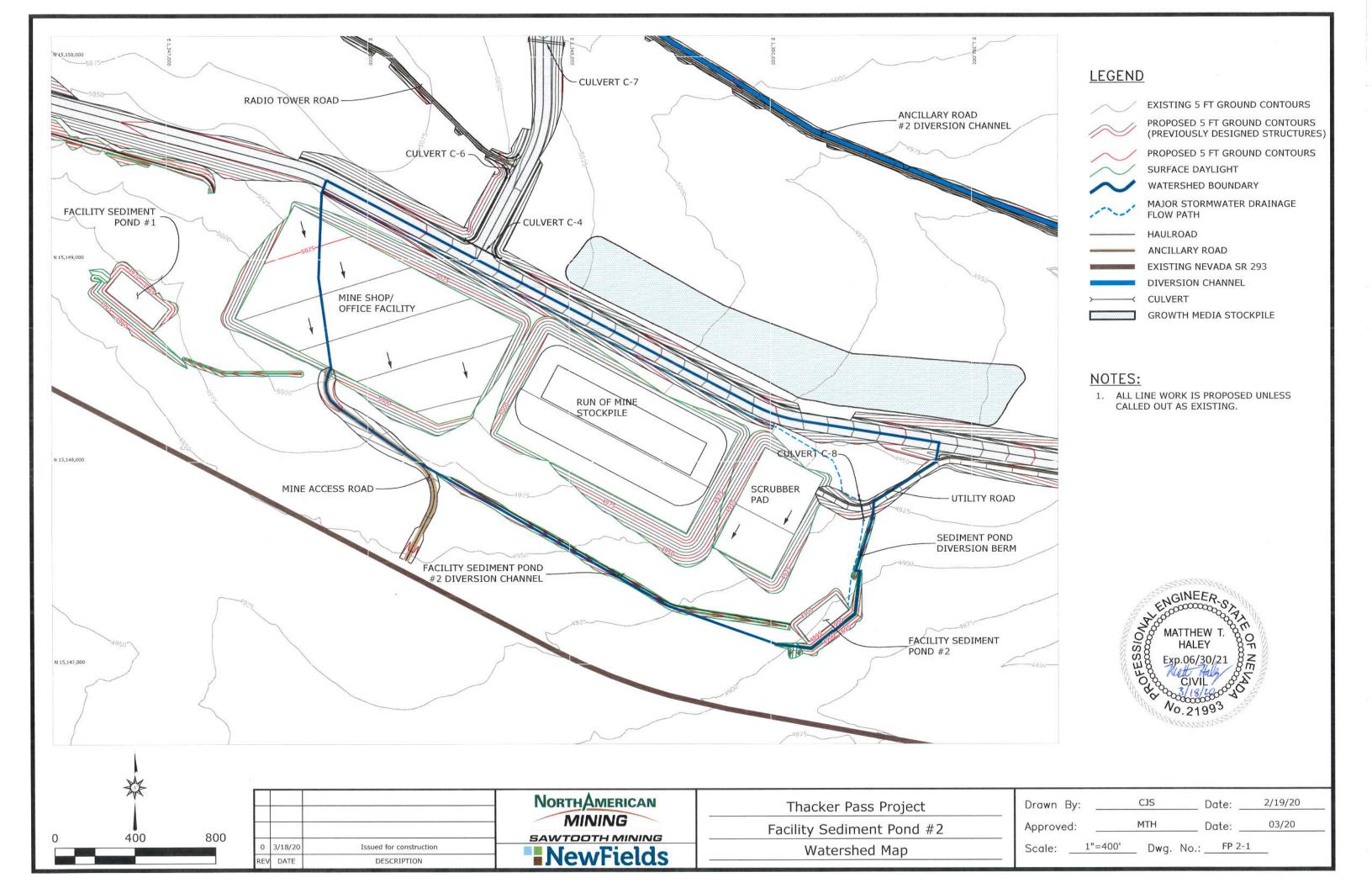


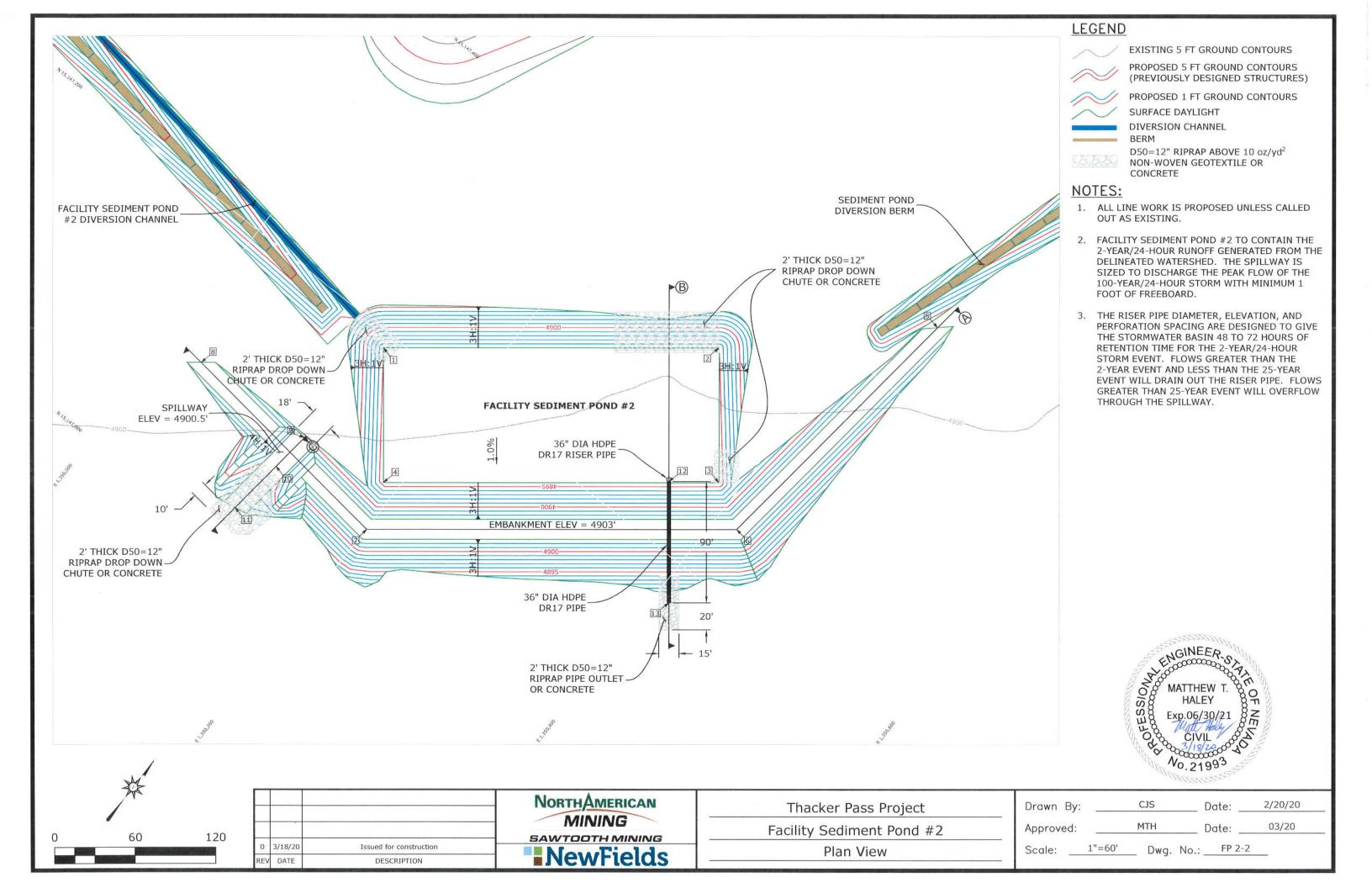


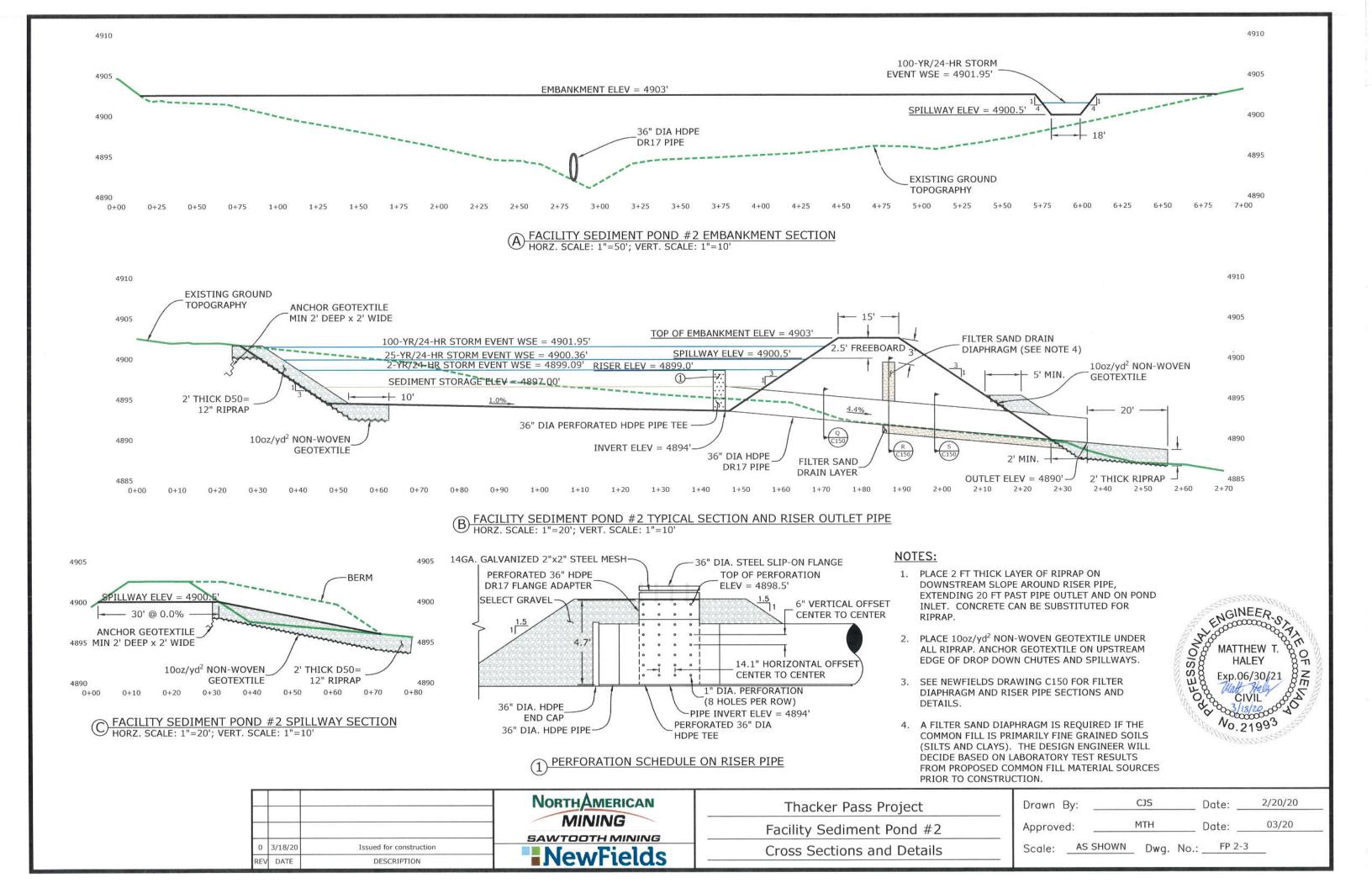

5340 Legacy Drive, Suite 300, Plano, TX 75238 Phone: (972)448.5400 www.nacoal.com

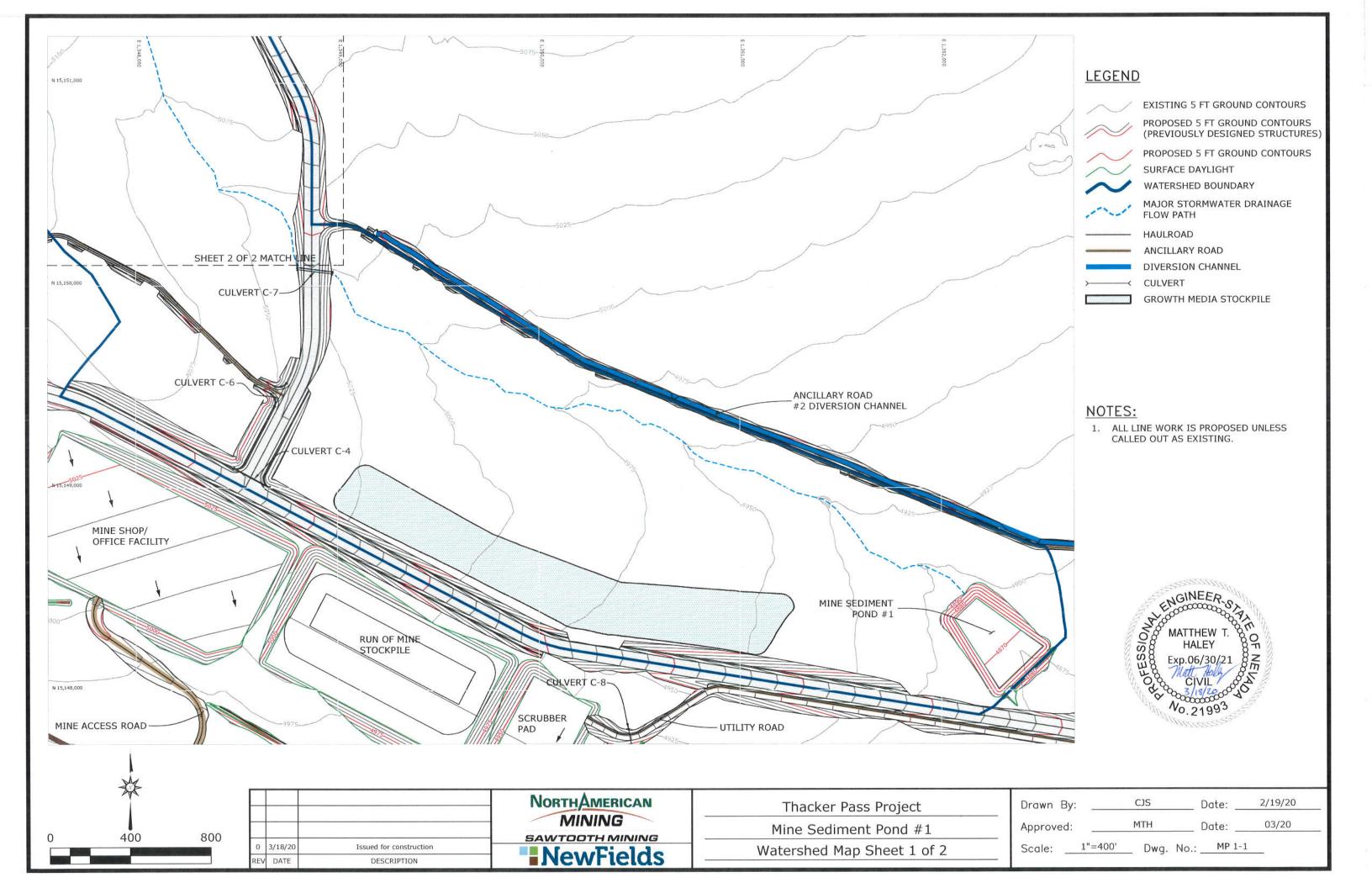


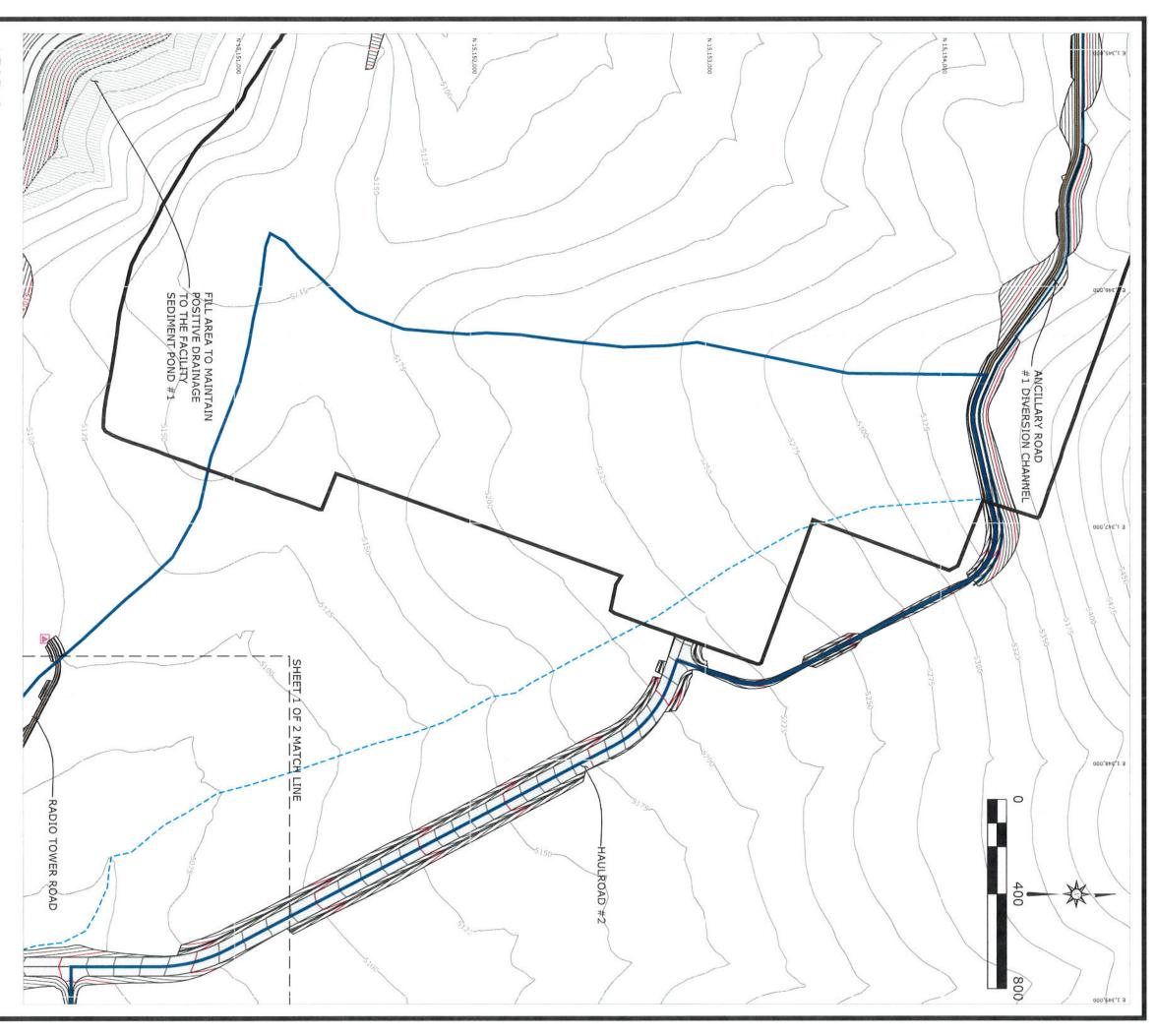

9400 Station Street, Suite 300, Lone Tree, CO 80124 Phone: (720)508.3300 www.newfields.com











LEGEND

NOTES:

MAJOR STORMWATER DRAINAGE FLOW PATH

GROWTH MEDIA STOCKPILE RADIO TOWER

ENGINEER. STATEM TO MATTHEW TO MA

FILL AREA

MINE PIT DISTURBANCE BOUNDARY

WATERSHED BOUNDARY

PROPOSED 5 FT GROUND CONTOURS (PREVIOUSLY DESIGNED STRUCTURES) SURFACE DAYLIGHT

ANCILLARY ROAD
DIVERSION CHANNEL

HAULROAD

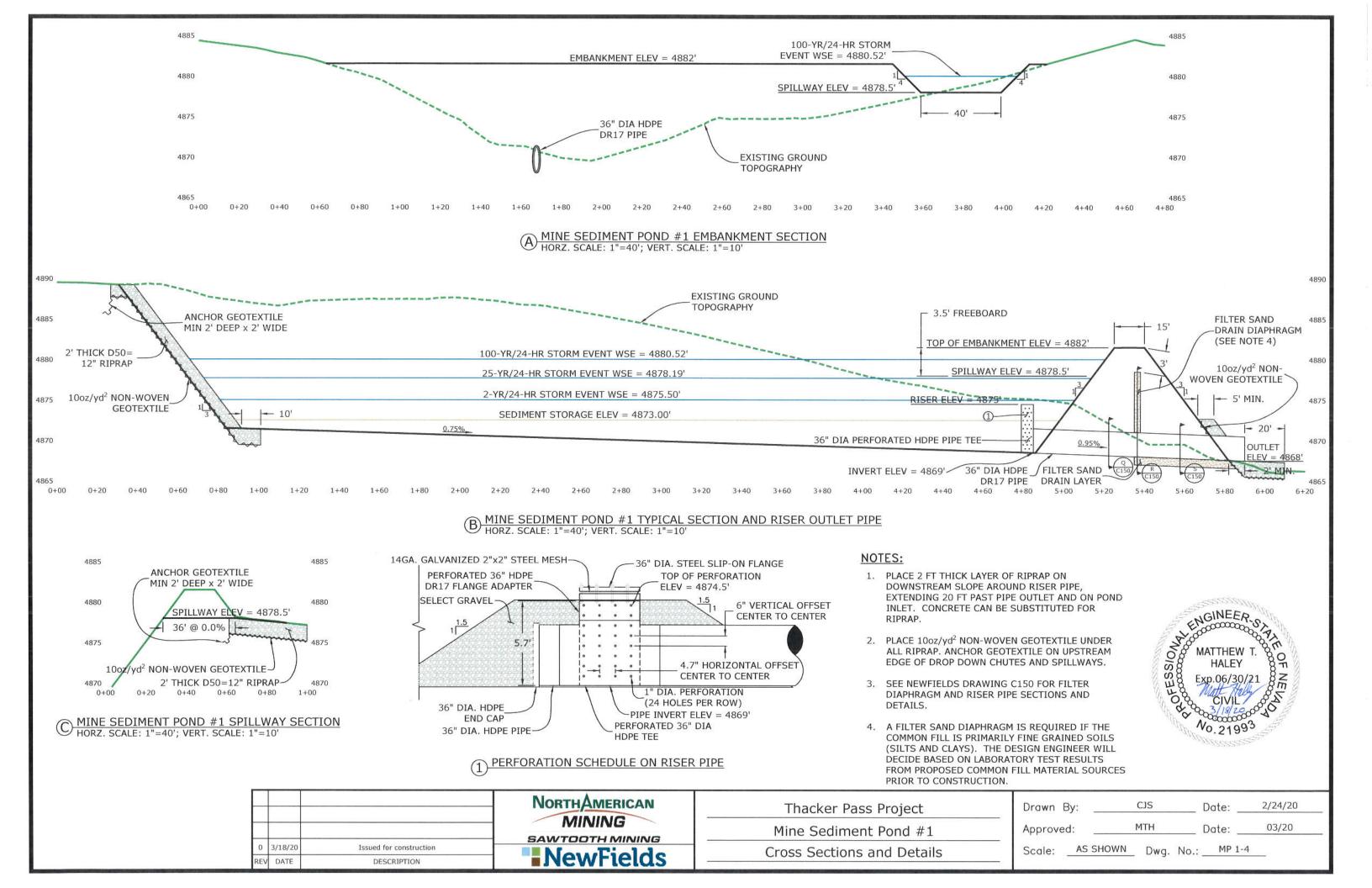
EXISTING 5 FT GROUND CONTOURS

ALL LINE WORK IS PROPOSED UNLESS CALLED OUT AS EXISTING.

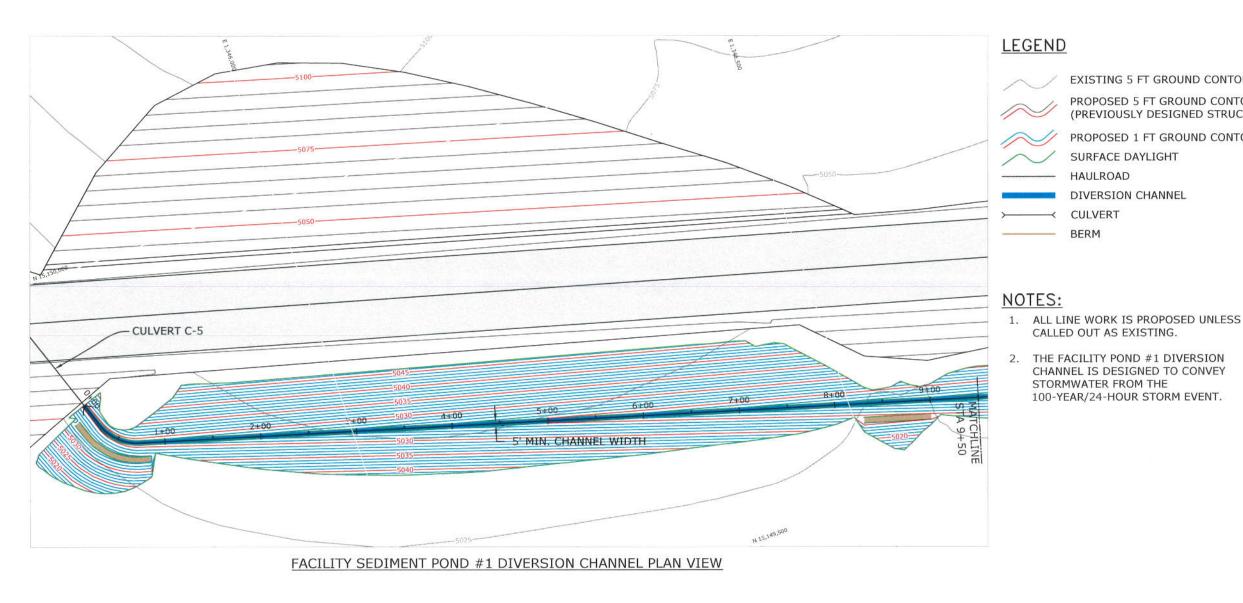
NewFields NORTH AMERICAN MINING

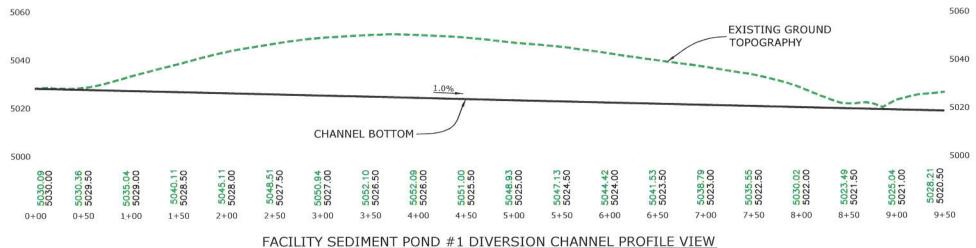
Watershed Map Sheet 2 of 2


Mine Sediment Pond #1


Thacker Pass Project


Approved:


Scale: Drawn By: 1"=400" HTM CJS Dwg. No:: Date: Date: ₹ 2/19/20


03/20

100

200

EXISTING 5 FT GROUND CONTOURS PROPOSED 5 FT GROUND CONTOURS (PREVIOUSLY DESIGNED STRUCTURES) PROPOSED 1 FT GROUND CONTOURS

SURFACE DAYLIGHT

DIVERSION CHANNEL

HAULROAD

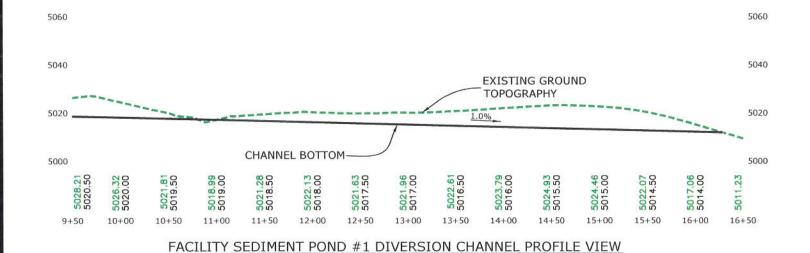
CULVERT BERM

CALLED OUT AS EXISTING.

STORMWATER FROM THE

CHANNEL IS DESIGNED TO CONVEY

100-YEAR/24-HOUR STORM EVENT.


NORTH AMERICAN MINING SAWTOOTH MINING 0 3/18/20 Issued for construction NewFields DESCRIPTION

Thacker Pass Project Facility Sediment Pond #1 Diversion Channel Plan and Profile Sheet 1 of 2

Date: 2/28/20 Drawn By: 03/20 Date: Approved: Scale: ___1"=100' ___ Dwg. No.: __FPD 1-2

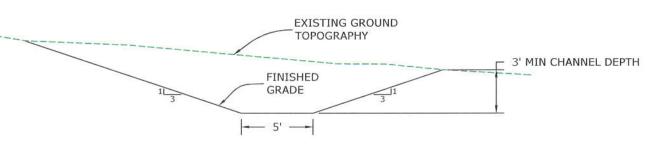
0 100 200 5' MIN. CHANNEL WIDTH 1140 12400 13400 14400 1970 15400

FACILITY SEDIMENT POND #1 DIVERSION CHANNEL PLAN VIEW

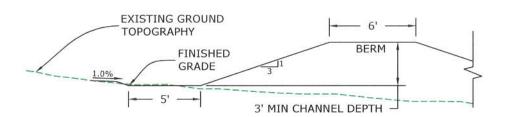
LEGEND

PROPOSED 5 FT GROUND CONTOURS (PREVIOUSLY DESIGNED STRUCTURES) PROPOSED 1 FT GROUND CONTOURS SURFACE DAYLIGHT

HAULROAD


DIVERSION CHANNEL

CULVERT

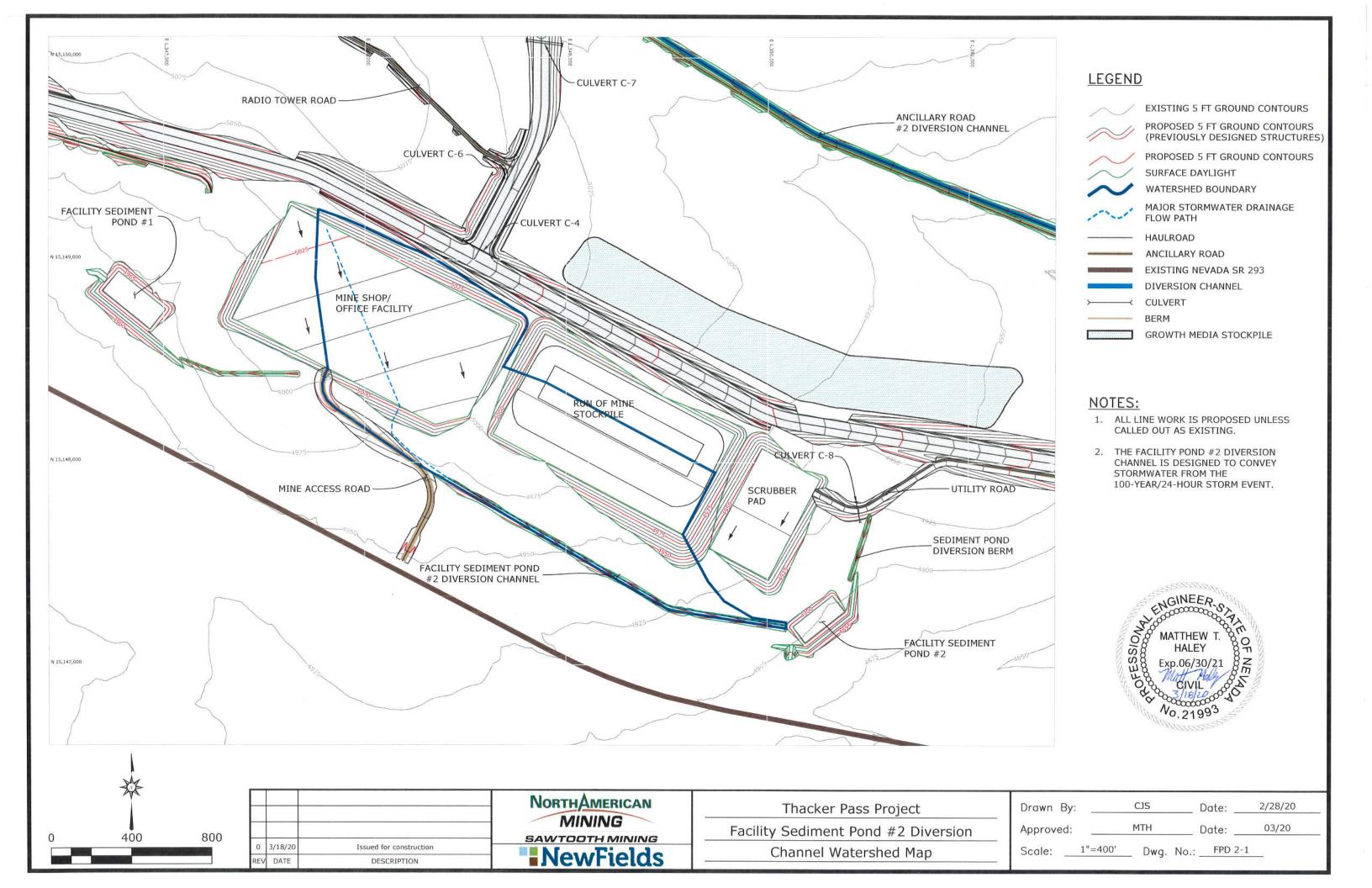

BERM

NOTES:

- ALL LINE WORK IS PROPOSED UNLESS CALLED OUT AS EXISTING.
- THE FACILITY POND #1 DIVERSION CHANNEL IS DESIGNED TO CONVEY STORMWATER FROM THE 100-YEAR/24-HOUR STORM EVENT.

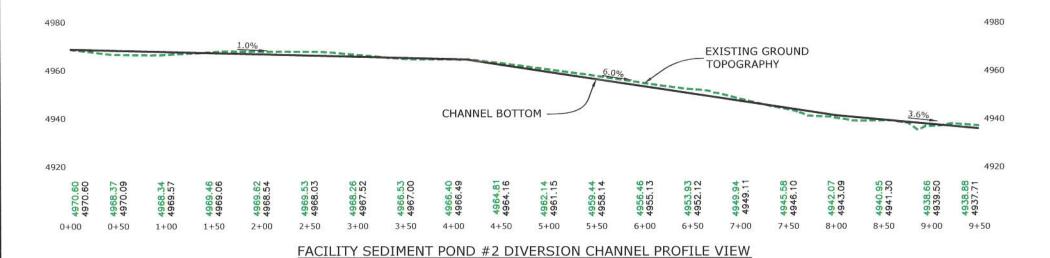
(A) TYPICAL DIVERSION CHANNEL CROSS SECTION (CUT)

(B) TYPICAL DIVERSION BERM CROSS SECTION (FILL)


		NORTH AMERICAN MINING	
		SAWTOOTH MINING	
3/18/20	Issued for construction	- NowEiolda	
DATE	DESCRIPTION	NewFields	

Thacker Pass Project
Facility Sediment Pond #1 Diversion
Channel Plan and Profile Sheet 2 of 2

 Drawn By:
 CJS
 Date:
 2/28/20


 Approved:
 MTH
 Date:
 03/20

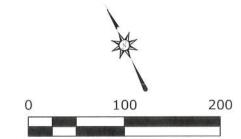
 Scale:
 1"=100'
 Dwg. No.:
 FPD 1-3

FACILITY SEDIMENT POND #2 DIVERSION CHANNEL PLAN VIEW

EXISTING 5 FT GROUND CONTOURS
PROPOSED 5 FT GROUND CONTOURS
(PREVIOUSLY DESIGNED STRUCTURES)

PROPOSED 1 FT GROUND CONTOURS

SURFACE DAYLIGHT

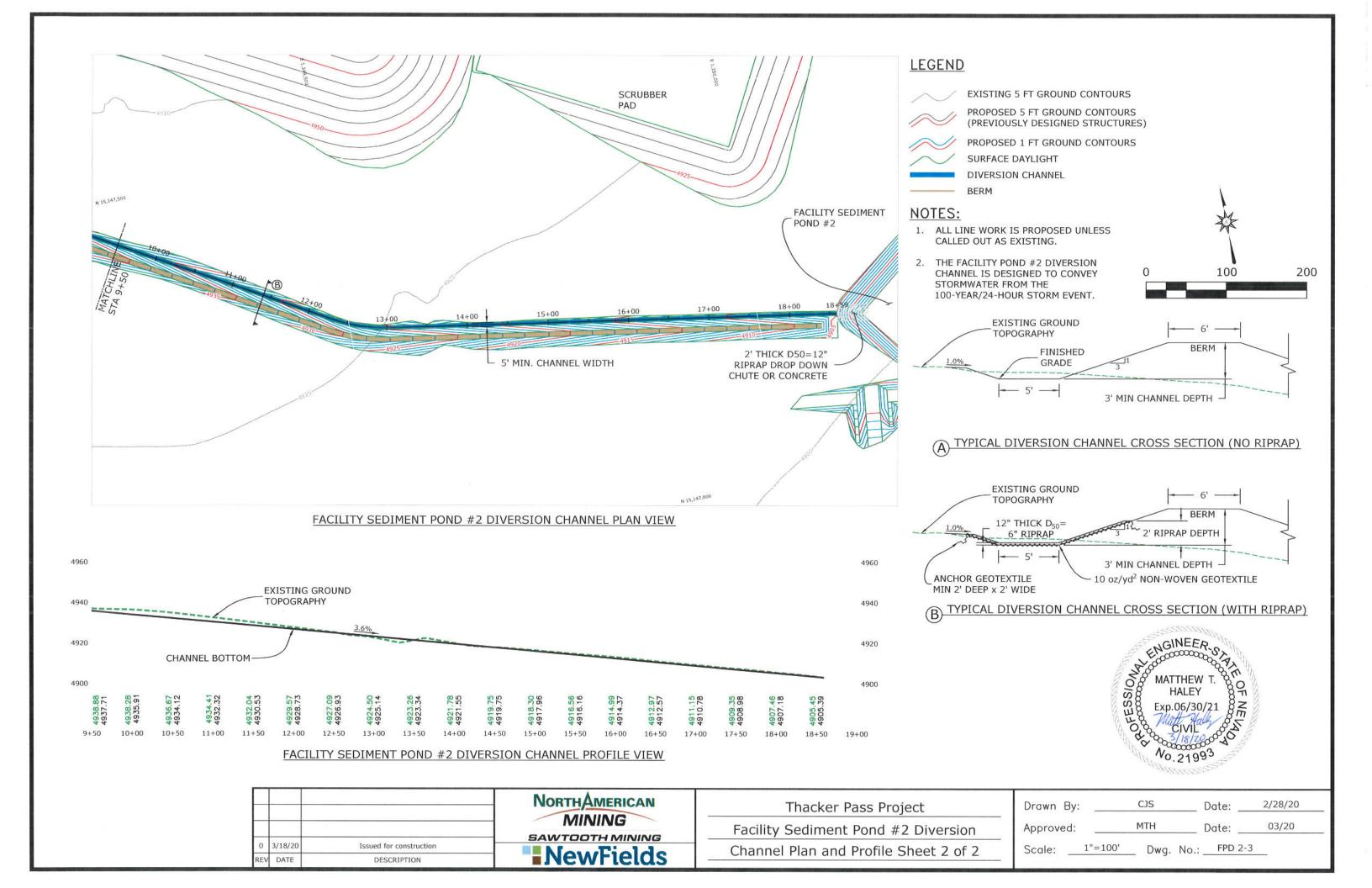

ANCILLARY ROAD

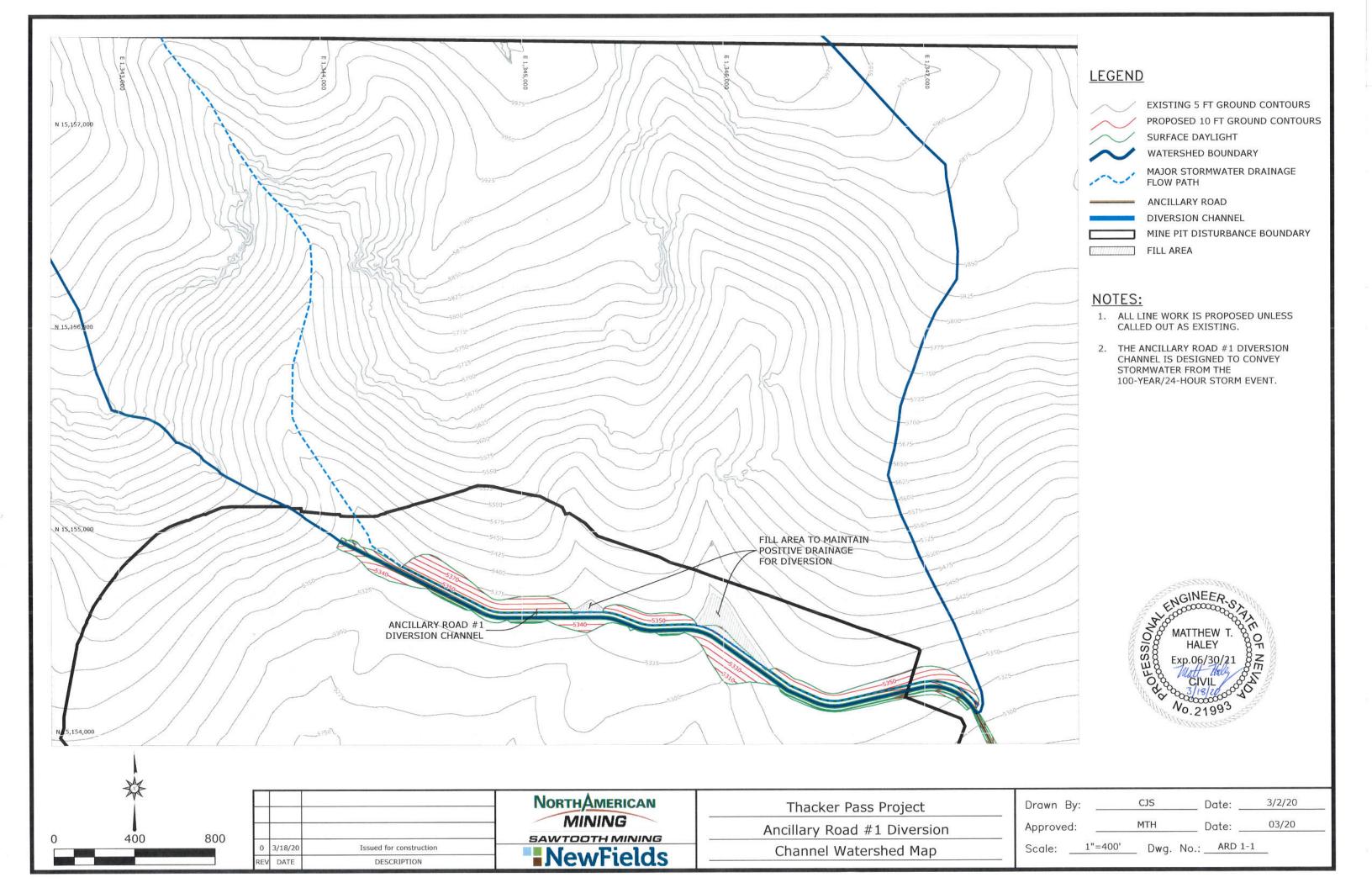

DIVERSION CHANNEL

BERM

NOTES:

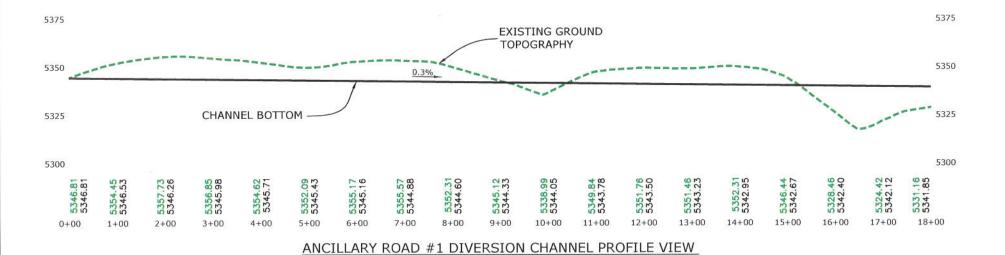
- 1. ALL LINE WORK IS PROPOSED UNLESS CALLED OUT AS EXISTING.
- THE FACILITY POND #2 DIVERSION CHANNEL IS DESIGNED TO CONVEY STORMWATER FROM THE 100-YEAR/24-HOUR STORM EVENT.


		NORTH AMERICAN MINING
		SAWTOOTH MINING
0 3/18/20	Issued for construction	Mourtiolde
EV DATE	DESCRIPTION	■ NewFields


Thacker Pass Project
Facility Sediment Pond #2 Diversion
Channel Plan and Profile Sheet 1 of 2

 Drawn By:
 CJS
 Date:
 2/28/20

 Approved:
 MTH
 Date:
 03/20


 Scale:
 1"=100'
 Dwg. No.:
 FPD 2-2

FILL AREA TO MAINTAIN POSITIVE DRAINAGE MIN. 0.5% FOR DIVERSION MIN. CHANNEL WIDTH N 15,154,500 200 400

ANCILLARY ROAD #1 DIVERSION CHANNEL PLAN VIEW

LEGEND

FILL AREA

EXISTING 5 FT GROUND CONTOURS
PROPOSED 2 FT GROUND CONTOURS
SURFACE DAYLIGHT
ANCILLARY ROAD
DIVERSION CHANNEL
MINE PIT DISTURBANCE BOUNDARY

NOTES:

- ALL LINE WORK IS PROPOSED UNLESS CALLED OUT AS EXISTING.
- THE ANCILLARY ROAD #1 DIVERSION CHANNEL IS DESIGNED TO CONVEY STORMWATER FROM THE 100-YEAR/24-HOUR STORM EVENT.

0 3/18/20 Issued for construction
REV DATE DESCRIPTION

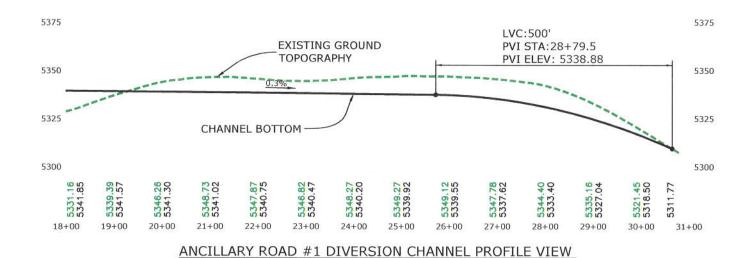
NORTHAMERICAN
MINING
SAWTOOTH MINING

NewFields

Thacker Pass Project

Ancillary Road #1 Diversion Channel

Plan and Profile Sheet 1 of 2

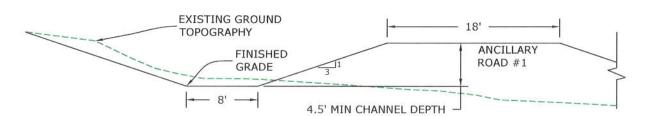

 Drawn By:
 CJS
 Date:
 3/3/20

 Approved:
 MTH
 Date:
 03/20

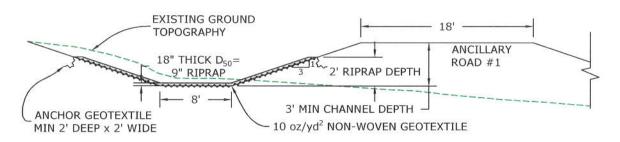
 Scale:
 1"=200'
 Dwg. No.:
 ARD 1-2

FILL AREA TO MAINTAIN POSITIVE DRAINAGE FOR DIVERSION 8' MIN. CHANNEL WIDTH 15.154,000 18.15.154,000 19.154,000 19.154,000

ANCILLARY ROAD #1 DIVERSION CHANNEL PLAN VIEW


LEGEND

EXISTING 5 FT GROUND CONTOURS PROPOSED 2 FT GROUND CONTOURS SURFACE DAYLIGHT ANCILLARY ROAD DIVERSION CHANNEL MINE PIT DISTURBANCE BOUNDARY


FILL AREA

NOTES:

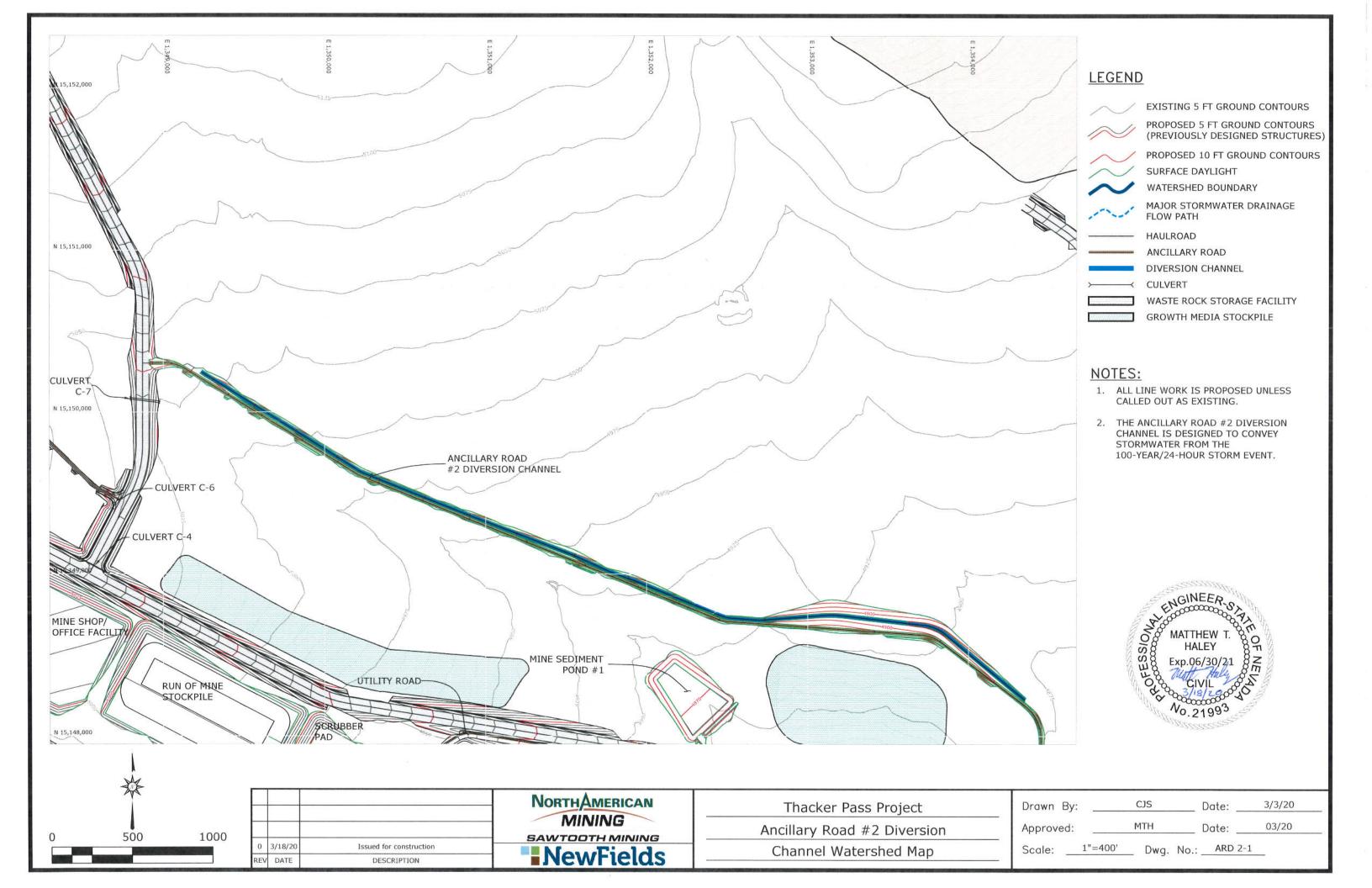
- 1. ALL LINE WORK IS PROPOSED UNLESS CALLED OUT AS EXISTING.
- THE ANCILLARY ROAD #1 DIVERSION CHANNEL IS DESIGNED TO CONVEY STORMWATER FROM THE 100-YEAR/24-HOUR STORM EVENT.

(A) TYPICAL DIVERSION CHANNEL CROSS SECTION (NO RIPRAP)

(B) TYPICAL DIVERSION CHANNEL CROSS SECTION (WITH RIPRAP)

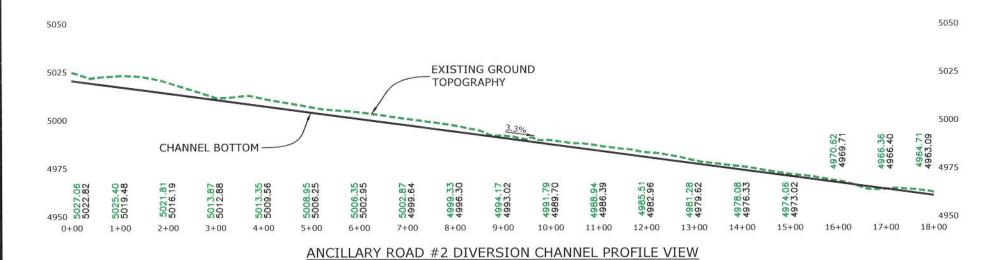
			NORTH AMERICAN MINING
_	240/20	→ PARTOR	SAWTOOTH MINING
0	3/18/20	Issued for construction	■ NewFields
EV	DATE	DESCRIPTION	=14CWI letus

Thacker Pass Project


Ancillary Road #1 Diversion Channel

Plan and Profile Sheet 2 of 2

 Drawn By:
 CJS
 Date:
 3/3/20


 Approved:
 MTH
 Date:
 03/20

 Scale:
 1"=200'
 Dwg. No.:
 ARD 1-3

25' MIN. CHANNEL WIDTH 200 400

ANCILLARY ROAD #2 DIVERSION CHANNEL PLAN VIEW

LEGEND

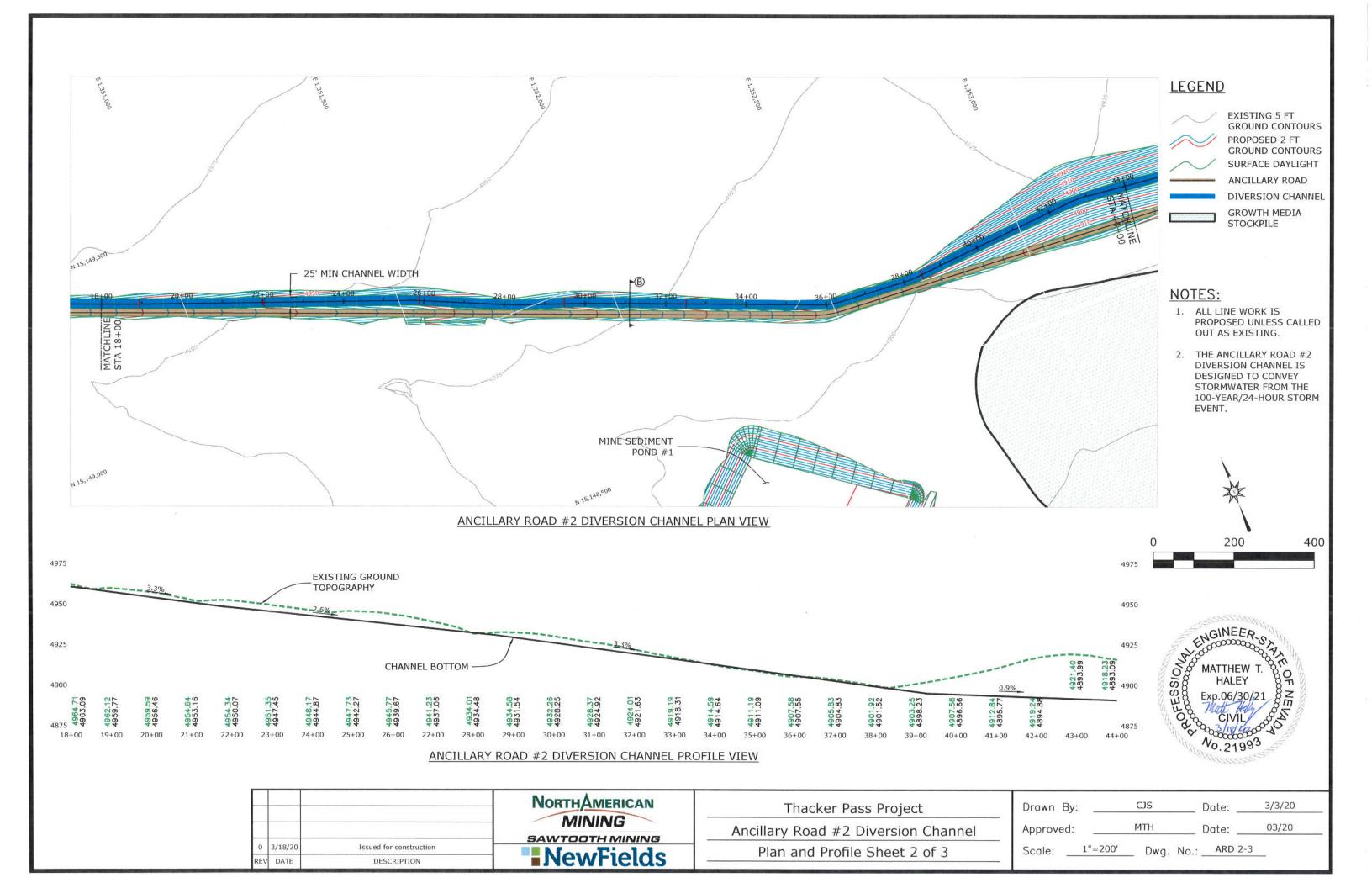
EXISTING 5 FT GROUND CONTOURS PROPOSED 2 FT GROUND CONTOURS SURFACE DAYLIGHT ANCILLARY ROAD DIVERSION CHANNEL

NOTES:

- 1. ALL LINE WORK IS PROPOSED UNLESS CALLED OUT AS EXISTING.
- THE ANCILLARY ROAD #2 DIVERSION CHANNEL IS DESIGNED TO CONVEY STORMWATER FROM THE 100-YEAR/24-HOUR STORM EVENT.

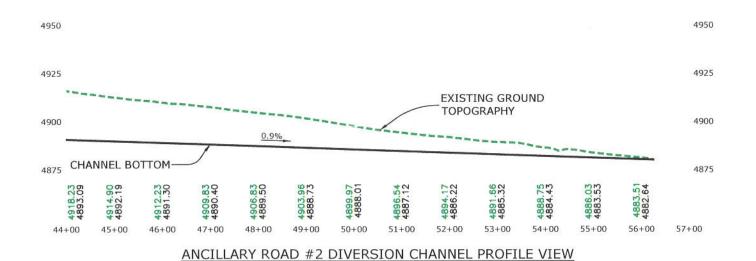
		NORTH AMERICAN MINING
		SAWTOOTH MINING
3/18/20 / DATE	Issued for construction DESCRIPTION	NewFields

Thacker Pass Project


Ancillary Road #2 Diversion Channel

Plan and Profile Sheet 1 of 3

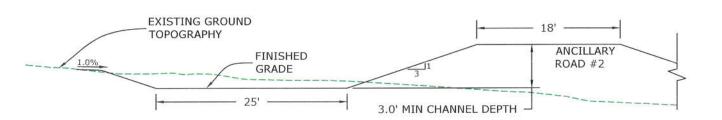
 Drawn By:
 CJS
 Date:
 3/3/20


 Approved:
 MTH
 Date:
 03/20

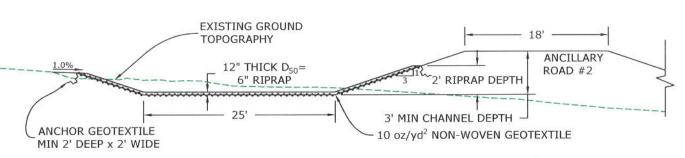
 Scale:
 1"=200'
 Dwg. No.:
 ARD 2-2

N 15,149,000 15 100 400 400 N 15,140,000 N 15,140,000

ANCILLARY ROAD #2 DIVERSION CHANNEL PLAN VIEW



LEGEND


EXISTING 5 FT GROUND CONTOURS PROPOSED 2 FT GROUND CONTOURS SURFACE DAYLIGHT ANCILLARY ROAD DIVERSION CHANNEL GROWTH MEDIA STOCKPILE

NOTES:

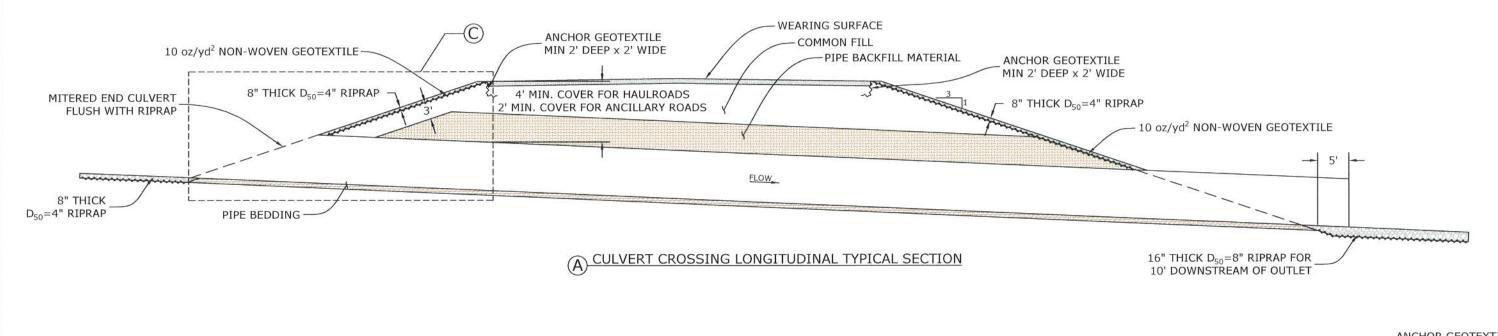
- 1. ALL LINE WORK IS PROPOSED UNLESS CALLED OUT AS EXISTING.
- THE ANCILLARY ROAD #2 DIVERSION CHANNEL IS DESIGNED TO CONVEY STORMWATER FROM THE 100-YEAR/24-HOUR STORM EVENT.

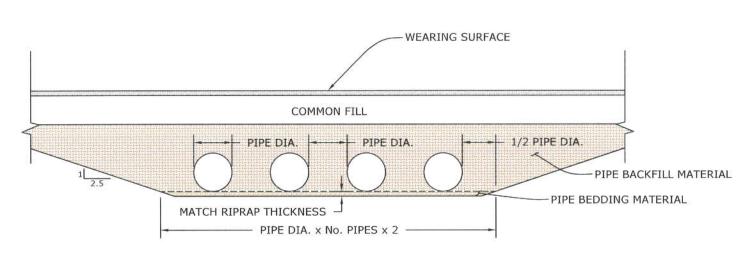
(A) TYPICAL DIVERSION CHANNEL CROSS SECTION (NO RIPRAP)

B TYPICAL DIVERSION CHANNEL CROSS SECTION (WITH RIPRAP)

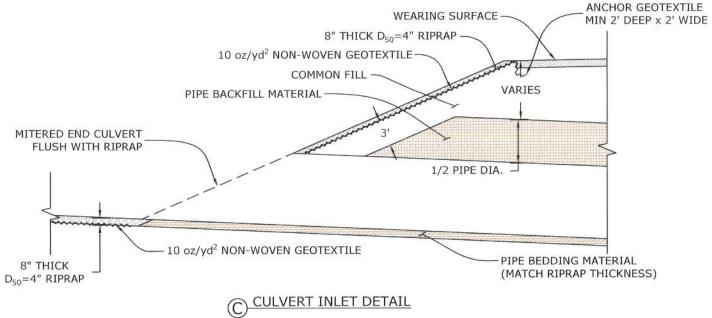
			NORTH AMERICAN MINING
0	3/18/20	Issued for construction	SAWTOOTH MINING
REV	DATE	DESCRIPTION	■■NewFields

Thacker Pass Project

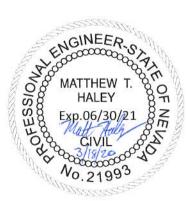

Ancillary Road #2 Diversion Channel


Plan and Profile Sheet 3 of 3

 Drawn By:
 CJS
 Date:
 3/3/20


 Approved:
 MTH
 Date:
 03/20

 Scale:
 1"=200'
 Dwg. No.:
 ARD 2-4



B CULVERT TYPICAL CROSS SECTION

NOTES:

- 1. THE CULVERTS ARE DESIGNED TO CONVEY STORMWATER FROM THE 100-YEAR/24-HOUR STORM EVENT.
- RIPRAP SHOWN IS THE MINIMUM REQUIRED FOR CURRENT DESIGN AND MAY REQUIRE UPGRADING IF WATERSHED AREAS CHANGE IN THE FUTURE.
- 3. PLACE 10oz/yd² NON-WOVEN GEOTEXTILE UNDER ALL RIPRAP.

			North American MINING
_		- 100 CO - 1	SAWTOOTH MINING
0	3/18/20	Issued for construction	■ NewFields
REV	DATE	DESCRIPTION	■ New Lieios

Thacker Pass Project
Culvert Typical
Cross Sections and Details

 Drawn By:
 CJS
 Date:
 2/28/20

 Approved:
 MTH
 Date:
 03/20

cale: AS SHOWN Dwg. No.: CULV 01

APPENDICES

APPENDIX A Design Criteria

Thacker Pass Project Design Criteria General Information

DESCRIPTION	VALUE	COMMENT		
	TIME FRAME			
Engineering Design	April 2020			
Projection System	UTM NAD83, Zone 11			
Units	U.S. Imperial			
Existing Ground Topographic File	GeoTerra 2017 Survey	Base topo file for project area provided by LNC		

Thacker Pass Project Design Criteria Meteorological/Climatological Data

DESCRIPTION	VALUE	COMMENT
	CLIMATOLOGICAL FACTORS	
Average annual precipitation	12.29	Climate Analysis Memo (EDR, Appendix E.3.13)
Average annual evaporation	5.92in/year	Climate Analysis Memo (EDR, Appendix E.3.13)
Average daily minimum winter temperature	18.32°F	WRCC Kings River Valley, NV (264236) 1956-2016
Average daily maximum summer temperature	87.84°F	WRCC Kings River Valley, NV (264236) 1956-2016
Frost depth	24 in	Humboldt County Design Criteria
	24-HOUR STORM EVENTS	
Recurrence Interval (years)	Precipitation (in)	
2	1.13	NOAA PFDS
5	1.41	NOAA PFDS
10	1.64	NOAA PFDS
25	1.96	NOAA PFDS
50	2.21	NOAA PFDS
100	2.48	NOAA PFDS
500	3.12	NOAA PFDS
	AVERAGE MONTHLY PRECIPITATION DATA	
Month	Average Precipitation, 2011-2017 (in)	
January	1.27	Climate Analysis Memo (EDR, Appendix E.3.13)
February	1.14	Climate Analysis Memo (EDR, Appendix E.3.13)
March	1.17	Climate Analysis Memo (EDR, Appendix E.3.13)
April	1.47	Climate Analysis Memo (EDR, Appendix E.3.13)
May	1.58	Climate Analysis Memo (EDR, Appendix E.3.13)
June	1.16	Climate Analysis Memo (EDR, Appendix E.3.13)
July	0.32	Climate Analysis Memo (EDR, Appendix E.3.13)
August	0.34	Climate Analysis Memo (EDR, Appendix E.3.13)
September	0.58	Climate Analysis Memo (EDR, Appendix E.3.13)
October	0.99	Climate Analysis Memo (EDR, Appendix E.3.13)
November	1.10	Climate Analysis Memo (EDR, Appendix E.3.13)
December	1.18	Climate Analysis Memo (EDR, Appendix E.3.13)
	AVERAGE MONTHLY EVAPORATION DATA	
Month	Average Pan Evaporation (in)	
January	1.48	Climate Analysis Memo (EDR, Appendix E.3.13)
February	2.13	Climate Analysis Memo (EDR, Appendix E.3.13)
March	3.87	Climate Analysis Memo (EDR, Appendix E.3.13)
April	5.64	Climate Analysis Memo (EDR, Appendix E.3.13)
May	7.41	Climate Analysis Memo (EDR, Appendix E.3.13)
June	10.36	Climate Analysis Memo (EDR, Appendix E.3.13)
July	12.89	Climate Analysis Memo (EDR, Appendix E.3.13)
August	11.40	Climate Analysis Memo (EDR, Appendix E.3.13)
September	7.73	Climate Analysis Memo (EDR, Appendix E.3.13)
October	4.54	Climate Analysis Memo (EDR, Appendix E.3.13)
November	2.30	Climate Analysis Memo (EDR, Appendix E.3.13)
December	1.27	Climate Analysis Memo (EDR, Appendix E.3.13)

Thacker Pass Project Design Criteria Clay Tailings Filter Stack

DESCRIPTION	VALUE	COMMENT						
	GENERAL							
Tailings production rate	2,510,348 dry tonnes/yr for years 1-4 7,531,043 dry tonnes/yr for years 5-10	Design Criteria for Mining and Stockpiles REV5						
Starter facility lifespan (Phase 1)	10 years	2019/10/15 Weekly meeting minutes						
Phase 1 facility lined pad area	16,820,000 sf	3D Area of lined area within pad berms						
Phase 1 facility capacity	67,165,000 cy	Calculated from <i>Design Criteria for Mining</i> and Stockpiles REV5 & NewFields lab test results						
Ultimate facility capacity	351,715,000 cy	Calculated from <i>Design Criteria for Mining</i> and Stockpiles REV5 & NewFields lab test results						
Number of facility phases	2	LNC						
	TAILINGS PROPERTIES							
Total tailings production for Phase 1	55,227,647 dry tonnes	Design Criteria for Mining and Stockpiles REV5						
USCS Description	ML - SILT with sand	NF lab						
Atterberg Limits	Tailings w/ salt: LL: 51%, PI: 11%, PL: 40% Tailings w/o salt: LL: 71%, PI: 12%, PL: 59%	NF Lab Test Results						
As-Received Tailings moisture content	Tailings w/ salt: 60.9% Tailings w/o salt: 59.3%	Dry basis, NF Lab Test Results						
Tailings average max dry density for modified proctor (MMDD)	Tailings w/ salt: 72.4 pcf Tailings w/o salt: 70.1 pcf	NF lab (November 12 - 13, 2019)						
Optimum moisture content	Tailings w/ salt: 45.3% (dry basis) Tailings w/o salt: 46% (dry basis)	NF lab (November 12 - 13, 2019)						
Tailings specific gravity	2.93	NF Lab as measured using 110F oven temp						
	FACILITY FEATURES							
Facility Type	Dry stack with concurrent closure							
Closure cover	3 feet of cover material							
Tailings placement method	Conveyors and haul trucks							
Structural/Non-structural zones	Interior: Tailings and salts at 85% compaction with 1:1 side slopes Exterior: Tailings "buttress" at 95% compaction with 4:1 side slopes. Buttress will have a 400' crest width when facility is 400' high							
Safety berm height (mine construction)	1.5 feet for light vehicle access 6 feet for haul truck access	Mid-axle height of largest equipment Varies based on road width						
Containment/lining requirements	Geomembrane over liner bedding	Phase 1						
	UNDERDRAIN SYSTEM							
Underdrain system	Sand and gravel and perforated pipe over liner system	NF Sizing Calculation in EDR Appendix E						

Thacker Pass Project Design Criteria Coarse Gangue Stockpile

DESCRIPTION	VALUE	COMMENT						
	GENERAL							
Number of facility phases	2	LNC						
Starter facility lifespan (Phase 1)	10 years	2019/10/15 Weekly meeting minutes						
Coarse gangue production rate	825,612 dry tonnes/year, years 1-4 2,476,837 dry tonnes/year, years 5-10	Design Criteria for Mining and Stockpiles Rev5						
Coarse Gangue Bulk Density	1300 kg/m3	Design Criteria for Mining and Stockpiles Rev5						
Initial/Starter facility capacity (out of pit)	26,106,514cy (19,959,862 m3)	Design Criteria for Mining and Stockpiles Rev5						
Ultimate facility capacity (out of pit)	33,226,472cy (25,403,461 m3)	Design Criteria for Mining and Stockpiles Rev5						
	COARSE GANGUE PROPERTIES							
USCS Description	SP (Poorly graded SAND)	NF lab test results						
Atterberg Limits	LL=NP, PI=NP, PL=NP	NF lab test results (MC is per dry basis)						
Total coarse gangue production for Phase 1	25,947,821 tonnes	NF Calculation						
Coarse Gangue wet basis moisture content	30%	Design Criteria for Mining and Stockpiles Rev5						
Coarse Gangue dry basis moisture content	43%	Wet basis to dry basis conversion						
Coarse Gangue average max dry density for modified proctor (MMDD)	1,300kg/m3 (81pcf)	Design Criteria for Mining and Stockpiles Rev5						
Course Gangue specific gravity	2.81	NF lab test results						
	FACILITY FEATURES							
Overall stacking slope	Between 3-5.5H:1V	NA Coal /NF						
Intermediate lift slope	Angle of Repose (~1.4H:1V)	NA Coal / NF						
Bench width	75.5 ft (for 5.5H:1V Overall Slope)	NA Coal						
Lift height	49.2 ft	NA Coal						
Containment/lining requirements	None	Piteau/LNC						

Thacker Pass Project Design Criteria Waste Rock Storage Facilities

DESCRIPTION	VALUE	COMMENT					
	GENERAL						
Time frame for placement in West WRSF	Years 1-9						
Time frame for placement in East WRSF	Year 10						
Volume of out of pit waste mined (10yrs)	32,158,000 cy	Design Criteria for Mining and Stockpiles Rev5					
Volume of Waste Placed at West WRSF (Years 1-9)	26,470,000 cy	Design Criteria for Mining and Stockpiles Rev5					
Volume of Waste Placed at East WRSF (Year 10)	5,800,000 cy	Design Criteria for Mining and Stockpiles Rev5					
Ultimate Designed West WRSF capacity	26,470,000 cy	NewFields Design Feb. 2020					
Ultimate Designed East WRSF capacity	11,156,600 yd3	Design Criteria for Mining and Stockpiles Rev5					
	WASTE ROCK PROPERTIES						
Waste Rock wet basis moisture content	16%	Design Criteria for Mining and Stockpiles Rev5					
Waste Rock dry basis moisture content	19%	Wet basis to dry basis conversion					
Waste rock bulk density	1593 kg/m3	Design Criteria for Mining and Stockpiles Rev5					
	WEST WRSF FEATURES						
Overall stacking slope	3.5H:1V	Based on stability modeling					
Maximum height	275 ft	Based on stability modeling					
Containment/lining requirements	None	LNC					
Total volume from CAD	26,469,957 c.y.	NF CAD Surface					
	EAST WRSF FEATURES						
Overall stacking slope	3.5H:1V	Based on stability modeling					
Intermediate lift slope	1.5H:1						
Bench width	100 ft						
Lift height	50 ft						
Containment/lining requirements	None	LNC					
Total volume from CAD (Year 10)	6,085,144 c.y.	NF CAD Surface					

Thacker Pass Design Criteria Process Ponds

DESCRIPTION	VALUE	COMMENT
	CTFS RECLAIM POND #1	
Draindown Storage Time	7 days	
Draindown Storage Volume	746,900 gal	Based on seepage rate of 74 gpm
Operational volume	5.6 M gal	Operational = Draindown Volume plus Contingency Capacity
Storm event	17.8 M gal	100-yr/24-hr storm
Freeboard	3 ft	
Freeboard volume	7.2 M gal	
Total Pond volume	30.6 M gal	pond bottom to pond crest
Contingency Capacity	25%	Included in operational volume
Pond side-slopes	2.5:1	
Discharge location/facility	Pump back to process plant facilities	For process reuse or evaporation
Discharge pump rate	500 gpm	From LNC
Pumpback system	Sloping reclaim with submersible pump	HDPE and Stainless Steel Pipe
Lining system	Double geomembrane lined with geonet leak detection system	

Thacker Pass Design Criteria Roads

DESCRIPTION	VALUE	COMMENT
Maximum road grade	15%	typical
Road width	20 ft	clear distance between berms
Minimum radius	100 ft	measured from centerline
Safety berm height	1.5 ft high with 1.5:1 side slopes	mid-axle height of largest equipment
Wearing course thickness	6 inches	
Design vehicle	Light vehicle	
Traffic pattern	Two way	
	CTSF PERIMETER HAUL ROAD	
Maximum road grade	10%	typical
Road width	80 ft	clear distance between berms; NA Coal
Road width	8011	design
Minimum radius	TBD	measured from centerline
Safety berm height	6 ft high with 2:1 side slopes	mid-axle height of largest equipment
Wearing course thickness	18 inches	NA Coal design
Design vehicle	CAT 777	
Traffic pattern	Two way	

Thacker Pass Design Criteria

Stormwater Diversion Channels and Culverts

DESCRIPTION	VALUE	COMMENT										
	Channels											
Storm event for depth sizing	500 year, 24 hour	Closure Criteria										
Storm event for erosion control design	100 year, 24 hour											
Freeboard	1 foot minimum											
Erosion protection	For D50 <4", leave channel unlined, otherwise use	See EDR										
Erosion protection	riprap	See EDR										
	CTFS and Haul Road Culverts											
Storm event for size requirements	100 year, 24 hour											
Material type	Corrugated Metal Pipe (CMP)											
Maximum headwater	1' below road crossing											
	Process Plant Culverts											
Storm event for size requirements	25 year, 24 hour											
Material type	Corrugated Metal Pipe (CMP)											
Maximum headwater	1' below road crest											

Thacker Pass Design Criteria Sediment Ponds

DESCRIPTION	VALUE	COMMENT
	WEST WRSF SEDIMENT POND	
Pond design storm	100 year, 24 hour	
Pond Freeboard	3 feet	
Emergency Spillway design storm	500 year, 24 hour	
Emergency Spillway freeboard	1 foot	
Discharge location	Natural drainage. Pond will only discharge water in excess of the 100 year, 24 hour storm event	
Pond side-slopes	2.5H:1V	
EA	ST WRSF, CGS, AND PROCESS PLANT SEDIMENT PO	IDS
Pond design storm	2 year, 24 hour	
Pond Freeboard	3 feet	
Sediment Storage	2'	Measured from lowest point in pond
Perforated Riser Design	Discharge the 25 year, 24 hour storm in 48 to 72 hours	
Emergency Spillway design storm	100 year, 24 hour	
Emergency Spillway freeboard	1 foot	
Discharge location	East WRSF - natural drainage or channel CGS - CTFS West Diversion Channel Process Plant - CTFS West Diversion Channel	
Pond side-slopes	2.5H:1V	
	MINE FACILITIES SEDIMENT PONDS	
Pond design storm	2 year, 24 hour	
Pond Freeboard	3 feet	
Sediment Storage	2'	Measured from lowest point in pond
Perforated Riser Design	Discharge the 25 year, 24 hour storm in 48 to 72 hours	
Emergency Spillway design storm	100 year, 24 hour	
Emergency Spillway freeboard	1 foot	
Discharge location	Facility Sediment Pond #1 - natural drainage Facility Sediment Pond #2 - natural drainage Mine Sediment Pond #1 - natural drainage	
Pond side-slopes	3H:1V	(Spillway side slopes 4H:1V)

Thacker Pass Design Criteria Stability Analysis

DESCRIPTION	VALUE	COMMENT										
Seismic Criteria												
	Operational Basis Earthquake (OBE)											
Recurrence Interval	475 years	10% PE in 50 years										
Moment Magnitude Earthquake	M6.4 at 35mi from site	NF Seismic Hazard, 2019										
Peak horizontal ground acceleration	0.09g	NF Seismic Hazard, 2019										
	Maximum Design Earthquake (MDE)											
Moment Magnitude Earthquake	M6.6 at 14 miles from site	NF Seismic Hazard, 2019										
Peak horizontal ground acceleration	0.26g	NF Seismic Hazard, 2019										
Stability Analysis												
Static Minimum Factor of Safety	1.3	NDEP Stability Requirements										
Pseudo-static Minimum Factor of Safety	>1.05	NDEP Stability Requirements										

APPENDIX B Geotechnical Field Investigation

APPENDIX B.1 Borehole Logs

CLIENT Lithium Nevada PROJECT NAME Thacker Pass Geotechnical Investigation **PROJECT NUMBER** 475.0385.000 PROJECT LOCATION Thacker Pass, Nevada DATE STARTED 3/28/19 **COMPLETED** 3/28/19 GROUND ELEVATION 4914.4 ft HOLE SIZE 4.25in **DRILLING CONTRACTOR** HazTech **COORDINATES (WGS-84):** DRILLING METHOD HSA **NORTHING** 15149319 _ **EASTING** 1345248 LOGGED BY M. Erdmann CHECKED BY K. Magner -GEOTECH BH COLUMNS - GINT STD US LAB, GDT - 11/21/19 15:10 - Y/PROJECTS/0385,000-THACKER PASS LITHIUM NEVADALL-GEOTECH DATA - ELKOBOREHOLE LOGS/BOREHOLE SOIL LOGS/CC.19.08.29. DEPTH TO WATER (FT BGS) No free water encountered NOTES Backfilled with cement grout ATTERBERG MOISTURE CONTENT (%) SAMPLE TYPE NUMBER LIMITS ELEVATION (ft) GRAPHIC LOG BLOW COUNTS (N VALUE) RECOVERY (INCHES) REMARKS % GRAVEL SAND FINES DEPTH (ft) PLASTICITY LIQUID MATERIAL DESCRIPTION % % Snow/Mud Top Soil / Root Zone silty SAND (SM), with gravel, fine to coarse grained, well graded, subangular, high plasticity fines, medium to very dense, brown, dry SS 5-11-15 18 \$PT-0 (26)4910 MC 6-9-6 18 (15)SS 7-19-22 18 32.1 71 17.4 44.2 38.4 \$PT-02 (41)4905 10 25-33-22 (55) MC Increase in 18 cobbles 4900 SS 11-22-20 18 \$PT-03 (42)4895 MC 27-40-55 18 (95)4890 21-22-28 30 13.6 66.3 20.1 18 55 25 \$PT-04 (50)4885 30 24-37-52 MC 18 (89)4880 SS 23-20-23 18 SPT-05 (43)

CLIENT Lithium Nevada PROJECT NAME Thacker Pass Geotechnical Investigation **PROJECT NUMBER** 475.0385.000 PROJECT LOCATION Thacker Pass, Nevada **ATTERBERG** SAMPLE TYPE NUMBER RECOVERY (INCHES) MOISTURE CONTENT (%) LIMITS ELEVATION (ft) GRAPHIC LOG BLOW COUNTS (N VALUE) REMARKS % GRAVEL % SAND FINES DEPTH (ft) PLASTICITY INDEX LIQUID MATERIAL DESCRIPTION MC 16-39-63 CAL-05 (102) silty SAND (SM), with gravel, fine to coarse grained, well 18 graded, subangular, high plasticity fines, medium to very dense, brown, dry (continued) 4870 45 SAND (SP), poorly graded, fine grained, sub angular, very dense, brown, moist SPT-06 SS 24-44-48 18 (92)

MC 25-33-70

CAL-06 (103)

18

Borehole terminated at 51.5'

brown, moist

CLAY (CL), with sand, low plasticity fines, very dense, light

NF-GEOTECH BH COLUMNS - GINT STD US LAB. GDT - 11/21/19 15:10 - Y:/PROJECTS/0385.000-THACKER PASS LITHIUM NEVADAIL-GEOTECH DATA - ELKO'BOREHOLE LOGS'BOREHOLE SOIL LOGS-CC.19.08.29. GPJ

4865

50

CLIENT Lithium Nevada PROJECT NAME Thacker Pass Geotechnical Investigation **PROJECT NUMBER** 475.0385.000 PROJECT LOCATION Thacker Pass, Nevada DATE STARTED 3/26/19 **COMPLETED** 3/27/19 GROUND ELEVATION 4928.3 ft HOLE SIZE 4.25in COORDINATES (WGS-84): DRILLING CONTRACTOR HazTech DRILLING METHOD HSA **NORTHING** 15151138 _ **EASTING** 1357073 LOGGED BY C. Coleman CHECKED BY K. Magner -GEOTECH BH COLUMNS - GINT STD US LAB, GDT - 11/21/19 15:10 - Y/PROJECTS/0385,000-THACKER PASS LITHIUM NEVADALL-GEOTECH DATA - ELKOBOREHOLE LOGS/BOREHOLE SOIL LOGS/CC.19.08.29. DEPTH TO WATER (FT BGS) 93.2 NOTES Backfilled with benontie chips and cement grout **ATTERBERG** SAMPLE TYPE NUMBER MOISTURE CONTENT (%) LIMITS ELEVATION (ft) GRAPHIC LOG BLOW COUNTS (N VALUE) RECOVERY (INCHES) % GRAVEL SAND REMARKS FINES DEPTH (ft) PLASTICITY LIQUID MATERIAL DESCRIPTION % % Snow/Mud Top Soil / Root Zone silty SAND (SM), with gravel, fine to coarse grained sand and gravel, sub angular, nonplastic fines, dense to very dense, light brown, dry SS 8-23-26 4925 18 (49)\$PT-0 MC 37-40-63 18 (103)SAND (SW-SM), with gravel and silt, fine to coarse sand and gravel, MPS 2.5", sub angular, nonplastic fines, dense 50/5cm SS 5 4920 to very dense, brown ,dry Increase in cobbles and MC 70/6cm 5.5 CAL-0 boulders SS 13-22-26 18 \$PT-03 (48)<u>4910</u> 17-30-25 18 (55)4905 SILT (ML), with sand, fine grained, low to high plasticity, SS 22-13-12 4.2 34.6 61.2 18 58.8 105 50 very stiff to hard, light brown, dry \$PT-04 (25)4900 30 MC 12-18-27 18 (45)4895 SS 9-29-21 18 SPT-05 (50)

CLIENT Lithium Nevada PROJECT NAME Thacker Pass Geotechnical Investigation **PROJECT NUMBER** 475.0385.000 PROJECT LOCATION Thacker Pass, Nevada **ATTERBERG** SAMPLE TYPE NUMBER RECOVERY (INCHES) MOISTURE CONTENT (%) **LIMITS** ELEVATION (ft) GRAPHIC LOG BLOW COUNTS (N VALUE) REMARKS % GRAVEL % SAND FINES DEPTH (ft) PLASTICITY INDEX NF-GEOTECH BH COLUMNS - GINT STD US LAB. GDT - 11/21/19 15:10 - Y:/PROJECTS/0385.000-THACKER PASS LITHIUM NEVADAIL-GEOTECH DATA - ELKO'BOREHOLE LOGS'BOREHOLE SOIL LOGS-CC.19.08.29. GPJ LIQUID MATERIAL DESCRIPTION SILT (ML), with sand, fine grained, low to high plasticity, MC 17-66-5 CAL-05 (124) 17-66-58 18 very stiff to hard, light brown, dry (continued) 4885 silty SAND (SM), fine grained, high plasticity fines, medium to very dense, dark brown, damp, (highly weathered rock) SS 10-18-29 18 37.4 8.1 47.8 44.1 80 40 \$PT-06 (47)4880 50 MC 34-25-31 Switched to open 18 CAL-06 (56) hole mud rotary 4875 55 SS 9-32-25 18 \\$PT-07 (57)4870 60 МС 30-49-17 70/5cm 4865 65 Switched to rock core at 65'

CLIENT Lithium Nevada PROJECT NAME Thoker Pass Geotechnical Investigation

PROJECT NUMBER 475.0385.000 PROJECT LOCATION Thacker Pass, Nevada

DATE STARTED 3/26/19 COMPLETED 3/27/19 GROUND ELEVATION 4928.3 ft HOLE SIZE 4.25 in

DRILLING CONTRACTOR HazTech COORDINATES (WGS84):

DRILLING METHOD HQ Core NORTHING 15151138 EASTING 1357073

LOGGED BY C. Coleman CHECKED BY K. Magner DEPTH TO WATER (FT BGS) 93.2

DRILL	LING	MET	ГНОІ	D _	HQ (Core			NORTHING 1	5151138		EAST	ING	1357	7073			
LOGG	SED E	3Y _	C. C	Cole	man	1		_ c	HECKED BY K. Magner DEPTH TO WA	TER (FT E	3GS) <u>93.2</u>							_
NOTE	S _B	ackt	filled	wit	h ce	men	t gro	out										
ELEVATION (ft)	DEPTH (ft)	RUN NO.	RUN LENGTH	REC (%)	RQD (%)	WEATHERING	HARDNESS	GRAPHIC LOG	MATERIAL DESCRIPTION Surface details: Snow/Mud	SAMPLE TYPE NUMBER	BLOW COUNTS (N VALUE)	WATER LEVEL	TYPE	alo Bisco	SPACING	APERTURE 5	ROUGHNESS	G IIIN
4860	65	1	5	100	66	SW	R3		[Continuation from soil log at 65 feet] Basalt, black, moderately weathered to slightly weathered, medium strong rock, very close to close joint spacing, slightly rough joint surfaces, some oxidization and clay alteration on joint surfaces			- - - -	JT		VC to C		SR	0.
4855 	 75	2	6	100	72	sw	R3					- - - -			to C			
 4850 	80	3	5	100	90	sw	R3					- - - -	JT		to C		SR	0
	 85	4	5	100	99	sw	R3					- - - -	JT		to C VC to C		SR	С
	90	5	5	100	80	SW	R3					- - - -	JT		VC to C		SR	С
4835 - –	95	6	5	100	100	SW	R3					- - - - - -	JT		VC		SR	c
4830	100	7	5	100	75	SW	R3					- - -	JT		to C		SR	С
4835	105	8	5	100	75	sw	R3					_ _ _			to C		ΟIX	

PAGE 2 OF 2

NewFields

-GEOTECH ROCK CORE LOG - GINT STD US LAB GDT - 9/23/19 10:29 - YAPROJECTS/0385.000-THACKER PASS LITHIUM NEVADAIL-GEOTECH DATA - ELKOJBOREHOLES/ROCK CORE LOGS-CC.GPJ

CLIENT Lithium Nevada PROJECT NAME The Pass Geotechnical Investigation **PROJECT NUMBER** 475.0385.000 PROJECT LOCATION Thacker Pass, Nevada DISCONTINUITY LOG SAMPLE TYPE NUMBER WEATHERING WATER LEVEL RUN LENGTH ELEVATION (ft) HARDNESS GRAPHIC LOG BLOW COUNTS (N VALUE) ROUGHNESS RQD (%) RUN NO. REC (%) **APERTURE** DEPTH (ft) SPACING NFIL. MATERIAL DESCRIPTION 딤 100 75 SW R3 5 [Continuation from soil log at 65 feet] VC JT SR CL Basalt, black, moderately weathered to slightly to C weathered, medium strong rock, very close to close joint spacing, slightly rough joint surfaces, some oxidization and clay alteration on joint 4820 5 100 66 SW R3 surfaces (continued) VC SR CL to C 4815 10 5 100 80 SW R3 115 JT SR CL to C 4810 5 100 80 SW R3 11 120 С SR CL JT 4805 12 5 100 98 SW R3 125 С CL SR JT 4800 13 5 100 100 SW R3 130 С SR CL 4795 100 100 SW R3 14 5 135 С SR CL 4790 15 5 100 100 SW R3 140 С SR CL 4785 16 5 100 66 SW R3 Clay Gouge 145'-150' SR CL 17 4 100 90 SW R3 150

Borehole terminated at 150

PAGE 1 OF 1

NewFields

CLIENT Lithium Nevada PROJECT NAME Thacker Pass Geotechnical Investigation **PROJECT NUMBER** 475.0385.000 PROJECT LOCATION Thacker Pass, Nevada DATE STARTED 3/19/19 **COMPLETED** 3/19/19 **GROUND ELEVATION** 4828 ft HOLE SIZE 4.25in DRILLING CONTRACTOR HazTech **COORDINATES (WGS-84):** DRILLING METHOD HSA NORTHING <u>15150430</u> _ EASTING 1359957 LOGGED BY C. Coleman CHECKED BY K. Magner NF-GEOTECH BH COLUMNS - GINT STD US LAB. GDT - 11/21/19 15:10 - Y:PROJECTS\0385.000-THACKER PASS LITHIUM NEVADAIL-GEOTECH DATA - ELKOBOREHOLE LOGS\BOREHOLE SOIL LOGS\CC.19.08.29. DEPTH TO WATER (FT BGS) No free water encountered NOTES Backfilled with cement grout ATTERBERG SAMPLE TYPE NUMBER MOISTURE CONTENT (%) LIMITS ELEVATION (ft) GRAPHIC LOG BLOW COUNTS (N VALUE) RECOVERY (INCHES) % GRAVEL SAND REMARKS FINES DEPTH (ft) PLASTICITY LIQUID MATERIAL DESCRIPTION % % Snow/Mud Top Soil / Root Zone silty SAND (SM), with gravel, fine to coarse sand and gravel, MPS 1.5", sub angular, nonplastic fines, dense, 4825 light brown, dry SS 25-19-18 Hard drilling, 18 \$PT-0 (37)refusal on auger, GRAVEL (GW-GM), with sand and silt, fine to coarse hole moved 5-ft grained, MPS 3", sub angular, nonplastic fines, very dense, north 16-39-59 MC brown, dry 18 (98)CAL-0 4820 23-48-33 SS 18 \$PT-02 (81)**™** MC 70/5cm 5 CAL-02 SAND (SW-SC), with gravel and clay, fine to coarse sand and gravel, MPS 1.0", sub angular, low plasticity fines, very 4815 dense, brown, dry SS 23-36-42 18 \$PT-03 (78)4810 MC 70/5cm 5 CAL-0 Switched to rock core at 21.5'

ELKO/BOREHOLES/ROCK CORE LOGS-CC.GP.

PASS LITHIUM NEVADA/L-GEOTECH DATA -

NF-GEOTECH ROCK CORE LOG - GINT STD US LAB.GDT - 9/23/19 10:29 - Y:\PROJECTS\0385.000-THACKER

4780

100 95 MW R3

6 | 5

CLIENT Lithium Nevada PROJECT NAME The Pass Geotechnical Investigation **PROJECT NUMBER** 475.0385.000 PROJECT LOCATION _ Thacker Pass, Nevada DATE STARTED 3/19/19 **COMPLETED** 3/19/19 GROUND ELEVATION 4828 ft HOLE SIZE 4.25 in DRILLING CONTRACTOR HazTech **COORDINATES (WGS84):** DRILLING METHOD HQ Core NORTHING <u>15150430</u> _ EASTING 1359957 LOGGED BY C. Coleman CHECKED BY K. Magner DEPTH TO WATER (FT BGS) No free water encountered

NOTES Backfilled with bentonite chips and cement grout DISCONTINUITY LOG SAMPLE TYPE NUMBER WEATHERING **WATER LEVEL** RUN LENGTH ELEVATION (ft) HARDNESS GRAPHIC LOG BLOW COUNTS (N VALUE) ROUGHNESS REC (%) RQD (%) DEPTH (ft) RUN NO. **APERTURE** SPACING TYPE MATERIAL DESCRIPTION 딤 Surface details: Snow/Mud 20 SR [Continuation from soil log at 20 feet] to C Blocky volcanic rock, brown to black, moderately weathered, medium strong rock, very close to close joint spacing, slightly rough joint surfaces, 5 100 33 MW R3 4805 clay alteration on joint surfaces 25 JT SR CL to C 2 5 100 75 MW R3 4800 30 SR CL JT 3 5 100 92 MW R3 4795 35 VC JT SR CL 5 99 92 MW R3 4790 VC 40 JT SR CL to C 5 5 100 88 MW R3 4785 45 VC SR CL JT to C

Borehole terminated at 50

CLIENT Lithium Nevada PROJECT NAME Thacker Pass Geotechnical Investigation **PROJECT NUMBER** 475.0385.000 PROJECT LOCATION _ Thacker Pass, Nevada DATE STARTED 3/17/19 **COMPLETED** 3/18/19 GROUND ELEVATION 4725.4 ft HOLE SIZE 4.25in DRILLING CONTRACTOR HazTech **COORDINATES (WGS-84):** DRILLING METHOD HSA NORTHING 15145149 _ EASTING 1359752 LOGGED BY M. Erdmann CHECKED BY K. Magner NF-GEOTECH BH COLUMNS - GINT STD US LAB. GDT - 11/12/1/19 15:10 - Y:\PROJECTS\0385.000-THACKER PASS LITHIUM NEVADA\L-GEOTECH DATA - ELKO\BOREHOLE LOGS\BOREHOLE SOIL LOGS\-CC.19.08.29. DEPTH TO WATER (FT BGS) 92.5 NOTES Backfilled with cement grout **ATTERBERG** MOISTURE CONTENT (%) SAMPLE TYPE NUMBER LIMITS ELEVATION (ft) GRAPHIC LOG BLOW COUNTS (N VALUE) RECOVERY (INCHES) REMARKS % GRAVEL SAND FINES DEPTH (ft) PLASTICITY LIQUID MATERIAL DESCRIPTION % % Snow/Mud Top Soil / Root Zone silty SAND (SM), with gravel, fine to corase grained, sub angular, loose to dense, light brown, dry 5-5-6 SS 18 \$PT-0 (11)4720 MC 8-18-27 18 (45)SS 7-8-10 18 (18) \$PT-02 4715 silty SAND (SM), with gravel, well graded, fine to coarse MC 16-21-22 18 grained, sub angular, dense to very dense, light brown, dry (43)4710 SS 20-50/6cm 11.5 4705 MC MC 70/5cm 5 CAL-0 Switched to rock core at 21.5'

PAGE 1 OF 2

NewFields

CLIENT _Lithium Nevada PROJECT NAME _Thcker Pass Geotechnical Investigation

PROJECT NUMBER _475.0385.000 PROJECT LOCATION _Thacker Pass, Nevada

DATE STARTED _3/17/19 COMPLETED _3/18/19 GROUND ELEVATION _4725.4 ft HOLE SIZE _4.25 in

DRILLING CONTRACTOR _HazTech COORDINATES (WGS84):

DRILLING METHOD _HQ Core NORTHING _15145149 EASTING _1359752

LOGGED BY _M. Erdmann CHECKED BY _K. Magner DEPTH TO WATER (FT BGS) _92.5

1	ES E						nt ar		DEPTH TO WA	1111111111	<u>92.5</u>							_
_	T						- 9"							DISCO	NTIN	TIUN	/ LOC	<u></u>
NH-GEOTECH ROCK CORE LOG - GINT STD US LAB. GDT - 9/23/19 10:29 - 7/PROJECT S/0385, 000-1 HACKER PASS LITHIUM NEVADAL-GEOTECH DATA - EIKOBOREHOLESKROK CORE LOGS-CC.GFU P	20	RUN NO.	RUN LENGTH	REC (%)	RQD (%)	WEATHERING	HARDNESS	GRAPHIC LOG	MATERIAL DESCRIPTION Surface details: Snow/Mud	SAMPLE TYPE NUMBER	BLOW COUNTS (N VALUE)	WATER LEVEL	TYPE	DIP	SPACING	APERTURE	ROUGHNESS	INFILL
ZEHOLES/KO	† 	1	3.5	79	0	MW	/ R1		[Continuation from soil log at 20 feet] Blocky volcanic rock, moderately weathered, very weak rock, very close joint spacing, smooth joint surfaces			- -	JT		VC		ω	
9 - - - - - -	25	2	2	88	0	MW	/R1					- -	JT		VC		S	
- DATA -	-	3	2	90	0	MW	/R1					-	JT 		VC		S	
4695 4695	30	4	3	100	55	MW	/ R1					- -	JT		VC		S	
ASS LITHIUM NEVADA	35	5	5	100	41	MW	/ R1		Basalt, black to brown, moderately weathered to slightly weathered, very weak to medium strong rock, very close to close joint spacing, slightly rough joint surfaces, clay and calcite alteration on joint surfaces			- - -	JT		VC		SR	
- 14990 - 14900 - 1490	- - - - - - - - - - - - - - - - - - -	6	5	100	43	MW	' R1					- - -	JT		vc vc		SR	
	45	7	5	100	58	MW	/ R1					- - - -	JT		VC		SR	
76 - 175 - 1	50	8	5	100	49	MW	/ R1					- - -	JT		VC		SR	
4670	55	9	5	100	79	MW	/ R1					- - -	JT		С		SR	CA
NF-GEOLECH KO	60	10	5	100	65	sw	R3					- - -			Contin		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	

PAGE 2 OF 2

NewFields

CLIENT Lithium Nevada PROJECT NAME The Pass Geotechnical Investigation **PROJECT NUMBER** 475.0385.000 PROJECT LOCATION Thacker Pass, Nevada DISCONTINUITY LOG SAMPLE TYPE NUMBER WEATHERING WATER LEVEL RUN LENGTH ELEVATION (ft) HARDNESS GRAPHIC LOG BLOW COUNTS (N VALUE) ROUGHNESS RQD (%) REC (%) RUN NO. **APERTURE** DEPTH (ft) SPACING NFIL. MATERIAL DESCRIPTION 딤 60 Basalt, black to brown, moderately weathered to С SR CA JT NF-GEOTECH ROCK CORE LOG-GINT STD US LAB GDT - 9/23/19 10:29 - Y/PROJECTS/0385.000-THACKER PASS LITHIUM NEVADAIL-GEOTECH DATA - ELKOIBOREHOLES/ROCK CORE LOGS-CC.GP, slightly weathered, very weak to medium strong rock, very close to close joint spacing, slightly rough joint surfaces, clay and calcite alteration on 5 100 87 SW R3 joint surfaces (continued) 65 4660 С SR CA JT 12 5 100 90 SW R3 70 4655 С SR CL JT 100 83 SW R3 13 5 75 4650 JT С SR CL 5 100 95 SW R3 14 80 4645 С SR CL JT 15 5 100 85 SW R3 85 4640 С SR CL 16 5 100 88 SW R2 90 4635 SR CL JT С <u>A</u> 17 5 100 90 SW R2 95 4630 CL С SR JT 5 100 86 SW R2 18 100 4625 Borehole terminated at 100.5'

CLIENT Lithium Nevada PROJECT NAME Thacker Pass Geotechnical Investigation **PROJECT NUMBER** 475.0385.000 PROJECT LOCATION _ Thacker Pass, Nevada DATE STARTED 3/12/19 **COMPLETED** 3/13/19 GROUND ELEVATION 4798.9 ft HOLE SIZE 4.25in DRILLING CONTRACTOR HazTech **COORDINATES (WGS-84):** DRILLING METHOD HSA NORTHING 15148159 _ **EASTING** 1357491 LOGGED BY C. Coleman CHECKED BY K. Magner NF-GEOTECH BH COLUMNS - GINT STD US LAB. GDT - 11/21/19 15:10 - Y:PROJECTS\0385.000-THACKER PASS LITHIUM NEVADAIL-GEOTECH DATA - ELKOBOREHOLE LOGS\BOREHOLE SOIL LOGS\CC.19.08.29. DEPTH TO WATER (FT BGS) 83.5 NOTES Backfilled with benontie chips and cement grout **ATTERBERG** MOISTURE CONTENT (%) SAMPLE TYPE NUMBER LIMITS ELEVATION (ft) GRAPHIC LOG BLOW COUNTS (N VALUE) RECOVERY (INCHES) REMARKS % GRAVEL SAND FINES DEPTH (ft) PLASTICITY LIQUID MATERIAL DESCRIPTION % % Snow/Mud Top Soil / Root Zone silty SAND (SM), with gravel, trace cobbles, fine to corase sand and gravel, MPS 3.0" sub rounded, nonplastic fines, very dense, light brown, dry SS 46-41-48 18 4795 \$PT-0 (89)31-43-43 MC 18 (86)SS 29-32-29 18 4790 \$PT-02 (61)GRAVEL (GW-GM), with sand and silt, fine to coarse grained, MPS 3.0", sub angular, nonplastic fines, very MC 21-32-38 dense, brown, dry 18 CAL-02 (70)silty SAND (SM), with clay, fine grained, low plasticty fines, very dense, brown, dry 4785 SS 26-28-28 18 \$PT-03 (56)4780 20 MC 34-70/5cm 11 Switched to rock core at 21.5'

CLIENT Lithium Nevada PROJECT NAME Thoker Pass Geotechnical Investigation

PROJECT NUMBER 475.0385.000 PROJECT LOCATION Thacker Pass, Nevada

DATE STARTED 3/12/19 COMPLETED 3/12/19 GROUND ELEVATION 4798.9 ft HOLE SIZE 4.25 in

DRILLING CONTRACTOR HazTech COORDINATES (WGS84):

DRILLING METHOD HQ Core NORTHING 15148159 EASTING 1357491

LOGGED BY C. Coleman CHECKED BY K. Magner DEPTH TO WATER (FT BGS) 83.5

LOGG	SED E	3Y _	C. C	Cole	man	1		c	HECKED BY K. Magner DEPTH TO WA	TER (FT I	BGS) <u>83.5</u>							_
NOTE	S _B	ack	filled	witl	h be	ntor	nite (chips a	and cement grout	T								
			E			ō	S			出		Π̈́		DISC	NITNC	/TIUI		3
ELEVATION (ft)	DEPTH (ff)	RUN NO.	RUN LENGTH	REC (%)	RQD (%)	WEATHERING	HARDNESS	GRAPHIC LOG	MATERIAL DESCRIPTION Surface details: Snow/Mud	SAMPLE TYPE NUMBER	BLOW COUNTS (N VALUE)	WATER LEVEL	TYPE	DIP	SPACING	APERTURE	ROUGHNESS	INFILL
	20							\Rightarrow	[Continuation from soil log at 20 feet]								_	274
4775	25	1	4.5	33	0	HW	' R1		Blocky volcanic rock, highly weathered, weak rock, very close joint spacing, oxidization on joint surface			-	JT		VC VC			OX OX
		2	3	100	9	HW	'R1											
4770	30	3	2.5	100	13	HW	' R1					- -	JT		VC			OX OX
	 -	4	3.5	100	12	HW	' R1					- -						
4765	35											_ _	JT		VC			ОХ
4760	- - - - -	5	5	100	15	HW	'R1					- - -	JT		VC			ох
HOLOGO (4775) 4775 4775 4775 4775 4775 4775 4775 4775	40	6	6.5	100	0	HW	' R1					- - -						
4755	45								Basalt, black, moderately weathered to slightly			_ _	JT		VC			ОХ
		7	5	100	13	ΜW	/ R2		weathered, weak rock to medium strong rock, very close to close joint spacing, oxidization and calcite alteration on joint surface			- - -						
	50	p	E	100	10	HW	/ D4		Broken zone, clay gouge, highly weathered, very			 _ _	JT		VC			CL
4745	55	8	5	100	10	ΠVV	רו		weak, potential fault			- - -	JT		VC			ох
4745 4740 4740	 	9	5	100	32	MW	/ R2		Basalt, black, moderately weathered to slightly weathered, weak rock to medium strong rock, very close to close joint spacing, oxidization and calcite alteration on joint surface			- - -						
<u> </u>	60							1 \rightarrow \rightarrow		1								

CLIENT Lithium Nevada PROJECT NAME The Pass Geotechnical Investigation **PROJECT NUMBER** 475.0385.000 PROJECT LOCATION Thacker Pass, Nevada DISCONTINUITY LOG SAMPLE TYPE NUMBER WEATHERING RUN LENGTH WATER LEVEL ELEVATION (ft) HARDNESS GRAPHIC LOG BLOW COUNTS (N VALUE) ROUGHNESS RQD (%) REC (%) RUN NO. **APERTURE** DEPTH (ft) SPACING INFILL MATERIAL DESCRIPTION 딤 60 Basalt, black, moderately weathered to slightly ΟX NF-GEOTECH ROCK CORE LOG-GINT STD US LAB GDT - 9/23/19 10:29 - YAPROJECTS/0385.000-THACKER PASS LITHIUM NEVADAIL-GEOTECH DATA - ELKOJBOREHOLES/ROCK CORE LOGS-CC.GP. weathered, weak rock to medium strong rock, very close to close joint spacing, oxidization and calcite 100 6 MW R2 alteration on joint surface (continued) 4735 65 JT С OX 100|100|SW|R3 70 С OX 100 99 SW R3 4725 75 JT С OX 13 5 100 99 SW R3 80 С OX JT 5 100 66 SW R3 Ā 85 JT С OX 100 74 SW R3 15 7 4710 90 VC CA 4705 16 4 100 31 SW R1 95 VC CA 100 73 SW R1 17 4 4700 Borehole terminated at 100

CLIENT Lithium Nevada PROJECT NAME Thacker Pass Geotechnical Investigation **PROJECT NUMBER** 475.0385.000 PROJECT LOCATION _ Thacker Pass, Nevada DATE STARTED 3/14/19 **COMPLETED** 3/15/19 GROUND ELEVATION 4792.4 ft HOLE SIZE 4.25in DRILLING CONTRACTOR HazTech **COORDINATES (WGS-84):** DRILLING METHOD HSA NORTHING 15149656 _ **EASTING** 1358695 LOGGED BY M. Erdmann CHECKED BY K. Magner NF-GEOTECH BH COLUMNS - GINT STD US LAB. GDT - 11/12/1/19 15:10 - Y:\PROJECTS\0385.000-THACKER PASS LITHIUM NEVADA\L-GEOTECH DATA - ELKO\BOREHOLE LOGS\BOREHOLE SOIL LOGS\-CC.19.08.29. DEPTH TO WATER (FT BGS) No free water encountered NOTES Backfilled with cement grout ATTERBERG MOISTURE CONTENT (%) SAMPLE TYPE NUMBER LIMITS ELEVATION (ft) GRAPHIC LOG BLOW COUNTS (N VALUE) RECOVERY (INCHES) REMARKS % GRAVEL SAND FINES DEPTH (ft) PLASTICITY LIQUID MATERIAL DESCRIPTION % Snow/Mud Top Soil / Root Zone silty SAND (SM), with gravel, well graded, fine to coarse grained, sub angular, dense to very dense, light brown, dry 4790 SS 13-27-50 18 \$PT-0 (77)31-31-29 MC 18 (60)4785 SS 20-28-18 18 \$PT-02 (46)10 MC 22-44-27 18 (71)4780 SS 9-23-50/2cm 20 MC 33-70/4cm Switched to rock core at 21.5'

CLIENT Lithium Nevada PROJECT NUMBER 475.0385.000 PROJECT LOCATION Thacker Pass, Nevada **DATE STARTED** 3/14/19 **COMPLETED** 3/15/19 GROUND ELEVATION 4792.4 ft HOLE SIZE 4.25 in DRILLING CONTRACTOR HazTech **COORDINATES (WGS84):** DRILLING METHOD HQ Core NORTHING 15149656 ____ **EASTING** 1358695 LOGGED BY M. Erdmann CHECKED BY K. Magner DEPTH TO WATER (FT BGS) No free water encountered

NOTES Backfilled with cement grout

NOTES Backfilled with cement grout NOTES NOTES Backfilled with cement grout NOTES NOTES											[DISCONTINUITY LOG							
ELEVATION (ft)	DEPTH (ft)	RUN NO.	RUN LENGTH	REC (%)	RQD (%)	WEATHERING	HARDNESS	GRAPHIC LOG	MATERIAL DESCRIPTION Surface details: Snow/Mud	SAMPLE TYPE NUMBER	BLOW COUNTS (N VALUE)	WATER LEVEL	TYPE	DIP	SPACING	APERTURE	ROUGHNESS	INFILL	
4770	 25	1	4	80	11	HW	R1		[Continuation from soil log at 21.5 feet] Blocky volcanic rock, brown, highly weathered, extremely weak rock, very close joint spacing, slightly rough joint surfaces, oxidization on joint surface			- - -	JT		VC		SR		
	30	2	5	100	0	HW	R1					- - -	JT		VC		SR	ox	
 _ 4760 	 35	3	5	100	0	HW	R1		Basalt, black to brown, slightly weathered, weak rock, close joint spacing, slightly rough joint surface, calcite alteration on joint surface			- - -	JT		VC		SR	ox	
 4755 	 40	4	5	100	15	SW	R2					- - - -	JT		С		SR	CA	
 _ 4750 	 	5	5	100	63	SW	R2					- - -	JT		С		SR	CA	
 4745 	45	6	4.5	100	53	SW	R2					- - - -	JT		С		SR	CA	
	50								Borehole terminated at 50'										

	CLIENT Lithium Nevada	PROJECT NAME _ Thacker Pass Geotechnical Investigation PROJECT LOCATION _ Thacker Pass, Nevada GROUND ELEVATION _ 4756.3 ft HOLE SIZE _ 4.25in											
	PROJECT NUMBER 475.0385.000												
		COORDINATES (WGS-84):											
PJ	DRILLING METHOD HSA	NORTHING _15147040											
.29.G	LOGGED BY M. Walden CHECKED BY K. Magner	DEPTH TO WATER (FT BGS) No free water encountered											
19.08	NOTES Backfilled with benontie chips and cement grout												
S-CC.		ATTERBERG											
OREHOLE SOIL LOGS	MATERIAL DESCRIPTION Snow/Mud Snow/Mud	SAMPLE TYPE NUMBER BLOW COUNTS (N VALUE) RECOVERY (INCHES) MOISTURE CONTENT (%) LIQUID INDEX INDEX % SAND % SAND % FINES REMARKS											
GS/B(Top Soil / Root Zone												
SOREHOLE LO	silty SAND (SM), some gravel, fine to coarse grained, well graded, sub angular, medium plasticity fines, medium dense to very dense, light brown, dry	SS 4-8-11 18 19.4 46 18 19.9 44.9 35.2											
DATA - ELKO\		MC 20-38-52 18 CAL-01 (90) 18											
A/L-GEOTECH	silty SAND (SM), fine to coarse grained, well graded, sub angular, very dense, brown, dry	SS 19-24-28 18 SPT-02 (52) 18											
VAD/	Switched to rock core at 11.5'	¢AL-02											
NF-GEOTECH BH COLUMNS - GINT STD US LAB.GDT - 11/21/19 15:10 - Y:IPROJECTS/0385.000-THACKER PASS LITHIUM NEVADAIL-GEOTECH DATA - ELKOBOREHOLE LOGS/BOREHOLE SOIL LOGS-CC. 19:08.29.GPJ													

CLIENT Lithium Nevada PROJECT NAME Thoker Pass Geotechnical Investigation

PROJECT NUMBER 475.0385.000 PROJECT LOCATION Thacker Pass, Nevada

DATE STARTED 3/3/19 COMPLETED 3/3/19 GROUND ELEVATION 4756.3 ft HOLE SIZE 4.25 in

DRILLING CONTRACTOR HazTech COORDINATES (WGS84):

DRILLING METHOD HQ Core NORTHING 15147040 EASTING 1357703

LOGGED BY M. Walden CHECKED BY K. Magner DEPTH TO WATER (FT BGS) No free water encountered NOTES Backfilled with bentonite chips and cement grout

11012	NOTES Backfilled with bentonite chips and cement grout																	
1_			Į			ര				Щ		닒		DISC	NTINC	'TIUN		3
4745	DEPTH (ft)	RUN NO.	RUN LENGTH	REC (%)	RQD (%)	WEATHERING	HARDNESS	GRAPHIC LOG	MATERIAL DESCRIPTION Surface details: Snow/Mud	SAMPLE TYPE NUMBER	BLOW COUNTS (N VALUE)	WATER LEVEL	TYPE	DIP	SPACING	APERTURE	ROUGHNESS	INFILL
4745	-							\Rightarrow	[Continuation from soil log at 10.5 feet]			_	JT		VC			ОХ
 		1	4.5	100	13	HW	/ R1		Blocky volcanic rock, fine grained, reddish brown, highly weathered, very close joint spacing, oxidization on joint surface			- -						
	15_							\bowtie	Basalt, grey to black, moderately to slightly	-			JT		VC			ОХ
4740 		2	5	100	0	HW	/ R1		weathered, very weak to medium strong rock, very close to close joint spacing, oxidization and calcite alteration on joint surfaces			- -						
-	20							\bowtie				-	1					
 4735	-							 					JT		VC			ОХ
		3	6	100	0	HW	/ R1					-						
	 25							\mathbb{R}				-	1					
-								\mathbb{R}				_						_ ,
4730													JT		VC			CA
		4	4	100	0	MW	/R1					-						
L -	30							\bowtie				_	JT		VC			CA
4725		5	5	100	0	MW	/ R1					-						
-								\mathbb{R}				_						
	35							\mathbb{R}					JT		VC			CA
4720	} -							B				-	•					0.
	<u></u>	6	5	90	٥	MW	/ R1	\mathbb{R}				-	1					
				30		10100						-	1					
	40												, _T		VC			C/
4715 4710 												_	JT		VC			CA
		_	 -	04	10	N 41 A	/ D4					-	-					
	├ -	7	5	94	49	MW	KI					_	1					
	 45											-			•			
4710	-											_	JT		С			CA
			_	400	<u> </u>							_	-					
_	<u> </u>	8	5	100	54	MW	R3					_	-					
	 50											-	1					
	-00							$K\!$				_	JT		С			CA

CLIENT Lithium Nevada PROJECT NAME The Pass Geotechnical Investigation **PROJECT NUMBER** 475.0385.000 PROJECT LOCATION Thacker Pass, Nevada DISCONTINUITY LOG SAMPLE TYPE NUMBER WEATHERING WATER LEVEL RUN LENGTH ELEVATION (ft) HARDNESS GRAPHIC LOG BLOW COUNTS (N VALUE) ROUGHNESS RQD (%) RUN NO. REC (%) **APERTURE** DEPTH (ft) SPACING MATERIAL DESCRIPTION 딤 4705 Basalt, grey to black, moderately to slightly NF-GEOTECH ROCK CORE LOG - GINT STD US LAB, GDT - 9/23/19 10:29 - Y/PROJECTS/0385.000-THACKER PASS LITHIUM NEVADAIL-GEOTECH DATA - ELKO/BOREHOLES/ROCK CORE LOGS-CC.GPJ weathered, very weak to medium strong rock, very close to close joint spacing, oxidization and calcite 5 100 48 MW R3 alteration on joint surfaces (continued) 55 JT С CA 4700 10 5 100 37 MW R3 60 JT CA 4695 100 77 SW R3 7 65 4690 JT VC OX 12 7.5 100 0 SW R1 4685 OX JT С 75 4680 13 | 5.5 | 90 | 52 | SW | R1 80 VC OX 4675 5 78 0 HW R1 85 OX 4670 5 100 38 MW R2 90 CL Clay gouge 90'-100' 4665 5 100 53 HW 16 CL 5 100 38 HW 17

NewFields

 CLIENT
 Lithium Nevada
 PROJECT NAME
 Thcker Pass Geotechnical Investigation

PROJECT NUMBER 475.0385.000 PROJECT LOCATION Thacker Pass, Nevada

						۲۵.				111				OISCO	NTIN	\UIT\	/ LOC	3
99 ELEVATION (ft)		RUN NO.	RUN LENGTH	(%) SEC	(%) ada	WEATHERING	HARDNESS	GRAPHIC LOG	MATERIAL DESCRIPTION	SAMPLE TYPE NUMBER	BLOW COUNTS (N VALUE)	WATER LEVEI	TYPE	AIO	SPACING	APERTURE	ROUGHNESS	INFILL
	100	17	5	100	38	HW			Clay gouge 90'-100' (continued)			-						

Borehole terminated at 100'

NF-GEOTECH ROCK CORE LOG - GINT STD US LAB GDT - 9/23/19 10:29 - Y/PROJECTS/0385.000-THACKER PASS LITHIUM NEVADAIL-GEOTECH DATA - ELKO'BOREHOLES/ROCK CORE LOGS-CC.GPJ

	CLIEN	NT I	_ithium	Nevada	PROJECT	NAME TI	hacke	r Pas	s Gent	echnic	al Inv	estin	ation		
- 1					PROJECT							"9"			
PROJECT NUMBER 475.0385.000 DATE STARTED 3/6/19 COMPLETED 3/6/19 DRILLING CONTRACTOR HazTech DRILLING METHOD HSA LOGGED BY M. Walden CHECKED BY K. Magner NOTES Backfilled with benontie chips and cement grout MATERIAL DESCRIPTION Snow/Mud Top Soil / Root Zone GRAVEL (GP-GM), with sand and silt, fine to coarse grained, poorly graded, sub angular to angular, nonpla fines, very dense, light brown, dry silty SAND (SM), some gravel, some cobbles, trace clafine to coarse grained, well graded, sub angular to angular very dense, light brown, dry 4755 15				GROUND I							ZE	4.25in	<u> </u>		
	DRILI	ING	CONT	RACTOR HazTech	COORDIN	ATES (WG	iS-84)	:							
Ę,	DRILI	ING	METH	OD HSA	NORTHING 15147040 EASTING 1357491										
3.29.G	LOGO	SED I	3Y <u>M</u>	. Walden CHECKED BY K. Magner	DEPTH	I TO WATE	ER (F	Γ BGS	6) <u>No</u>	free wa	ater e	ncou	ntere	d	
.19.0	NOTE	S_E	Backfille	ed with benontie chips and cement grout											
00-85					Ш			<u> </u>	ATTER	RBERG IITS					
ILO	ELEVATION (ft)	Ξ	9,5		SAMPLE TYPE NUMBER	N I I S	RECOVERY (INCHES)	MOISTURE CONTENT (%)	LIIV		VEL	9	ES	X XS	
SOI	ΞΨ Œ	DEPTH (ft)	GRAPHIC LOG	MATERIAL DESCRIPTION	PLE	BLOW COUNTS (N VALUE)	SA	ITEN	LIQUID	PLASTICITY INDEX	% GRAVEL	SAND	FINES	REMARKS	
뢰			ច	Snow/Mud	SAM	_0 <u>S</u>	Ŗ€	MOS	35	LAS.	%	%	%	8	
BOR		0	7, 18. 7,	Top Soil / Root Zone						Д.					
ogs	· -			GRAVEL (GP-GM), with sand and silt, fine to coarse											
		-	598	grained, poorly graded, sub angular to angular, nonplastic fines, very dense, light brown, dry	1 00	45 00 07									
핅	. <u>-</u>			, 161, 20166, i.g.i.e.2.1011., c. j	SS SPT-0	15-23-27 1 (50)	18	10.3	NP	NP	49.1	39.5	11.4		
Š M	4765_	5			4	00.00.70									
바	-	-			MC CAL-0	20-32-70 1 (102)	16								
DAT/	_	-			1 00	00 17 70									
핅		-			SS SPT-0:	20-47-50 (97)	18								
GEO.	4760_	10													
	-	-		silty SAND (SM), some gravel, some cobbles, trace clay, fine to coarse grained, well graded, sub angular to angular	MC CAL-02	70	5								
NE/S		-		very dense, light brown, dry											
₽															
	4755_	15													
PAS	-	ļ 			SS SPT-0:	32-49-50 3 (99)	15								
깕	-	-			V 1	(3.2)									
THA															
35.000	4750	20													
30/S	-				MC CAL-0;	70/5cm	5								
하	-	-			9, 0	1									
앎	-														
<u>}</u>	4745	 25													
9 15:	-				SS \$PT-0	50/3cm	3_								
1/21/1				Switched to rock core at 26.5'	∯F 1-04	<u>†</u>									
NF-GEOTECH BH COLUMNS - GINT STD US LAB.GDT - 11/21/19 15:10 - Y:\PROJECT															
AB.G															
USL															
STD															
GINT															
ANS-															
SOLUN															
BHC															
HOH															
GEOT															
실															

CLIENT Lithium Nevada PROJECT NUMBER 475.0385.000 PROJECT LOCATION Thacker Pass, Nevada **DATE STARTED** 3/6/19 **COMPLETED** 3/6/19 GROUND ELEVATION 4769.6 ft HOLE SIZE 4.25 in DRILLING CONTRACTOR HazTech **COORDINATES (WGS84):** DRILLING METHOD HQ Core NORTHING 15147040 ____ **EASTING** 1357491 LOGGED BY M. Walden CHECKED BY K. Magner DEPTH TO WATER (FT BGS) No free water encountered

NOTES Backfilled with bentonite chips and cement grout

2			_	E		SG	S			111				DISCONTI			INUITY LOG		
K CORE LOGS-CC.G ELEVATION (ft)	DEPTH (ft)	RUN NO.	RUN LENGTH	REC (%)	RQD (%)	WEATHERING	HARDNESS	GRAPHIC LOG	MATERIAL DESCRIPTION Surface details: Snow/Mud	SAMPLE TYPE NUMBER	BLOW COUNTS (N VALUE)	WATER LEVEL	TYPE	DIP	SPACING	APERTURE	ROUGHNESS	INFILL	
OPERON POR PROPERTY OF THE STRONG POR PROPERTY O	30	1	5	40	12	HW	R1		[Continuation from soil log at 25.5 feet] Blocky volcanic rock, red to brown, highly weathered, very weak rock, very close joint spacing, oxidization on joint surface			-	JT		VC			OX	
ANL-GEOTECH DATA - E	35	2	5	52	13	HW	R1		Basalt, grey to brown, highly weathered, very weak rock, very close joint spacing, oxidization on joint surface			- - -	JT		VC			OX	
EVAD		•							Borehole terminated at 35.5'										
NF-GEOTECH ROCK CORE LOG - GINT STD US LAB GDT - 9/23/19 10:29 - Y:/PROJECTS\0385.000-THACKER PASS LITHIUM NEVADAIL-GEOTECH DATA - ELKO\BOREHOLES\ROCK CORE LOGS-CC.GFJ																			

CLIENT Lithium Nevada **PROJECT NUMBER** 475.0385.000 PROJECT LOCATION _ Thacker Pass, Nevada DATE STARTED 3/14/19 **COMPLETED** 3/14/19 GROUND ELEVATION 4763.6 ft HOLE SIZE 4.25in DRILLING CONTRACTOR HazTech **COORDINATES (WGS-84):** DRILLING METHOD HSA NORTHING 15147580 **_ EASTING** 1358013 LOGGED BY M. Erdmann CHECKED BY K. Magner NF-GEOTECH BH COLUMNS - GINT STD US LAB. GDT - 11/21/19 15:11 - Y:PROJECTS\0385.000-THACKER PASS LITHIUM NEVADA\L-GEOTECH DATA - ELKOBOREHOLE LOGS\BOREHOLE SOIL LOGS\CC.19.08.29. DEPTH TO WATER (FT BGS) No free water encountered NOTES Backfilled with cement grout ATTERBERG MOISTURE CONTENT (%) SAMPLE TYPE NUMBER LIMITS ELEVATION (ft) GRAPHIC LOG BLOW COUNTS (N VALUE) RECOVERY (INCHES) REMARKS % GRAVEL SAND FINES DEPTH (ft) PLASTICITY LIQUID MATERIAL DESCRIPTION % % Snow/Mud Top Soil / Rot Zone silty SAND (SM), with gravel, fine to coarse grained, well graded, sub angular, dense, light brown, dry SS 25-41-47 4760 18 \$PT-0 (88)26-60-14 70/2cm SS 13-30-30 4755 18 \$PT-02 (60)silty SAND (SM), with gravel, fine to corase grained, well graded, sub angular, very dense, brown, dry 10 MC 30-65-66 18 (131) 4750 SS 16-44-16 \\$PT-03 50/4cm 4745 20 70/4cm MC 4 CAL-0 4740 SS 9-34-23 18 \$PT-04 (57)4735 30 MC 16-70/1cm 7 CAL-04 4730 Borehole terminated at 35

CLIENT Lithium Nevada PROJECT NAME Thacker Pass Geotechnical Investigation **PROJECT NUMBER** 475.0385.000 PROJECT LOCATION _ Thacker Pass, Nevada DATE STARTED 3/11/19 **COMPLETED** 3/11/19 GROUND ELEVATION 4784.6 ft HOLE SIZE 4.25in **DRILLING CONTRACTOR** HazTech **COORDINATES (WGS-84):** DRILLING METHOD HSA NORTHING <u>15147740</u> ___ **EASTING** 1357539 LOGGED BY C. Coleman CHECKED BY K. Magner NF-GEOTECH BH COLUMNS - GINT STD US LAB.GDT - 11/21/19 15:11 - Y:PROJECTS\0385.000-THACKER PASS LITHIUM NEVADAIL-GEOTECH DATA - ELKO\BOREHOLE LOGS\BOREHOLE SOIL LOGS\CC.19.08.29. DEPTH TO WATER (FT BGS) No free water encountered NOTES Backfilled with cement grout ATTERBERG SAMPLE TYPE NUMBER MOISTURE CONTENT (%) LIMITS ELEVATION (ft) GRAPHIC LOG BLOW COUNTS (N VALUE) RECOVERY (INCHES) REMARKS % GRAVEL SAND FINES DEPTH (ft) PLASTICITY LIQUID MATERIAL DESCRIPTION % Snow/Mud Top Soil/ Root Zone silty SAND (SM), some gravel, fine to corase grained, MPS 1.5", sub angular, nonplastic fines, medium dense to dense, light brown, dry SS 3-4-9 18 23.6 NP 11.3 61.9 26.8 \$PT-0 (13)4780 15-55-13 70/1cm Hard drilling 50/3cm 3 \$PT-02 10 70/2cm MC

Switched to rock core at 11.5'

NF-GEOTECH ROCK CORE LOG-GINT STD US LAB GDT - 9/23/19 10:29 - Y?PROJECTS/0385.000-THACKER PASS LITHIUM NEVADAIL-GEOTECH DATA - ELKO'BOREHOLES'ROCK CORE LOGS-CC.GPJ

CLIENT Lithium Nevada PROJECT NAME Thoker Pass Geotechnical Investigation

PROJECT NUMBER 475.0385.000 PROJECT LOCATION Thacker Pass, Nevada

DATE STARTED 3/11/19 COMPLETED 3/11/19 GROUND ELEVATION 4784.6 ft HOLE SIZE 4.25 in

DRILLING CONTRACTOR HazTech COORDINATES (WGS84):

DRILLING METHOD HQ Core NORTHING 15147740 EASTING 1357539

LOGGED BY C. Coleman CHECKED BY K. Magner DEPTH TO WATER (FT BGS) No free water encountered

NOTE	S_E	Back	filled	witl	ı ce	mer	nt gro	out												
			_			ניו				ш						DISCONTINUITY				
ELEVATION (ft)	DEPTH (ft)	RUN NO.	RUN LENGTH	REC (%)	(%) ada	WEATHERING	HARDNESS	GRAPHIC LOG	MATERIAL DESCRIPTION Surface details: Snow/Mud	SAMPLE TYPE NUMBER	BLOW COUNTS (N VALUE)	WATER LEVEL	TYPE	dIO	SPACING	APERTURE	ROUGHNESS	INFILL		
 		1	3	100	10	HW	R3		[Continuation from soil log at 10.5 feet] Blocky volcanic rock, brown, moderately to highly weathered, medium strong rock, very close to close joint spacing, oxidization on joint surface			-	JT		VC VC			OX OX		
4770 	15	2	3	100	0	HW	R3		close joint spacing, oxidization on joint surface			_								
 	 	3	4	100	0	HW	R3					-	JT		VC			ОХ		
4765	20											_	JT		VC			ОХ		
4760	 	4	4	88	31	HW	R3					-	JT		VC			ОХ		
4755	25	5	7	100	0	HW	R3					- - -								
 4750	35	6	5	100	8	HW	R3					- - -	JT		VC			OX		

Borehole terminated at 36'

CLIENT Lithium Nevada **PROJECT NUMBER** 475.0385.000 PROJECT LOCATION Thacker Pass, Nevada DATE STARTED 3/18/19 **COMPLETED** 3/19/19 GROUND ELEVATION 4717.5 ft HOLE SIZE 4.25in COORDINATES (WGS-84): **DRILLING CONTRACTOR** HazTech DRILLING METHOD HSA NORTHING <u>15147611</u> __ EASTING 1357942 LOGGED BY C. Coleman CHECKED BY K. Magner NF-GEOTECH BH COLUMNS - GINT STD US LAB. GDT - 11/21/19 15:11 - Y:PROJECTS\0385.000-THACKER PASS LITHIUM NEVADAIL-GEOTECH DATA - ELKOBOREHOLE LOGS\BOREHOLE SOIL LOGS\CC.19.08.29. DEPTH TO WATER (FT BGS) No free water encountered NOTES Backfilled with cuttings and cement grout **ATTERBERG** SAMPLE TYPE NUMBER MOISTURE CONTENT (%) LIMITS ELEVATION (ft) GRAPHIC LOG BLOW COUNTS (N VALUE) RECOVERY (INCHES) % GRAVEL SAND FINES DEPTH (ft) PLASTICITY LIQUID MATERIAL DESCRIPTION % % Snow/Mud Top Soil / Root Zone silty SAND (SM), with gravel, fine to coarse sand and gravel, MPS 1.0", sub angular, nonplastic fines, dense, 4715 light brown, dry SS 7-15-31 18 \$PT-0 (46)GRAVEL (GW-GM), with sand and silt, fine to coarse sand and gravel, MPS 3.0", sub angular, nonplastic to high MC 30-45-48 18 Hard drilling CAL-0 (93)plasticitiy fines, very dense, brown, dry 4710 21-27-16 \$PT-02 50/4cm 43-70/5cm 11 4705 SS 22-27-34 49.7 35.8 14.5 18 10.5 48 27 \$PT-03 (61)4700 CLAY (CL), with sand, trace gravel, fine grained sand, fine to coarse gravel, MPS 1.5", sub angular, medium plasticity fines, hard, brown, damp 14-18-24 18 (42)4695 SS 28-50/4cm 10 Refusal on gravel \$PT-04 SAND (SW-SC), some clay and gravel, fine to coarse sand / rocky material and gravel, low plasticty fines, very dense, brown, dry 4690 MC 68-70/3cm 9 Borehole terminated at 31.5

CLIENT Lithium Nevada PROJECT NAME Thacker Pass Geotechnical Investigation **PROJECT NUMBER** 475.0385.000 PROJECT LOCATION _ Thacker Pass, Nevada DATE STARTED 3/16/19 **COMPLETED** 3/16/19 GROUND ELEVATION 4740.2 ft HOLE SIZE 4.25in **DRILLING CONTRACTOR** HazTech **COORDINATES (WGS-84):** DRILLING METHOD HSA NORTHING <u>15148367</u> _ **EASTING** 1359448 LOGGED BY M. Erdmann CHECKED BY K. Magner NF-GEOTECH BH COLUMNS - GINT STD US LAB. GDT - 11/21/19 15:11 - Y:PROJECTS\0385.000-THACKER PASS LITHIUM NEVADA\L-GEOTECH DATA - ELKOBOREHOLE LOGS\BOREHOLE SOIL LOGS\CC.19.08.29. DEPTH TO WATER (FT BGS) No free water encountered NOTES Backfilled with cement grout ATTERBERG MOISTURE CONTENT (%) SAMPLE TYPE NUMBER LIMITS ELEVATION (ft) GRAPHIC LOG BLOW COUNTS (N VALUE) RECOVERY (INCHES) REMARKS % GRAVEL SAND FINES DEPTH (ft) PLASTICITY LIQUID MATERIAL DESCRIPTION % % Snow/Mud Top Soil / Root Zone silty SAND (SM), with gravel, well graded, fine to coarse grained, sub angular, very dense, brown, dry 15 50/3cm 4735 62-70/6cm 11.5 20-41-16 \$PT-02 50/4cm 4730 10 MC 59-70/5cm 10.5 15 4725 SS 20-30-15 50/3cm 20 4720 MC 35-41-17 70/5cm 25 4715 SS 12-35-17 \$PT-04 50/5cm 30 4710 MC 28-70/5cm Switched to rock core at 31.5'

CLIENT Lithium Nevada PROJECT NUMBER _475.0385.000 PROJECT LOCATION Thacker Pass, Nevada **DATE STARTED** <u>3/16/19</u> **COMPLETED** <u>3/16/19</u> GROUND ELEVATION 4740.2 ft HOLE SIZE 4.25 in DRILLING CONTRACTOR HazTech **COORDINATES (WGS84):** DRILLING METHOD HQ Core NORTHING 15148367 _____ **EASTING** _1357448 LOGGED BY M. Erdmann CHECKED BY K. Magner DEPTH TO WATER (FT BGS) No free water encountered

NOTES Backfilled with cement grout

Ш	OEPTH (ft)	RUN NO.	RUN LENGTH	REC (%)	RQD (%)	WEATHERING	HARDNESS	GRAPHIC LOG	MATERIAL DESCRIPTION Surface details: Snow/Mud	SAMPLE TYPE NUMBER	BLOW COUNTS (N VALUE)	WATER LEVEL	TYPE	DIP	SPACING	APERTURE	ROUGHNESS	INFILL
<u>4710</u> 4705	 35	1	5	100	8	HW	'R1		[Continuation from soil log at 30 feet] Basalt, black, highly to moderately weathered, very weak to medium strong rock, very close joint spacing, smooth joint surface, calcite alteration on joint surface			- - -	JT		VC		S	
 	 	2	5	100	24	HW	'R1					- - -	JT		VC		S	
4700	40 	3	5	100	53	MW	'R2					- - -	JT		VC		S	
4695 - - -	45 - 	4	5	100	59	sw	R3					- - -	JT		VC		S	CA
	50								Borehole terminated at 50'			-						

CLIENT Lithium Nevada PROJECT NAME Thacker Pass Geotechnical Investigation **PROJECT NUMBER** 475.0385.000 PROJECT LOCATION Thacker Pass, Nevada DATE STARTED 3/25/19 **COMPLETED** 3/26/19 GROUND ELEVATION 4689.8 ft HOLE SIZE 4.25in **DRILLING CONTRACTOR** HazTech **COORDINATES (WGS-84):** DRILLING METHOD HSA **NORTHING** <u>15147664</u> __ **EASTING** 1360891 LOGGED BY C. Coleman CHECKED BY K. Magner NNF-GEOTECH BH COLUMNS - GINT STD US LAB. GDT - 1/1/2/1/19 15:11 - Y:PROJECTS)(0385,000-THACKER PASS LITHIUM NEVADALL-GEOTECH DATA - ELKOBOREHOLE LOGS/BOREHOLE SOIL LOGS-CC.19,08.29, DEPTH TO WATER (FT BGS) No free water encountered NOTES Backfilled with benontie chips and cement grout ATTERBERG MOISTURE CONTENT (%) SAMPLE TYPE NUMBER LIMITS ELEVATION (ft) GRAPHIC LOG BLOW COUNTS (N VALUE) RECOVERY (INCHES) REMARKS % GRAVEL SAND FINES DEPTH (ft) PLASTICITY LIQUID MATERIAL DESCRIPTION % Snow/Mud Top Soil / Root Zone GRAVEL (GW-GM), with silt and sand, fine to coarse grained, MPS 4.0", sub angular, medium plasticity fines, very dense, dry, brown SS 43-50/1cm \$PT-0; MC 56-61-56 18 (117)SS 16-50-17 SPT-02 50/5cm MC 38-70/4cm 10 Sampler refusal SS 21-50/4cm 10 \$PT-0; MC 70/4cm 4 CAL-0 clayey SAND (SC), fine grained sand, low to medium plasticity fines, very dense, brown, moist 4665 25 18-36-44 18 \$PT-04 (80)4660 MC 23-36-54 18 Borehole terminated at 31.5'

	CLIEN	NT L	ithium	Nevada			PROJECT	NAME _T	hacke	r Pas	s Geot	echnic	al Inv	estiga	ation	
	PROJ	ECT	NUMB	SER 475.0385	5.000		PROJECT	LOCATIO	N _T	nacker	Pass,	Nevad	la			
						ETED 3/19/19	GROUND I	ELEVATIO	N 4	769.9	ft	НОІ	LE SI	ZE _4	1.25in	1
	DRILLING CONTRACTOR HazTech DRILLING METHOD HSA LOGGED BY M. Walden CHECKED BY K. Ma NOTES Backfilled with benontie chips and cement grout MATERIAL DESCRIPTION Snow/Mud Top Soil / Root Zone silty SAND (SM), some gravel, fine to coars					COORDIN	ATES (WG	S-84)	:							
PJ	DRILL	ING	METH	OD HSA			NORTH	IING 151	4703	6		EAS	TING	<u>13</u> 5	7 <u>33</u> 0	<u> </u>
.29.G	LOGG	ED E	Y <u>M</u>	. Walden	CHECK	ED BY K. Magner	DEPTH	TO WATE	ER (F							
19.08	NOTE	ROJECT NUMBER 475.0385.000 ATE STARTED 3/19/19 COMPLETED 3/19/19 RILLING CONTRACTOR HazTech RILLING METHOD HSA OGGED BY M. Walden CHECKED BY K. Magner OTES Backfilled with benontie chips and cement grout MATERIAL DESCRIPTION Snow/Mud Top Soil / Root Zone silty SAND (SM), some gravel, fine to coarse grain grade, sub angular, nonplastic fines, very dense, light brown, dry 765 5 15 16 17 18 19 19 10 10 10 10 10 10 10 10				ment grout										
3-CC.										_	ATTER	RBERG				
NF-GEOTECH BH COLUMNS - GINT STD US LAB.GDT - 11/21/19 15:11 - Y:PROJECTS/0385.000-THACKER PASS LITHIUM NEVADAIL-GEOTECH DATA - ELKOBOREHOLE LOGS/BOREHOLE SOIL LOGS-CC. 19.08.29.GPJ	ELEVATION (ft)		GRAPHIC LOG	Snow/Mud	MATERIAL D	ESCRIPTION	SAMPLE TYPE NUMBER	BLOW COUNTS (N VALUE)	RECOVERY (INCHES)	MOISTURE CONTENT (%)	LIQUID	PLASTICITY SI INDEX	% GRAVEL	% SAND	% FINES	REMARKS
3S/B(71 1× 1/1	Top Soil / F	Root Zone											
E LO																
∃HOL					angalan, nonpiao	as miss, very demos, again	\ss	5-32-25	18							
BOR	 						\$PT-0	(57)								
ELKO							MC CAL-0	14-25-36 (61)	18	13.1	NP	NP	7.2	78.0	14.8	DD= 82.6 pcf
DATA								,								
TECH							SS SPT-0:	25-43- 50/3cm	15							
GEC	4760	10					MC MC	50-70/5cm	. 44							
'ADA\L	_						CAL-0	50-70/5cm	11							
1 NEV																
THIUN																
SSLI	4755	15					✓ ss	43-50/4cm	10							
ER PA							\$PT-0	43-30/4611	10	-						
ACK				Switched to	rock core at 16.	5'										
100-TF																
385.0																
CTS\0																
ROJE																
- Y:\PI																
15:11																
21/19																
- 11/2																
3.GDT																
IS LAE																
STD U																
GINT																
INS - (
OLUM																
BH C																
TECH																
-GEO																
띨																

CLIENT Lithium Nevada		PROJECT NAME Theker Pass Geotech	nnical Investigation
PROJECT NUMBER 475.0385.000		PROJECT LOCATION Thacker Pass, N	Nevada
DATE STARTED 3/3/19	COMPLETED 3/3/19	GROUND ELEVATION 4769.9 ft	HOLE SIZE 4.25 in
DRILLING CONTRACTOR HazTech		COORDINATES (WGS84):	
DRILLING METHOD HQ Core		NORTHING <u>15147036</u>	EASTING 1357330
LOGGED BY M. Walden	CHECKED BY K. Magner	DEPTH TO WATER (FT BGS) No fr	ee water encountered

NOTES Backfilled with bentonite chips and cemen	t grout
---	---------

2			т			Ŋ				ш		ی	[DISC	NITNC	VUIT	/ LOC	3
ELEVATION (ft)	DEPTH (ft)	RUN NO.	RUN LENGTH	REC (%)	RQD (%)	WEATHERING	HARDNESS	GRAPHIC LOG	MATERIAL DESCRIPTION Surface details: Snow/Mud	SAMPLE TYPE NUMBER	BLOW COUNTS (N VALUE)	WATER LEVEL	TYPE	DIP	SPACING	APERTURE	ROUGHNESS	INFILL
ELEVATION (#) 1. TANGET STATE 1. TANGET STAT		_1	9.5	100	16	HW to MW	R1 to R3		[Continuation from soil log at 15 feet] Basalt, dark grey, highly to moderately weathered, weak to medium strong rock, very close to close joint spacing, calcite alteration and oxidization on joint surfaces			- - - - - -	JI		VC			CA
4745	25	2	6	90	13	HW to MW	R1 to R3					- - - - -	JT		VC			CA
4740	30								Borehole terminated at 30.5'									
0.00 - 0.00 - 0.00 0.00 0.00 0.00 0.00																		
NITOCOL ECT NOON CONE LOG - GINT STD O																		

	CLIE	NT Li	hium	Nevada				PROJECT	NAME _	Thacke	r Pas	s Geot	echnic	al Inv	estig	ation	
	PRO.	JECT N	IUMBI	ER 475.038	5.000			PROJECT	LOCATIO	ON _T	nacker	Pass,	Nevad	da			
	DATE	STAF	TED	3/5/19	CON	MPLETED 3/5	5/19	GROUND	ELEVATION	ON _4	779.9	ft	_ ноі	LE SI	ZE _4	1.25in	
	DRIL	LING C	ONTE	RACTOR Ha	zTech			COORDIN	IATES (W	GS-84)):						
Ы	DRIL	LING N	IETHO	DD HSA				NORT	HING _15	14742	4		EAS	TING	<u>13</u> 5	7355	
.29.G	LOG	GED B	Y <u>M.</u>	Walden	CHE	CKED BY K	. Magner	DEPTI	TAW OT	ER (F	T BGS) <u>N</u> o					
19.08.	NOTE	ES Ba	ckfille	ed with benon	tie chips and	cement grout											
3-CC.													RBERG				
NF-GEOTECH BH COLUMNS - GINT STD US LAB.GDT - 11/21/19 15:11 - Y:PROJECTS/0385.000-THACKER PASS LITHIUM NEVADAIL-GEOTECH DATA - ELKO'BOREHOLE LOGS'BOREHOLE SOIL LOGS-CC.19.08.29.GPJ	ELEVATION (ft)	0	GRAPHIC LOG	Snow/Mud		L DESCRIPTIC	DN	SAMPLE TYPE NUMBER	BLOW COUNTS (N VALUE)	RECOVERY (INCHES)	MOISTURE CONTENT (%)	LIQUID	PLASTICITY SI INDEX	% GRAVEL	% SAND	% FINES	REMARKS
LOGS/E			1 1/2 1/2	Top Soil / I	Root Zone												
BOREHOLE	4775	T		sandy lean to hard, bro		ne grained, me	edium plasticity, stil	SS SPT-0	4-4-5	18	18.5	41	17	4.4	32.3	63.3	
TA - ELKO		5						MC CAL-0	9-26- 1 70/5cm	17							
ОТЕСН DA	 					ravel, fine to co ngular, light bro	arse grained, well own, dry	SS \$PT-0	33-50/2cm	n 8							
M NEVADA\L-GE	<u>4770</u> 	10						MC ¢AL-0		3	/						
THIU		<u> </u>	<u> </u>	Switched to	o rock core at	13.5'											
SSLI																	
RPA																	
4CKE																	
0-TH/																	
85.00																	
TS/03																	
OJEC.																	
Y:\PR(
:11 -)																	
19 15																	
11/21/																	
DT -																	
AB.G																	
) US L																	
T STE																	
- GIN																	
MNS																	
COLU																	
1 BH (
TECH																	
-GEC																	
ż																	

CLIENT Lithium Nevada	PROJECT NAME Thcker Pass Geotechnical Investigation
PROJECT NUMBER 475.0385.000	PROJECT LOCATION Thacker Pass, Nevada
DATE STARTED 3/5/19 COMPLETED 3/5/19	GROUND ELEVATION 4779.9 ft HOLE SIZE 4.25 in
DRILLING CONTRACTOR HazTech	COORDINATES (WGS84):
DRILLING METHOD HQ Core	NORTHING <u>15147424</u> EASTING <u>1357355</u>
LOGGED BY M. Walden CHECKED BY K. Magner	DEPTH TO WATER (FT BGS) No free water encountered

NOTES Backfilled with bentonite chips and cemen	t grout
---	---------

		O				Й				DISCO	NTIN	TIUN	/ LOC	3
ELEVATION (ft) DEPTH (ft) (ft) RUN NO.	REC (%)	RQD (%) WEATHERING	HARDNESS	GRAPHIC LOG	MATERIAL DESCRIPTION Surface details: Snow/Mud	SAMPLE TYPE NUMBER	BLOW COUNTS (N VALUE)	WATER LEVEL	TYPE	DIP	SPACING	APERTURE	ROUGHNESS	INFILL
4765 15				***************************************	[Continuation from soil log at 13.5 feet]			-	JT		VC		ш	ОХ
1 5 1	5 100	0 HW	/ R1		Blocky volcanic rock, reddish brown, highly to moderately weathered, very weak rock, very close joint spacing, oxidization on joint surfaces			- - -						
4760 20 2 1.	.5 56	0 HW	/ R1					_	JT		VC VC			OX OX
3	5 20	0 HW	/ R1					- - -	01		V			O.A.
4755 25 4 1.	.5 100	0 MV	/ R3					_	JT		С			ох
- +	.5 100	O IVIV	VIIIO		Basalt, grey, moderately weathered, medium strong rock, close joint spacing, oxidization on joint surface			_	JT		С			ОХ
5 3. 4750 30	.5 100	27 MV	/ R3		Surface			_						

CLIE	NT _L	ithium	Nevada I	PROJECT	NAME _T	hacke	er Pas	s Geot	echnic	al Inv	estig/	ation	
PRO.	JECT	NUMB	BER 475.0385.000	PROJECT	LOCATIO	N _T	nacker	Pass,	Nevad	da			
DATE	STA	RTED	3/2/19 COMPLETED 3/2/19	GROUND E	LEVATIO	N <u>4</u>	788.2	ft	_ HOI	LE SI	ZE _	4.25in	l
DRIL	LING	CONT	RACTOR HazTech	COORDINA	ATES (WG	S-84)):						
DRIL	LING	METH	OD HSA	NORTH	ING _151	4703	6		EAS	TING	13	57330	1
LOG	GED E	SY <u>M</u>	. Walden CHECKED BY K. Magner	DEPTH	TO WATE	ER (F	T BGS) No					
NOTI	ES _B	ackfille	ed with benontie chips and cement grout										
<u> </u>								ATTER	RBERG				
ELEVATION (ft)	O DEPTH (ft)	GRAPHIC LOG	MATERIAL DESCRIPTION Snow/Mud	SAMPLE TYPE NUMBER	BLOW COUNTS (N VALUE)	RECOVERY (INCHES)	MOISTURE CONTENT (%)	LIQUID	PLASTICITY STINDEX	% GRAVEL	% SAND	% FINES	REMARKS
<u> </u>		71 1N	Top Soil / Root Zone										
4785	- - -		silty SAND (SM), some gravel, fine to coarse grained, well graded, sub angular, medium dense to dense, light brown, dry	√ ss	8-12-12								
4705	5		,	\$PT-01	(24)	18	_						
				MC CAL-01	6-9-13 (22)	18							
4780				SS SPT-02	9-12-17 2 (29)	18							
	10		sandy CLAY (CL), fine grained, high plasticity, very stiff,	MC MC	9-12-13	18	31.8	50	23	4.8	36.3	58.9	DD= 71.0 pcf
4775	- - -		brown, dry	CAL-02	2 (25)								
4773	15												
			silty SAND (SM), trace gravel and clay, fine to coarse grained, well graded, very dense, brown, dry	SS SPT-03	19-24-36 3 (60)	18							
4770													
	20		SAND (SP-SM), with silt and gravel, poorly graded, low	MC CAL-03	39-70/4cm	10	10.0	32	7	35.1	53.7	11.2	
4765			plasticity fines, very dense, brown, dry	QAL-09									
	25												
				SS SPT-04	49-50/3cm	9							
4760													
	30			MC ¢AL-04	_70/5cm	5							
=	تـــــا	<u>. HE</u>	Borehole terminated at 31.5'	ΨΛL-U4					<u> </u>			Ш	
2													

CLIENT Lithium Nevada PROJECT NAME Thacker Pass Geotechnical Investigation **PROJECT NUMBER** 475.0385.000 PROJECT LOCATION Thacker Pass, Nevada DATE STARTED 3/1/19 COMPLETED 3/2/19 **GROUND ELEVATION** 4804.6 ft HOLE SIZE 4.25in COORDINATES (WGS-84): **DRILLING CONTRACTOR** HazTech DRILLING METHOD HSA NORTHING 15147424 _ **EASTING** 1356823 LOGGED BY M. Walden CHECKED BY K. Magner GEOTECH BH COLUMNS - GINT STD US LAB, GDT - 11/21/19 15:11 - Y/PROJECTS/0385,000-THACKER PASS LITHIUM NEVADALL-GEOTECH DATA - ELKOBOREHOLE LOGS/BOREHOLE SOIL LOGS/CC.19,08.29, DEPTH TO WATER (FT BGS) No free water encountered NOTES Backfilled with cement grout **ATTERBERG** SAMPLE TYPE NUMBER MOISTURE CONTENT (%) LIMITS ELEVATION (ft) GRAPHIC LOG BLOW COUNTS (N VALUE) RECOVERY (INCHES) REMARKS GRAVEL SAND FINES DEPTH (ft) PLASTICITY LIQUID MATERIAL DESCRIPTION % % % Snow/Mud Top Soil / Root Zone silty SAND (SM), with gravel, trace cobbles, sub angular, MPS 2.0", nonplasitc fines, medium dense, light brown, dry SS 13-17-19 18 \$PT-0 (36)4800 MC 13-19-15 18 (34)9-10-11 SS 18 \$PT-02 (21)4795 10 MC 6-16-20 18 37.3 110 55 17.5 82.5 DD= 63.4 pcf SILT (MH), with sand, fine grained, high plasticty, very stiff, CAL-02 (36)brown, dry 4790 silty SAND (SM), fine to coarse grained, MPS 1.0", sub SS 12-28-50 18 angular, nonplasitc fines, very dense, brown, dry \$PT-03 (78)4785 20 18-38-70 35.3 NP NP 3.3 73.1 23.6 18 DD= 72.1 pcf (108)4780 25 28-43-50 18 \$PT-04 (93)4775 30 MC 70/4cm 4 CAL-0 4770 silty SAND (SM), with gravel, trace clay, fine to coarse SS 30-36-15 \$PT-05 50/3cm grained, well graded, sub angular, brown, dry MC 50/2cm 2 CAL-0

	CLIE	NT '	ithium	Nevada			В	DO IECT	NAME T	hacko	r Doo	e Goot	achnic	al lov	actic	ation		
				Nevada BER _475.0385	5.000				NAME <u>T</u>						esuga	auOH		
- 1						LETED _3/2/19			LEVATIO						ZE 4	1.25in		
				RACTOR Ha					ATES (WG			-						
٦				OD HSA					IING <u>151</u>				EAS	TING	135	6938		
29.GF	LOG	GED I	BY <u>M</u>	. Walden	CHEC	KED BY K. Magner			TO WATE									
19.08	NOTE	S_E	Backfill	ed with benont	tie chips and ce	ement grout												
S-CC.													RBERG					
OIL LOG	ELEVATION (ft)	DEPTH (ft)	GRAPHIC LOG		ΜΔΤΕΡΙΔΙ Ι	DESCRIPTION		SAMPLE TYPE NUMBER	BLOW COUNTS (N VALUE)	RECOVERY (INCHES)	MOISTURE CONTENT (%)	LIM O -		GRAVEL	SAND	FINES	REMARKS	
EHOLE S	ELEV.	DE.	GRA	Snow/Mud	WWW CT ET CITAL I	SECONII FICIN		SAMPL	BL COL (N V/	RECC (INC	MOIS	LIQUID	PLASTICITY INDEX	% GF	s %	₩ F	REM	
S/BOR		0	71 1 ^N . 7/1	Top Soil / F	Root Zone								Ь					
F 106	4795	Į :	17.341/	silty SAND) (SM) some gra	avel, fine to coarse graine	ed well	-										
NF-GEOTECH BH COLUMNS - GINT STD US LAB.GDT - 11/21/19 15:11 - Y:\PROJECTS\0385.000-THACKER PASS LITHIUM NEVADA\L-GEOTECH DATA - ELKO\BOREHOLE LOGS\BOREHOLE SO\L LOGS-CC.19.08.29.GPJ		- - -		graded, sul	b angular, mediu	ım dense to dense, light b	orown,	SS SPT-01	13-18-13 (31)	18								
LKO\B		5						MC	18-23-24	18								
ATA - E	4790	‡ :						CAL-01	(47)	10								
отесн р	 	- - 						SS SPT-02	7-12-13 2 (25)	18								
ADA/L-GE	 4785	10						MC CAL-02	25-42-53 2 (95)	18								
IIUM NEV		† - † -																
ASS LITH		15						√ ss	12-28-42	40								
CKER P.	4780	† - † -						♦ \$PT-03	3 (70)	18								
5.000-TH/		20																
TS\038		- 20	*****	SAND (SW well graded		ome silt, fine to coarse gr ery dense, brown, dry	ained,	MC CAL-03	70/3cm	2.5								
PROJEC	<u>4775</u>	<u> </u>		-	-													
- X:\			*****	Switched to	o rock core at 24	,												
3 15:1				2toriod to	55.1 5510 Gt Z													
/21/18																		
Т - 1																		
AB.G⊑																		
USL																		
IT STE																		
S-GIN																		
LUMN																		
вн со																		
TECH																		
VF-GEC																		

PROJECT NAME Thcker Pass Geotechnical Investigation CLIENT Lithium Nevada PROJECT NUMBER 475.0385.000 PROJECT LOCATION _ Thacker Pass, Nevada **DATE STARTED** 3/2/19 **COMPLETED** 3/2/19 GROUND ELEVATION 4796.9 ft HOLE SIZE 4.25 in DRILLING CONTRACTOR HazTech **COORDINATES (WGS84):** DRILLING METHOD HQ Core NORTHING 15147273 _____ **EASTING** 1356938 LOGGED BY M. Walden CHECKED BY K. Magner DEPTH TO WATER (FT BGS) No free water encountered

NOTES Backfilled with bentonite chips and cement grout

E .		_			(D				111			[DISCO	NITNC	VUITY	′ LOG	j .
CORE LOGS-CC.G ELEVATION (ft) DEPTH	(#) RUN NO.	RUN LENGTH	REC (%)	RQD (%)	WEATHERING	HARDNESS	GRAPHIC LOG	MATERIAL DESCRIPTION Surface details: Snow/Mud	SAMPLE TYPE NUMBER	BLOW COUNTS (N VALUE)	WATER LEVEL	TYPE	DIP	SPACING	APERTURE	ROUGHNESS	INFILL
Š 20	+-	1		_			\rightarrow	[Continuation from soil log at 24 feet]				JT		VC		ш.	CA
	1	1.5	50	0	MW	R1		Basalt, dark grey, moderately weathered, weak to medium strong rock, very close joint spacing, calcite alteration on joint surfaces			-	JT		VC			CA
4770 BOR HE 4770 - 30	2	5	100	14	MW	R1		calcite alteration on joint surfaces			- - -	JT		VC			CA
4765 4765	3	3	100	0	MW	R3					-]		V			CA
95	5 4	2	100	37	MW	R3					-	JT		VC			CA
Σ Z								Borehole terminated at 35.5'									
NF-GEOTECH ROCK CORE LOG - GINT STD US LAB.GDT - 9/23/19 10:29 - Y:\PROJECTS\0385.000-THACKER PASS LITHIUM NEVADAIL-GEOTECH DATA - ELKO\BORREHOLES\ROCK CORE LOGS-CC.GPU CAPION (#)																	

1				PROJECT							estig	ation	
1				PROJECT									
1				GROUND E				ft	_ HO	LE SI	ZE _	4.25ir	1
1				COORDINA						- 0	405	-0700	
5			### A. Walden CHECKED BY K. Magner CHECKED BY L. Ma		IING 151				_ EAS				-
χi			lled with benontie chips and cement grout	DEPIN	TO WATE	-K (F	В) <u>INO</u>	iree w	ater e	ncou	ntere	<u>u</u>
								ATTE	RBERG	.			
ELEVATION (ft)	DEPTH (ft)	GRAPHIC LOG	MATERIAL DESCRIPTION Snow/Mud	SAMPLE TYPE NUMBER	BLOW COUNTS (N VALUE)	RECOVERY (INCHES)	MOISTURE CONTENT (%)		PLASTICITY STINDEX	% GRAVEL	% SAND	% FINES	REMARKS
<u> </u>	0	21 1 _N .	Top Soil / Root Zone										
2 4810			silty SAND (SM), with gravel, trace cobbles, fine to coarse grained, well graded, sub angular, nonplastic to medium plasticity fines, dense to very dense, light brown, dry	√ ss	35-25-20								
20 20 11 11 11 11 11 11 11 11 11 11 11 11 11	<u> </u>			\$PT-01		18							
- ELNO	5			MC CAL-01	17-26-41 (67)	18	10.9	NP	NP	51.7	34.7	13.6	
4805	} -			⊠ ss	50	6							
	-			\$PT-02	}								
	10			MC	35-41-46	18							
3 - - - - - - -	[]			CAL-02	(87)								
Z 4000 ∑	-												
	15												
	-			SS SPT-03	18-20-23 (43)	18							
[5 4795	╬ -			7 4	(.0)								
H -	} -												
00000	20				70/5								
	╬ -			MC CAL-0	70/5cm	5							
4790	} -												
-	[]												
<u>-</u>	25			√ ss	14-17-28								
BL/12	} -			SPT-04	(45)	18							
4785	-												
- A	<u> </u>												
	30			MC	41-70/4cm	10	17.3	46	16	29.3	49.1	21.6	
	[]			CAL-04									
4780	<u></u> -												
	35												
<u></u>	[.			SS \$PT-05	18-50/5cm	11							
5 4775	} -												
	╁ -												
는 -	40												

CLIENT Lithium Nevada PROJECT NUMBER <u>475.0385.000</u> PROJECT LOCATION _ Thacker Pass, Nevada

C.19.08.29.GPJ ELEVATION (ft)	GRAPHIC LOG	MATERIAL DESCRIPTION	SAMPLE TYPE NUMBER	BLOW COUNTS (N VALUE)		MOISTURE CONTENT (%)	ATTEF LIM LIWIT	PLASTICITY SIBES INDEX INDEX	% GRAVEL	% SAND	% FINES	REMARKS
NF-GEOTECH BH COLUMNS - GINT STD US LAB.GDT - 11/21/19 15:11 - Y:\PROJECTS\0385.000-THACKER PASS LITHIUM NEVADA\L-GEOTECH DATA - ELKO\BOREHOLE LOGS\BOREHOLE SOIL LOGS-CC.19:08.29.GPJ	45	silty SAND (SM), with gravel, trace cobbles, fine to coarse grained, well graded, sub angular, nonplastic to medium plasticity fines, dense to very dense, light brown, dry (continued)	MC ÇAL-0:									
ATA - ELKO'BOREHOLE	50	Borehole terminated at 51.5'	MC ÇAL-0	50/1cm	0.5							
I NEVADA\L-GEOTECH D												
THACKER PASS LITHIUM												
Y:\PROJECTS\0385.000-`												
.B.GDT - 11/21/19 15:11 -												
JMNS - GINT STD US LA												
NF-GEOTECH BH COLL												

CLIENT Lithium Nevada PROJECT NAME Thacker Pass Geotechnical Investigation **PROJECT NUMBER** 475.0385.000 PROJECT LOCATION _ Thacker Pass, Nevada DATE STARTED 3/13/19 **COMPLETED** 3/13/19 GROUND ELEVATION 4782.6 ft HOLE SIZE 4.25in **DRILLING CONTRACTOR** HazTech **COORDINATES (WGS-84):** DRILLING METHOD HSA NORTHING 15147919 __ **EASTING** 1357756 LOGGED BY M. Erdmann CHECKED BY K. Magner NF-GEOTECH BH COLUMNS - GINT STD US LAB. GDT - 11/21/19 15:11 - Y:PROJECTS\0385.000-THACKER PASS LITHIUM NEVADA\L-GEOTECH DATA - ELKOBOREHOLE LOGS\BOREHOLE SOIL LOGS\-CC.19.08.29. DEPTH TO WATER (FT BGS) No free water encountered NOTES Backfilled with benontie chips and cement grout ATTERBERG MOISTURE CONTENT (%) SAMPLE TYPE NUMBER LIMITS ELEVATION (ft) GRAPHIC LOG BLOW COUNTS (N VALUE) RECOVERY (INCHES) REMARKS % GRAVEL SAND FINES DEPTH (ft) PLASTICITY LIQUID MATERIAL DESCRIPTION % Snow/Mud Toe Soil / Root Zone silty SAND (SM), with gravel, fine to coarse grained, well graded, subroudned, nonplastic fines, dense to very dense, light brown, dry 4780 SS 4-18-33 18 23.5 NP 22.4 60.2 17.4 (51) \$PT-0 27-37-68 MC 18 (105) 4775 27-50/4cm 10 10 MC 57-56-17 AL-02 70/5cm 4770 SS | 39-50/5cm 11 Switched to rock core at 16.5'

NewFields PAGE 1 OF 1

CLIENT Lithium Nevada PROJECT NUMBER 475.0385.000 PROJECT LOCATION Thacker Pass, Nevada **DATE STARTED** <u>3/13/19</u> **COMPLETED** <u>3/13/19</u> GROUND ELEVATION 4782.6 ft HOLE SIZE 4.25 in DRILLING CONTRACTOR HazTech **COORDINATES (WGS84):** DRILLING METHOD HQ Core NORTHING 15147919 ____ **EASTING** 1357756 LOGGED BY M. Erdmann CHECKED BY K. Magner DEPTH TO WATER (FT BGS) No free water encountered

NOTES Backfilled with bentonite chips and cement grout

		I			G				Й		긢		DISC	NTINC	VUITY	/ LOC	3
DEPTH (ft)	RUN NO.	RUN LENGT	REC (%)	RQD (%)	WEATHERIN	HARDNESS	GRAPHIC LOG	MATERIAL DESCRIPTION Surface details: Snow/Mud	SAMPLE TYF NUMBER	BLOW COUNTS (N VALUE)	WATER LEVE	TYPE	DIP	SPACING	APERTURE	ROUGHNESS	INFILL
 	1	3.5	17	0	HW	R1		[Continuation from soil log at 15 feet] Blocky volcanic rock, brown, hgihly weathered, extremely weak rock, very close joint spacing, slightly rough joint surface, oxidization on joint surface.			-	JT		VC		SR	ΟX
	-2	3	100	0	HW	R1					- - -						ox ox
25	3	3.5	100	0	HW	R1					- - -	JT		VC		SR	ox
 	4	5	100	0	HW	R1					- - -						
	5	5	67	0	HW	R1					- - -	JT		VC		SR	OX
 35 											_ 	JT		vc		SR	ОХ
 	6	5	100	0	HW	R1					- - -						
40							КЖ	Borehole terminated at 40'									
	15 	15	15	15	15	15	15	15	Surface details: SnowMud [Continuation from soul log at 15 feet] Blocky volcanic rock, brown, hgihly weathered, extremely weak rock, very close joint spacing, slightly rough joint surface, oxidization on joint surface 3 3.5 100 0 HW R1 4 5 100 0 HW R1 5 5 5 67 0 HW R1 6 5 100 0 HW R1	15	[Continuation from soil log at 15 feet] Blocky volcanic rock, brown, hgihly weathered, extremely weak rock, very close joint spacing, slightly rough joint surface, oxidization on joint surface 3 3 3.5 100 0 HW R1 4 5 100 0 HW R1 5 5 6 67 0 HW R1 6 5 100 0 HW R1	[Continuation from soil log at 15 feet] Blocky volcanic rock, brown, hgihly weathered, extremely weak rock, very close joint spacing, slightly rough joint surface. 20 2 3 100 0 HW R1 3 3.5 100 0 HW R1 4 5 100 0 HW R1 35 5 5 67 0 HW R1 4 5 100 0 HW R1 4 5 100 0 HW R1	Hard Color Hard Color Hard Hard	Hard Section Hard Section Hard Section Hard Section Hard Section Hard Hard	Hand Hand	Hamilton Hamilton	1 3.5 17 0 HW R1

CLIENT Lithium Nevada	PROJECT	AMINIE	liache	газ	S Geol	echnic	ai inv	estig	auon	
PROJECT NUMBER 475.0385.000	PROJECT	LOCATIO	N Th	acker	Pass,	Nevad	la			
DATE STARTED 3/15/19 COMPLETED 3/15/19	GROUND E	LEVATIO	N 47	741.9	ft	HOI	LE SI	ZE _	1.25ir	1
DRILLING CONTRACTOR HazTech	COORDINA	ATES (WG	S-84)	:						
DRILLING METHOD HSA	NORTH	ING _151	4810	3		EAS	TING	135	9052	
LOGGED BY M. Erdmann CHECKED BY K. Magner	DEPTH	TO WATE	ER (F	r BGS) <u>No</u>	free wa	ater e	ncou	ntere	d
NOTES Backfilled with benontie chips and cement grout										
					ATTEF	RBERG				
MATERIAL DESCRIPTION Snow/Mud Snow/Mud	SAMPLE TYPE NUMBER	BLOW COUNTS (N VALUE)	RECOVERY (INCHES)	MOISTURE CONTENT (%)	LIQUID LIMIT	PLASTICITY SI INDEX	% GRAVEL	% SAND	% FINES	REMARKS
Top Soil / Root Zone										
silly SAND (SM), well graded, line grained, sub angular, medium dense to dense, light brown, dry										
	SS SPT-0	13-12-11 (23)	18							
5 (A)	MC CAL-0	19-37-50 (87)	18							
4/35	≥ SS	50/5cm	5							
			4							
- - 1 331			4_							
	PROJECT NUMBER 475.0385.000 DATE STARTED 3/15/19 COMPLETED 3/15/19 DRILLING CONTRACTOR HazTech DRILLING METHOD HSA LOGGED BY M. Erdmann CHECKED BY K. Magner NOTES Backfilled with benontie chips and cement grout MATERIAL DESCRIPTION Snow/Mud Top Soil / Root Zone silty SAND (SM), well graded, fine grained, sub angular, medium dense to dense, light brown, dry	PROJECT NUMBER 475.0385.000 DATE STARTED 3/15/19 COMPLETED 3/15/19 GROUND E GROUND E COORDINA DRILLING METHOD HSA NORTH LOGGED BY M. Erdmann CHECKED BY K. Magner DEPTH NOTES Backfilled with benontie chips and cement grout MATERIAL DESCRIPTION Snow/Mud O Top Soil / Root Zone silty SAND (SM), well graded, fine grained, sub angular, medium dense to dense, light brown, dry SS SPT-01 4735 10 MC CAL-01	PROJECT NUMBER 475.0385.000 DATE STARTED 3/15/19 COMPLETED 3/15/19 GROUND ELEVATION DRILLING CONTRACTOR HazTech COORDINATES (WG NORTHING 151 LOGGED BY M. Erdmann CHECKED BY K. Magner NOTES Backfilled with benontie chips and cement grout NOTES Backfilled with benontie chips and cement grout MATERIAL DESCRIPTION Snow/Mud O Snow/Mud Snow	PROJECT NUMBER 475.0385.000 PROJECT LOCATION TO DATE STARTED 3/15/19 COMPLETED 3/15/19 GROUND ELEVATION 4.7 COORDINATES (WGS-84) DRILLING CONTRACTOR HazTech COORDINATES (WGS-84) NORTHING 15148100 DEPTH TO WATER (FOR NOTES Backfilled with benontie chips and cement grout NOTES Backfille	PROJECT NUMBER 475.0385.000 DATE STARTED 3/15/19 COMPLETED 3/15/19 GROUND ELEVATION 4741.9 COORDINATES (WGS-84): NORTHING 15148106 DEPTH TO WATER (FT BGS NOTES Backfilled with benontie chips and cement grout NOLLY ALL OF SHARM SITE O	PROJECT LOCATION Thacker Pass, DATE STARTED 3/15/19 COMPLETED 3/15/19 GROUND ELEVATION 4741.9 ft COORDINATES (WGS-84): DRILLING METHOD HSA CHECKED BY K. Magner NORTHING 15148106 LOGGED BY M. Erdmann CHECKED BY K. Magner NOTES Backfilled with benontic chips and cement grout MATERIAL DESCRIPTION Snow/Mud Sn	PROJECT NUMBER 475.0385.000 DATE STARTED 3/15/19 COMPLETED 3/15/19 GROUND ELEVATION 4741.9 ft HOI DRILLING CONTRACTOR HazTech DRILLING METHOD HSA LOGGED BY M. Erdmann CHECKED BY K. Magner NOTES Backfilled with benontie chips and cement grout MATERIAL DESCRIPTION Snow/Mud O Snow/Mud Snow/Mud	PROJECT NUMBER 475.0385.000 DATE STARTED 3/15/19 COMPLETED 3/15/19 COMPLETED 3/15/19 GROUND ELEVATION 4741.9 ft HOLE St. COORDINATES (WGS-84): NORTHING 15148106 EASTING DEPTH TO WATER (FT BGS) No free water experience with benontie chips and cement grout NOTES Backfilled with benontie chips and cement grout MATERIAL DESCRIPTION MATERIAL DESCRIPTION Snow/Mud Snow/	PROJECT NUMBER	PROJECT NUMBER

PAGE 1 OF 1

NewFields

PROJECT NAME Thcker Pass Geotechnical Investigation CLIENT Lithium Nevada PROJECT NUMBER 475.0385.000 PROJECT LOCATION _ Thacker Pass, Nevada **DATE STARTED** 3/15/19 **COMPLETED** 3/16/19 GROUND ELEVATION 4741.9 ft HOLE SIZE 4.25 in DRILLING CONTRACTOR HazTech **COORDINATES (WGS84):** DRILLING METHOD HQ Core NORTHING 15148106 ____ **EASTING** 1359051 LOGGED BY M. Erdmann CHECKED BY K. Magner DEPTH TO WATER (FT BGS) No free water encountered

NOTES Backfilled with bentonite chips and cement grout

-			Į			<u>0</u>	(0			Щ		긥		DISCO	NTINC	YUIT		3
ELEVATION (ft)	DEPTH (ft)	RUN NO.	RUN LENGTH	REC (%)	RQD (%)	WEATHERING	HARDNESS	GRAPHIC LOG	MATERIAL DESCRIPTION Surface details: Snow/Mud	SAMPLE TYPE NUMBER	BLOW COUNTS (N VALUE)	WATER LEVEL	TYPE	DIP	SPACING	APERTURE	ROUGHNESS	INFILL
4730		1	2			HW		***	[Continuation from soil log at 11.5 feet] Blocky volcanic rock, brown, highly weathered, very			-	JT		VC			ОХ
	- - 	2	2	100	25	HW	R1		Blocky volcanic rock, brown, highly weathered, very weak to medium strong rock, very close joint spacing, oxidization on joint surface			-	JT		VC			ох
 	15											_						
4725		3	5	100	0	HW	R1					-						
 	- 											-	JT		VC			ОХ
	20	4	2.5	40	0	HW	R1					_	1					
4720	- -											-	JT		VC			ОХ
	- 	5	4	100	0	HW	R1					-						
	25											_	JT		VC			ОХ
4715	- - -	6	2.5	100	0	HW	R1					-						
 		7	1	75	0	HW	R1					-	JT		VC VC			OX OX
	30	-8	2	62	0	HW	R1					_						
4710	- 											-	JT		VC			ОХ
	-	9	4	43	0	HW	R1					-						
	35											_	JT		VC			ОХ
4705	 											-						
 L]		10	5	81	42	HW	R1					-	1					
	40								Borehole terminated at 40'									
									Borefiole terminated at 40									

CLIENT Lithium Nevada PROJECT NAME Thacker Pass Geotechnical Investigation **PROJECT NUMBER** 475.0385.000 PROJECT LOCATION _ Thacker Pass, Nevada DATE STARTED 3/15/19 **COMPLETED** 3/15/19 GROUND ELEVATION 4766.2 ft HOLE SIZE 4.25in **DRILLING CONTRACTOR** HazTech **COORDINATES (WGS-84):** DRILLING METHOD HSA NORTHING <u>15148506</u> __ **EASTING** 1358723 DEPTH TO WATER (FT BGS) No free water encountered LOGGED BY M. Erdmann CHECKED BY K. Magner NF-GEOTECH BH COLUMNS - GINT STD US LAB. GDT - 11/21/19 15:11 - Y:PROJECTS\0385.000-THACKER PASS LITHIUM NEVADAIL-GEOTECH DATA - ELKOBOREHOLE LOGS\BOREHOLE SOIL LOGS\CC.19.08.29. NOTES Backfilled with benontie chips and cement grout ATTERBERG MOISTURE CONTENT (%) SAMPLE TYPE NUMBER LIMITS ELEVATION (ft) GRAPHIC LOG BLOW COUNTS (N VALUE) RECOVERY (INCHES) REMARKS % GRAVEL SAND FINES DEPTH (ft) PLASTICITY LIQUID MATERIAL DESCRIPTION % Snow/Mud Top Soil / Root Zone 4765 silty SAND (SM), with gravel, fine to coarse grained, well graded, sub angular, nonplastic fines, dense, light brown, SS 9-41-49 14.6 NP 36.9 45.6 17.5 \$PT-0 (90)MC 33-70/5cm 11 SS 12-20-30 18 11.3 NP NP 40.2 46.6 13.2 \$PT-02 (50)70/3cm MC 3 4755

Switched to rock core at 11.5'

PAGE 1 OF 2

NewFields

5 50

3

0 HW R1

100 77 MW R3

CLIENT Lithium Nevada PROJECT NAME The Pass Geotechnical Investigation **PROJECT NUMBER** _475.0385.000 PROJECT LOCATION _ Thacker Pass, Nevada **DATE STARTED** <u>3/15/19</u> **COMPLETED** 3/15/19 GROUND ELEVATION 4766.2 ft HOLE SIZE 4.25 in DRILLING CONTRACTOR HazTech **COORDINATES (WGS84):** DRILLING METHOD HQ Core NORTHING 15148506 **EASTING** 1358723 LOGGED BY M. Erdmann CHECKED BY K. Magner DEPTH TO WATER (FT BGS) No free water encountered NOTES Backfilled with bentonite chips and cement grout

			Ξ			ര				Щ		닒		DISCO	NTIN	\UIT\	/ LOC	3
ELEVATION (ft)	DEPTH (ft)	RUN NO.	RUN LENGTH	REC (%)	RQD (%)	WEATHERING	HARDNESS	GRAPHIC LOG	MATERIAL DESCRIPTION Surface details: Snow/Mud	SAMPLE TYPE NUMBER	BLOW COUNTS (N VALUE)	WATER LEVEL	TYPE	DIP	SPACING	APERTURE	ROUGHNESS	INFILL
4755		1	1.5	30	0	HW	R1	***	[Continuation from soil log at 10 feet] Blocky volcanic rock, reddish brown, highly			_	JT		VC		S	
	-	2	2	40	0	HW	R1		weathered, very weak rock, very close joint spacing, smooth joint suface			_	JT		VC		S	
												- -	JT		VC		s	
≦ 	15_	3	2	40	0	HW	R1		-				JT		VC		s	
4750 	20	4	5	100	8	HW	'R1					- - - -	JT		VC		0 0	
4740	25	5	5	100	10	HW	R1					- - - -	JT		VC		S	
4735	30	6	5	100	0	HW	R1					- - - -	JT		VC		S	
	35	7	5	100	20	HW	'R1					- - -	JT		VC		S	
NOLVALUE (#) 100	40	8	5	37	25	HW	R1					- - - -						
<u>-</u>												_	JT		VC		s	

Basalt, black, moderately weathered, medium strong rock, close joint spacing, smooth joint

surface, calcite alteration on joint surface

SR CA

С

JT

SPACING
APERTURE
ROUGHNESS

DISCONTINUITY LOG

NewFields

CLIENT Lithium Nevada PROJECT NAME Theker Pass Geotechnical Investigation

PROJECT NUMBER 475.0385.000 PROJECT LOCATION Thacker Pass, Nevada

ELEVATION	(ft) 20 DEPTH (ft)	RUN NO.	RUN LENGTI	(%) SEC	RQD (%)	WEATHERIN	HARDNESS	GRAPHIC LOG	MATERIAL DESCRIPTION	SAMPLE TYP NUMBER	BLOW COUNTS (N VALUE)	
NO	_	o.	GТH	(%)		RING	S	ಲ		IYPE :R	SI JE)	11/11

Basalt, black, moderately weathered, medium strong rock, close joint spacing, smooth joint surface, calcite alteration on joint surface

Borehole terminated at 50.5'

CLIENT Lithium Nevada PROJECT NAME Thacker Pass Geotechnical Investigation **PROJECT NUMBER** 475.0385.000 PROJECT LOCATION Thacker Pass, Nevada DATE STARTED 3/25/19 **COMPLETED** 3/25/19 GROUND ELEVATION 4706.3 ft HOLE SIZE 4.25in DRILLING CONTRACTOR HazTech COORDINATES (WGS-84): DRILLING METHOD HSA NORTHING 15148127 _ EASTING 1360558 LOGGED BY C. Coleman CHECKED BY K. Magner 15:11 - Y.PROJECTS/0385.000-THACKER PASS LITHIUM NEVADAIL-GEOTECH DATA - ELKO\BOREHOLE LOGS\BOREHOLE SOIL LOGS-CC.19.08.29. DEPTH TO WATER (FT BGS) No free water encountered NOTES Backfilled with cement grout **ATTERBERG** SAMPLE TYPE NUMBER MOISTURE CONTENT (%) LIMITS ELEVATION (ft) GRAPHIC LOG BLOW COUNTS (N VALUE) RECOVERY (INCHES) GRAVEL SAND FINES DEPTH (ft) PLASTICITY LIQUID MATERIAL DESCRIPTION % % % Snow/Mud Top Soil / Root Zone 4705 silty SAND (SM), with gravel fine to coarse grained sand and gravel, MPS 3.0", sub angular, nonplasitc fines, medium dense to very dense, brown, dry SS 16-11-10 18 15.0 NP 16.6 56.7 26.7 \$PT-0 (21)Hard drilling, MC. 30-34-59 18 cobbles and 4700 (93)GRAVEL (GW-GM), with sand and silt, fine to coarse boulders grained, MPS 3.0", sub angular, nonplastic fines, very dense, brown, dry 30-50/5cm 11 MC 19-41-62 18 AL-02 (103) silty SAND (SM), with gravel, fine to coarse grained, well SS 16-33-35 NP 34.7 52.4 12.9 18 11.6 NP 4690 graded, nonplastic fines, very dense, brown, dry \$PT-03 (68)20 MC 70/4cm 4 4685 CAL-0 17-49-SS clayey SAND (SC), fine to coarse sand, low to medium 16 GEOTECH BH COLUMNS - GINT STD US LAB.GDT - 11/21/19 50/4cm plasticity fines, very dense, brown, dry \\$PT-04 MC CAL-0 silty SAND (SM), fine to coarse grained, poorly graded, 45-70 12 medium plasticity fines, very dense, brown, dry, (weathered basalt) SS 16-31-46 66.1 32.5 18 42.5 60 17 1.4 4670 \$PT-05 (77)

CLIENT Lithium Nevada PROJECT NUMBER 475.0385.000 PROJECT LOCATION _ Thacker Pass, Nevada ATTERBERG SAMPLE TYPE NUMBER RECOVERY (INCHES) MOISTURE CONTENT (%) LIMITS ELEVATION (ft) BLOW COUNTS (N VALUE) GRAPHIC LOG REMARKS % GRAVEL FINES % SAND DEPTH (ft) PLASTICITY INDEX LIQUID MATERIAL DESCRIPTION MC CAL-05 29-54-70/5cm 17 4665

Borehole terminated at 41.5'

NF-GEOTECH BH COLUMNS - GINT STD US LAB. GDT - 11/21/19 15:11 - Y:PROJECTS/0385.000-THACKER PASS LITHIUM NEVADAIL-GEOTECH DATA - ELKO'BOREHOLE LOGS'BOREHOLE SOIL LOGS-CC.19.08.29.GPJ

CLIENT Lithium Nevada PROJECT NAME Thacker Pass Geotechnical Investigation **PROJECT NUMBER** 475.0385.000 PROJECT LOCATION _ Thacker Pass, Nevada DATE STARTED 3/20/19 **COMPLETED** 3/20/19 GROUND ELEVATION 4734.7 ft HOLE SIZE 4.25in **DRILLING CONTRACTOR** HazTech **COORDINATES (WGS-84):** DRILLING METHOD HSA NORTHING <u>15148804</u> _ **EASTING** 1360063 LOGGED BY C. Coleman CHECKED BY K. Magner NF-GEOTECH BH COLUMNS - GINT STD US LAB. GDT - 11/12/1/19 15:11 - Y:\PROJECTS\0385.000-THACKER PASS LITHIUM NEVADA\L-GEOTECH DATA - ELKO\BOREHOLE LOGS\BOREHOLE SOIL LOGS\-CC.19.08.29. DEPTH TO WATER (FT BGS) No free water encountered NOTES Backfilled with cement grout ATTERBERG MOISTURE CONTENT (%) SAMPLE TYPE NUMBER LIMITS ELEVATION (ft) GRAPHIC LOG BLOW COUNTS (N VALUE) RECOVERY (INCHES) REMARKS % GRAVEL SAND FINES DEPTH (ft) PLASTICITY LIQUID MATERIAL DESCRIPTION % Snow/Mud Top Soil / Root Zone silty SAND (SM), fine to medium grained, porrly graded, subangular, nonplastic fines, medium dense to very dense, brown, dry 5-8-8 SS 18 18.4 NP 5.1 62.2 32.7 \$PT-0 (16)4730 MC 11-17-18 18 (35)SS 7-9-9 74.1 24.5 18 22.3 NP NP 1.4 \$PT-02 (18)4725 10 MC 6-16-22 18 (38)4720 15 SS 13-25-25 35.3 NP NP 78.2 21.8 18 \$PT-03 (50) 4715 20 MC 70/4cm 4 CAL-0 Switched to rock core at 21.5'

PROJECT NAME Thcker Pass Geotechnical Investigation CLIENT Lithium Nevada PROJECT NUMBER 475.0385.000 PROJECT LOCATION _ Thacker Pass, Nevada **DATE STARTED** 3/20/19 **COMPLETED** 3/20/19 GROUND ELEVATION 4734.7 ft HOLE SIZE 4.25 in DRILLING CONTRACTOR HazTech **COORDINATES (WGS84):** DRILLING METHOD HQ Core NORTHING 15148804 ____ **EASTING** 1360063 LOGGED BY C. Coleman CHECKED BY K. Magner DEPTH TO WATER (FT BGS) No free water encountered

NOTES Backfilled with cement grout

		_			(D				111			[DISC	NITNC	\UIT\	Y LO	3
S DEPTH (ft)	RUN NO.	RUN LENGTH	REC (%)	RQD (%)	WEATHERING	HARDNESS	GRAPHIC LOG	MATERIAL DESCRIPTION Surface details: Snow/Mud	SAMPLE TYPE NUMBER	BLOW COUNTS (N VALUE)	WATER LEVE	TYPE	DIP	SPACING	APERTURE	ROUGHNESS	INFILL
 	1	4.5	100	0	HW	'R1		[Continuation from soil log at 20 feet] Basalt, black, highly weathered, very weak rock, very close joint spacing, oxidization on joint surface			- - -	JT		VC			O
- 25 	2	4.5	100	0	HW	'R1					- - -	JT		VC			O
30											_	JT		VC			0
 	3	5.5	100	0	HW	'R1					-						
 · 35	_										-	JT		vc			0
	4	5	100	43	HW	R1					-						
40											-	JT		vc			0
 	5	5	95	43	HW	'R1					-						
- - 45	_										-	JT		vc			0
 	6	5.5	95	58	HW	'R1					-						
 · 50											-						
	20 	20	20	20	20	20	20	20	20 3 4.5 100 0 HW R1	20	[Continuation from soil log at 20 feet] Basalt, black, highly weathered, very weak rock, very close joint spacing, oxidization on joint surface very close joint spacing, oxidization on joint spacing, oxidization on joint surface very close joint spacing, oxidization on joint surface very close joint spacing, oxidization on joint spacing, oxidization on joint spacing, oxidization oxidi	[Continuation from soil log at 20 feet] Basalt, black, highly weathered, very weak rock, very close joint spacing, oxidization on joint surface 25	Hample H	MATERIAL DESCRIPTION Hard Hard	### HE	Hard Hard	Continuation from soil log at 20 feet] Basalt, black, highly weathered, very weak rock, very close joint spacing, oxidization on joint surface JT

CLIENT Lithium Nevada PROJECT NAME Thacker Pass Geotechnical Investigation **PROJECT NUMBER** 475.0385.000 PROJECT LOCATION Thacker Pass, Nevada DATE STARTED 3/18/19 **COMPLETED** 3/19/19 GROUND ELEVATION 4715.4 ft HOLE SIZE 4.25in **DRILLING CONTRACTOR** HazTech **COORDINATES (WGS-84):** DRILLING METHOD HSA NORTHING 15147860 _ **EASTING** 1359848 LOGGED BY C. Coleman CHECKED BY K. Magner NNF-GEOTECH BH COLUMNS - GINT STD US LAB. GDT - 1/1/2/1/19 15:11 - Y:PROJECTS)(0385,000-THACKER PASS LITHIUM NEVADALL-GEOTECH DATA - ELKOBOREHOLE LOGS/BOREHOLE SOIL LOGS-CC.19,08.29, DEPTH TO WATER (FT BGS) No free water encountered NOTES Backfilled with cement grout **ATTERBERG** SAMPLE TYPE NUMBER MOISTURE CONTENT (%) LIMITS ELEVATION (ft) GRAPHIC LOG BLOW COUNTS (N VALUE) RECOVERY (INCHES) GRAVEL SAND FINES DEPTH (ft) PLASTICITY LIQUID MATERIAL DESCRIPTION % % Snow/Mud Top Soil / Root Zone silty SAND (SM), with gravel, fine to medium sand, fine to coarse gravels, MPS 1.5", sub angular, nonplastic fines, medium dense to dense, Igiht brown, dry SS 17-20-21 18 \$PT-0 (41)4710 MC. 24-18-14 18 13.5 NP NP 28.3 54.6 17.1 DD= 80.6 pcf (32)SAND (SW-SM), with gravel and silt, fine to corase grained, MPS 1.5", sub angular, nonplastic fines, dense, brown, dry 16-32-39 SS 18 \$PT-02 (71)4705 37-45-Increase in gravel 16 70/4cm size, MPS 2.5" GRAVEL (GW-GM), with sand and silt, fine to corase SS 40-50/4cm 10 grained, MPS 2.0", sub angular, nonplastic fines, dense, \$PT-03 brown, dry MC 43-70/4cm 4690 SS 31-50/4cm clayey SAND (SC), trace gravel, fine grained, low plasticity 10 \$PT-04 fines, dense, dark brown, dry MC 70-70/3cm 9 Borehole terminated at 31.5'

CLIENT Lithium Nevada PROJECT NAME Thacker Pass Geotechnical Investigation **PROJECT NUMBER** 475.0385.000 PROJECT LOCATION _ Thacker Pass, Nevada DATE STARTED 2/26/19 **COMPLETED** 2/26/19 GROUND ELEVATION 5149.1 ft HOLE SIZE 4.25in **DRILLING CONTRACTOR** HazTech **COORDINATES (WGS-84):** DRILLING METHOD HSA NORTHING <u>15150690</u> __ **EASTING** 1346592 LOGGED BY M. Walden CHECKED BY K. Magner DEPTH TO WATER (FT BGS) No free water encountered NOTES Backfilled with benontie chips and cement grout ATTERBERG LIMITS MOISTURE CONTENT (%) SAMPLE TYPE NUMBER ELEVATION (ft) GRAPHIC LOG RECOVERY (INCHES) BLOW COUNTS (N VALUE) REMARKS % GRAVEL SAND FINES DEPTH (ft) PLASTICITY LIQUID MATERIAL DESCRIPTION INDEX % Snow/Mud Tope Soil / Root Zone SAND (SW-SM), with gravel and silt, fine to coarse grained, well graded, sub angular, very dense, light brown, dry SS \$PT-0 5145 24-28-27 2 (55) SS \$PT-02

Switched to rock core at 10'

NF-GEOTECH BH COLUMNS - GINT STD US LAB. GDT - 11/21/19 15:11 - Y:PROJECTS10385.000-THACKER PASS LITHIUM NEVADAIL-GEOTECH DATA - ELKOIBOREHOLE LOGSIBOREHOLE SOIL LOGS-CC. 19:08.29. GPJ

CLIENT Lithium Nevada PROJECT NAME Thcker Pass Geotechnical Investigation PROJECT NUMBER 475.0385.000 PROJECT LOCATION Thacker Pass, Nevada **DATE STARTED** 2/26/19 **COMPLETED** 2/26/19 GROUND ELEVATION 5149.1 ft HOLE SIZE 4.25 in DRILLING CONTRACTOR HazTech **COORDINATES (WGS84):** DRILLING METHOD HQ Core NORTHING 15150690 ____ **EASTING** _1346592 LOGGED BY M. Walden CHECKED BY K. Magner DEPTH TO WATER (FT BGS) No free water encountered

NOTES Backfilled with bentonite chips and cement grout

		ᅟᅟ			G	_			Щ		닖		DISCO	ITAC	TIUN		3
	RUN NO.	RUN LENGT	REC (%)	RQD (%)	WEATHERIN	HARDNESS	GRAPHIC LOG	MATERIAL DESCRIPTION Surface details: Snow/Mud	SAMPLE TYF NUMBER	BLOW COUNTS (N VALUE)	WATER LEVI	TYPE	DIP	SPACING	APERTURE	ROUGHNESS	INFILL
	1	3.5	100	23				(SM) [Continuation from soil log at 10 feet] silty SAND (SM), some clay, trace gravel, well graded, fine to coarse grained, sub angular, very dense, brown to dark grey, some oxidization of clay and ash, moderate comentation of ash layers			_ _ _						
15	2	2	90	0				planar bedding, (highly weathered blocky volcanic rock)			_ 						
20	3	5	60	0							- - - -						
25	4	4.5	78	0							- - -						
	5	4.5	80	0							- - -						
								Borehole terminated at 29.5'			_						
	10	10 15 2 - 3 20 - 4 25	10	10	10	10	10	10	Surface details: Showhuld (SM) [Continuation from soil log at 10 feet] silty SAND (SM), some clay, trace gravel, well graded, fine to coarse grained, sub angular, very dense, brown to dark grey, some oxidization of clay and ash, moderate cementation of ash layers, planar bedding, (highly weathered blocky volcanic rock) 20 4 4.5 78 0 5 4.5 80 0	Surface details: ShowMud (SM) [Continuation from soil log at 10 feet] silty SAND (SM), some clay, trace gravel, well graded, fine to coarse grained, sub angular, very dense, brown to dark grey, some oxidization of clay and ash, moderate cementation of ash layers, planar bedding, (highly weathered blocky volcanic rock) 20 4 4.5 78 0 5 4.5 80 0	10 Sulface declars. Showhold Sulface declars. Showhold	10 Surface details. Showmid Surface details. Showmid Surface details. Shownid Surface details	Hard Continuation Continuation	The column The	Name	Had Company Had Company Had Ha	The column The

CLIENT Lithium Nevada PROJECT NAME Thacker Pass Geotechnical Investigation **PROJECT NUMBER** 475.0385.000 PROJECT LOCATION _ Thacker Pass, Nevada DATE STARTED 2/26/19 **COMPLETED** 2/26/19 GROUND ELEVATION 5118.4 ft HOLE SIZE 4.25in **DRILLING CONTRACTOR** HazTech **COORDINATES (WGS-84):** DRILLING METHOD HSA NORTHING 15150289 _ **EASTING** 1346628 LOGGED BY M. Walden CHECKED BY K. Magner NNF-GEOTECH BH COLUMNS - GINT STD US LAB. GDT - 1/1/2/1/19 15:11 - Y:PROJECTS)(0385,000-THACKER PASS LITHIUM NEVADALL-GEOTECH DATA - ELKOBOREHOLE LOGS/BOREHOLE SOIL LOGS-CC.19,08.29, DEPTH TO WATER (FT BGS) No free water encountered NOTES Backfilled with benontie chips and cement grout ATTERBERG MOISTURE CONTENT (%) SAMPLE TYPE NUMBER LIMITS ELEVATION (ft) GRAPHIC LOG BLOW COUNTS (N VALUE) RECOVERY (INCHES) REMARKS % GRAVEL SAND FINES DEPTH (ft) PLASTICITY LIQUID MATERIAL DESCRIPTION % % Snow/Mud Top Soil / Root Zone SAND (SW-SM), with silt and gravel, fine to coarse grained, well graded, sub angular, medium dense, light brown, dry SS 9-16-13 5115 18 \$PT-0 (29)clayey SAND (SC), with gravel, fine to coarse grained, well graded, sub angular, high plasiticity fines, medium dense to AL-0 MC 14-22-21 18 (43)very dense, brown, dry 16-11-9 SS 5110 18 15.6 37 16.1 43.0 40.9 \$PT-02 (20)MC 36-70/3cm CAL-02 9 5105 SS 10-29-15 50/3cm 5100 MC 30-70/3cm 9 CAL-0 5095 SS 49-50/3cm 9 \$PT-04 5090 MC 36-45-16 70/4cm Borehole terminated at 31.5'

OREHOLE SOIL LOGS-CC.19.08.29.GPJ	DRILI DRILI LOGO NOTE	JECT STA LING LING GED I	NUME RTED CONT METH BY M Backfill	BER 475.0385.000 2/28/19 COMPLETED 2/28/19		LOCATIO	N <u>Th</u> N <u>50</u> SS-84) 49992	nacker 077.9 : 2 F BGS	Pass, ft No	Nevad HO	da LE SI TING ater e	ZE _4	4.25in 16657	
ATA - ELKO\BOREHOLE LOGS\B	 5075 	5	7. V.	Top Soil / Root Zone silty SAND (SM), with gravel, fine to coarse grained, well graded, angular to sub angular, nonplastic fines, dense to very dense, light brown, moderate cementation, dry	SS SPT-0	29-39-32 1 (71) 14-23-24 1 (47)	18	12.7	NP	NP	31.5	49.3	19.2	
NF-GEOTECH BH COLUMNS - GINT STD US LAB GDT - 11/21/19 16:11 - Y-PROJECTS10386.000-THACKER PASS LITHIUM NEVADAIL-GEOTECH DATA - ELKOBOREHOLE LOGSIBOREHOLE SOIL LOGS-CC. 19.08.29.GPJ	5070 5065 5060 5055	15 20 25		clayey SAND (SC), fine to coarse grained, well graded, sub angular, low to high plasticity fines, dense to very dense, light brown, dry	SS SPT-0; MC CAL-0; SS SPT-0;	65-70 16-16-37 (53)	18 12 18 5	7.5	47	28	18.4	42.8	38.8	
-GEOTECH BH COLUMNS - GINT STD US LAB.GDT - 11/21/19	 5050 	30		Borehole terminated at 31.5'	SPT-0.	(61) 70/5cm	18 5	23.4	62	37	1.1	54.1	44.8	

SOIL LOGS-CC.19.08.29.GPJ	PROD DATE DRILL DRILL LOGG	JECT STA LING LING GED	NUME ARTED CONT METH BY M Backfill	Nevada SER 475.0385 2/28/19 RACTOR Ha OD HSA . Walden ed with benont	zTech CHE		8/19 Magner		LOCATIO	N <u>Th</u> ON <u>50</u> SS-84) 149708 ER (F1	138.9 138.9 138.9 138.9	Pass, ft No	Nevad HOL EAS free wa	LE SIZ		1.25in 16680 ntered		
NF-GEOTECH BH COLUMNS - GINT STD US LAB GDT - 11/21/19 16:11 - Y:PROJECTS/0385.000-THACKER PASS LITHIUM NEVADAIL-GEOTECH DATA - ELKOBOREHOLE LOGS/BOREHOLE SOIL LOGS-CC. 19.08.29.GPJ	—————————————————————————————————————	0 - 5 - 10 - 15 - 20 - 25 - 30	GRAND CONTRACTOR CONTR	silty SAND graded, sul brown, dry	(SM), some g	dium dense to ve	arse grained, well ery dense, light	SS SPT-02 MC CAL-01 SS SPT-02 SSPT-03	11-11-8 (19) 70/5cm 18-26-24 (50) 26-31-36 (67) 20-40-45 3 (85) 28-38-61 3 (99)	18 18 18	MOI	TIMIT TIĞNID	PLASTICITY INDEX	9 %	%	%	REM	

CLIENT Lithium Nevada PROJECT NAME Thacker Pass Geotechnical Investigation **PROJECT NUMBER** 475.0385.000 PROJECT LOCATION _ Thacker Pass, Nevada DATE STARTED 2/28/19 **COMPLETED** 2/28/19 GROUND ELEVATION 5089.1 ft HOLE SIZE 4.25in **DRILLING CONTRACTOR** HazTech **COORDINATES (WGS-84):** DRILLING METHOD HSA NORTHING 15149855 _ **EASTING** 1347766 LOGGED BY M. Walden CHECKED BY K. Magner NNF-GEOTECH BH COLUMNS - GINT STD US LAB. GDT - 1/1/2/1/19 15:11 - Y:PROJECTS)(0385,000-THACKER PASS LITHIUM NEVADALL-GEOTECH DATA - ELKOBOREHOLE LOGS/BOREHOLE SOIL LOGS-CC.19,08.29, DEPTH TO WATER (FT BGS) No free wtaer encountered NOTES Backfilled with benontie chips and cement grout **ATTERBERG** SAMPLE TYPE NUMBER MOISTURE CONTENT (%) LIMITS ELEVATION (ft) GRAPHIC LOG BLOW COUNTS (N VALUE) RECOVERY (INCHES) REMARKS % GRAVEL SAND FINES DEPTH (ft) PLASTICITY LIQUID MATERIAL DESCRIPTION % Snow/Mud Top Soil / Root Zone clayey SAND (SC), fine to coarse grained, well graded, sub angular, high plasticity fines, medium dense to dense, light brown, dry SS 4-6-9 18 \$PT-0 (15)5085 16-24-60 MC 18 16.8 61 10.1 52.6 37.3 (84)silty SAND (SM), fine to coarse grained, well graded, sub SS 18-17-19 rounded, dense, white chalky, dry (ASH) 18 \$PT<u>-0</u>2 (36)10 sandy SILT (ML), trace gravel, fine to coarse grained, well MC 14-28-8 CAL-02 36/0cm graded, sub rounded, hard, light brown, dry 5075 SS 10-23-27 18 \$PT-03 (50)5070 20 16-60-17 70/5cm 60/4cm SS 4 \$PT-0 SS 49-26-25 18 \$PT-05 (51)30 MC 70/5cm 5 Borehole terminated at 31.5'

CLIENT Lithium Nevada PROJECT NAME Thacker Pass Geotechnical Investigation **PROJECT NUMBER** 475.0385.000 PROJECT LOCATION _ Thacker Pass, Nevada DATE STARTED 2/28/19 **COMPLETED** 2/28/19 GROUND ELEVATION 5062.3 ft HOLE SIZE 4.25in **DRILLING CONTRACTOR** HazTech **COORDINATES (WGS-84):** DRILLING METHOD HSA NORTHING 15150169 _ **EASTING** 1348329 LOGGED BY M. Walden CHECKED BY K. Magner DEPTH TO WATER (FT BGS) No free water encountered NF-GEOTECH BH COLUMNS - GINT STD US LAB. GDT - 11/21/19 15:11 - Y:PROJECTS\0385.000-THACKER PASS LITHIUM NEVADA\L-GEOTECH DATA - ELKOBOREHOLE LOGS\BOREHOLE SOIL LOGS\CC.19.08.29. NOTES Backfilled with benontie chips and cement grout ATTERBERG SAMPLE TYPE NUMBER MOISTURE CONTENT (%) LIMITS ELEVATION (ft) GRAPHIC LOG BLOW COUNTS (N VALUE) RECOVERY (INCHES) REMARKS % GRAVEL SAND FINES DEPTH (ft) PLASTICITY LIQUID MATERIAL DESCRIPTION % % Snow/Mud 0 Top Soil / Root Zone silty SAND (SM), some gravel, trace cobbles, fine to coarse 5060 grained, well graded, angular to sub angular, dense to very 6-15-28 SS dense, light brown, dry 18 \$PT-0 (43)MC 32-64-17 70/5cm 38-33-37 SS 18 \$PT-02 (70)calyey SAND (SC), fine grained, poorly graded, high 10 plasticity fines, dense, light brown, dry MC 16-32-43 18 (75)5050 SS 6-16-20 20.3 42.9 49.5 18 55 34 7.6 \$PT-03 (36)5045 silty SAND (SM), fine grained, poorly graded, rounded to 20 sub rounded, very dense, white, dry MC 24-70/3cm 9 CAL-0 5040 25 SS 29-50/3cm 9 \$PT-04 5035 ✓ MC 70/5cm 5 ¢AL-0 Borehole terminated at 31.5'

CLIENT Lithium Nevada PROJECT NAME Thacker Pass Geotechnical Investigation **PROJECT NUMBER** 475.0385.000 PROJECT LOCATION Thacker Pass, Nevada DATE STARTED 12/19/19 **COMPLETED** <u>12/20/19</u> **GROUND ELEVATION** 4684 ft HOLE SIZE 4.25in **DRILLING CONTRACTOR** HazTech COORDINATES (WGS-84): **DRILLING METHOD** HSA (0-40ft)/Mud Rotary (40-101.5ft) **LATITUDE** 15147684 _ LONGITUDE 1361637 LOGGED BY R.Berg CHECKED BY K. Magner DEPTH TO WATER (FT BGS) 60.2 NOTES Backfilled with bentonite chips to 20ft bgs then grouted with cement to surface **ATTERBERG** SAMPLE TYPE NUMBER MOISTURE CONTENT (%) LIMITS ELEVATION (ft) GRAPHIC LOG BLOW COUNTS (N VALUE) RECOVERY (INCHES) GRAVEL SAND FINES DEPTH (ft) PLASTICIT) LIQUID MATERIAL DESCRIPTION % % Snow/Mud sandy CLAY (CL), fine grained, stiff, low to medium 2-3-8 SPT 13 plasticity, brown, slightly moist, with rootlets and (11)interbedded calichi nodules up to 1.5" well graded GRAVEL (GW-GM) with silt and sand, ✓ MC 70/5in 4 10.2 NV NP 54.4 36.4 9.2 coarse angular mechanically fractured gravel, 2" MPS, very 4680 dense, nonplastic, light brown, slightly moist 27-31-34 fine and coarse SPT 12 -GEOTECH BH COLUMNS - GINT STD US LAB.GDT - 2/21/20 15:36 - S:\PROJECTS\0385.000 THACKER PASS\BOREHOLE SOIL LOGS-CC.19.08.29.GP. (65)gravel silty SAND (SM) with gravel, fine to coarse sand, fine 18-20-37 16 21.1 NV NP 23 55.1 21.9 subangular to angular gravel, 0.5" MPS, dense, nonplastic, (57)light brown, slightly moist 10 gravel to 1.5" 10-11-9 15 MPS, medium (20)dense 4670 decrease in gravel content, 10-18-22 36.8 MC 17 ed-orange/brown (40)Dry Density = 68.1pcf 4665 clayey Sand (SC), fine sand, very dense, low to medium plasticity, yellow orange to brown, slightly moist, [Highly 12-38-50 Weathered Tuff 16 (88)4660 TUFF light brown to pink and grey, highly to completely 13-27-34 MC NP 59.8 40.2 18 52.4 NV 0 weathered, extremely to very weak, fine grained, (61)unfractured, slightly rough 4655 11-28-28 18 (56)4650 15-24-37 17 (61)

NF-GEOTECH BH COLUMNS - GINT STD US LAB. GDT - 2/21/20 15:36 - S:\PROJECTS\0385,000 THACKER PASS\BOREHOLE SOIL LOGS-CC.19.08.29.GPJ

CLIENT Lithium Nevada PROJECT NAME Thacker Pass Geotechnical Investigation **PROJECT NUMBER** 475.0385.000 PROJECT LOCATION Thacker Pass, Nevada **ATTERBERG** SAMPLE TYPE NUMBER RECOVERY (INCHES) MOISTURE CONTENT (%) LIMITS ELEVATION (ft) GRAPHIC LOG BLOW COUNTS (N VALUE) % GRAVEL % SAND FINES DEPTH (ft) LIQUID MATERIAL DESCRIPTION 11-17-21 SPT 18 (38)4640 22-27-34 increased sand MC 18 (61) content 4635 decrease in sand 13-17-25 SPT 18 content, high (42)plasticity calcite clast 20-34-45 MC 18 inclusion, low to medium plasticity 17-38-34 SPT 18 (72)large calcite 43-59-54 crystals 1/3" dia MC 18 (113)and gypsum crystalization 4615 24-24-43 mm sized black 18 (67)oxide stringers 45-57-70 black visiculated 18 (127) clasts 4605 17-26-35 grey to black, clast SPT 18 (61)size decrease large calcite crystallization and calcium carbonate 40-48-70 infill (veining),

CLIENT Lithium Nevada PROJECT NUMBER _475.0385.000 PROJECT LOCATION Thacker Pass, Nevada **ATTERBERG** SAMPLE TYPE NUMBER RECOVERY (INCHES) MOISTURE CONTENT (%) LIMITS ELEVATION (ft) GRAPHIC LOG BLOW COUNTS (N VALUE) REMARKS % GRAVEL % SAND FINES DEPTH (ft) PLASTICITY INDEX LIQUID MATERIAL DESCRIPTION MC (118) 18 possible weathered plagioclase inclusion 4595 extreamly weak 20-35-49 rock, swelling/ high plasticity SPT 18 (84)<u>4</u>590 extremely weak to very weak rock, 22-39-51 MC 18 25% loss of (90)circulation of drilling mud 4585 extreamely weak rock, calcite and 19-25-49 18 (74)calcium carbonate Borehole terminated at 101.5ft veining

NF-GEOTECH BH COLUMNS - GINT STD US LAB. GDT - 2/21/20 15:36 - S:\PROJECTS\0385.000 THACKER PASS\BOREHOLE SOIL LOGS-CC.19.08.29.GPJ

	CLIENT Lithium	n Nevada	PROJECT	NAME _T	hacke	r Pas	s Geot	echnic	al Inv	estig	ation	
	PROJECT NUME	BER 475.0385.000	PROJECT	LOCATIO	N _Th	acker	Pass,	Neva	da			
	DATE STARTED	<u>12/20/19</u> COMPLETED <u>12/21/20</u>	GROUND I	ELEVATIO	N <u>48</u>	326 ft		HO	LE SI	ZE _	4.25iı	<u>1</u>
	DRILLING CONT	TRACTOR HazTech	COORDIN	ATES (WG	S-84)	:						
	DRILLING METH	HSA HSA	LATITU	JDE _1515	0253			LON	GITU	DE _	1361	637
	LOGGED BY R	Berg CHECKED BY K. Magner	DEPTH	TO WATE	ER (F	r BGS	97.	5				
	NOTES Backfill	led with bentonite chips to 20ft bgs then grouted with ceme	ent to surfac	ce								
			111				ATTER					
	ELEVATION (ft) DEPTH (ft) GRAPHIC LOG		SAMPLE TYPE NUMBER	ZE (E)	RECOVERY (INCHES)	MOISTURE CONTENT (%)	LIIV	IITS ≻	Ē	₽	ုပ္သ	KS S
	ELEVATION (ft) DEPTH (ft) GRAPHIC LOG	MATERIAL DESCRIPTION	JMBI	BLOW COUNTS (N VALUE)	S H	IST	号늘	EX	% GRAVEL	% SAND	FINES	REMARKS
		Snow/Mud	NC NC	mos	REC (MO NO NO	LIQUID	PLASTICITY INDEX	%	%	%	R
	0		0)					PI				
	4825	sandy SILT (ML) , fine sand, firm, low plasticity, dark brown, moist	SPT	1-2-4 (6)	13							
	- +			(-)								
	- + -		MC	59-70/5in	11		NV	NP	2.7	43.3	54	2/3 inch thick calichi layer
	+ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$											Dry Density = 114.1pcf
_	4820	2" MPS, volcanic gravel, very dense, nonplastic, reddish to light brown, slightly moist	X SPT	35-39-46	15							·
29.GP		clayey GRAVEL (GC) with sand, fine to coarse sand, fine		(85)								
9.08.2		and coarse angular mechanically fractured gravel, 2" MPS, very dense, low plasticity, red to orange, slightly moist	MC	35-70/4in	8							
CC.1	+ + +											
OGS	4815	clayey SAND (SC) with gravel, fine to coarse sand, fine	SPT	17-49-27	18	14.2	48	24	20.4	25.0	22.7	clay lense, 1.5" thick, stiff, slightly
OIL	1010	and coarse angular mechanically fractured gravel, 2" MPS, very dense, high plasticity, red to orange, slightly moist	SPI	(76)	10	14.2	40	24	30.4	35.9	33.7	moist
OLE S												
REH												
S/BO	15			21-35-		44						very dense, Dry
R PAS	4810		MC	50/3in	15	14						Density = 89.7pcf
CKEF												
THA	- + \ <i>////</i>	Switched to rock core at 18.5ft										
5.000		Switched to rock core at 10.5it										
S\038												
JECT												
PRO,												
) - S:\												
15:36												
21/20												
Γ - 2/2												
3.GD												
SLA												
TD U												
INT												
S - G												
-UMN												
1001												
HBH												
OTE												
NF-GEOTECH BH COLUMNS - GINT STD US LAB.GDT - 2/21/20 15:36 - S:\PROJECTS\0385.000 THACKER PASS\BOREHOLE SOIL LOGS-CC.19.08.29.GPJ												

CLIE	NT _L	ithiu	ım N	leva	ada					PROJECT NAME	Thcker Pa	ass Geote	chnical	Inves	stigati	on			
PRO.	PROJECT NUMBER _475.0385.000 PROJECT LOCATION _Thacker DATE STARTED _12/20/19 COMPLETED _12/21/19 GROUND ELEVATION _4826 ft								ker Pass,	Nevad	a								
DATE	STA	RTE	D _	12/2	20/19	9		c	OMPLETED 12/21/19	GROUND ELEVATION	ON 4826	6 ft	HOL	E SIZ	E 4	.25 in			
DRIL	LING	CON	NTR	ACT	OR	_Ha	zTe	ch		COORDINATES (W	GS84):								
DRIL	LING	MET	гно	D _	HQ (Core	•			NORTHING 15	150253		EAS	TING	136	1637			
LOG	GED E	3Y _	R. E	Berg				c	CHECKED BY K. Magner										
NOTE	ES _E	Back	filled	d wit	h be	entor	nite (chips f	from 20ft bgs then cement grout	to surface	<u> </u>								
-												w	Ι.	[DISC	IITNC	TIUV	Y LO	3
ELEVATION (ft)	DEPTH (ft)	RUN NO.	RUN LENGTH	REC (%)	RQD (%)	WEATHERING	HARDNESS	GRAPHIC LOG	MATERIAL DESCRI Surface details: Snow/Mud	PTION	SAMPLE TYPE NUMBER	BLOW COUNTS (N VALUE)	WATER LEVE	TYPE	DIP	SPACING	APERTURE	ROUGHNESS	INFILL
								Δ Z	TUFF: red to brown, slightly we					MF		VT	Т	SR	No
	† -		2	02	02	SW	Da			secondary infill of um carbonate			-	JT	12	VT.	0	SR	CL
L.	20	_1	2	03	03	300	RS		1.				_	IT		V/T		CD	CI
														JT_ MF	0_	VT VT	\ <u> </u>	SR SR	CL No
4805	┿ -								· 				-	-					
RELOGS-CC.GPJ	 	2	5	92	83	SW	′ R1		CONGLOMERATE: dark brown weathered, extermely weak to v unfractured fractured, secondal sandy clay	very weak,			-						
۲ کا ا	25																		
PASS/ROC 4800	_								TUFF: red to brown, slightly we to strong rock, moderately fract infill of joints with sandy clay ar carbonate	tured, secondary			_	MF		VT	Т	SR	No
- S.NPROJECTS\0385.000 THACKER PASS\ROCK CORE LOGS-CC.GPU	- - 	3	3	94	88	SW	' R1		CONGLOMERATE: dark brown weathered, extermely weak to worderately fractured, brecciate secondary infill of joints with sa	very weak, d clasts to 2.5" dia.,			-						
15/03								2						MF		VT	Т	SR	No
- S:\PROJEC	30	4	2	83	33	SW	' R4		TUFF: red to brown, slightly we to strong rock, moderately fract infill of joints with sandy clay ar carbonate	tured, secondary nd calcium			_	JT	۸ 0	VT	л Т	(SR	\ CL
		5	0.5	50	0	SW	R0	3	CONGLOMERATE: light brown weathered, extermely weak, mo					MF		VT	Т	SR	No
US LAB.GDT - 2/21/20	 	6	4.5	18	14	SW	′ R0		brecciated clasts to 2" dia, second with sandy clay	ondary infill of joints			-	MF		VT	Т	SR	No
LOG-GINT STD	35								ca.a reen,cae.a.e.yae.				-	 			_		
NF-GEOTECH ROCK CORE LOG - GINT STD US LAB GDT - 2/21/20 15:27	-	7	5	100	46	SW	′ R1	× × × × × × × × × × × × × × × × × × ×	of joints with sandy clay SANDY SILTSTONE: brown, slivery weak, weakly cemented by dip, interbedded with minor san claystone lenses	edding at 12 deg			-	MF		VT	Т	SR	No

PAGE 2 OF 4

NewFields

CLIENT Lithium Nevada PROJECT NAME The Pass Geotechnical Investigation **PROJECT NUMBER** 475.0385.000 PROJECT LOCATION Thacker Pass, Nevada DISCONTINUITY LOG SAMPLE TYPE NUMBER BLOW COUNTS (N VALUE) WEATHERING **WATER LEVEL** RUN LENGTH ELEVATION (ft) HARDNESS GRAPHIC LOG ROUGHNESS REC (%) RQD (%) DEPTH (ft) RUN NO. **APERTURE** SPACING TYPE MATERIAL DESCRIPTION 딤 SANDY SILTSTONE: brown, slightly weathered very weak, weakly cemented bedding at 12 deg dip, interbedded with minor sandstone and 100 46 SW R1 7 5 claystone lenses 40 VT Т SR MF No 4785 8 5 81 68 SW R1 45 NF-GEOTECH ROCK CORE LOG - GINT STD US LAB GDT - 2/21/20 15:27 - S/PROJECTS/0385,000 THACKER PASS/ROCK CORE LOGS-CC GPJ MF VT Т SR No CLAYSTONE: dark brown, slightly weathered, 4780 ~90 0 SR Mno extremely weak, slightly weathered, minor JT VT manganese oxide stringers 9 3 100 75 SW R0 Τ SR MF VT No 100 58 SW R0 10 2 sand content increases 50 MF VT Т SR No 4775 SANDY SILTSTONE: brown, very weak, slightly weathered, weakly cemented bedding at 12 deg dip, interbedded with minor sandstone and claystone lenses 100 65 SW R1 11 5 55 VT SR MF Τ No 4770 12 5 100 56 SW R1 S S BD 12 0 Qz BD 12 0 60 MF VT Т SR No 100 96 SW R0 5 13 **CLAYSTONE:** white to yellow, slightly weathered,

CLIENT Lithium Nevada PROJECT NAME The Pass Geotechnical Investigation **PROJECT NUMBER** 475.0385.000 PROJECT LOCATION Thacker Pass, Nevada DISCONTINUITY LOG BLOW COUNTS (N VALUE) SAMPLE TYPE NUMBER WEATHERING RUN LENGTH **WATER LEVEL** ELEVATION (ft) HARDNESS GRAPHIC LOG ROUGHNESS RUN NO. RQD (%) REC (%) DEPTH (ft) **APERTURE** SPACING MATERIAL DESCRIPTION 딤 extremely weak, slightly weathered, minor manganese oxide stringers

SILTY SANDSTONE: grey, slightly weathered, extremely to very weak, interbedded with minor sandstone and claystone lenses 5 100 96 SW R0 65 MF VT Т R No 4760 sand content increases 14 100 100 SW R1 NF-GEOTECH ROCK CORE LOG - GINT STD US LAB. GDT - 2/21/20 15:27 - S./PROJECTS\0385.000 THACKER PASS\ROCK CORE LOGS-CC. GPJ 70 VT Τ MF R No 4755 100 100 SW R1 15 5 minor oxidation present 75 soft sediment deformation 75.5-77.5' VT SR MF Т No 4750 16 5 93 93 SW R0 80 iron concretion 1.5" dia MF VT Т SR No 4745 V 1~901 T A O S / CL clay infill in vertical fracture 93 | 93 | SW | R1 5 17

CLIENT Lithium Nevada PROJECT NAME The Pass Geotechnical Investigation **PROJECT NUMBER** 475.0385.000 PROJECT LOCATION Thacker Pass, Nevada DISCONTINUITY LOG BLOW COUNTS (N VALUE) SAMPLE TYPE NUMBER WEATHERING RUN LENGTH **WATER LEVEL** ELEVATION (ft) HARDNESS GRAPHIC LOG ROUGHNESS RUN NO. RQD (%) REC (%) **APERTURE** DEPTH (ft) SPACING INFILL MATERIAL DESCRIPTION 딤 SILTY SANDSTONE: grey, slightly weathered, Т 0 S CL ٧ ~90 extremely to very weak, interbedded with minor <u>85 1</u>7 5 93 93 SW R1 sandstone and claystone lenses clay infill in vertical fracture Т VT SR MF No 4740 18 5 78 30 SW R1 **CLAYSTONE:** white to yellow, slightly weathered, extremely weak, with green clay infill and minor manganese oxide stringers 90 MF VT Т SR No 4735 NF-GEOTECH ROCK CORE LOG - GINT STD US LAB. GDT - 2/21/20 15:27 - S./PROJECTS/0385.000 THACKER PASS/ROCK CORE LOGS-CC. GPJ 19 5 93 81 SW R1 95 MF Т SR No 4730 60 SW R0 20 5 60 100 silicification present, medium strong rock Borehole terminated at 100.5'

CLIENT _Lithium Nevada	
PROJECT NUMBER 475.0385.000	
DATE STARTED 12/22/19 COMPLETED 12/23/19 DRILLING CONTRACTOR HazTech	
DRILLING METHOD HSA	LATITUDE _15149078 LONGITUDE _1363320
LOGGED BY R. Berg CHECKED BY K. Magner	
NOTES Backfilled with bentonite chips to 20ft bgs then grouted with ce	, ,
	ATTERBERG
NOT T PT.	SAMPLE TYPE NUMBER BLOW COUNTS (N VALUE) RECOVERY (INCHES) MOISTURE CONTENT (%) LIQUID LIMIT FRASTICITY FINES % SAND % FINES % FINES REMARKS
MATERIAL DESCRIPTION (1) (1) (2) (3) (4) (1) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4	BLOW COUNTS (N VALUE) (INCHES) MOISTURE CONTENT (% LIQUID LIMIT ASTICITY INDEX % SAND % SAND % FINES REMARKS
Snow/Mud	SAMPLE TY NUMBER BLOW COUNTS (N VALUE (NCHES) MOISTUR CONTENT (LIQUID LIQUID LIQUID LIQUID LIQUID LIQUID NDEX N GRAVE % FINES % FINES
0 sandy SILT (ML) , fine sand, stiff, grey brown, slightly	2240
moist, with rootlets	SPT (13) 13
	calichi layer
F +	MC (24) 8 approximately 2/3 inch thick
silty GRAVEL (GM) with sand, fine sand, fine subangula	r SPT 9-50/4in 5
grável, 0.5" MPS, very dense, medium plasticity, light brown to white, slightly moist	fine and coarse
	MC 16-21-46 16 12.4 47 12 44.3 29.4 26.3 subangular gravel
	(67) 10 12-1 17 12 14-5 25-4 25-5 Earling factor, MPS 1.5", Dry density =87.9pcf
	SPT 46-50/2in 5 mechanically fractured gravel,
4705	medium plasticity, slightly moist
+ + 15 - 2 - 2	
clayey GRAVEL (GC) with sand, fine to coarse sand, fire and coarse angular mechancially fractured gravel, MPS	
4700 1.5", high plasticity	
20	
- +	SPT 11-15-18 0
4695	
25	MC 62-70/5in 6
4690	plasticity, reddish brown
	decrease in sand
30 68	SPT 37-50/4in 8 content, increase in clay content,
4685	low to medium plasticity
+ +	
CLAYSTONE with interbedded siltstone and ash, light	MC 20-36- 17 76.2 NV NP 22.9 63.1 14.0
brown to grey, slightly weathered, extremely to very weathered.	ik, 70/5in 17 70.2 NV Nr 22.9 03.1 14.0
} + ->>	
+40	

CLIENT Lithium Nevada PROJECT NUMBER 475.0385.000 PROJECT LOCATION _ Thacker Pass, Nevada **ATTERBERG** SAMPLE TYPE NUMBER RECOVERY (INCHES) MOISTURE CONTENT (%) LIMITS ELEVATION (ft) BLOW COUNTS (N VALUE) GRAPHIC LOG % GRAVEL REMARKS FINES PLASTICITY INDEX % SAND DEPTH (ft) LIQUID MATERIAL DESCRIPTION calcite inclusion with fine grained sand lenses 10-40-50/5in SPT 17

Switched to rock core at 40ft

CLIEN	NT L	ithiu	ım N	leva	da					PROJECT NAME _	Thcker Pa	ass Geoted	chnical	Inves	<u>stigati</u>	on			
PROJ	ECT	NUN	ИBE	R _	1 75.	038	5.00	00		PROJECT LOCATION	ON Thac	ker Pass,	Nevad	а					
DATE	STA	RTE	D _	12/2	2/19	<u> </u>		c	OMPLETED <u>12/23/19</u>	GROUND ELEVATION	ON <u>4717</u>	7 ft	HOL	E SIZ	<u>′E _4</u>	.25 in			
DRILL	ING	CON	NTR	ACT	OR	<u>Ha</u>	ızTe	ch		COORDINATES (W	GS84):								
DRILL	ING	MET	ГНО	D _	HQ (Core	;			NORTHING 15	149078		EAS1	ING	1363	3320			
LOGG	SED E	3Y _	R. E	Berg				c	HECKED BY K. Magner	DEPTH TO WAT	TER (FT E	IGS) 90.3	Bft bgs						_
NOTE	S _B	ackt	filled	wit	h be	ntor	nite	chips f	from 20ft bgs then cement grout t	o surface									
			_			(D					111	S		[DISC	IITNC	NUIT	Y LOC	3
ELEVATION (ft)	DEPTH (ft)	RUN NO.	RUN LENGTH	REC (%)	RQD (%)	WEATHERING	HARDNESS	GRAPHIC LOG	MATERIAL DESCRIF	PTION	SAMPLE TYPE NUMBER	BLOW COUNTS (N VALUE)	WATER LEVEL	TYPE	DIP	SPACING	APERTURE	ROUGHNESS	INFILL
4675	45	1	4	100	100	sw	' R0		CLAYSTONE: yellow to light broweathered, extremely to very we cemented bedding at 8 deg dip, oxide stringers and interbedded sandstone and siltstone lenses silicification present	eak, weakly with manganese			-	MF	0	Т	0	SR	No
4670		2	5	100	83	sw	' R1		silicification present				-						
-	-00						<u> </u>	1:::::	SILTY SANDSTONE: grey, slig	htly weathered,	-		-	MF JT	0	VT	0	SR	No Ca
	 	3	5	100	100	sw	' R1		very weak to weak, weakly cem deg dip, iron oxide staining, gre minor siltstone and claystone le	y, interbedded with			-	JT JT	0 0	VT VT	0 0	S SR	Ca /
	55													01					
4660		4	5	86	86	sw	' R1		CLAYSTONE: marble grey, sligi extremely to very weak, weakly at 0 deg dip, with mno stringers with minor sandstone and siltsto SILTY SANDSTONE: greenish g weathered, very weak, interbed siltstone and claystone lenses	cemented bedding and interbedded one lenses gray, slightly			-	MF	0	Т	0	SR	No
	60													JT	0	VT.	0	(SR)	(Ca
	- 55	5	4.8	100	100	sw	R1						_	MF	0	T	0	SR	No

-GEOTECH ROCK CORE LOG- GINT STD US LAB GDT - 2/21/20 15:27 - 8:\PROJECTS\0385.000 THACKER PASS\ROCK CORE LOGS-CC.GR,

CLIENT Lithium Nevada PROJECT NAME Theker Pass Geotechnical Investigation **PROJECT NUMBER** 475.0385.000 PROJECT LOCATION Thacker Pass, Nevada **DISCONTINUITY LOG** BLOW COUNTS (N VALUE) SAMPLE TYPE NUMBER WEATHERING RUN LENGTH **WATER LEVE** ELEVATION (ft) HARDNESS GRAPHIC LOG ROUGHNESS RQD (%) REC (%) DEPTH (ft) RUN NO. SPACING APERTURI MATERIAL DESCRIPTION 딤 SILTY SANDSTONE: greenish gray, slightly weathered, very weak, interbedded with minor 4655 siltstone and claystone lenses 4.8 100 100 SW R1 MF Τ 0 SR 65 0 No CLAYSTONE: grey, slightly weathered, very weak, minor manganese oxide stringers, 4650 interbedded with minor sandstone and siltstone |5.2 |100 |100 |SW | R0 ASH: white to light grey, slightly weathered, extremely weak, interbedded with minor sandstone and claystone lenses, soft sediment deformation SILTY SANDSTONE: grey, slightly weathered, very weak, manganese oxide stringers, interbedded with minor siltstone and claystone lenses 70 MF 0 Т SR No 0 CLAYSTONE: grey to dark grey, slightly weathered, very weak, minor calcite and soft sediment deformation SILTY SANDSTONE: grey, slightly weathered, very weak, manganese oxide stringers, 4645 interbedded with minor siltstone and claystone lenses 7 100 100 SW R1 5 SILTY SANDSTONE: grey, very weak, slightly weathered, soft sediment deformation **SILTY SANDSTONE:** grey, very weak, slightly weathered, manganese oxide stringers, interbedded with minor siltstone and claystone lenses, minor soft sediment deformation 75 MF 0 Т SR No oxydiation present 4640 100 100 SW R1 8 5 80 SR MF 0 Т 0 No grades coarser and sandier ARKOSIC SANDSTONE: light grey to greenish 9 2.5 100 100 SW R0 grey, slightly weathered, very weak, interbedded 4635 with minor siltstone and claystone lenses CLAYSTONE: grey to light grey, slightly 0 Т 0 SR No MF weathered, extremely weak, interbedded with minor siltstone and sandstone lenses 10 2.5 100 100 SW R1 ARKOSIC SANDSTONE: grey to green, slightly

NF-GEOTECH ROCK CORE LOG - GINT STD US LAB GDT - 2/21/20 15:27 - S/PROJECTS/0385,000 THACKER PASS/ROCK CORE LOGS-CC GPJ

CLIENT Lithium Nevada PROJECT NAME The Pass Geotechnical Investigation **PROJECT NUMBER** 475.0385.000 PROJECT LOCATION Thacker Pass, Nevada DISCONTINUITY LOG SAMPLE TYPE NUMBER BLOW COUNTS (N VALUE) WEATHERING RUN LENGTH **WATER LEVE** ELEVATION (ft) HARDNESS GRAPHIC LOG ROUGHNESS REC (%) RQD (%) DEPTH (ft) RUN NO. SPACING APERTUR MATERIAL DESCRIPTION 딤 weathered, very weak, minor soft sediment 10 2.5 100 100 SW R1 deformation, interbedded with minor siltstone and claystone lenses 85 SR **CLAYSTONE** grading to SILTY SANDSTONE: MF 0 Т 0 No ***** **** yellowish white, slightly weathered, very weak, interbedded with minor sandstone and siltstone SANDY SILTSTONE: light brown, slightly 4630 weathered, extremely to very weak, interbedded with minor sandstone and claystone lenses 100 100 SW R1 yellow/ green waxy infill CLAYSTONE: light grey to light brown, slightly weathered, extremely to very weak, minor soft 90 sediment deformation and manganese oxide 0 Т SR No \mathbf{V} stringers, interbedded with minor sandstone and claystone lenses ******* SANDY SILTSTONE: grey to dark grey, slightly weathered, very weak, oxyidation and calcite 4625 nodules, with inclustion of conglomeratic basalts with subangular to subrounded clasts, interbedded 12 5 100 100 SW R1 with minor sandstone and claystone lenses 95 MF 0 Τ 0 SR No 4620 13 5 100 100 SW R1 SILTY SANDSTONE: geenish grey, slightly weathered, very weak to weak, interbedded with minor siltstone and claystone lenses CONGLOMERATE dark grey, slightly weathered, 100 SR MF 0 Т 0 Nο weak, with cemented subangular to subrounded basaltic clasts 100 100 SW R2 3 14 4615 Borehole terminated at 103'

CLIENT Lithium Nevada PROJECT NAME Thacker Pass Geotechnical Investigation **PROJECT NUMBER** 475.0385.000 PROJECT LOCATION Thacker Pass, Nevada DATE STARTED 12/18/19 **COMPLETED** <u>12/19/19</u> **GROUND ELEVATION** 4650 ft HOLE SIZE 4.25in **DRILLING CONTRACTOR** HazTech COORDINATES (WGS-84): **DRILLING METHOD** HSA (0-40ft)/Mud Rotary (40-101.5ft) **LATITUDE** 15147690 _ LONGITUDE 1365046 LOGGED BY R. Berg CHECKED BY K. Magner DEPTH TO WATER (FT BGS) No accurate water level NOTES Backfilled with bentonite chips to 20ft bgs then grouted with cement to surface **ATTERBERG** SAMPLE TYPE NUMBER MOISTURE CONTENT (%) LIMITS ELEVATION (ft) GRAPHIC LOG BLOW COUNTS (N VALUE) RECOVERY (INCHES) GRAVEL SAND FINES DEPTH (ft) PLASTICITY LIQUID MATERIAL DESCRIPTION % % Snow/Mud 4650 sandy SILT (ML), fine sand, minor fine angular gravel, 3-4-10 SPT 9 medium dense, brown, slightly moist (14)silty SAND (SM) with gravel, fine sand, fine angular calichi lense gravel, loose, nonplastic, light brown, slightly moist roughly 2/3" thick, 11-4-9 16 veining, Dry 14.9 (13)Density = 77.8pcf 4645 clayey SAND (SC), fine sand, very dense, low plasticity, 14-21-10 NP 9.1 65.3 25.6 19.4 NV 50/5in light brown to yellow, slightly moist GEOTECH BH COLUMNS - GINT STD US LAB. GDT - 2/21/20 15:36 - S.PROJECTS\0385.000 THACKER PASS\BOREHOLE SOIL LOGS-CC.19.08.29.GP. Dry Density = 90.9pcf silty GRAVEL (GM) with sand, fine sand, fine angular MC 39-70/5in 9 8.7 gravel, MPS 0.75", very dense, medium plasticity, light brown to yellow, slightly moist 4640 22-37mechanically 10.4 47 42.8 35.1 22.1 16 18 50/5in fractured gravel calcium carbonate infill calcium carbonate 42-50/5in 10 cementation in matrix fine to coarse sand, fine and coarse angular mechanically ✓ MC fractured gravel, 70/5in 4 MPS 2", low to medium plasticity, brown to light brown fine gravel, MPS 4625 0.5", medium to SPT A 50/5in 2 high plasticity, moist fine and coarse mechanically MC 29-70/5in 8 fractured gravel, MPS 2" xiidation present, clayey GRAVEL (GC) with sand, fine sand, fine angular 16-32-30 42.9 42.1 SPT 18 13.1 48 27 15 red to brown gravel, MPS 0.75", very dense, medium plasticity, light (62)coloring brown to yellow, slightly moist

CLIENT Lithium Nevada PROJECT NAME Thacker Pass Geotechnical Investigation **PROJECT NUMBER** 475.0385.000 PROJECT LOCATION Thacker Pass, Nevada **ATTERBERG** SAMPLE TYPE NUMBER LIMITS. RECOVERY (INCHES) MOISTURE CONTENT (%) BLOW COUNTS (N VALUE) GRAPHIC LOG % GRAVEL SAND FINES DEPTH (ft) PLASTICITY INDEX LIQUID MATERIAL DESCRIPTION % 4610 40 **∠** MC no oxidation 70/6in 5 clayey SAND (SC), fine sand, very dense, low plasticity, 23-43-4605 45 SPT 17 50/5in grey, slightly moist 4600 50 CLAYSTONE, light brown to light yellow, slightly 14-22-62 MC 18 weathered, extremely to very weak, interbedded with (84)1-3cm sand layers, low to medium plasticity, unfractured, NF-GEOTECH BH COLUMNS - GINT STD US LAB GDT - 2/21/20 15:36 - S:PROJECTS\0385 000 THACKER PASS\BOREHOLE SOIL LOGS-CC 19 08.29 GPJ with calcite nodules and grey green clay infill 4595 55 ARCOSIC SANDSTONE, grey to light brown, slightly MC 54-70/5in 4 weathered, coarse impure/immature sandstone, very weak, bedded with quartz and plagioclase and grey to green mineral olivine/epidote, unfractured 4590 60 MC MC 70/6in SILTY SANDSTONE, grey, slightly weathered, fine 4 grained, very weak, fresh, grey, unfractured 4585 65 CLAYEY SANDSTONE TO CLAYSTONE, grey, fresh, 23-38-56 MC 18 extremely to very weak, finer grained, unfractured, low (94)plasticity, waxy 4580 low to medium 19-34-67 MC 18 plasticity, light (101)brown to white 4575 claystone 8-17-37 18 becomes more (54)laminar 4570 80 15-17-MC 17 very waxy 70/5in 37-63-

CLIENT Lithium Nevada PROJECT NUMBER 475.0385.000 PROJECT LOCATION Thacker Pass, Nevada **ATTERBERG** SAMPLE TYPE NUMBER RECOVERY (INCHES) MOISTURE CONTENT (%) LIMITS ELEVATION (ft) GRAPHIC LOG BLOW COUNTS (N VALUE) REMARKS % GRAVEL % SAND FINES DEPTH (ft) PLASTICITY INDEX LIQUID MATERIAL DESCRIPTION **∠** MC waxy, grey green 49-58-63 grey, grades MC 18 (121)sandier grey green, very weak, sample stopped on slightly to moderately weathered oxide layer, roughly 2/3 inch thick, MC 42-70/5in 10 sandier, brittle 4550 16-46-70/3in МС 18

Borehole terminated at 101.5ft

NF-GEOTECH BH COLUMNS - GINT STD US LAB. GDT - 2/21/20 15:36 - S:\PROJECTS\0385.000 THACKER PASS\BOREHOLE SOIL LOGS-CC.19.08.29.GPJ

CLIENT Lithium Nevada PROJECT NAME Thacker Pass Geotechnical Investigation **PROJECT NUMBER** 475.0385.000 PROJECT LOCATION Thacker Pass, Nevada **DATE STARTED** <u>12/16/19</u> **COMPLETED** <u>12/17/19</u> GROUND ELEVATION 4734 ft HOLE SIZE 4.25in **DRILLING CONTRACTOR** HazTech **COORDINATES (WGS-84):** DRILLING METHOD HSA **LATITUDE** <u>15150499</u> ___ LONGITUDE 1365030 LOGGED BY R. Berg CHECKED BY K. Magner DEPTH TO WATER (FT BGS) No accurate water level NOTES Backfilled with bentonite chips to 20ft bgs then grouted with cement to surface **ATTERBERG** MOISTURE CONTENT (%) SAMPLE TYPE NUMBER LIMITS ELEVATION (ft) GRAPHIC LOG BLOW COUNTS (N VALUE) RECOVERY (INCHES) GRAVEL SAND FINES DEPTH (ft) PLASTICITY LIQUID MATERIAL DESCRIPTION % % Snow/Mud sandy SILT (ML), fine sand, stiff, medium to high 1-4-7 SPT 8 plasticity, slightly moist to moist, brown, with rootlets silty SAND (SM), fine sand, very stiff, low to medium plasticity, light brown to brown, slightly moist 10-22-45 MC 14 24.5 NV 8.4 74.4 17.2 4730 (67)**X** SPT 50/4in 2 silty GRAVEL (GM) with sand, fine to coarse sand, fine angular gravel, MPS .25", very dense, nonplastic, slightly sand content moist ncreases, angular to subangular sandy GRAVEL (GP), trace silt, fine to coarse sand, fine 23-33-33 14 5.4 NV NP 72.2 23.8 mechanically and coarse angular to subangular mechanically fractured (66)fractured gravel, MPS 2", gravel, very dense, light brown to brown, nonplastic nonplastic X SPT 32-50 7

Switched to rock core at 11.5ft

CLIE	NT _L	.ithiu	ım N	leva	ada					PROJECT NAME	Thcker Pa	ss Geote	chnical	Inves	stigati	on			
PRO	JECT	NUN	ИВЕ	R _	475.	038	5.00	0		PROJECT LOCATION	N Thac	ker Pass,	Nevad	а					
DATE	STA	RTE	D_	12/1	6/1	9		_ c	OMPLETED <u>12/17/19</u>	GROUND ELEVATION	ON <u>4734</u>	ft	HOL	E SIZ	ZE <u>4</u>	.25 in			
DRIL	LING	CON	NTR	ACT	OR	_Ha	zTe	ch		COORDINATES (W	GS84):								
DRIL	LING	MET	ГНО	D _	HQ (Core)			NORTHING 15	150499		EAS1	ING	136	5030			
LOG	GED E	3Y _	R. E	3erg				c	HECKED BY K. Magner	DEPTH TO WAT	ER (FT B	GS)							_
NOTE	ES _B	ack	filled	d wit	h be	entor	nite	chips f	rom 20ft bgs then cement grout	to surface									
						۲۵.						ω		[DISC	IITNC	TIUV	Y LO	3
ELEVATION (ft)	DEPTH (ft)	RUN NO.	RUN LENGTH	REC (%)	RQD (%)	WEATHERING	HARDNESS	GRAPHIC LOG	MATERIAL DESCRI Surface details: Snow/Mud	PTION	SAMPLE TYPE NUMBER	BLOW COUNTS (N VALUE)	WATER LEVEL	TYPE	DIP	SPACING	APERTURE	ROUGHNESS	INFILL
	-	1	1.5	44	0				poorly graded GRAVEL (GP) we coarse sand, fine and coarse s subrounded mechanically fractivery dense, brown, slightly moi	ubangular to ured gravel, MPS 2",			-						
-	+ -	2	0.5	100	0	1		600	1.5. y donos, provin, originaly mor	<u>-</u>			-	1					
4720					Ť	1		000											
	15	3	2	88	0								_						
GPJ		4	0.5	66	0				clayey GRAVEL (GC) with sand	I, fine to coarse									
50-8	† -					1			sand, subangular to subrounde fractured gravel, very dense, m	d mechanically edium to high			-	1					
CORE LOG	-	5	1.5	78	0	_			plasticity, brown, slightly moist	Ü			-	-					
- S/NPROJECTS\0385.000 THACKER PASS\ROCK CORE LOGS-CC.GPU 1	20	6	3.5	57	0								-	ME		VT	Т	SR	No
NF-GEOTECH ROCK CORE LOG - GINT STD US LAB. GDT - 2/21/20 15:27 - S./PROJECTS\0385	25	7	5	100	100	sw	′ R0		CLAYSTONE: light brown and g weathered, extremely to very w very fine grained	eak, unfractured,			-	MF		VT	T	SR	No
DG - GINT STD US L									LAMINATED ASH alternating v light brown and white, slightly weak, slightly weathered, wax	weathered, very			-						
유		8	5	43	43	SW	R1							JT	1	(VC)	Т_	S-SR	Mino
4705	+ -												-	-					
ROC	30																		
	30_	H											-	1					
3E01	L _												_	MF		VT	Т	SR	No
Ä		9	5	100	100	ΗW	R1							IVIE		V I	'	JK	INU

CLIENT Lithium Nevada PROJECT NAME The Pass Geotechnical Investigation **PROJECT NUMBER** 475.0385.000 PROJECT LOCATION Thacker Pass, Nevada DISCONTINUITY LOG BLOW COUNTS (N VALUE) SAMPLE TYPE NUMBER WEATHERING **WATER LEVEL** RUN LENGTH HARDNESS GRAPHIC LOG ROUGHNESS RQD (%) REC (%) DEPTH (ft) RUN NO. SPACING APERTUR INFILL MATERIAL DESCRIPTION 딤 **CLAYSTONE with minor ASH LENSES: light** JT 80 VT S Mno brown to pink very weak to weak, moderately to highly weathered, light brown and white, with minor manganese oxide stringers 100 100 HW R1 5 4700 35 very weak, slightly weathered, unfractured with red/pink hydrothermal alteration MF VT Т SR No NF-GEOTECH ROCK CORE LOG - GINT STD US LAB.GDT - 2/21/20 15:27 - S.\PROJECTS\0385.000 THACKER PASS\ROCK CORE LOGS-CC.GPJ 5 100 100 SW R1 4695 40 extremely weak, highly weathered, red MF VT Т SR No very weak, slightly weathered, light brown to white, with minor green clay infill 5 80 HW R1 11 80 4690 JT VC Т S CL 45 VTMF Τ SR No 12 5 46 46 SW R1 4685 JT VC , T S CL 50 MF VT Τ SR No JT VC S CL 100 100 MW R1 13 5 JT VC Т SR Mno **SANDSTONE:** grey, moderately weathered, weak, fine to coarse sand, oxidized

PAGE 3 OF 5

NewFields

CLIENT Lithium Nevada PROJECT NAME The Pass Geotechnical Investigation **PROJECT NUMBER** 475.0385.000 PROJECT LOCATION Thacker Pass, Nevada DISCONTINUITY LOG BLOW COUNTS (N VALUE) SAMPLE TYPE NUMBER WEATHERING WATER LEVEL RUN LENGTH ELEVATION (ft) HARDNESS GRAPHIC LOG ROUGHNESS RQD (%) REC (%) DEPTH (ft) RUN NO. **APERTURE** SPACING MATERIAL DESCRIPTION 딤 SANDSTONE: grey, moderately weathered, weak, fine to coarse sand, oxidized <u>1</u>3 5 100 100 MW R1 MF VT Т SR No CLAYSTONE: grey, extremely to very weak, slightly weathered, minor ash lamination 80 80 SW R1 5 4675 60 MF VT Т SR No NF-GEOTECH ROCK CORE LOG - GINT STD US LAB.GDT - 2/21/20 15:27 - S.\PROJECTS\0385.000 THACKER PASS\ROCK CORE LOGS-CC.GPJ VC 15 5 56 56 SW R1 Т Ca JT 4670 minor calcium carbonate cementation, weak to medium strong 65 VT Т SR MF No 100 100 SW R1 16 5 4665 70 SANDSTONE: grey to tan, slightly weathered, weak to medium strong, unfractured, grey to tan, fine to coarse sand VT Т SR MF No 17 5 56 56 MW R3 4660 **CLAYSTONE with minor ASH LENSES: light** JT VC, Т Mno brown, slightly weathered, very weak, with minor manganese oxide stringers 75 MF VT Τ SR No 86 SW R1 18 5 86

NF-GEOTECH ROCK CORE LOG - GINT STD US LAB.GDT - 2/21/20 15:27 - S.\PROJECTS\0385.000 THACKER PASS\ROCK CORE LOGS-CC.GPJ

CLIENT Lithium Nevada PROJECT NAME The Pass Geotechnical Investigation **PROJECT NUMBER** 475.0385.000 PROJECT LOCATION Thacker Pass, Nevada DISCONTINUITY LOG BLOW COUNTS (N VALUE) SAMPLE TYPE NUMBER WEATHERING **WATER LEVEL** RUN LENGTH HARDNESS GRAPHIC LOG ROUGHNESS RQD (%) REC (%) RUN NO. **APERTURE** DEPTH (ft) SPACING MATERIAL DESCRIPTION 딤 **CLAYSTONE with minor ASH LENSES: light** brown, slightly weathered, very weak, with minor manganese oxide stringers 4655 86 86 SW R1 18 5 80 VT Т SR MF No very weak to weak, minor calcium cementation 19 5 86 86 SW R1 4650 85 MF VT Т SR No 73 73 SW R1 4645 90 **BASALT:** grey to black, moderately weathered, hydrothermally altered, weak to medium strong, SR Mno SR No VT T oxidized, intensely fractured MF 21 5 53 53 SW R3 4640 95 JT VC VT R Mno MF VT SR No CLAYSTONE: white to light brown, slightly weathered, very weak, unfractured 22 5 100 100 SW R1 4635

22 5

100 100 SW R1

CLIENT Lithium Nevada PROJECT NAME The Pass Geotechnical Investigation PROJECT LOCATION _ Thacker Pass, Nevada **PROJECT NUMBER** 475.0385.000 BLOW COUNTS (N VALUE) DISCONTINUITY LOG SAMPLE TYPE NUMBER WEATHERING **WATER LEVEL** RUN LENGTH ELEVATION (ft) GRAPHIC LOG HARDNESS ROUGHNESS RQD (%) RUN NO. REC (%) DEPTH (ft) **APERTURE** SPACING TYPE MATERIAL DESCRIPTION 딤

Borehole terminated at 101'

CLAYSTONE: white to light brown, slightly

weathered, very weak, unfractured

APPENDIX B.2 Test Pit Logs

NewFields

CLIENT Lithium Nevada Corporation PROJECT NAME Thacker Pass Project PROJECT NUMBER 475.0385.000 PROJECT LOCATION Thacker Pass DATE STARTED 2/27/19 _____ COMPLETED _2/27/19 GROUND ELEVATION 4809 ft TOTAL PIT DEPTH 17 ft **EXCAVATION CONTRACTOR** Hunewill Construction COORDINATES (): **EQUIPMENT** CAT 320E NORTHING <u>15148138</u> ____ **EASTING** 1357163 LOGGED BY C.Coleman CHECKED BY M. Walden DEPTH TO WATER (FT BGS) No groundwater encountered

NOTES Backfilled with excavated material

NOTES BAC	mied with excavated material								-
ELEVATION (ft) O DEPTH (ft) COLORD	MATERIAL DESCRIPTION Surface Conditions: Mud	SAMPLE TYPE NUMBER	MOISTURE CONTENT (%)		PLASTICITY SLIN	% GRAVEL	% SAND	% FINES	REMARKS
4805	lean CLAY (CL) with sand, fine grained, medium plasticity, moist, brown (root zone) silty SAND (SM) with gravel, fine to coarse grained sand and gravel, subrounded to subangular, low plasticity, dry, light brown								Cobbles and boulders present at 3ft up to 16in diameter
	CDAVEL (CM CM) with sound and all fine to source strained	S-01-1	12.9	NP	NP	11.5	47.6	36.2	% Cobble = 4.7
4800	GRAVEL (GW-GM) with sand and silt, fine to coarse grained sand and gravel, subrounded to subangular, low plasticity, dry, brown	© GB S-01-2	_ Ф _						Very hard digging at 10ft, blocky volcanic rock, large cobbles and boulders up to 20in diameter
4795									
ם ממלך	Test pit terminated at 17ft, refusal on blocky volcanics, large boulders								
4805 5									
		daile	(

NewFields

CLIENT Lithium Nevada Corporation

PROJECT NUMBER 475.0385.000

DATE STARTED 2/27/19 **COMPLETED** 2/27/19

EXCAVATION CONTRACTOR Hunewill Construction

EQUIPMENT CAT 320E

LOGGED BY _C.Coleman CHECKED BY _M. Walden

PROJECT NAME Thacker Pass Project

PROJECT LOCATION Thacker Pass

GROUND ELEVATION 4789 ft TOTAL PIT DEPTH 15 ft

COORDINATES ():

NORTHING <u>15148089</u> EASTING <u>1357687</u>

DEPTH TO WATER (FT BGS) No groundwater encountered

	NOTE	S _B	ackfille	d with excavated material								
,GPJ	ELEVATION (ft)	O DEPTH (ft)	GRAPHIC LOG	MATERIAL DESCRIPTION Surface Conditions: Mud	SAMPLE TYPE NUMBER	MOISTURE CONTENT (%)		PLASTICITY SIER	% GRAVEL	% SAND	% FINES	REMARKS
S LOG				lean CLAY (CL) with sand, fine grained, medium plasticity, moist, dark brown, (root zone)	Wn GB \$-02-1	29.4	33	12	6.5	22	71.5	
VEVADA/L-GEOTECH DATA/TEST PITS/THACKER PASS	4785	10		GRAVEL (GW-GM) with sand and silt, fine to coarse grained sand and gravel, subrounded, nonplastic, dry, brown	My GB S-02-1							Hard digging Caliche layers from 2-3ft Cobbles and boulders at 4ft up to 16in diameter Blocky volcanic rock with phenocrysts, extremely hard digging
ا≥				Test pit terminated at 15ft refusal on blocky volcanics and								

Test pit terminated at 15ft refusal on blocky volcanics and large boulders

NF-GEOTECH TEST PIT - GINT STD US LAB.GDT - 7/3/19 16:08 - S.:PROJECTS\0385.000-THACKER PASS LITHIUM NEVADAIL-GEOTECH DATA\TEST PITS\THACKER PASS LOGS.GPJ

NewFields

 CLIENT _ Lithium Nevada Corporation
 PROJECT NAME _ Thacker Pass Project

 PROJECT NUMBER _ 475.0385.000
 PROJECT LOCATION _ Thacker Pass

 DATE STARTED _ 2/27/19 _ COMPLETED _ 2/27/19 _ EXCAVATION CONTRACTOR _ Hunewill Construction _ Hunewill Construction _ COORDINATES ():
 COORDINATES ():

 EQUIPMENT _ CAT 320E
 NORTHING _ 15148047 _ EASTING _ 1358970 _

LOGGED BY C.Coleman CHECKED BY M. Walden DEPTH TO WATER (FT BGS) No groundwater encountered

NOTES Backfilled with excavated material

1											
ELEVATION (ft)	O DEPTH (ft)	GRAPHIC LOG	MATERIAL DESCRIPTION Surface Conditions: Mud	SAMPLE TYPE NUMBER	MOISTURE CONTENT (%)		PLASTICITY 하 INDEX S	% GRAVEL	% SAND	% FINES	REMARKS
4740	5		lean CLAY (CL) with sand, fine grained, medium plasticity, moist, brown, (root zone) silty SAND (SM) with gravel, fine to coarse grained sand and gravel, subrounded, nonplastic, dry, brown	m GB \$-03-2	, 15.9	37	8	25.4	41.4	33.2	
4735			silty GRAVEL (GM) with sand, fine to coarse grained sand and gravel, subrounded, nonplastic, dry, brown	My GB S-03-28	10.8	NP	NP	47.8	36.4	13.8	Hard digging at 6ft, cobbles and boulders to 16in diameter, blocky volcanics % Cobble = 2.0
4730	- - -										

Test pit terminated at 14ft, refusal on weathered basalt

NF-GEOTECH TEST PIT - GINT STD US LAB.GDT - 7/3/19 16:08 - S.\PROJECTS\0385.000-THACKER PASS LITHIUM NEVADA\L-GEOTECH DATA\TEST PITS\THACKER PASS LOGS.GPJ

CLIENT Lithium Nevada Corporation PROJECT NAME Thacker Pass Project

PROJECT NUMBER 475.0385.000 PROJECT LOCATION Thacker Pass

DATE STARTED 2/27/19 COMPLETED 2/27/19 GROUND ELEVATION 4726 ft TOTAL PIT DEPTH 19 ft

EXCAVATION CONTRACTOR Hunewill Construction COORDINATES ():

EQUIPMENT CAT 320E NORTHING 15148120 EASTING 1359692

LOGGED BY C.Coleman CHECKED BY M. Walden DEPTH TO WATER (FT BGS) No groundwater encountered

NOTES Backfilled with excavated material

ELEVATION (ft) DEPTH	GRAPHIC	MATERIAL DESCRIPTION Surface Conditions: Mud	SAMPLE TYPE NUMBER	MOISTURE CONTENT (%)		PLASTICITY GINDEX INDEX	% GRAVEL	% SAND	% FINES	REMARKS
4725	5 - 10 - 15 - 15 - 1	GRAVEL (GW-GM) with sand and silt, fine to coarse grained sand and gravel, subangular, nonplastic, dry, light brown, (ash bed) GRAVEL (GW-GM) with sand and silt, fine to coarse grained sand and gravel, subrounded, nonplastic, dry, brown	© GB \$-04-29 © GB \$-04-30 © GB \$-04-3	20.2	NP NP	NP NP	49.1	56.4	9.8	Extremely hard digging at 4ft, dense soil layer, ash Cobbles and boulders up to 16in diameter at 8ft, blocky volcanics

Test pit terminated at 19ft, (Excavator limits)

NF-GEOTECH TEST PIT - GINT STD US LAB.GDT - 7/3/19 16:08 - S./PROJECTS/0385,000-THACKER PASS LITHIUM NEVADAIL-GEOTECH DATA/TEST PITS/ITHACKER PASS LOGS.GPJ

NewFields

CLIENT Lithium Nevada Corporation

PROJECT NUMBER 475.0385.000

DATE STARTED 2/28/19 _____ COMPLETED 2/28/19

EXCAVATION CONTRACTOR Hunewill Construction

EQUIPMENT CAT 320E

LOGGED BY C.Coleman CHECKED BY M. Walden

PROJECT NAME Thacker Pass Project

PROJECT LOCATION Thacker Pass

GROUND ELEVATION 4734 ft TOTAL PIT DEPTH 15 ft

COORDINATES ():

NORTHING <u>15148825</u> EASTING <u>1359965</u>

DEPTH TO WATER (FT BGS) No groundwater encountered

NOTES Backfilled with excavated material

ELEVATION (ft) O DEPTH (ft)	GRAPHIC LOG	MATERIAL DESCRIPTION Surface Conditions: Mud	SAMPLE TYPE NUMBER	MOISTURE CONTENT (%)	ATTER LIMIT LIMIT	PLASTICITY STATE OF S	% GRAVEL	% SAND	% FINES	REMARKS
4730		lean CLAY (CL) with sand, fine grained, medium plasticity, moist, brown, (root zone) GRAVEL (GW-GC) with sand and silt, fine to coarse grained sand and gravel, subrounded, low plasticity, moist, brown	om GB \$-05-33	3						Cobbles and boulders up to 12in diameter
4725 10 - 10 - 4720 15	- - -	sandy SILT (ML), fine to coarse grained sand, subrounded, low plasticity, damp, brown Test pit terminated at 15ft. refusal on weathered basalt	M GB \$-05-34	23.7	41	10	1.4	31.8	66.8	Weathered basalt starting at 10ft, soft digging

Test pit terminated at 15ft, refusal on weathered basalt

NF-GEOTECH TEST PIT - GINT STD US LAB.GDT - 7/3/19 16:09 - S:\PROJECTS\0385.000-THACKER PASS LITHIUM NEVADALL-GEOTECH DATA\TEST PITS\THACKER PASS LOGS.GPJ

NewFields

CLIENT Lithium Nevada Corporation PROJECT NAME Thacker Pass Project PROJECT NUMBER 475.0385.000 PROJECT LOCATION Thacker Pass **DATE STARTED** 2/27/19 **COMPLETED** 2/27/19 GROUND ELEVATION 4782 ft TOTAL PIT DEPTH 19 ft **EXCAVATION CONTRACTOR** Hunewill Construction COORDINATES (): EQUIPMENT CAT 320E **NORTHING** <u>15149032</u> **EASTING** 1358718 LOGGED BY C.Coleman CHECKED BY M. Walden DEPTH TO WATER (FT BGS) No groundwater encountered

NOTES Backfilled with excavated material

<u></u>	A WITH CACAVATCA MATCHAI								
		ш	(6)	ATTER	RBERG 11TS				
ELEVATION (ft) O DEPTH (R) GRAPHIC LOG	MATERIAL DESCRIPTION Surface Conditions: Mud	SAMPLE TYPE NUMBER	MOISTURE CONTENT (%)	LIQUID	PLASTICITY INDEX	% GRAVEL	% SAND	% FINES	REMARKS
4780	lean CLAY (CL) with sand, fine grained, medium plasticity, moist, dark brown, (root zone) silty SAND (SM) with gravel, fine to coarse grained sand and gravel, subangular, low plasticity, dry, light brown silty GRAVEL (GM) with sand, fine to coarse grained sand and gravel, subrounded, nonplastic, dry, brown	My GB S-06-29 S-06-29		NP	NP	42.2	33.5	17	Hard digging at 7ft, cobbles and boulders up to 24in diameter % Cobble = 7.3
4780	Test pit terminated at 19ft, (Excavator limits)								

NewFields

 CLIENT _ Lithium Nevada Corporation
 PROJECT NAME _ Thacker Pass Project

 PROJECT NUMBER _ 475.0385.000
 PROJECT LOCATION _ Thacker Pass

 DATE STARTED _ 2/26/19 _ COMPLETED _ 2/26/19 _ EXCAVATION CONTRACTOR _ Hunewill Construction _ Hunewill Construction _ COORDINATES ():
 COORDINATES ():

 EQUIPMENT _ CAT 320E _ Lithium Nevada Corporation _ PROJECT NAME _ Thacker Pass Project _ Thacker Pass Proj

DEPTH TO WATER (FT BGS) No groundwater encountered

NOTES Backfilled with excavated material

ELEVATION (ft)	O DEPTH (ft)	GRAPHIC LOG	MATERIAL DESCRIPTION Surface Conditions: Snowy-Mud	SAMPLE TYPE NUMBER	MOISTURE CONTENT (%)		PLASTICITY SIER	% GRAVEL	% SAND	% FINES	REMARKS
4810 	 5		lean CLAY (CL) with sand, fine grained, medium plasticity, moist, brown, (root zone) fat CLAY (CH) with sand, highly plastic, dry, light brown	m GB \$-07-1	3 24	55	33	4.6	18.5	71.5	% Cobbles = 5.4
4805	10		GRAVEL (GW-GM) with sand and silt, fine to coarse grained sand and gravel, subrounded, nonplastic, dry, light brown BASALT	GB \$-07-14	<u>.</u>						Hard digging at 8ft, blocky volcanic rock with phenocrysts, boulders up to 24in diameter

Test pit terminated at 10ft, refusal on basalt

LOGGED BY _C.Coleman CHECKED BY _M. Walden ____

NF-GEOTECH TEST PIT - GINT STD US LAB.GDT - 7/3/19 16:09 - S.\PROJECTS\0385.000-THACKER PASS LITHIUM NEVADA\L-GEOTECH DATA\TEST PITS\THACKER PASS LOGS.GPJ

NewFields

DEPTH TO WATER (FT BGS) No groundwater encountered

NOTES Backfilled with excavated material

LOGGED BY C.Coleman CHECKED BY M. Walden

		A WILL CAGGRAGE Material								
ELEVATION (ft)	O DEPTH (ft) GRAPHIC LOG	MATERIAL DESCRIPTION Surface Conditions: Snowy-Mud	SAMPLE TYPE NUMBER	MOISTURE CONTENT (%)		PLASTICITY SIER	% GRAVEL	% SAND	% FINES	REMARKS
4840		lean CLAY (CL) with sand, fine grained, medium plasticity, moist, brown silty GRAVEL (GM), with sand, fine to coarse grained gravel, subangular, low plasticity, dry, light brown	√n GB √s-08-1	14.8	37	9	40.5	40.4	19.1	Extremely hard digging
4835	5	GRAVEL (GP-GM) with sand and silt, fine to coarse grained sand and gravel, subrounded, nonplastic, dry, dark brown	GB \$-08-16	9.8	NP	NP	44.2	40	10	Blocky vesicular volcanic rock at 6ft, boulders up to 30in diameter % Cobble = 5.8
4830	10 00									

Test pit terminated at 13ft, refusal on blocky volcanic rock

NF-GEOTECH TEST PIT - GINT STD US LAB.GDT - 7/3/19 16:10 - S.\PROJECTS\0385.000-THACKER PASS LITHIUM NEVADA\L-GEOTECH DATA\TEST PITS\THACKER PASS LOGS.GPJ

NewFields

CLIENT Lithium Nevada Corporation	PROJECT NAME _ Thacker Pass Project
PROJECT NUMBER 475.0385.000	PROJECT LOCATION Thacker Pass
DATE STARTED 2/26/19 COMPLETED 2/26/19	GROUND ELEVATION 4870 ft TOTAL PIT DEPTH 15 ft
EXCAVATION CONTRACTOR Hunewill Construction	COORDINATES ():
EQUIPMENT CAT 320E	NORTHING 15149606 EASTING 1356846
LOGGED BY C.Coleman CHECKED BY M. Walden	DEPTH TO WATER (FT BGS) No groundwater encountered
NOTES Desiration with experience and the second sec	

NOTES Backfille	ed with excavated material								
O DEPTH (ft) GRAPHIC LOG	MATERIAL DESCRIPTION Surface Conditions: Snowy-Mud	SAMPLE TYPE NUMBER	MOISTURE CONTENT (%)	ATTEF LIM TIMIT	PLASTICITY SLIN	% GRAVEL	% SAND	% FINES	REMARKS
4865 5	lean CLAY (CL) with sand, fine grained, medium plasticity, moist, brown silty SAND (SM) with gravel, well graded, fine to coarse grained sand and gravel, subangular to subrounded, nonplastic, dry, light brown	Wh GB \$-09-09	•						Very hard digging at 2ft Caliche layer from 2-4ft
	silty GRAVEL (GM) with sand, trace silt, poorly graded, fine to coarse grained sand and gravel, subangular, medium plasticity, dry, brown								Cobbles and boulders up to 18in diameter at 7ft, digging through volcanic rock
4860 10 0		₩ GB S-09-10	12.4	55	24	49.3	27.1	16.5	% Cobble = 7.1
4855 15	Test pit terminated at 15ft, refusal on blocky volcanics,								Very hard digging near the bottom of the test pit
4860 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0									

NewFields

NOTES Backfilled with excavated material

ELEVATION (ft)	O DEPTH (ft)	GKAPHIC LOG	MATERIAL DESCRIPTION Surface Conditions: Mud	SAMPLE TYPE NUMBER	MOISTURE CONTENT (%)		PLASTICITY STAN	% GRAVEL	% SAND	% FINES	REMARKS
4790			lean CLAY (CL) with sand, fine grained, medium plasticity, moist, brown silty SAND (SM) with gravel, fine to coarse grained sand and gravel, subangular, nonplastic, dry, light brown								Dense layer from 3-7ft, cobbles up to 10in diameter
	5			nn GB S-10-24	17.1	NP	NP	35	47.5	17.5	

Test pit terminated at 7ft, refusal on dense cemented soil

NF-GEOTECH TEST PIT - GINT STD US LAB.GDT - 7/3/19 16:10 - S;PROJECTS\0385,000-THACKER PASS LITHIUM NEVADAIL-GEOTECH DATA\TEST PITS\THACKER PASS LOGS.GPJ

NewFields

CLIENT Lithium Nevada Corporation PROJECT NAME Thacker Pass Project

PROJECT NUMBER 475.0385.000 PROJECT LOCATION Thacker Pass

DATE STARTED 2/27/19 COMPLETED 2/27/19 GROUND ELEVATION 4821 ft TOTAL PIT DEPTH 15 ft

EXCAVATION CONTRACTOR Hunewill Construction COORDINATES ():

DEPTH TO WATER (FT BGS) No groundwater encountered

 EQUIPMENT
 CAT 320E
 NORTHING
 15149536
 EASTING
 1358054

NOTES Backfilled with excavated material

LOGGED BY C.Coleman CHECKED BY M. Walden

		ied with excavated material								
ELEVATION (#)	O DEPTH (ft) GRAPHIC	MATERIAL DESCRIPTION Surface Conditions: Mud	SAMPLE TYPE NUMBER	MOISTURE CONTENT (%)	LIQUID LIMIT	PLASTICITY SINDEX	% GRAVEL	% SAND	% FINES	REMARKS
4820 4820 4830 - - - - - - - - - - - - - - - - - - -	5	lean CLAY (CL) with sand, fine grained, medium plasticity, moist, brown, (root zone) silty SAND (SM) with gravel, fine to coarse grained sand and gravel, subrounded, low plastic, dry, light brown GRAVEL (GP-GM) with sand and silt, fine to coarse grained	M GB \$-11-2							Extremely hard digging at 5ft, blocky volcanics, cobbles and
	10	sand and gravel, subrounded, nonplastic, dry, brown	m GB \$-11-22	8.1	NP	NP	48.4	38.5	10.3	% Cobble = 2.8 Cobbles up to 12in diameter
EVADAIL-GEOTECH DATAITEST	15	SAND (SW-SM) with gravel and silt, fine to coarse grained sand and gravel, subrounded, low plasticity, dry, brown	Mn GB S-11-23	3						Weathered basalt at 13ft

Test pit terminated at 15ft refusal on weathered basalt

NF-GEOTECH TEST PIT - GINT STD US LAB.GDT - 7/3/19 16:10 - S.\PROJECTS\0385.000-THACKER PASS LITHIUM NEVADA\L-GEOTECH DATA\TEST PITS\THACKER PASS LOGS.GPJ

NewFields

CLIENT Lithium Nevada Corporation PROJECT NAME Thacker Pass Project PROJECT NUMBER 475.0385.000 PROJECT LOCATION Thacker Pass DATE STARTED 2/27/19 _____ COMPLETED 2/27/19 GROUND ELEVATION 4805 ft TOTAL PIT DEPTH 17 ft **EXCAVATION CONTRACTOR** Hunewill Construction COORDINATES (): EQUIPMENT CAT 320E **NORTHING** <u>15149781</u> **EASTING** 1359981 LOGGED BY C.Coleman CHECKED BY M. Walden DEPTH TO WATER (FT BGS) No groundwater encountered

NOTES Backfilled with excavated material

S.GPJ WR ELEVATION GRAPHIC LOG	MATERIAL DESCRIPTION Surface Conditions: Mud	SAMPLE TYPE NUMBER	MOISTURE CONTENT (%)	ATTER LIM DINOII	PLASTICITY SERVINDEX	% GRAVEL	% SAND	% FINES	REMARKS
TATEST PITSTHACKER PASS LOG 0088 0088 0080 0000 0000 00000 00000 00000 0000	lean CLAY (CL) with sand, fine grained, medium plasticity, moist, brown GRAVEL (GP-GM) with silt and sand, fine to coarse grained sand and gravel, subrounded, nonplastic, dry, light brown	Mn GB \$-12-32	2						Hard digging Cobbles and boulders at 4ft up to 24in diameter Blocky volcanics at 8ft
4795 10 00 00 00 00 00 00 00 00 00 00 00 00	Test pit terminated at 17ft, refusal on blocky volcanics								
NF-GEOTECH TEST PIT - GINT STD US LAB.GDT - 7/3/19 16:11 - S. PROJECTS/0385.000-THACKER PASS LITHIUM NEVADAIL-GEOTECH DATAITEST PITS/THACKER PASS LOGS.GPJ									
F-GEOTECH TEST PIT - GINT STD US LAB.GDT - 7.					5				

NewFields

CLIENT Lithium Nevada Corporation PROJECT NAME Thacker Pass Project PROJECT NUMBER 475.0385.000 PROJECT LOCATION Thacker Pass DATE STARTED 2/27/19 _____ COMPLETED 2/27/19 GROUND ELEVATION 4830 ft TOTAL PIT DEPTH 19 ft **EXCAVATION CONTRACTOR** Hunewill Construction COORDINATES ():

EQUIPMENT CAT 320E **NORTHING** <u>15150438</u> **EASTING** 1359953 LOGGED BY C.Coleman CHECKED BY M. Walden DEPTH TO WATER (FT BGS) No groundwater encountered

NOTES Backfilled with excavated material

NOTES BOOKING	d With Cacavated Matchai								
				ATTER	RBERG IITS				
© DEPTH (ft) GRAPHIC LOG	MATERIAL DESCRIPTION Surface Conditions: Mud	SAMPLE TYPE NUMBER	MOISTURE CONTENT (%)	LIQUID	PLASTICITY INDEX	% GRAVEL	% SAND	% FINES	REMARKS
4030 0	lean CLAY (CL) with sand, fine grained, medium plasticity, moist, brown GRAVEL (GP-GM) with sand and silt, fine coarse grained sand and gravel, subrounded, nonplastic, dry, light brown								Blocky volcanic rock at 2ft, extremely hard digging, cobbles and boulders
4825 5 0		wn GB s-13-3	15.5	52	22	55.6	33.6	10.8	Cobbles up to 12in diameter
4820 10	clayey SAND (SC) with gravel, fine to coarse grained sand and gravel, subangular, medium plasticity, dry, light brown								soft digging
		Mn GB s-13-32	30.9	66	34	20.3	32.3	47.4	Cobbles up to 8in diameter
4815 15									
	Test pit terminated at 19ft, (Excavator limits)								
4830 0 -									

NewFields

PROJECT NAME Thacker Pass Project CLIENT Lithium Nevada Corporation PROJECT NUMBER 475.0385.000 PROJECT LOCATION Thacker Pass DATE STARTED 2/28/19 _____ COMPLETED 2/28/19 GROUND ELEVATION 4795 ft TOTAL PIT DEPTH 19 ft **EXCAVATION CONTRACTOR** Hunewill Construction COORDINATES (): EQUIPMENT CAT 320E **NORTHING** <u>15150356</u> **EASTING** 1358895

DEPTH TO WATER (FT BGS) No groundwater encountered

NOTES Backfilled with excavated material

LOGGED BY C.Coleman CHECKED BY M. Walden

NOTES Backfille	ed with excavated material								
GRAPHIC LOG	MATERIAL DESCRIPTION Surface Conditions: Mud	SAMPLE TYPE NUMBER	MOISTURE CONTENT (%)	ATTEF LIMIT LIMIT	PLASTICITY SLIB INDEX	% GRAVEL	% SAND	% FINES	REMARKS
4790 5	lean CLAY (CL) with sand, fine grained, medium plasticity, moist, brown, (root zone) GRAVEL (GW-GM) with silt and sand, fine to coarse grained sand and gravel, subangular, nonplastic, dry, light brown GRAVEL (GW) with sand, fine to coarse grained sand and coarse gravel, subangular, nonplastic, dry, brown	6B \$-14-48	3						Cobbles up to 8in diameter
4785 10 		m GB \$-24-49	25.7	NP	NP	60.9	35.1	4	Weathered basalt at 8ft
4795 0 	Test pit terminated at 19ft, (Excavator limits)								

NOTES Backfilled with excavated material

ELEVATION (ft)	O DEPTH (ft)	GRAPHIC LOG	MATERIAL DESCRIPTION Surface Conditions: Mud	SAMPLE TYPE NUMBER	MOISTURE CONTENT (%)		PLASTICITY GINDEX INDEX	% GRAVEL	% SAND	% FINES	REMARKS
4885	5		lean CLAY (CL) with sand, fine grained, medium plasticity, moist, brown, (root zone) silty GRAVEL (GM) with sand, fine to coarse grained sand and gravel, subangular, nonplastic, dry, light brown silty SAND (SM) with gravel, fine to coarse grained sand and gravel, nonplastic, dry, brown	on GB S=15-4							Cobbles up to 6in diameter Blocky volcanics at 6ft, cobbles up to 8in diameter
4875	10			GB S-15-42	22.7	NP	NP	40.3	46.2	13.5	

Test pit terminated at 14ft, refusal on weathered basalt

NF-GEOTECH TEST PIT - GINT STD US LAB.GDT - 7/3/19 16:12 - S.\PROJECTS\0385.000-THACKER PASS LITHIUM NEVADA\L-GEOTECH DATA\TEST PITS\\THACKER PASS LOGS.GPJ

CLIENT Lithium Nevada Corporation PROJECT NAME Thacker Pass Project PROJECT NUMBER _475.0385.000 PROJECT LOCATION Thacker Pass **DATE STARTED** 2/26/19 **COMPLETED** 2/26/19 GROUND ELEVATION 4858 ft TOTAL PIT DEPTH 15 ft **EXCAVATION CONTRACTOR** Hunewill Construction COORDINATES (): EQUIPMENT CAT 320E **NORTHING** <u>15149833</u> **EASTING** 1357251 LOGGED BY _C.Coleman CHECKED BY _M. Walden ____ DEPTH TO WATER (FT BGS) No groundwater encountered

NOTES Backfilled with excavated material

			a min oxerated material								
						ATTER	RBERG IITS				
	DEPTH (ft)	GRAPHIC LOG	MATERIAL DESCRIPTION Surface Conditions: Snowy-Mud	SAMPLE TYPE NUMBER	MOISTURE CONTENT (%)	LIQUID	PLASTICITY INDEX	% GRAVEL	% SAND	% FINES	REMARKS
	0	(////	lean CLAY (CL) with sand, fine grained, medium plasticity,				ш				
4855 4850 4845 			moist, brown (root zone) silty SAND (SM) with gravel, well graded, fine to medium	ene GP							Cobbles up to 5in diameter
			dry, light brown	wn GB s-16-1	1						
-	5										Very hard digging at 6ft,
	[silty SAND (SM) with gracel, fine to coarse grained sand and gravel, low plastic, subangular, dry, brown								Very hard digging at 6ft, cobbles and boulders, blocky volcanic rock
4850	-		3, p,, a.y.	Mn GB \$-16-12	28.9	58	21	25.1	36.3	38.6	Cobbles and boulders up to 18in diameter
	10			♥ \$-10-12							
 4845	_										
	[
	15	<u> </u>	Test pit terminated at 15ft on blocky volcanics	<u> </u>							
						200					
				white the same of							
				2	at A						
				是是							
					· Jack		-				
								À			
						· Line					
					OF E						
					》		1		3		
						3			1		
					V		+1				
				14,1				A			
				-					17		
									of place		
L											

NewFields

CLIENT Lithium Nevada Corporation PROJECT NAME Thacker Pass Project PROJECT NUMBER _475.0385.000 PROJECT LOCATION Thacker Pass **DATE STARTED** 2/28/19 **COMPLETED** 2/28/19 GROUND ELEVATION 4930 ft TOTAL PIT DEPTH 19 ft **EXCAVATION CONTRACTOR** Hunewill Construction COORDINATES (): EQUIPMENT CAT 320E **NORTHING** <u>15150600</u> **EASTING** 1357532 LOGGED BY _C.Coleman CHECKED BY _M. Walden ____ DEPTH TO WATER (FT BGS) No groundwater encountered

NOTES Backfilled with excavated material

	a with excavated material								
		 H		ATTEF LIM	RBERG IITS				
ELEVATION (ft) DEPTH (ft) GRAPHIC LOG	MATERIAL DESCRIPTION	SAMPLE TYPE NUMBER	MOISTURE CONTENT (%)	۵.	<u> </u>	% GRAVEL	% SAND	FINES	REMARKS
CRA GRA		MPL	MOIS	LIQUID	PLASTICITY INDEX	% GR	8	% 	NEM.
4930 0	Surface Conditions: Mud	8/	-0		A_I				_
	lean CLAY (CL) with sand, fine grained, medium plasticity, moist, brown (root zone)								
	silty SAND (SM) some gravel, fine to medium grained sand, fine to coarse gravel, subrounded, nonplastic, dry, light brown								
4925 5									
4925 5		Wn GB \$-17-39	21.3	NP	NP	8.6	65.7	25.7	Increased gravel content at 6ff
F + -									
4920 10									
	GRAVEL (GP-GM) with sand and silt, fine to coarse grained								Weathered basalt at 12ft, cobbles up to 10in diameter
	sand and gravel, low plastic, subangular, dry, brown	on GB S-17-40							·
4915 15 0		♥\$-17-40	,						
	Test pit terminated at 19ft (Excavator limits)								
4925 5									

NewFields

 CLIENT Lithium Nevada Corporation
 PROJECT NAME Thacker Pass Project

 PROJECT NUMBER 475.0385.000
 PROJECT LOCATION Thacker Pass

 DATE STARTED 2/28/19
 COMPLETED 2/28/19
 GROUND ELEVATION 4899 ft
 TOTAL PIT DEPTH 12 ft

 EXCAVATION CONTRACTOR Hunewill Construction
 COORDINATES ():

 EQUIPMENT CAT 320E
 NORTHING 15150981
 EASTING 1357833

 LOGGED BY C.Coleman
 CHECKED BY M. Walden
 DEPTH TO WATER (FT BGS) No groundwater encountered

NOTES Backfilled with excavated material

NF-GEOTECH TEST PIT - GINT STD US LAB.GDT - 7/3/19 16:12 - S./PROJECTS/0385,000-THACKER PASS LITHIUM NEVADAIL-GEOTECH DATA/TEST PITS/THACKER PASS LOGS.GPJ

ELEVATION	O DEPTH	GRAPHIC LOG	MATERIAL DESCRIPTION Surface Conditions: Mud	SAMPLE TYPE NUMBER	MOISTURE CONTENT (%)	ATTER LIMIT LIMIT	PLASTICITY STATE INDEX	% GRAVEL	GNAS %	S∃NIJ %	REMARKS
489		-	lean CLAY (CL) with sand, fine grained, medium plasticity, moist, brown (root zone) sandy silty CLAY (CL-ML), fine to coarse grained sand, low plasticity, dry, brown								
	<u> </u>			Mn GB s-18-43	10.9	28	7	0.2	37.2	62.6	Weathered Basalt starting at 6ft
489	10										Hard digging at 10ft

Test pit terminated at 12ft, refusal on weathered basalt

NewFields

NOTES Backfilled with excavated material

ELEVATION (ft) ODEPTH (ft)	GRAPHIC LOG	MATERIAL DESCRIPTION Surface Conditions: Mud	SAMPLE TYPE NUMBER	MOISTURE CONTENT (%)	LIQUID LIMIT	PLASTICITY STATE INDEX	% GRAVEL	% SAND	% FINES	REMARKS
5 4810 5 5 4805 5 4805		lean CLAY (CL) with sand, fine grained, medium plasticity, moist, brown (root zone) GRAVEL (GW-GM) with sand and silt, fine to coarse grained sand and gravel, subrounded to subangular, low plasticity, dry, brown	wn GB S-19-46							Very hard digging at 5ft, cobbles and boulders up to 36in diameter

Test pit terminated at 9ft, refusal on cemented blocky volcanic

NF-GEOTECH TEST PIT - GINT STD US LAB.GDT - 7/3/19 16:13 - S./PROJECTS/0385,000-THACKER PASS LITHIUM NEVADAIL-GEOTECH DATA/TEST PITS/THACKER PASS LOGS.GPJ

CLIENT Lithium Nevada Corporation PROJECT NAME Thacker Pass Project PROJECT NUMBER 475.0385.000 PROJECT LOCATION Thacker Pass DATE STARTED 3/1/19 _____ COMPLETED 3/1/19 GROUND ELEVATION 4808 ft TOTAL PIT DEPTH 19 ft **EXCAVATION CONTRACTOR** Hunewill Construction COORDINATES (): EQUIPMENT CAT 320E **NORTHING** <u>15151075</u> **EASTING** 1360089 LOGGED BY C.Coleman CHECKED BY M. Walden DEPTH TO WATER (FT BGS) No groundwater encountered

NOTES Backfilled with excavated material

	du Willi excavateu material								
		ш	(e)	ATTER	RBERG IITS				
ELEVATION (ft) (DEPTH (ft) (GRAPHIC LOG	MATERIAL DESCRIPTION Surface Conditions: Frozen Ground	SAMPLE TYPE NUMBER	MOISTURE CONTENT (%)	LIQUID	PLASTICITY INDEX	% GRAVEL	% SAND	% FINES	REMARKS
4805	lean CLAY (CL) with sand, fine grained, medium plasticity, moist, brown (root zone) silty SAND (SM) with gravel, fine to coarse grained sand and gravel, subangular, nonplastic, dry, light brown								Cobbles up to 6in diameter
4800		GB 3-20-50	22.5	NP	NP	11.7	64.5	23.8	
4795									
4790	SAND (SW-SC) with clay and gravel, fine to coarse grained sand and gravel, subangular, low plasticity, dry, light brown	M GB \$-20-5	 						Cobbles up to 6in diameter
4805 - 5 - 4800 - 10 - 4795 - 15 - 4790 - 47	Test pit terminated at 19ft, (Excavator limits)						というできた。		

NewFields

CLIENT Lithium Nevada Corporation **PROJECT NUMBER** 475.0385.000

DATE STARTED 2/28/19 _____ COMPLETED 2/28/19

EXCAVATION CONTRACTOR Hunewill Construction

NOTES Backfilled with excavated material

EQUIPMENT CAT 320E

LOGGED BY C.Coleman CHECKED BY M. Walden

PROJECT NAME Thacker Pass Project

PROJECT LOCATION Thacker Pass

GROUND ELEVATION 4926 ft TOTAL PIT DEPTH 13 ft

COORDINATES ():

NORTHING <u>15151169</u> **EASTING** 1357072

DEPTH TO WATER (FT BGS) No groundwater encountered

		Ш	(9	ATTEF	RBERG ITS				
ELEVATION (ft) DEPTH (ft) GRAPHIC LOG	MATERIAL DESCRIPTION Surface Conditions: Mud	SAMPLE TYPE NUMBER	MOISTURE CONTENT (%)	LIQUID	PLASTICITY INDEX	% GRAVEL	% SAND	% FINES	REMARKS
0		O			П				
4925	lean CLAY (CL) with sand, fine grained, medium plasticity, moist, brown, (root zone)	-							
	silty SAND (SM) trace gravels, fine to coarse grained sand and gravel, subrounded, nonplastic, damp, light brown								
- +		wy GB s-21-37	, 13.1	NP	NP	1.1	55.1	43.8	
4920 5 3									Cobbles up to 8in diameter
- + -	GRAVEL (GP-GC) with sand, trace clay, fine to coarse grained sand and gravel, subrounded, low plasticity, dry,								Copples up to oill diameter
	brown	.a CP							Blocky volcanics starting at 8
10 0		My GB \$-21-38	3						Blocky volcanics starting at 8i cobble and boulders, hard digging
4915									
	Test pit terminated at 13ft, refusal on basalt								

CLIENT Lithium Nevada Corporation PROJECT NAME Thacker Pass Project PROJECT NUMBER 475.0385.000 PROJECT LOCATION Thacker Pass DATE STARTED 2/28/19 **COMPLETED** 2/28/19 GROUND ELEVATION 4887 ft TOTAL PIT DEPTH 17 ft **EXCAVATION CONTRACTOR** Hunewill Construction COORDINATES (): EQUIPMENT CAT 320E **NORTHING** <u>15151484</u> **EASTING** 1357823 LOGGED BY C.Coleman CHECKED BY M. Walden DEPTH TO WATER (FT BGS) No groundwater encountered

NOTES Backfilled with excavated material

				ATTER	RBERG				
ELEVATION (ft) DEPTH (ft) GRAPHIC LOG	MATERIAL DESCRIPTION	SAMPLE TYPE NUMBER	MOISTURE CONTENT (%)	LIQUID	PLASTICITY SINDEX	% GRAVEL	% SAND	% FINES	REMARKS
	Surface Conditions: Mud	S _A	20		PLA =				_
0 /////	lean CLAY (CL) with sand, fine grained, medium plasticity,								
4885	moist, brown (root zone)								
	GRAVEL (GW-GM) with sand and silt, fine to coarse grained sand and gravel, subangular, nonplastic, dry, light brown								
- + - + ? !		Wn GB \$-22-44							Cobble and boulders at 4ft u to 12in diameter
- 5		¥ 22 ·	1						
4880	SAND (SW) with gravel, fine to coarse grained gravel, coarse sand, subangular, nonplastic, dry, brown								Lake bed at 6ft
		one GB							
_ 10		wn GB \$-22-4	4.8	NP	NP	47	48.2	4.8	
- + -									
15	WEATHERED BASALT	-							
4870									
	Test pit terminated at 17ft, refusal on weathered basalt			•			•		
							O,		

NewFields

CLIENT Lithium Nevada Corporation PROJECT NAME Thacker Pass Project PROJECT NUMBER 475.0385.000 PROJECT LOCATION Thacker Pass DATE STARTED 2/28/19 _____ COMPLETED 2/28/19 GROUND ELEVATION 4869 ft TOTAL PIT DEPTH 15 ft **EXCAVATION CONTRACTOR** Hunewill Construction COORDINATES (): EQUIPMENT CAT 320E **NORTHING** <u>15151512</u> **EASTING** 1358920 LOGGED BY _C.Coleman CHECKED BY _M. Walden ____ DEPTH TO WATER (FT BGS) No groundwater encountered

NOTES Backfilled with excavated material

		Will Choavatou Material								
			Ш	(c	ATTEF LIM	RBERG IITS				
ELEVATION (ft) DEPTH	(ft) GRAPHIC LOG		SAMPLE TYPE NUMBER	MOISTURE CONTENT (%)		1	VEL	Q.	FINES	R X S
LEVATIO (ft) DEPTH	RAP CO	MATERIAL DESCRIPTION	1PLE IUME	OIST	LIQUID	PLASTICITY INDEX	% GRAVEL	% SAND	% FIN	REMARKS
=		Surface Conditions: Mud	SAN	ΣÖ	= =	LAS IN	%	0	0	_
0		lean CLAY (CL) with sand, fine grained, medium plasticity,				ш.				
		─\ moist, brown, (root zone)								Very hard digging at 2ft on blocky volcanic rock, boulder up to 36in diameter
+	-	SAND (SP-SM) with gravel and silt, fine to coarse grained sand and gravel, subangular, nonplastic, dry, brown								up to 36in diameter
4865 5										
F										
- +	-		wn GB s-23-47	, 8.6	NP	NP	30.7	57.4	11.9	
4860										-
10										
t										
4055	-									
4855 15	5									
		Test pit terminated at 15ft, refusal on slightly weathered basalt								
			Dawy!							
							À.,			
		A A STATE OF THE S	1 1 H			1,34	LAS S			
						1				
					AL.					
		李宝						**		
					7					
				3						
		A COMPA	B-2-7							
4865 _ 5 - 5 - 4860 _ 10 - 4855 _ 15			100	12. 20		H. Sold	7.75			

NewFields

CLIENT Lithium Nevada Corporation PROJECT NAME Thacker Pass Project PROJECT NUMBER _475.0385.000 PROJECT LOCATION Thacker Pass DATE STARTED 3/1/19 _____ COMPLETED 3/1/19 GROUND ELEVATION 4819 ft TOTAL PIT DEPTH 19 ft **EXCAVATION CONTRACTOR** Hunewill Construction COORDINATES (): EQUIPMENT CAT 320E **NORTHING** <u>15151498</u> **EASTING** 1360066 LOGGED BY _C.Coleman CHECKED BY _M. Walden ____ DEPTH TO WATER (FT BGS) No groundwater encountered

NOTES Backfilled with excavated material

NOTES DACKING	du Willi excavateu material								
TTION TTH) PHIC		: TYPE BER	TURE NT (%)	LIM	RBERG		ND	FINES	RKS
ELEVATION (ft) O DEPTH (ft) GRAPHIC LOG	MATERIAL DESCRIPTION Surface Conditions: Frozen Ground	SAMPLE TYPE NUMBER	MOISTURE CONTENT (%)	LIQUID	PLASTICITY INDEX	% GRAVEL	% SAND	% FII	REMARKS
4815	lean CLAY (CL) with sand, fine grained, medium plasticity, moist, brown, (root zone) GRAVEL (GP-GM) with silt and sand, fine to coarse grained sand and gravel, subrounded, nonplastic, dry, light brown	nn GB \$-24-52	2						Hard digging, cobbles up to 8in diameter
4810	clayey SAND (SC) trace gravel, fine to coarse grained sand and gravel, subangular, medium plasticity, dry, brown								Cobbles up to 5in diameter
4805 15		m GB \$-24-53	33.9	68	35	5.6	58.7	35.7	- Weathered basalt at 17ft
4815	Test pit terminated at 19ft (Excavator limits)								

NewFields

CLIENT Lithium Nevada Corporation PROJECT NAME Thacker Pass Project PROJECT NUMBER 475.0385.000 PROJECT LOCATION Thacker Pass **DATE STARTED** 2/26/19 **COMPLETED** 2/26/19 GROUND ELEVATION 5002 ft TOTAL PIT DEPTH 19 ft **EXCAVATION CONTRACTOR** Hunewill Construction COORDINATES (): EQUIPMENT CAT 320E **NORTHING** <u>15148304</u> **EASTING** 1349394 LOGGED BY _C.Coleman CHECKED BY _M. Walden ____ DEPTH TO WATER (FT BGS) No groundwater encountered

NOTES Backfilled with excavated material

	A WILLI CACAVALCA MALCHAI								
				ATTEF	RBERG IITS				
ELEVATION (ft) O DEPTH (ft) GRAPHIC LOG	MATERIAL DESCRIPTION Surface Conditions: Snowy-Mud	SAMPLE TYPE NUMBER	MOISTURE CONTENT (%)	LIQUID	PLASTICITY INDEX	% GRAVEL	% SAND	% FINES	REMARKS
5000	lean CLAY (CL) with sand, fine grained, medium plasticity, moist, brown, (root zone) SAND (SP-SM) with gravel and silt, poorly graded fine to coarse grained sand and gravel, angular, nonplastic, dry, light brown GRAVEL (GP) with sand, fine to coarse grained sand and gravel, subrounded to subangular, nonplastic, dry, brown	(M) GB \$-25-0!		NP	NP	52.9	35.7	2.9	Caliche layers from 1-4ft Weathered Basalt starting at 4 and extending to depth of pit % Cobble = 8.5
4985	Test pit terminated at 19ft (Excavator limits)								
						となる。			

NOTES Backfilled with excavated material

ELEVATION (ft)	O DEPTH (ft)	GRAPHIC LOG	MATERIAL DESCRIPTION Surface Conditions: Snowy-Mud	SAMPLE TYPE NUMBER	MOISTURE CONTENT (%)	LIQUID LIMIT LIMIT		% GRAVEL	% SAND	% FINES	REMARKS
4985	5		lean CLAY (CL) with sand, fine grained, medium plasticity, moist, brown, (root zone) silty SAND (SM) with gravel, well graded, fine to coarse grained sand and gravel, subrounded, nonplastic, damp, light brown	(m) GB S-26-07							Test pit located in NDOT gravel borrow Potential backfill, gravel up to 2in diameter
4980	10		clayey SAND (SC) with gravel, fine to coarse grained sand and gravel, subrounded to subangular, medium plasticity, dry, light brown WEATHERED BASALT	₩ GB S-26-08	20.9	53	32	15.9	55.9	28.2	Cobbles up to 6in diameter

Test pit terminated at 11ft, refusal on basalt rock

NF-GEOTECH TEST PIT - GINT STD US LAB.GDT - 7/3/19 16:14 - S;PROJECTS\0385,000-THACKER PASS LITHIUM NEVADAIL-GEOTECH DATA\TEST PITS\THACKER PASS LOGS.GPJ

CLIENT Lithium Nevada Corporation PROJECT NAME Thacker Pass Project PROJECT NUMBER _475.0385.000 PROJECT LOCATION Thacker Pass DATE STARTED 2/26/19 _____ COMPLETED 2/26/19 GROUND ELEVATION 4990 ft TOTAL PIT DEPTH 16 ft **EXCAVATION CONTRACTOR** Hunewill Construction COORDINATES (): EQUIPMENT CAT 320E **NORTHING** <u>15148429</u> **EASTING** 1349841 LOGGED BY _C.Coleman CHECKED BY _M. Walden ____ DEPTH TO WATER (FT BGS) No groundwater encountered

NOTES Backfilled with excavated material

110120 _	Jackinic	u with excavated material								-
			ш		ATTEF	RBERG IITS				
0 DEPTH	GRAPHIC LOG	MATERIAL DESCRIPTION Surface Conditions: Snowy-Mud	SAMPLE TYPE NUMBER	MOISTURE CONTENT (%)	LIQUID	PLASTICITY INDEX	% GRAVEL	% SAND	% FINES	REMARKS
		lean CLAY (CL) with sand, fine grained, medium plasticity, moist, brown, (root zone) silty SAND (SM) with gravel, fine to coarse grained sand and gravel, subangular, nonplastic, light brown, dry								Hard digging, caliche layer from 2-4ft, cobbles up to 12in diameter
4985 5	-		m GB \$-27-0	22.5	NP	NP	21.0	60.8	15.8	Caliche layer from 2-4ft
4980 10		GRAVEL (GP-GM) with sand and silt, fine to coarse grained sand and gravel, subrounded, low plasticity to nonplastic, dry, light brown	m GB \$-27-02							Cobbles up to 12in diameter
			\$-27-02							
4975 15										
		Test pit terminated at 16ft, refusal on basalt rock								
71 71 72 74 74 74 74 74 74 74 74 74 74 74 74 74										% Cobble = 2.4
4985 5 4987 10 10 10 10 10 10 10 10 10 10 10 10 10										

NOTES Backfilled with excavated material

NF-GEOTECH TEST PIT - GINT STD US LAB.GDT - 7/3/19 16:15 - S.:PROJECTS/0385,000-THACKER PASS LITHIUM NEVADALL-GEOTECH DATA/TEST PITS/ITHACKER PASS LOGS.GPJ

-			dominic	Will bloatated material								
GPJ	ELEVATION (ft)	O DEPTH (ft)	GRAPHIC LOG	MATERIAL DESCRIPTION Surface Conditions: Snowy-Mud	SAMPLE TYPE NUMBER	MOISTURE CONTENT (%)	ATTER LIMI LIMIT	PLASTICITY SINDEX	% GRAVEL	% SAND	% FINES	REMARKS
25				lean CLAY (CL) with sand, fine grained, poorly graded, low to medium plasticity, moist, brown, (root zone)								
PASS	4985			fat CLAY (CH) with sand, fine to coarse grained sand, highly plastic, moist, brown	wn GB s-28-03	30.7	63	37	4.4	16.1	79.5	Hard diaging
ACKER	_	 5		GRAVEL (GW-GM) with sand, trace silt, well graded, fine to coarse grained sand and gravel, subrounded to subangular,	·							Hard digging Caliche layer 3-3.5ft
NESI PIISNE	4980			nonplastic, dry, brown	nn GB \$-28-04	6.6	NP	NP	50.1	43.0	5.5	% Cobble = 1.4
O LECH DATA	 	10 										Cobbles and boulders increase 8" up to 30in diameter
A/L-GE	4975											
/ NEVAU		15										
	4970											
ASS	7010		• 9									

Test pit terminated at 19ft (Excavator limits)

NewFields

CLIENT Lithium Nevada Corporation PROJECT NAME Thacker Pass Project PROJECT NUMBER 475.0385.000 PROJECT LOCATION Thacker Pass DATE STARTED 2/28/19 _____ COMPLETED 2/28/19 GROUND ELEVATION 4707 ft TOTAL PIT DEPTH 19 ft **EXCAVATION CONTRACTOR** Hunewill Construction COORDINATES (): EQUIPMENT CAT 320E **NORTHING** <u>15148153</u> **EASTING** 1360598 LOGGED BY C.Coleman CHECKED BY M. Walden DEPTH TO WATER (FT BGS) No groundwater encountered

NOTES Backfilled with excavated material

110120		JORTHIC	d with excavated material								
_				Й	(9)	ATTEF LIM	RBERG IITS				
ӹ		GRAPHIC LOG	MATERIAL DESCRIPTION Surface Conditions: Mud	SAMPLE TYPE NUMBER	MOISTURE CONTENT (%)	LIQUID	PLASTICITY INDEX	% GRAVEL	% SAND	% FINES	REMARKS
	0		lean CLAY (CL) with sand, fine grained, medium plasticity,				ш.				
4705			moist, brown, (root zone) silty SAND (SM) with gravel, fine to coarse grained sand and gravel, subrounded, nonplastic, dry, light brown								Hard digging at 3ft
4700	5			Mn GB s-29-3	8.1	NP	NP	37.7	42.9	14.6	% Cobble = 4.8
- ‡	10										
4695			GRAVEL (GW-GC) with sand and trace clay, fine to coarse grained sand and gravel, subangular, low plasticity, dry, brown	Wn GB \$-29-36	5						
	15										
4690											Basalt encountered at bottom test pit
			Test pit terminated at 19ft (Excavator limits)								
								1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			

CLIENT Lithium Nevada Corporation	PROJECT NAME									
PROJECT NUMBER 475.0385.000	PROJECT LOCATION Thacker Pass									
DATE STARTED 12/17/19 COMPLETED 12/17/19	GROUND ELEVATION 4696 ft TOTAL PIT DEPTH 16 ft									
EXCAVATION CONTRACTOR _Hunewill Construction	COORDINATES ():									
EQUIPMENT CAT 320E	NORTHING 41.7023 EASTING 118.02125									
LOGGED BY M. Erdmann CHECKED BY K. Magner	DEPTH TO WATER (FT BGS) No groundwater encountered									
NOTES Backfilled with excavated material										

	Nevada Corporation	PROJECT	NAME	Thack	ker Pas	s Proie	ect		
·	ER _475.0385.000	PROJECT							
	12/17/19 COMPLETED 12/17/19							OTAL F	PIT DEPTH 16 ft
EXCAVATION CO	NTRACTOR Hunewill Construction		TES ():					
EQUIPMENT CA	T 320E	NORTH	ING _	11.7023	3		_ E/	ASTING	118.02125
OGGED BY M.	Erdmann CHECKED BY K. Magner	DEPTH	TO W	ATER (FT BG	S) <u>N</u>	groui	ndwater	encountered
NOTES Backfille	d with excavated material								
_		Я			RBERG IITS				
		Z Z	URE ()		L	VEL	SAND	FINES	RKS
(ft) DEPTH (ft) GRAPHIC LOG	MATERIAL DESCRIPTION	IPLE UME	JIST TEF	LIQUID	EXE EXE	% GRAVEI	% SA	, FIN	REMARKS
	Surface Conditions: Frozen Ground	SAMPLE TYPE NUMBER	MOISTURE CONTENT (%)	== ==	PLASTICITY INDEX	%	0	%	꿃
0	TOPSOIL (CL), loose, wet, dark brown	GB			ш.				
1695	silty SAND (SM), trace gravel, poorly graded, dense,	30-01							
	subrounded, dry, brown, weakly cemented								
+ 4343		CD.							
5 : : : : : : : : : : : : : : : : : : :	some caliche	GB 30-02	21.5	NP	NP	26.6	58.1	15.3	
	very dense, damp, cemented at 7-9ft								
+	silty SAND (SM), poorly graded, dense subrounded, damp								
10 10	grayish brown								
		CD.							
1 444		GB 30-03							
+									
15									
	Test pit terminated at 16ft (Excavator limits)								
		The Carlotte May 1	111111		美国	We not &			
		The same		TAY.					
				100					
			Trees.		7		RY		
						Carry			
		企业	Se de la constitución de la cons						
		A Land		THE PLE		300 M			
							A		

NF-GEOTECH TEST PIT - GINT STD US LAB, GDT - 2/24/20 08:40 - PAPROJECTS(0385.000 LITHIUM NEVADA THACKER PASS PROJECT/L-GEOTECH DATA/FIELD INVESTIGATION/TEST PITS(DEC2019_TEST PIT LOGS/THACKER PASS TEST PIT LOGS.) PROJECT NAME Thacker Pass Project CLIENT Lithium Nevada Corporation **PROJECT NUMBER** 475.0385.000 **PROJECT LOCATION** Thacker Pass **COMPLETED** 12/17/19 DATE STARTED 12/17/19 **GROUND ELEVATION** 4722 ft _____ TOTAL PIT DEPTH 10 ft **EXCAVATION CONTRACTOR** Hunewill Construction COORDINATES (): **EQUIPMENT** CAT 320E NORTHING 41.40443 __ **EASTING** 118.02126 LOGGED BY M. Erdmann CHECKED BY K. Magner DEPTH TO WATER (FT BGS) No groundwater encountered NOTES Backfilled with excavated material ATTERBERG SAMPLE TYPE NUMBER MOISTURE CONTENT (%) LIMITS ELEVATION (ft) GRAPHIC LOG REMARKS GRAVEL FINES SAND DEPTH (ft) LIQUID MATERIAL DESCRIPTION %

PLASTICITY INDEX Surface Conditions: Frozen Ground GB TOPSOIL (CL), loose, wet, dark brown 31-01 silty SAND (SM), some gravels, dense to very dense, 4720 subrounded, dry grayish brown, moderately cemented GB NP 11.0 NP 51.1 44.8 31-02 4715

Test pit terminated at 10ft (Practical refusal)

CLIENT Lithium Nevada Corporation	PROJECT NAME Thacker Pass Project
PROJECT NUMBER _475.0385.000	PROJECT LOCATION _ Thacker Pass
DATE STARTED 12/17/19 COMPLETED 12/17/19	GROUND ELEVATION 4738 ft TOTAL PIT DEPTH 16 ft
EXCAVATION CONTRACTOR Hunewill Construction	COORDINATES ():
EQUIPMENT CAT 320E	NORTHING 41.70615 EASTING 118.02129
LOGGED BY M. Erdmann CHECKED BY K. Magner	DEPTH TO WATER (FT BGS) No groundwater encountered
The state of the s	The first water (F1 665) No groundwater encountered

NewFields	TP19-32 PAGE 1 OF 1
CLIENT Lithium Nevada Corporation	PROJECT NAME Thacker Pass Project
PROJECT NUMBER 475.0385.000	PROJECT LOCATION _Thacker Pass
DATE OTABLED 40/47/40 COMPLETED 40/4	
<u> </u>	
EXCAVATION CONTRACTOR Hunewill Construction EQUIPMENT CAT 320E	NORTHING 41.70615 EASTING 118.02129
LOGGED BY M. Erdmann CHECKED BY K. N	
NOTES BUILDING CONTRACTOR	
MOTES Backfilled with excavated material NOTES BACKfilled with excavated with excavated material NOTES BACKfilled with excavated material NOTES BACKfilled with excavated with excavated material NOTES BACKfilled with excavated with excavated with excavated material NOTES BACKfilled with excavated with excavated with ex	SAMPLE TYPE NUMBER MOISTURE CONTENT (%) LIQUID LIMIT LIMIT PLASTICITY SAND % SAND % SAND % SAND % FINES % FINES
TOPSOIL (CL), loose, wet, dark brown SILT (ML), with sand, poorly graded, loose light gray	GB 32-01 GB 32-01 DD: 101.9 pcf, OMC: 21.1%
MATERIAL DESCRIPTION Surface Conditions: Frozen Ground TOPSOIL (CL), loose, wet, dark brown SILT (ML), with sand, poorly graded, loose light gray GRAVEL with sand and some cobbles (GP dense, subrounded, damp, reddish brown Topsoil (CL), loose, wet, dark brown SILT (ML), with sand and some cobbles (GP dense, subrounded, damp, reddish brown Test pit terminated at 16ft (Excavator limits)	GB 32-03
Test pit terminated at 16ft (Excavator limits)	

NOTES Backfilled with excavated material

NF-GEOTECH TEST PIT - GINT STD US LAB.GDT - 2/24/20 08:41 - P./PROJECTS(0385.000 LITHIUM NEVADA THACKER PASS PROJECTIL-GEOTECH DATA/FIELD INVESTIGATION/TEST PITS(DEC2019_TEST PIT LOGS/THACKER PASS TEST PIT LOGS.GPJ

<u> </u>											
ELEVATION	O DEPTH	GRAPHIC LOG	MATERIAL DESCRIPTION Surface Conditions: Frozen Ground	SAMPLE TYPE NUMBER	MOISTURE CONTENT (%)	ATTER LIMIT TIMIT		% GRAVEL	% SAND	% FINES	REMARKS
467	5 + - + -		TOPSOIL (CL), loose, wet, dark brown clayey GRAVEL (GC), poorly graded, dense, subrounded, dry, grayish brown, moderately cemented clayey GRAVEL (GC), with some cobbles and boulders,	GB 33-01 GB 33-02							
467	10		dense, subrounded, damp, reddish brown	GB 33-03	15.2	48	25	47.0	28.8	24.2	
	15		T. 1. 11. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1								

Test pit terminated at 15ft (Practical refusal)

CLIENT Lithium Nevada Corporation	PROJECT NAME Thacker Pass Project
PROJECT NUMBER 475.0385.000	PROJECT LOCATION Thacker Pass
DATE STARTED 12/17/19 COMPLETED 12/17/19	GROUND ELEVATION 4699 ft TOTAL PIT DEPTH 12 ft
EXCAVATION CONTRACTOR Hunewill Construction	COORDINATES ():
EQUIPMENT CAT 320E	NORTHING 41.70426 EASTING 118.01816
LOGGED BY M. Erdmann CHECKED BY K. Magner	DEPTH TO WATER (FT BGS) No groundwater encountered
CHECKED DI _K. Magner	DEFINIO WATER (FI BGS) No groundwater encountered

NOTES Backfilled with excavated material

NF-GEOTECH TEST PIT - GINT STD US LAB.GDT - 2/24/20 08:41 - P:/PROJECTS/0385.000 LITHIUM NEVADA THACKER PASS PROJECTIL-GEOTECH DATA/FIELD INVESTIGATION/TEST PITS/DEC2019_TEST PIT LOGS/THACKER PASS TEST PIT LOGS.GPJ

											•
ELEVATION (ft)	O DEPTH (ft)	GRAPHIC LOG	MATERIAL DESCRIPTION Surface Conditions: Frozen Ground	SAMPLE TYPE NUMBER	MOISTURE CONTENT (%)		PLASTICITY STAN	% GRAVEL	% SAND	% FINES	REMARKS
4695	5		TOPSOIL (CL), loose, wet, dark brown clayey GRAVEL (GC), with sand, some cobbles, poorly graded, dense, subrounded, dry, light brown	GB (34-01) GB 34-02							
4690	10		some boulders, moist, reddish brown	GB 34-03	6.4	46	27	58.1	23.8	18.1	DD: 124.2 pcf, OMC: 9.0%
			SAND (SP) with gravel, dense, subrounded, damp, brown								

Test pit terminated at 12ft (Practical refusal)

LIENT Lithium	Nevada Corporation	PROJECT N	IAME	Thack	er Pas	s Proje	ect		
	ER 475.0385.000	PROJECT L							
								OTAL	PIT DEPTH _14 ft
	ONTRACTOR Hunewill Construction								
QUIPMENT CA							F/	STING	3 118.01821
	Erdmann CHECKED BY K. Magner								r encountered
	d with excavated material			(·		<u> </u>	groui	idwato	rencountered
(ft) O DEPTH GRAPHIC LOG	MATERIAL DESCRIPTION Surface Conditions: Frozen Ground	SAMPLE TYPE NUMBER	MOISTURE CONTENT (%)	ATTER LIMI LIMIT		% GRAVEL	% SAND	% FINES	REMARKS
715	TOPSOIL (CL), loose, moist, dark brown clayey GRAVEL (GC), with sand, poorly graded, loose, subrounded, dry, grayish brown	GB 35-01 GB 35-02	6.9	30	10	55.5	21.8	22.7	DD: 134.8 pcf, OMC: 8.0 ⁴
705	GRAVEL with sand (GP), poorly graded, dense, subround moist, reddish brown	GB 35-03							

CLIENT Lithium Nevada Corporation	PROJECT NAME Thacker Pass Project									
PROJECT NUMBER 475.0385.000	PROJECT LOCATION Thacker Pass									
DATE STARTED 12/17/19 COMPLETED 12/17/19	GROUND ELEVATION 4743 ft TOTAL PIT DEPTH 13 ft									
EXCAVATION CONTRACTOR Hunewill Construction	COORDINATES ():									
EQUIPMENT CAT 320E	NORTHING 41.7081 EASTING 118.01823									
LOGGED BY M. Erdmann CHECKED BY K. Magner	DEPTH TO WATER (FT BGS) No groundwater encountered									
NOTES Backfilled with excavated material	· · · · · · · · · · · · · · · · · · ·									
	ATTERREDG									

■ Nev	vFields								TP19-3 (PAGE 1 OF
	Nevada Corporation	PROJECT I	NAME	Thack	ker Pas	s Proje	ect		
	ER 475.0385.000	PROJECT I							
	12/17/19 COMPLETED 12/17/19	GROUND E						OTAL F	PIT DEPTH 13 ft
	ONTRACTOR Hunewill Construction	COORDINA							
EQUIPMENT CA					1		E/	ASTING	118.01823
	Erdmann CHECKED BY K. Magner								encountered
NOTES Backfille	d with excavated material						V		
ELEVATION (ft) O DEPTH (R) GRAPHIC LOG	MATERIAL DESCRIPTION Surface Conditions: Frozen Ground	SAMPLE TYPE NUMBER	MOISTURE CONTENT (%)		PLASTICITY STIE INDEX	% GRAVEL	% SAND	% FINES	REMARKS
4740	TOPSOIL (CL), loose, moist, dark brown silty SAND (SM), poorly graded, loose, subrounded, dry, grayish brown	GB 36-01 GB 36-02							
4735	silty SAND (SM), with gravel, some cobbles, poorly graded, dense, subrounded, dry, grayish brown, weakly cemented	GB 36-03	15.6	NP	NP	45.6	24.2	30.2	
4730	GRAVEL, with sand some cobbles (GP), poorly graded, dense, subrounded, moist, reddish brown								

CLIENT Lithium Nevada Corporation	PROJECT NAME _ Thacker Pass Project
PROJECT NUMBER _475.0385.000	PROJECT LOCATION Thacker Pass
DATE STARTED _12/17/19	GROUND ELEVATION 4639 ft TOTAL PIT DEPTH 14 ft
EXCAVATION CONTRACTOR _ Hunewill Construction	COORDINATES ():
EQUIPMENT CAT 320E	NORTHING 41.70039 EASTING 118.01591

CLIENT Lithiu	m Nevada Corporation	PROJECT N	NAME	Thack	cer Pas	s Proje	ect		
PROJECT NUM	IBER _475.0385.000	PROJECT L							
DATE STARTE	COMPLETED 12/17/19	GROUND E	LEVA	TION _	4639 ft		_ т	OTAL	PIT DEPTH 14 ft
EXCAVATION	CONTRACTOR Hunewill Construction	COORDINA	TES ():					
EQUIPMENT _		NORTH	ING _	11.7003	39		_ E/	ASTING	118.01591
·	M. Erdmann CHECKED BY K. Magner	DEPTH	TO W	ATER (FT BG	S) <u>N</u>	groui	ndwate	r encountered
NOTES Backf	illed with excavated material	I			20500	1			
(f) O DEPTH GRAPHIC	Surface Conditions: Frozen Ground	SAMPLE TYPE NUMBER	MOISTURE CONTENT (%)		PLASTICITY SLIB SUBEX INDEX	% GRAVEL	% SAND	% FINES	REMARKS
1635	TOPSOIL (CL), loose, moist, dark brown silty GRAVEL with some cobbles (GM), dense, subrounded dry, grayish brown, moderately cemented	GB 37-01 GB 37-02							
10	clayey SAND (SC) with gravels, poorly graded, compacted, subrounded, moist, reddish brown	GB 37-03	10.2	56	30	30.6	44.1	25.6	

			vField		PD0 1505		-		5 .			
			Nevada Corporation									
			ER 475.0385.000	00MDI ETED 40/47/40	PROJECT						OTAL	DIT DEDTIL 44.5
	ATE STARTED 12/17/19 COMPLETED 12/17/19					_	46// π	['	OTAL	PIT DEPTH 14 ft	
				ewill Construction				~ -				
			T 320E	CHECKED BY K. Magner								115.01507
			d with excavated ma		DEPIH	10 W	AIER ((FI BG	S) <u>N</u>	o grou	ndwate	r encountered
ELEVATION (ft)	DEPTH (ft)	GRAPHIC LOG	Λ.	MATERIAL DESCRIPTION	SAMPLE TYPE NUMBER	MOISTURE CONTENT (%)	LIM	RBERG	GRAVEL	SAND	FINES	REMARKS
ELEV (o DE	GRA	Surface Conditions	: Frozen Ground		MOIS	LIQUID	PLASTICITY INDEX	% GF	8 %	% F	REM
-	┞.		TOPSOIL (CL), le trace gravel	oose, moist, dark brown	GB \38-01	l						
<u>1675</u> - -			SILT (ML) with sa light gray	and, some cobble, well graced, loose, o	GB 38-02							
-	5		subrounded, dry,	(GC), and cobbles, poorly graded, den- light gray, moderately cemented	GB 38-03							
1670 -			GRAVEL (GP) w dense, subround	ith sand, some cobbles, poorly graded, ed, moist, reddish brown								
-	10				GB 38-04							
1665			cilty SAND, come	e gravel (SW), well graded, dense, roui	ndad							
		0,0,0,0		ed at 14ft (Practical refusal)	lueu,							
										adl .		

NewFields

NOTES Backfilled with excavated material

NF-GEOTECH TEST PIT - GINT STD US LAB. GDT - 2/24/20 08:42 - P:/PROJECTS\0385.000 LITHIUM NEVADA THACKER PASS PROJECT\0.-GEOTECH DATA/FIELD INVESTIGATION\TEST PITS\DEC2019_TEST PIT LOGS\THACKER PASS TEST PIT LOGS. GPJ

(ft)	DEPTH (ft)	GRAPHIC LOG	MATERIAL DESCRIPTION Surface Conditions: Frozen Ground	SAMPLE TYPE NUMBER	MOISTURE CONTENT (%)	LIQUID LIMIT	PLASTICITY STATE INDEX	% GRAVEL	% SAND	% FINES	REMARKS
4705			TOPSOIL (CL), loose, moist, dark brown silty SAND (SM), with gravel, very dense, subrounded, dry, grayish brown, moderately cemented	GB (39-01) GB 39-02	15.5	NP	NP	34.5	47.2	18.3	

Test pit terminated at 5ft (Practical refusal)

CLIENT Lithium Nevada Corporation	PROJECT NAME Thacker Pass Project
PROJECT NUMBER 475.0385.000	PROJECT LOCATION Thacker Pass
DATE STARTED <u>12/16/19</u> COMPLETED <u>12/16/19</u>	GROUND ELEVATION 4741 ft TOTAL PIT DEPTH 16 ft
EXCAVATION CONTRACTOR Hunewill Construction	COORDINATES ():
EQUIPMENT CAT 320E	NORTHING 41.708 EASTING 118.01494
LOGGED BY M. Erdmann CHECKED BY K. Magner	DEPTH TO WATER (FT BGS) No groundwater encountered
NOTES Backfilled with excavated material	
	ATTERBERG

■ New	Fields								TP19-40 PAGE 1 OF	
CLIENT Lithium No		PROJECT N	JAMF	Thac	er Pas	s Proie	ect			
PROJECT NUMBER	<u> </u>	PROJECT NAME Thacker Pass Project PROJECT LOCATION Thacker Pass								
DATE STARTED		GROUND E		· -				OTAL I	PIT DEPTH 16 ft	
_	ITRACTOR Hunewill Construction	COORDINA								
EQUIPMENT CAT							F/	STING	i <u>118.01494</u>	
	rdmann CHECKED BY K. Magner								encountered	
	with excavated material									
ELEVATION (ft) O DEPTH (ft) GRAPHIC LOG	MATERIAL DESCRIPTION Surface Conditions: Frozen Ground	SAMPLE TYPE NUMBER	MOISTURE CONTENT (%)	ATTER LIM TIMIT	PLASTICITY STIINDEX	% GRAVEL	% SAND	% FINES	REMARKS	
4740	TOPSOIL (CL), loose, moist, dark brown SAND (SP) with gravel and some cobbles, poorly graded, dense, subrounded, moist, light brown clayey GRAVEL (GC), with sand, poorly graded, very dense subrounded, moist, light brown	GB 40-01) GB 40-02								
10 4730		GB 40-03	17.7	45	24	47.9	27.0	25.1		
4725	Test pit terminated at 16ft (Excavator limits)									

CLIENT Lithium Nevada Corporation	PROJECT NAME Thacker Pass Project
PROJECT NUMBER _475.0385.000	PROJECT LOCATION _ Thacker Pass
DATE STARTED _12/16/19	GROUND ELEVATION 4633 ft TOTAL PIT DEPTH 16 ft
EXCAVATION CONTRACTOR _ Hunewill Construction	COORDINATES ():
EQUIPMENT CAT 320E	NORTHING 41.70044 EASTING 118.01191
LOGGED BY M. Erdmann CHECKED BY K. Magner	DEPTH TO WATER (FT BGS) No groundwater encountered
NOTES Backfilled with excavated material	, ,

EQUIPMENT CAT 320E LOGGED BY M. Erdmann NOTES Backfilled with excavate Surface Cond O TOPSOIL (GRAVEL (dry, grayist)	COMPLETED 12/16/19 Hunewill Construction CHECKED BY K. Magner	PROJECT GROUND E COORDINA NORTH DEPTH SAMPLE TYPE SAMPLE TYPE GB	LOCAT ELEVA TES () ING _	TION	Thacker 4633 ft	r Pass	T	ASTING	PIT DEPTH 16 ft 3 118.01191 er encountered SY2YEV EV E
DATE STARTED 12/16/19 EXCAVATION CONTRACTOR EQUIPMENT CAT 320E LOGGED BY M. Erdmann NOTES Backfilled with excavate O Surface Cond O TOPSOIL (GRAVEL ((dry, grayist) 4625 GRAVEL ((subrounder	COMPLETED 12/16/19 Hunewill Construction CHECKED BY K. Magner ed material MATERIAL DESCRIPTION itions: Frozen Ground CL), loose, wet, dark brown GP) with sand, poorly graded, dense, subrounder	GROUND E COORDINA NORTH DEPTH SAMPLE 179	TO W	TION	4633 ft 44 FT BG: RBERG	S) <u>No</u>	EAO groun	ASTING ndwater	3 _118.01191 er encountered
EQUIPMENT CAT 320E LOGGED BY M. Erdmann NOTES Backfilled with excavate Surface Cond O TOPSOIL (dry, grayish 10 GRAVEL ((subrounded)	Hunewill Construction CHECKED BY K. Magner ed material MATERIAL DESCRIPTION itions: Frozen Ground CL), loose, wet, dark brown GP) with sand, poorly graded, dense, subrounder	COORDINA NORTH DEPTH SAMPLE TYPE SAMPLE TYPE GB 41-01	TES ()): 41.7004 ATER (ATTER LIM	FT BG:	S) _No	e ground GNAS	ASTING ndwater	3 _118.01191 er encountered
EQUIPMENT CAT 320E LOGGED BY M. Erdmann NOTES Backfilled with excavate Surface Cond O TOPSOIL (GRAVEL (dry, grayish A630 GRAVEL (subrounder	CHECKED BY K. Magner ed material MATERIAL DESCRIPTION itions: Frozen Ground CL), loose, wet, dark brown GP) with sand, poorly graded, dense, subrounder	NORTH DEPTH SAMPLE TYPE NUMBER A1-01	TO W	ATER (ATTER	RBERG	S) <u>No</u>	o grour QNPS	ndwater	er encountered
NOTES Backfilled with excavate NOTES Backfilled with excavate	MATERIAL DESCRIPTION itions: Frozen Ground CL), loose, wet, dark brown GP) with sand, poorly graded, dense, subrounde	SAMPLE TYPE NUMBER 41-01	TO W	ATER (RBERG	S) <u>No</u>	o grour QNPS	ndwater	er encountered
Surface Cond O O O O O O O O O O O O O	MATERIAL DESCRIPTION itions: Frozen Ground CL), loose, wet, dark brown GP) with sand, poorly graded, dense, subrounde	SAMPLE TYPE NUMBER		ATTER LIM	RBERG IITS		SAND	FINES	
4630 TOPSOIL (GRAVEL ((dry, grayish 5	itions: Frozen Ground CL), loose, wet, dark brown GP) with sand, poorly graded, dense, subrounde	GB 41-01	MOISTURE CONTENT (%)	LIM	IITS	,	% SAND	% FINES	MARKS
4630 TOPSOIL (GRAVEL (dry, grayish	GP) with sand, poorly graded, dense, subrounde	ed, 41-01							R. R.
t ₁₀ subrounded		41-02							
1620 - OO	GP) with sand, poorly graded, very dense, d, moist, reddish brown								

CLIENT Lithium Nevada Corporation	PROJECT NAME Thacker Pass Project
PROJECT NUMBER 475.0385.000	PROJECT LOCATION Thacker Pass
DATE STARTED 12/16/19 COMPLETED 12/16/19	GROUND ELEVATION 4663 ft TOTAL PIT DEPTH 15 ft
EXCAVATION CONTRACTOR Hunewill Construction	COORDINATES ():
EQUIPMENT CAT 320E	NORTHING 41.70243 EASTING 118.01197
LOGGED BY M. Erdmann CHECKED BY K. Magner	DEPTH TO WATER (FT BGS) No groundwater encountered
To the state of th	The groundwater encountered

Nev	vFields								TP19-4 2 PAGE 1 OF
	Nevada Corporation	PROJECT I	NAME	_Thack	er Pas	s Proje	ect		
PROJECT NUMBE	ER _475.0385.000	PROJECT I							
DATE STARTED	12/16/19 COMPLETED 12/16/19	GROUND E	LEVA	TION _	4663 ft		т	OTAL	PIT DEPTH 15 ft
EXCAVATION CO	NTRACTOR Hunewill Construction	COORDINA	TES ():					
EQUIPMENT CA	T 320E	NORTH	ING _	11.7024	13		E/	ASTING	3 118.01197
LOGGED BY M.	Erdmann CHECKED BY K. Magner	DEPTH	TO W	ATER (FT BG	S) <u>N</u>	o groui	ndwate	r encountered
NOTES Backfille	d with excavated material								
ELEVATION (ft) O DEPTH (ft) GRAPHIC LOG	MATERIAL DESCRIPTION Surface Conditions: Frozen Ground	SAMPLE TYPE NUMBER	MOISTURE CONTENT (%)		PLASTICITY SLIB	% GRAVEL	% SAND	% FINES	REMARKS
4660	TOPSOIL (CL), loose, moist to wet, dark brown silty SAND (SM) with gravel, well graded, dense, subroundedry, light grayish brown, moderately cemented	GB (42-01) GB (42-01)							
4655	GRAVEL (GP), with sand, poorly graded, dense, subrounde moist to damp, reddish brown	d,							

NF-GEOTECH TEST PIT - GINT STD US LAB.GDT - 2/24/20 08:43 - P:/PROJECTS/0385.000 LITHIUM NEVADA THACKER PASS PROJECTIL-GEOTECH DATA/FIELD INVESTIGATION/TEST PITS/DEC2019_TEST PIT LOGS/THACKER PASS TEST PIT LOGS.GPJ

CLIENT Lithium Nevada Corporation	PROJECT NAME Thacker Pass Project						
PROJECT NUMBER 475.0385.000	PROJECT LOCATION Thacker Pass						
DATE STARTED 12/16/19 COMPLETED 12/16/19	GROUND ELEVATION 4677 ft TOTAL PIT DEPTH 5 ft						
EXCAVATION CONTRACTOR Hunewill Construction	COORDINATES ():						
EQUIPMENT CAT 320E	NORTHING <u>41.70447</u> EASTING <u>118.01186</u>						
LOGGED BY M. Erdmann CHECKED BY K. Magner DEPTH TO WATER (FT BGS) No groundwater encountered							
NOTES Backfilled with excavated material							
	ATTERBERG						
Z _O							

ELEVATION (ft)	O DEPTH (ft)	GRAPHIC LOG	MATERIAL DESCRIPTION Surface Conditions: Frozen Ground	SAMPLE TYPE NUMBER	MOISTURE CONTENT (%)	ATTER LIMID LIMIT	PLASTICITY SIE	% GRAVEL	% SAND	% FINES	REMARKS
4675	\vdash \dashv		TOPSOIL (CL), loose, wet, dark brown GRAVEL (GP) with clay, poorly graded, very dense, subrounded, dry to damp, light brown, moderately cemented	GB (43-01) GB 43-02							

Test pit terminated at 5ft (Practical refusal)

NF-GEOTECH TEST PIT - GINT STD US LAB.GDT - 2/24/20 08:43 - P:/PROJECTS/0385.000 LITHIUM NEVADA THACKER PASS PROJECTIL-GEOTECH DATA/FIELD INVESTIGATION/TEST PITS/DEC2019_TEST PIT LOGS/THACKER PASS TEST PIT LOGS.GPJ

CLIENT Lithium Nevada Corporation	PROJECT NAME Thacker Pass Project							
PROJECT NUMBER 475.0385.000	PROJECT LOCATION _ Thacker Pass							
DATE STARTED 12/16/19 COMPLETED 12/16/19	GROUND ELEVATION 4714 ft TOTAL PIT DEPTH 16 ft							
EXCAVATION CONTRACTOR Hunewill Construction	COORDINATES ():							
EQUIPMENT CAT 320E	NORTHING 41.7062 EASTING 118.01184							
LOGGED BY M. Erdmann CHECKED BY K. Magner	DEPTH TO WATER (FT BGS) No groundwater encountered							
NOTES Backfilled with excavated material	, ,							

2											
ELEVATION (ft)	O DEPTH (ft)	GRAPHIC LOG	MATERIAL DESCRIPTION Surface Conditions: Frozen Ground	SAMPLE TYPE NUMBER	MOISTURE CONTENT (%)		PLASTICITY SIBBERG INDEX	% GRAVEL	% SAND	S∃NIJ %	REMARKS
4710	-		TOPSOIL (CL), loose, moist, brown SILT (ML) with sand, trace gravel, well graded, compact, subrounded, damp, light brown	GB 44-01							
4705	5		GRAVEL with silt and sand (GW-GM), well graded, dense, subrounded, moist, gray - light brown, moderately cemented	GB 44-02	9.2	NP	NP	52.4	38.9	8.4	DD: 112.6 pcf, OMC: 11.0%
4700			GRAVEL (GP) with sand some cobbles, poorly graded, very dense, angular, damp, reddish brown	GB 44-03							

Test pit terminated at 16ft (Excavator limits)

NewFields

CLIE	NT Lithium	Nevada Corporation		PROJ	IECT N	IAME	Thack	er Pas	s Proje	ect				
	ECT NUMB	PROJ	PROJECT LOCATION Thacker Pass											
	STARTED	GRO	UND E	LEVA	TION _	4735 ft		_ T	OTAL F	PIT DEPTH 16 ft				
XC	VATION CO	cool	RDINA	TES ()):									
EQUIPMENT CAT 320E				N	ORTH	NG _4	1.7081	4		EA	STING	118.01199		
LOGGED BY M. Erdmann CHECKED BY K. Magner														
NOTES Backfilled with excavated material					1		ATTER							
Z				Ĺ	٦ _~	(%) (%)		ITS	بر			S		
ELEVALION (ft)	DEPTH (ft) GRAPHIC LOG	N.A.	IATERIAL DESCRIPTION	f	SAMPLE IYPE NUMBER	MOISTURE CONTENT (%)	۵.	PLASTICITY INDEX	% GRAVE	SAND	FINES	REMARKS		
, L	DE 3RA LC	IVI				AOIS NATE	LIQUID	STIC (DE)	6 GR	s' %	% 	₹EΜ,		
		Surface Conditions:	Frozen Ground	6	Α̈́ _	≥0		PLA∷	%			Ľ		
735	0 /////	TOPSOIL (CL), p	oorly graded, loose, moist, brown		GB			_						
			with trace gravel, well graded, compa	act,	45-01									
		subrounded, mois	st, light brown											
7 00	+ _ + 14													
730	5				GB									
-	† †##				45-02									
725	10													
	+ + + + + + + + + + + + + + + + + + + +	GRAVEL (GP) wi	th sand, well graded, dense, subroui	nded,										
-	1 300	dark brown												
	600													
720	15 000													
	100	Test nit terminate	d at 16ft (Excavator limits)											
		. est pit torrimate	(Exception millo)											
				and the second	W T	Ser and	The second							
		i i				V	Ph		13	Same				
						of the				1				
								All Tree						
				i de la companya della companya della companya de la companya della companya dell				一顿	Red L					
					1 3					*				
			17. 发生的		and a									
			工程程型			À	7 7	•						
			安美 克斯 A			100								
							•	1						
								1						
									-	A. 15				
									F. 6					
									- Carrier	" B				

CLIENT Lithium Nevada Corporation	PROJECT NAME Thacker Pass Project
PROJECT NUMBER _475.0385.000	PROJECT LOCATION _ Thacker Pass
DATE STARTED 12/16/19 COMPLETED 12/16/19	GROUND ELEVATION 4674 ft TOTAL PIT DEPTH 16 ft
EXCAVATION CONTRACTOR Hunewill Construction	COORDINATES ():
EQUIPMENT CAT 320E	NORTHING 41.70242 EASTING 118.00888
LOGGED BY M. Erdmann CHECKED BY K. Magner	DEPTH TO WATER (FT BGS) No groundwater encountered
	DEI III IO WATER (I I BOO) 110 groundwater encountered

wFields								TP19-46 PAGE 1 OF 1		
	DD 6 1			_	_					
·										
	PROJECT LOCATION Thacker Pass									
				4674 11	<u> </u>	_ '	OTAL	PIT DEPTH 16 ft		
				12		_	CTING	110 00000		
EQUIPMENT CAT 320E LOGGED BY M. Erdmann. CHECKED BY K. Magner										
d with excavated material		10 11	A1 LIX (,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	O, <u>IV</u>	o groui	Idwalc	rencountered		
MATERIAL DESCRIPTION Surface Conditions: Frozen Ground	SAMPLE TYPE NUMBER	MOISTURE CONTENT (%)			% GRAVEL	% SAND	% FINES	REMARKS		
TOPSOIL (CL), loose, moist, dark brown SAND with some gravel (SP), poorly graded, compact, subrounded, damp, light brown	46-01 GB									
silty GRAVEL (GM) with sand, poorly graded, dense, subrounded, damp, light gray brown, stratified, moderately cemented	GB 46-03	14.6	38	9	44.5	36.6	18.9	DD: 109.9 pcf, OMC: 14.5%		
GRAVEL (GP) with sand, poorly graded, dense, subrounde damp, reddish brown	GB 46-04									
	COMPLETED 12/16/19 DINTRACTOR Hunewill Construction AT 320E Erdmann CHECKED BY K. Magner End with excavated material MATERIAL DESCRIPTION Surface Conditions: Frozen Ground TOPSOIL (CL), loose, moist, dark brown SAND with some gravel (SP), poorly graded, compact, subrounded, damp, light brown silty GRAVEL (GM) with sand, poorly graded, dense, subrounded, damp, light gray brown, stratified, moderately cemented GRAVEL (GP) with sand, poorly graded, dense, subrounded	Nevada Corporation ER 475.0385.000 12/16/19 COMPLETED 12/16/19 GROUND E GROUND E COORDINA AT 320E Erdmann CHECKED BY K. Magner DEPTH ad with excavated material MATERIAL DESCRIPTION Surface Conditions: Frozen Ground TOPSOIL (CL), loose, moist, dark brown SAND with some gravel (SP), poorly graded, compact, subrounded, damp, light brown Silty GRAVEL (GM) with sand, poorly graded, dense, subrounded, damp, light gray brown, stratified, moderately cemented GB 46-03 GRAVEL (GP) with sand, poorly graded, dense, subrounded, damp, reddish brown GB 46-04	Nevada Corporation ER 475.0385.000 12/16/19 COMPLETED 12/16/19 GROUND ELEVA COORDINATES (NORTHING 4 Erdmann CHECKED BY K. Magner DEPTH TO W. Ed with excavated material MATERIAL DESCRIPTION Surface Conditions: Frozen Ground TOPSOIL (CL), loose, moist, dark brown SAND with some gravel (SP), poorly graded, compact, subrounded, damp, light brown silty GRAVEL (GM) with sand, poorly graded, dense, subrounded, damp, light gray brown, stratified, moderately cemented GRAVEL (GP) with sand, poorly graded, dense, subrounded, damp, reddish brown GRAVEL (GP) with sand, poorly graded, dense, subrounded, damp, reddish brown GRAVEL (GP) with sand, poorly graded, dense, subrounded, damp, reddish brown GRAVEL (GP) with sand, poorly graded, dense, subrounded, damp, reddish brown	Nevada Corporation ER 475.0385.000 12/16/19 COMPLETED 12/16/19 GROUND ELEVATION COORDINATES (): NORTHING 41.7024 d with excavated material MATERIAL DESCRIPTION Surface Conditions: Frozen Ground TOPSOIL (CL), loose, moist, dark brown SAND with some gravel (SP), poorly graded, compact, subrounded, damp, light brown silty GRAVEL (GM) with sand, poorly graded, dense, subrounded, damp, light gray brown, stratified, moderately cemented GRAVEL (GP) with sand, poorly graded, dense, subrounded, damp, reddish brown GRAVEL (GP) with sand, poorly graded, dense, subrounded, damp, reddish brown GRAVEL (GP) with sand, poorly graded, dense, subrounded, damp, reddish brown	Nevada Corporation ER 475.0385.000 12/16/19 COMPLETED 12/16/19 CONTRACTOR Hunewill Construction AT 320E Erdmann CHECKED BY K. Magner MATERIAL DESCRIPTION Surface Conditions: Frozen Ground TOPSOIL (CL), loose, moist, dark brown SAND with some gravel (SP), poorly graded, compact, subrounded, damp, light brown Silty GRAVEL (GM) with sand, poorly graded, dense, subrounded, damp, light gray brown, stratified, moderately cemented PROJECT NAME Thacker Pass PROJECT LOCATION Thacke GROUND ELEVATION	Nevada Corporation ER 475.0385.000 PROJECT LOCATION Thacker Pass Project Project Location Thacker Pass Pass Project Location Thacker Pass Pass Project Location Thacker Pass Pass Projec	Nevada Corporation ER 475.0385.000 12/16/19 COMPLETED 12/16/19 GROUND ELEVATION 4674 ft T COORDINATES (): NORTHING 41.70242 Erdmann CHECKED BY K. Magner dwith excavated material MATERIAL DESCRIPTION Surface Conditions: Frozen Ground TOPSOIL (CL), loose, moist, dark brown SAND with some gravel (SP), poorly graded, compact, subrounded, damp, light brown silty GRAVEL (GM) with sand, poorly graded, dense, subrounded, damp, light gray brown, stratified, moderately cemented GRAVEL (GP) with sand, poorly graded, dense, subrounded, damp, reddish brown GB 46-04 GB 46-04	Nevada Corporation ER 475.0385.000 12/16/19 COMPLETED 12/16/19 GROUND ELEVATION 4674 ft TOTAL CORDINATES (): NORTHING 41.70242 EASTING TOTAL TOTAL CORDINATES (): NORTHING 41.70242 EASTING DEPTH TO WATER (FT BGS) No groundwate and with excavated material MATERIAL DESCRIPTION Surface Conditions: Frozen Ground TOPSOIL (CL), loose, moist, dark brown SAND with some gravel (SP), poorty graded, compact, subrounded, damp, light brown Silty GRAVEL (GM) with sand, poorty graded, dense, subrounded, damp, light gray brown, stratified, moderately cemented GB 46-03 GB 46-04 GB 46-04		

		P19-4' E 1 OF		
NewFields				
Lithium Nevada Corporation	PROJECT NAME Thacker Pass Project			
PROJECT NUMBER 475.0385.000	PROJECT LOCATION Thacker Pass			
DATE STARTED <u>12/16/19</u> COMPLETED <u>12/16/19</u>	GROUND ELEVATION 4686 ft TOTAL PIT DEPTH 3 ft			
EXCAVATION CONTRACTOR Hunewill Construction	COORDINATES ():			
EQUIPMENT CAT 320E	NORTHING 41.70437 EASTING 118.00886			
LOGGED BY M. Erdmann CHECKED BY K. Magner	DEPTH TO WATER (FT BGS) No groundwater encountered			
NOTES Backfilled with excavated material				
MATERIAL DESCRIPTION Surface Conditions: Frozen Ground	SAMPLE TYPE NUMBER MOISTURE CONTENT (%) LIQUID LIQUID LIMIT LIMIT NDEX SAND % SAND % FINES % FINES			
TOPSOIL (CL), loose, moist, dark brown silty GRAVEL (GM) with sand, well graded, very dense, subangular, dry, light gray brown, moderately cemented Test pit refusal at 3ft (Practical refusal)	GB 47-01 GB 13.1 NP NP 54.2 30.9 14.9			

CLIENT Lithium Nevada Corporation	PROJECT NAME Thacker Pass Project
PROJECT NUMBER _475.0385.000	PROJECT LOCATION _Thacker Pass
DATE STARTED _12/16/19	GROUND ELEVATION 4713 ft TOTAL PIT DEPTH 17 ft
EXCAVATION CONTRACTOR _Hunewill Construction	COORDINATES ():
EQUIPMENT CAT 320E	NORTHING 41.70628 EASTING 118.00884
LOGGED BY M. Erdmann CHECKED BY K. Magner	DEPTH TO WATER (FT BGS) No groundwater encountered
NOTES Packfilled with executated material	,

CLIENT PROJE DATE S	T <u>Lithium</u>	vFields Nevada Corporation								
PROJE DATE S EXCAV	<u> </u>	•	PROJECT I	NAME	Thack	ker Pas	s Proie	ect		
DATE S		ER 475.0385.000	PROJECT I							
EXCAV	STARTED							OTAL I	PIT DEPTH 17 ft	
	ATION CC	COORDINA								
	MENT _CA				28		EASTING _118.00884			
LOGGE	ED BY M.				ter encountered					
		d with excavated material								
z			B.			RBERG IITS				6
ELEVATION (ft)	DEPTH (ft) GRAPHIC LOG		SAMPLE TYPE NUMBER	MOISTURE CONTENT (%)		≽	GRAVEL	SAND	FINES	REMARKS
EVA Tr	DEPTH (ft) SRAPHIC LOG	MATERIAL DESCRIPTION	PLE	TSE TE	LIQUID	PLASTICITY INDEX	GR/	% SA	FIIN	ΨΨ
<u> </u>		Surface Conditions: Frozen Ground	NAN N	ĕÖ		ASI	%	8	%	꿆
	0					₫				
+		TOPSOIL (CL), loose, moist, brown sandy lean CLAY (CL), poorly graded, compact, subrounded	GB 48-01							
4710		damp, light brown	GB	20.5	34	13	8.7	34.5	56.8	
., .,			48-02	20.5	34	13	0.7	34.5	30.6	
I	5									
+	[00]	GRAVEL (GP) with clay, poorly graded, dense, subrounded, damp, gray brown, moderately cemented								
4705+	- 10,01	aump, gray 2.0m, moustately combined	GB 48-03							
4705										
Ť	10 0	GRAVEL (GP) with sand, poorly graded, dense, subrounded	l,							
I		moist, reddish brown								
+										
4700	- +2d									
+	15									
+	D & d									
	- 7500									
		Test pit terminated at 17ft (Excavator Limits)		77		S. Carlotte				
				5)						

CLIENT Lithium Nevada Corporation	PROJECT NAME Thacker Pass Project
PROJECT NUMBER _475.0385.000	PROJECT LOCATION _Thacker Pass
DATE STARTED 12/17/19 COMPLETED 12/17/19	GROUND ELEVATION 4642 ft TOTAL PIT DEPTH 15 ft
EXCAVATION CONTRACTOR Hunewill Construction	COORDINATES ():
EQUIPMENT CAT 320E	NORTHING 41.69851 EASTING 118.01612
LOGGED BY M. Erdmann CHECKED BY K. Magner	DEPTH TO WATER (FT BGS) No groundwater encountered
	22. III o Wil 21 (i i 200) The great awater of recall to real

Nev	vFields								TP19-49 PAGE 1 OF 1		
	Nevada Corporation	PROJECT N	NAME	Thack	er Pas	s Proie	ect				
PROJECT NUMBE		PROJECT NAME _Thacker Pass Project PROJECT LOCATION _Thacker Pass									
	12/17/19 COMPLETED 12/17/19										
	NTRACTOR Hunewill Construction	COORDINA			10 12 10			01712	<u></u>		
EQUIPMENT CA					51		E/	STING	3 118.01612		
	Erdmann CHECKED BY K. Magner								r encountered		
	d with excavated material	DEFIII	10 11	AI LIX (11 00.	3) <u>IN</u>	J groui	idwale	i encountered		
ELEVATION (ft) DEPTH (ft) GRAPHIC LOG	MATERIAL DESCRIPTION Surface Conditions: Frozen Ground	SAMPLE TYPE NUMBER	MOISTURE CONTENT (%)	ATTER LIM LIWIT	PLASTICITY SIELS INDEX	% GRAVEL	% SAND	% FINES	REMARKS		
0					₫.						
4640	TOPSOIL (CL), loose, moist, dark brown GRAVEL with silt and sand (GW-GM), well graded, dense, subrounded, dry, grayish brown, moderately cemented	GB (49-01) GB 49-02	9.9	NP	NP	65.8	28.0	6.2			
4630	subrounded, moist, reddish brown	GB 49-03									

티 CLI			<u> </u>	PROJECT NAME _ Thacker Pass Project PROJECT LOCATION _ Thacker Pass									
PASS PRO													
副 DY.													
EXC	CAVA	TION CO	ONTRACTOR Hunewill Construction										
EQI	JIPME	NT _C/	AT 320E	NORTHING 41.69862 EASTING 118.00877									
	GGED	BY M	. Erdmann CHECKED BY K. Magner	DEPTH	TO W	ATER ((FT BG	S) <u>N</u>	o grou	ndwate	r encountered		
NO.	TES _	Backfille	ed with excavated material										
							RBERG						
ON ON	_	೦		R ≺	HZ (%)	LIIV	IITS	岀		S	Ş.		
SOE (#)	DEPTH	PH S	MATERIAL DESCRIPTION	LE T		□⊢	l E X	RA	SAND	FINES	REMARKS		
ELEVATION	ä	GRAPHIC LOG		SAMPLE TYPE NUMBER	MOISTURE CONTENT (%)	LIQUID	PLASTICITY INDEX	% GRAVEL	%	% F	R E		
	0		Surface Conditions: Frozen Ground	/S	- ö	-	<u> </u>						
NO N	- 0		TOPSOIL (CL), loose, wet, dark brown	GB									
TIGA	I	1,00%	GRAVEL (GP) with clay, with cobbles, poorly graded, dense, subangular, dry, light brown, moderately cemented	50-01									
463 2	0	000	2224. galai, a. y, agit brown, moderatory combined	GB									
≧ - -	+ _	₹0°?		50-02									
FIE	5	600											
DAT/	Ī	Ţ. Č.,											
급 462	5	000	GRAVEL (GP) with sand, poorly graded, dense, subrounded, moist, reddish brown										
- E	+	-{0 (\o)											
	10	600											
	1			GB									
462	0	700		50-03									
PAS:	+	-[00°]											
Ä –	15												
THAC -		1000			L	L	L	L					
ADA .			Test pit terminated at 17ft (Excavator limits)										
GINT STD US LAB. GDT - 2/24/20 08:45 - P./PROJECTS\0385.000 LITHIUM NEVADA THACKER PASS PROJECTIL-GEOTECH DATAIFIELD INVESTIGATION TEST PIT LOGS\THACKER PASS TEST PASS TES													
M □ H													
O LT													
35.00						1							
3/03						20			17				
JECT			The state of the s		Y	-	M						
PRO							10		3				
- P.						**							
08:4						6							
24/20													
r - 2/2				and the		11	1		1100				
.GD.			1				3	1.					
SLAE									200				
<u>5</u>													
STS				1	A P								
							THE PARTY OF THE P		100				
TPIT				100	, Chr.								
NF-GEOTECH TEST PIT			43.						The same of the sa				
ECH ECH			10 10 10 10 10 10 10 10 10 10 10 10 10 1			2000	Sec. 25.	-					
3E01													
Ä													

GEOTECHNICAL INVESTIGATION FACTUAL REPORT FOR THE THACKER PASS PROJECT HUMBOLDT COUNTY, NEVADA

Prepared for: Lithium Nevada Corporation 3685 Lakeside Drive Reno, Nevada 89509

Prepared by:

NewFields Mining Design & Technical Services 9400 Station Street, Suite 300 Lone Tree, Colorado 80124

> NewFields Project No.475.0385.000 October 16, 2019

TABLE OF CONTENTS

1.	INTRODUCTION	1
2.	FIELD INVESTIGATION	1
3.	LABORATORY PROGRAM	2
4.	GENERALIZED SITE CONDITIONS	2
5.	GEOTECHNICAL CHARACTERIZATION AND DESIGN STRENGTHS	3
6.	OBSERVATIONS AND RECOMMENDATIONS	3
	REFERENCES	
LIS	T OF TABLES	
Tab	ole 6-2. Material Properties Summary	3
Tab	ple A1. Test Pit Laboratory Data Summary	
Tab	ole B1. Borehole Laboratory Summary Data	

LIST OF FIGURES

Figure 1 – Current Field Exploration Program

Figure 2 – As Permitted Field Exploration Program

LIST OF APPENDICES

Appendix A – Test Pit Laboratory Data

Appendix B – Borehole Laboratory Data

Appendix C – Borehole Exploration Logs

Appendix D – Test pit Exploration Logs

1. INTRODUCTION

NewFields has completed a field investigation and laboratory testing program in support of Lithium Nevada Corporation's (LNC) Thacker Pass Project. This report presents the findings from that field investigation and provides recommendations for future work. The project site includes a clay tailings filter stack (CTFS), coarse gangue stockpile (CGS), process facilities, open pit and two waste rock storage facilities (WRSF). Geotechnical engineering for the development of the open pit is not included as part of this scope of work.

2. FIELD INVESTIGATION

A preliminary site investigation was completed by AMEC in 2011 for an initial project site layout (AMEC, 2011). The project elements subsequently changed and as a result, NewFields completed an additional site investigation between February and April 2019 which included 31 boreholes and 29 test pits. The boreholes were advanced using a CME-850 track-mounted drill rig, and each borehole was drilled with 4.25-inch diameter hollow stem auger in soil and triple tube wireline rock coring methods when in bedrock. Four boreholes were extended to depths of 100 to 150 feet below ground surface (bgs), with the remaining twenty-seven boreholes extended to depths of 30 to 50 feet bgs. Test pits were excavated with a CAT 320E excavator to depths of 7 to 19 feet bgs. NewFields logged the lithologies and characteristics of subsurface materials based on recovery from the driven samples, soil cuttings brought to the surface on the auger flights and excavator buckets, and recovered rock core.

The borehole and test pit logs summarize the results of material classifications and observations made at each borehole or test pit location. These records include drilling or excavation depth, description of each strata encountered, strata delineation, estimates of strata density, and location of samples retained for laboratory analysis. The logs represent our interpretation of the contents of the field logs and the results of the laboratory tests on select field samples. The as-installed locations of the boreholes and test pits are presented in **Figure 1.** Borehole and test pit logs are presented in **Appendices C** and **D**. It is NewFields' understanding that subsequent drilling has occurred in the vicinity of the mine pit. This work was completed by another company and the collected information is not presented in this report.

It should be noted that the locations for all the project facilities have changed since the NewFields' field investigation was completed, and as such, the completed work does not fully characterize the subsurface beneath each facility. **Figure 2** details the original site layout as presented in the permitted field exploration program.

3. LABORATORY PROGRAM

Soil samples obtained during the field investigation were labeled, packaged and transported to the NewFields AMRL/AASHTO accredited laboratory in Elko, Nevada where the majority of the soil testing was completed. Laboratory testing was completed on select samples collected during the field investigation.

Soil classification involved particle size analyses and Atterberg limits which were used to divide soils into groups such that the engineering properties of the soils within each group are similar. Each sample was categorized according to the Unified Soil Classification System (USCS), which is based on the material gradation and plasticity. Natural moisture content and natural density were recorded from ring-lined samples. Moisture content — unit weight relationships were developed from bulk test pit samples. Strength properties of in-situ soils are estimated based upon standard penetration testing (SPT) and USCS classification. This laboratory testing program included:

- Grain Size Analysis (ASTM D422);
- Atterberg Limits (ASTM D4318);
- Natural Moisture Content (ASTM D2216);
- Natural Density (ASTM 2937); and,
- Modified Proctor Moisture Density Relationship (ASTM D1557).

Individual laboratory testing results are summarized in **Tables A1** and **B1** and individual lab test results are presented in **Appendices A** and **B**.

It should be noted that all moisture contents presented in this report were completed as per ASTM D2216 are reported as dry basis (Weight of water/Weight of dry solids) as this is the common reporting practice for geotechnical reporting.

4. GENERALIZED SITE CONDITIONS

Subsurface conditions can generally be classified as a thin veneer of growth media, approximately 12 inches to 24 inches in thickness, overlying alluvium overburden consisting of loose to very dense fine to coarse SANDS and GRAVELS with varying amounts of clay, silt, sand and gravel overlying residuum composed of slightly weathered to highly weathered basalt. In the open pit area, the alluvium directly overlies claystone with varying amounts of interbedded ash (AMEC, 2011). Throughout the site, thin seams and lenses of low plastic clay and silt were observed in select borings at relatively shallow depths. The thickness of alluvium overburden varies significantly across the site, with recorded thicknesses between 10 feet to over 65 feet. There is no general trend of overburden thickness or bedrock elevation across the site, primarily due to the degree of weathering and the basalt depositional process.

In three of the four deep boreholes within the CGS and Plant Site areas, groundwater was encountered at depths of approximately 83 to 93 feet below ground surface (bgs). Throughout the remainder of the site, the relatively shallow boreholes did not encounter groundwater in the upper 50 feet bgs.

The site generally slopes to the South-southeast at approximately 4 to 6 percent gradient with isolated slopes up to 15 to 20 percent gradient. Based upon the topography there is significant relief across the entire project; approximately 650 feet of elevation change across the pit area, 350 feet of change across the CTFS, 200 feet of change across the WRSF and CGS, and approximately 150 feet of elevation change across the plant site.

5. GEOTECHNICAL CHARACTERIZATION AND DESIGN STRENGTHS

Recommended geotechnical material parameters are presented in **Table 6-2**. These engineering parameters were chosen based upon the results from laboratory index and strength testing in conjunction with observations from borehole and test pit observations and historical experience with similar materials.

Table 6-1. Material Properties Summary

	Wet	Maintura	Hydraulic	Drained :	Strength
Material	Unit Weight (pcf)	Moisture Content (%)	Conductivity (cm/sec)	Friction Angle (Degrees)	Cohesion (psf)
Alluvium – In-situ	110	20	1E-04 ¹	32 ²	0

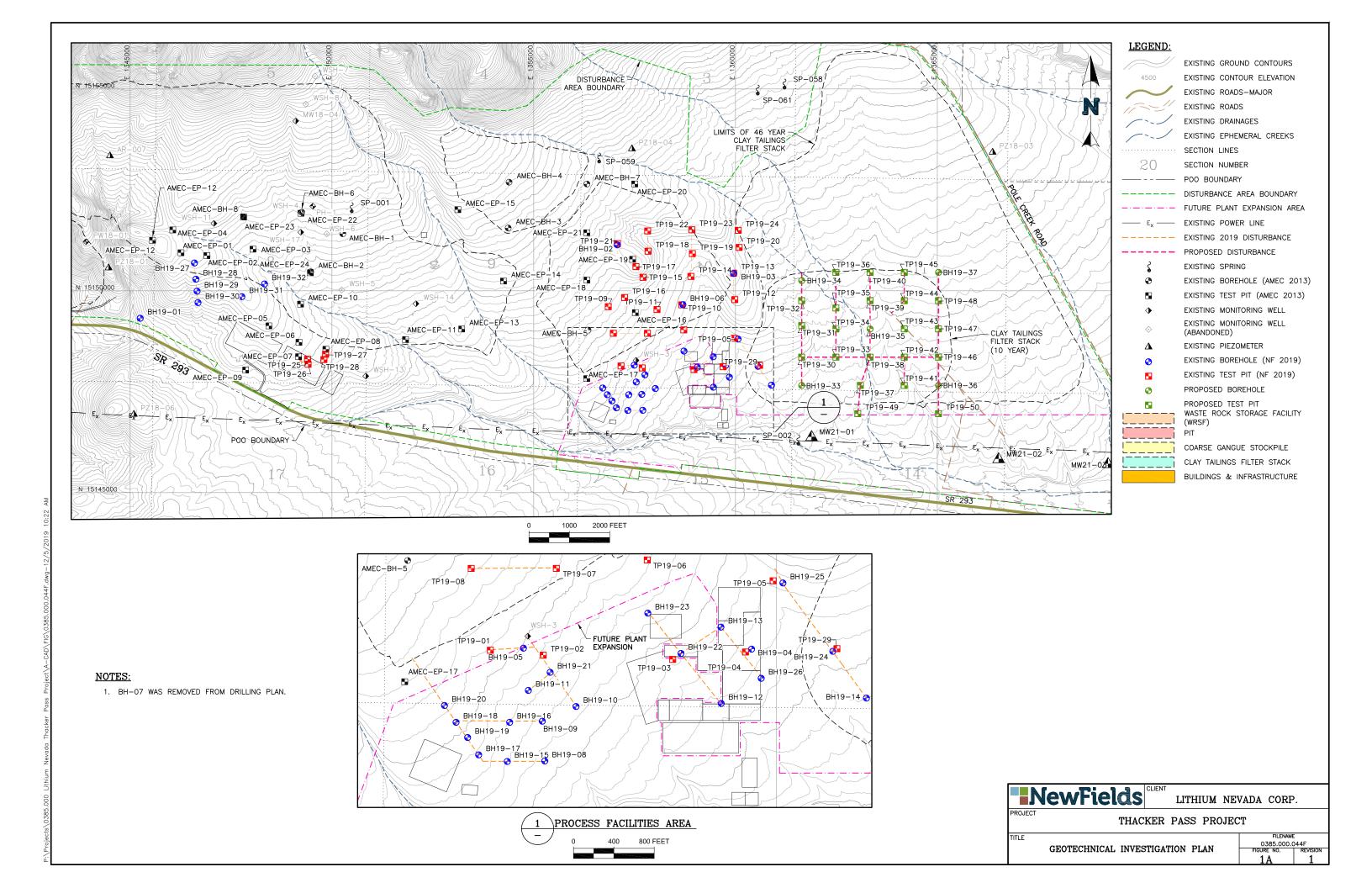
Note¹: Assumed based upon particle size distribution (Freeze and Cherry, 1979)

Note²: Assumed based upon particle size distribution and SPT values.

6. OBSERVATIONS AND RECOMMENDATIONS

Foundation conditions across the site (where explored) are adequate for the proposed developments. Areas of unsuitable materials, such as low strength or high plasticity materials, that could require removal or replacement were not identified and are not expected to influence construction. Additional borehole and test pit exploration is recommended in the area of the CTFS to further identify soil properties, depth to bedrock, and groundwater conditions. Additional explorations within the plant site areas will also be beneficial as several areas are lacking boreholes as a result of the relocation of plant site facilities.

Thacker Pass Project Geotechnical Investigation Factual Report NewFields Project No. 475.0385.000 October 16, 2019

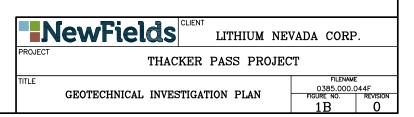


Alluvial overburden materials may be suitable for use as construction materials. Further strength and deformation testing is recommended to develop well defined material properties. Waste materials from the pit are assumed to consist of clay and ash, further testing should be performed to determine suitability for use as construction materials. Additional testing for interface shear strength of geosynthetic liner applications (underliner and overliner) should be performed.

7. REFERENCES

AMEC (2011). "Prefeasibility Level Geotechnical Study Report. Kings Valley Lithium Project. Humboldt County, Nevada." Project No. 10-417-00961. Sparks, Nevada. March, 2011

Freeze, R.A., and Cherry, J.A., (1979), Groundwater: Englewood Cliffs, NJ, Prentice-Hall, 604 p.



Г	EST PIT I	OCATION	S
POINT	NORTHING	EASTING	DEPTH
TP19-01	15,148,138	1,357,163	17.0'
TP19-02	15,148,089	1,357,687	15.0'
TP19-03	15,148,047	1,358,970	14.0'
TP19-04	15,148,120	1,359,692	19.0'
TP19-05	15,148,825	1,359,965	15.0'
TP19-06	15,149,032	1,358,718	19.0'
TP19-07	15,148,948	1,357,817	10.0'
TP19-08	15,148,948	1,356,973	13.0'
TP19-09	15,149,606	1,356,846	15.0'
TP19-10	15,149,653	1,358,668	7.0'
TP19-11	15,149,536	1,358,054	15.0'
TP19-12	15,149,781	1,359,981	17.0'
TP19-13	15,150,438	1,359,953	19.0'
TP19-14	15,150,356	1,358,895	19.0'
TP19-15	15,150,334	1,357,707	14.0'
TP19-16	15,149,833	1,357,251	15.0'
TP19-17	15,150,600	1,357,532	19.0'
TP19-18	15,150,981	1,357,833	12.0'
TP19-19	15,150,922	1,358,932	9.0'
TP19-20	15,151,075	1,360,089	19.0'
TP19-21	15,151,169	1,357,072	13.0'
TP19-22	15,151,484	1,357,823	17.0'
TP19-23	15,151,512	1,358,920	15.0'
TP19-24	15,151,498	1,360,066	19.0'
TP19-25	15,148,304	1,349,394	18.0'
TP19-26	15,148,181	1,349,408	11.0'

TEST PIT LOCATIONS									
POINT	NORTHING	EASTING	DEPTH						
TP19-27	15,148,429	1,349,841	16.0'						
TP19-28	15,148,295	1,349,799	19.0'						
TP19-29	15,148,153	1,360,598	19.0'						
TP19-30	15,148,357	1,361,640	20.0'						
TP19-31	15,149,139	1,361,640	20.0'						
TP19-32	15,149,757	1,361,640	20.0'						
TP19-33	15,148,357	1,362,487	20.0'						
TP19-34	15,149,057	1,362,487	20.0'						
TP19-35	15,149,575	1,362,487	20.0'						
TP19-36	15,150,457	1,362,487	20.0'						
TP19-37	15,147,657	1,363,094	20.0'						
TP19-38	15,148,357	1,363,335	20.0'						
TP19-39	15,149,757	1,363,335	20.0'						
TP19-40	15,150,457	1,363,335	20.0'						
TP19-41	15,147,657	1,364,182	20.0'						
TP19-42	15,148,357	1,364,182	20.0'						
TP19-43	15,149,057	1,364,182	20.0'						
TP19-44	15,149,757	1,364,182	20.0'						
TP19-45	15,150,457	1,364,182	20.0'						
TP19-46	15,148,357	1,365,030	20.0'						
TP19-47	15,149,057	1,365,030	20.0'						
TP19-48	15,149,757	1,365,030	20.0'						
TP19-49	15,146,957	1,363,030	20.0'						
TP19-50	15,146,957	1,365,030	20.0'						

BOREHOLE LOCATIONS									
POINT	NORTHING	EASTING	DEPTH						
BH19-01	15,149,319	1,345,248	51.5'						
BH19-02	15,151,138	1,357,073	150.0'						
BH19-03	15,150,430	1,359,957	50.0'						
BH19-04	15,148,149	1,359,752	100.5'						
BH19-05	15,148,158	1,357,491	100.0'						
BH19-06	15,149,656	1,358,695	50.0'						
BH19-08	15,147,040	1,357,703	100.0'						
BH19-09	15,147,434	1,357,677	35.3'						
BH19-10	15,147,580	1,358,013	35.0'						
BH19-11	15,147,740	1,357,539	36.0'						
BH19-12	15,147,611	1,359,452	31.5'						
BH19-13	15,148,367	1,359,448	50.0'						
BH19-14	15,147,664	1,360,891	31.5'						
BH19-15	15,147,036	1,357,330	30.5						
BH19-16	15,147,424	1,357,355	30.0'						
BH19-17	15,147,101	1,357,047	31.5'						
BH19-18	15,147,424	1,356,823	40.0'						
BH19-19	15,147,273	1,356,938	35.5'						

BOREHOLE LOCATIONS								
POINT	NORTHING	EASTING	DEPTH					
BH19-20	15,147,591	1,356,709	51.5'					
BH19-21	15,147,919	1,357,756	40.0'					
BH19-22	15,148,106	1,359,052	40.0'					
BH19-23	15,148,506	1,358,723	50.5'					
BH19-24	15,148,127	1,360,558	41.5'					
BH19-25	15,148,804	1,360,063	50.0'					
BH19-26	15,147,860	1,359,848	31.5'					
BH19-27	15,150,690	1,346,592	29.5'					
BH19-28	15,150,289	1,346,628	31.5'					
BH19-29	15,149,992	1,346,657	31.5'					
BH19-30	15,149,708	1,346,680	31.5'					
BH19-31	15,149,855	1,347,766	31.5'					
BH19-32	15,150,169	1,348,329	31.5'					
BH19-33	15,147,657	1,361,640	100.0					
BH19-34	15,150,252	1,361,640	100.0					
BH19-35	15,149,057	1,363,335	100.0					
BH19-36	15,147,657	1,365,030	100.0'					
BH19-37	15,150,457	1,365,030	100.0					

FIGURES Test Pit and Borehole Plan

APPENDIX ATest Pit Laboratory Data

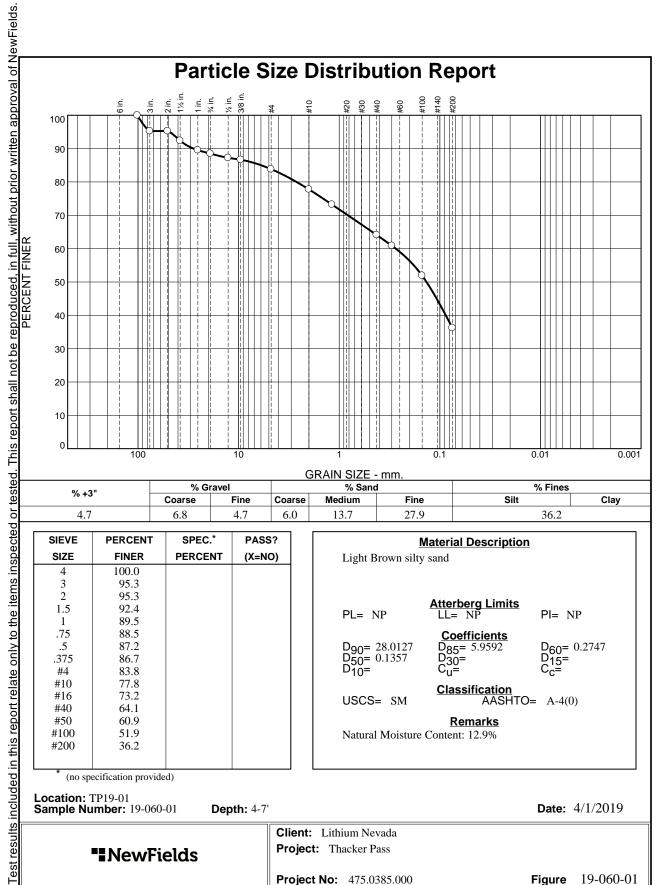
TABLE A1 - TEST PIT LAB TESTING SUMMARY

	SAMPLE L	OCATION		_			ABTESTING		RADATION (S	%)	AT	TERBERG LIN	1ITS	PROCTOR			
Field Sample Number	Laboratory Sample Number	Test Pit ID	Depth (ft)	UNIFIED SOILS CLASSIFICATION (USCS)	USCS ABBREVIATION	Specific Gravity	NATURAL MOISTURE CONTENT (%)	Gravel >#4	Sand	Silt & Clay <#200	Plastic Limit	Liquid Limit	Plasticity Index	Standard Maximum Dry Density (pcf)	SMDD Optimum Moisture Content (%)	Modified Maximum Dry Density (pcf)	MMDD Optimum Moisture Content (%)
S-01-19	19-060-01	TP19-01	4-7 ft	silty SAND	SM		12.9%	16.2	47.6	36.2	NP	NP	NP				
S-01-20		TP19-01	9-12 ft														
S-02-17	19-060-02	TP19-02	0-2 ft	lean CLAY with sand	CL		29.4%	6.5	22	71.5	21	33	12			104.3*	19.4*
S-02-18		TP19-02	6-10 ft														
S-03-27	19-106-02	TP19-03	2-4 ft	silty SAND with gravel	SM		15.9%	25.4	41.4	33.2	29	37	8				
S-03-28	19-060-03	TP19-03	6-9 ft	silty GRAVEL with sand	GM		10.8%	49.8	36.4	13.8	NP	NP	NP				
S-04-29	19-106-03	TP19-04	2-4 ft	silty SAND	SM	2.54	31.2%	0.7	56.4	42.9	46	47	1			78.3	34
S-04-30	19-060-04	TP19-04	5-7 ft	well graded GRAVEL with silt and sand	GW-GM		20.2%	49.1	41.1	9.8	NP	NP	NP				
S-04-31		TP19-04	9-12 ft														
S-05-33		TP19-05	3-6 ft														
S-05-34	19-060-05	TP19-05	8-10 ft	sandy SILT	ML		23.7%	1.4	31.8	66.8	31	41	10				
S-06-25	40.000.00	TP19-06	4-7 ft	di constanti		-	44.20/	40.5	22.5	4=							
S-06-26	19-060-06	TP19-06	11-13 ft	silty GRAVEL with sand	GM	-	11.2%	49.5	33.5	17	NP	NP	NP				
S-07-13	19-106-04	TP19-07	2-4 ft	fat CLAY with sand	СН		24.0%	4.6	18.5	71.5	22	55	33				
S-07-14	10 100 05	TP19-07	6-7 ft	city. CDAVEL with cond	CM		14.00/	40 F	40.4	10.1	20	27					
S-08-15	19-106-05	TP19-08	2-4 ft	silty GRAVEL with sand	GM		14.8%	40.5	40.4	19.1	28 NP	37 ND	9 ND				
S-08-16	19-060-07	TP19-08	6-9 ft	GRAVEL with silt and sand	GP-GM		9.8%	50.0	40.0	10.0	NP	NP	NP				
S-09-09	19-060-08	TP19-09	3-6 ft	CDAVEL with road	CNA		12.40/	FC 4	27.4	16.5	21	FF	24				
S-09-10 S-10-24	19-060-08	TP19-09 TP19-10	8-12 ft 3-6 ft	GRAVEL with sand	GM SM		12.4% 17.1%	56.4 35.0	27.1 47.5	16.5 17.5	31 NP	55 NP	24 NP				
S-10-24 S-11-21	19-106-06	TP19-10 TP19-11	2-4 ft	silty SAND with gravel	SIVI		17.1%	35.0	47.5	17.5	INP	INP	INP				
S-11-21	19-060-09	TP19-11	7-11 ft	GRAVEL with silt and sand	GP-GM		8.1%	51.2	38.5	10.3	NP	NP	NP				
S-11-23	19-000-09	TP19-11	13-15 ft	GRAVEE WITH SHE drid Sand	GF-GIVI		0.170	31.2	36.3	10.5	INF	INF	INF				
S-11-23		TP19-11 TP19-12	3-6 ft														
	19-106-07		3-5 ft	poorly graded GRAVEL with silt and sand	GP-GM		15.4%	55.6	33.6	10.8	30	52	22				
S-13-31	19-060-10	TP19-13	10-13 ft	clayey SAND	SC		30.9%	20.3	32.3	47.4	32	66	34				
S-14-48	13 000 10	TP19-14	3-5 ft	ciayey shirts	1 30		30.370	20.3	32.3	47.4	- 32	- 00	34				
S-14-49	19-060-11	TP19-14	8-11 ft	well graded GRAVEL with sand	GW		25.7%	60.9	35.1	4.0	NP	NP	NP				
S-15-41		TP19-15	2-4 ft	6.000	1												
S-15-42	19-060-12	TP19-15	8-11 ft	silty SAND with gravel	SM		22.7%	40.3	46.2	13.5	NP	NP	NP				
S-16-11		TP19-16	2-5 ft	, 0													
S-16-12	19-060-13	TP19-16	7-10 ft	silty SAND with gravel	SM		28.9%	25.1	36.3	38.6	37	58	21				
S-17-39	19-060-14	TP19-17	4-7 ft	silty SAND	SM		21.3%	8.6	65.7	25.7	NP	NP	NP				
S-17-40		TP19-17	13-15 ft	,													
S-18-43	19-060-15	TP19-18	5-8 ft	sandy silty CLAY	CL-ML		10.9%	0.2	37.2	62.6	21	28	7				
S-19-46		TP19-19	3-6 ft														
S-20-50	19-060-16	TP19-20	6-10 ft	silty SAND	SM		22.5%	11.7	64.5	23.8	NP	NP	NP				
S-20-51		TP19-20	17-19 ft														
S-21-37	19-060-17	TP19-21	3-5 ft	silty SAND	SM		13.1%	1.1	55.1	43.8	NP	NP	NP				
S-21-38		TP19-21	8-11 ft														
					•	_					-	•	•		-	•	

TABLE A1 - TEST PIT LAB TESTING SUMMARY

	SAMPLE L	OCATION		7	_			G	RADATION (%)	AT	TERBERG LIN	1ITS		PRO	CTOR	
Field Sample Number	Laboratory Sample Number	Test Pit ID	Depth (ft)	UNIFIED SOILS CLASSIFICATION (USCS)	USCS ABBREVIATION	Specific Gravity	NATURAL MOISTURE CONTENT (%)	Gravel >#4	Sand	Silt & Clay <#200	Plastic Limit	Liquid Limit	Plasticity Index	Standard Maximum Dry Density (pcf)	SMDD Optimum Moisture Content (%)	Modified Maximum Dry Density (pcf)	MMDD Optimum Moisture Content (%)
S-22-44		TP19-22	3-5 ft														
S-22-45	19-060-18	TP19-22	8-11 ft	well graded SAND with gravel	SW		4.8%	47.0	48.2	4.8	NP	NP	NP				
S-23-47	19-060-19	TP19-23	5-9 ft	poorly graded SAND with silt and gravel	SP-SM		8.6%	30.7	57.4	11.9	NP	NP	NP				
S-24-52		TP19-24	4-7 ft														
S-24-53	19-060-20	TP19-24	14-17 ft	clayey SAND	SC		33.9%	5.6	58.7	35.7	33	68	35				
S-25-05		TP19-25	2-4 ft														
S-25-06	19-060-21	TP19-25	7-12 ft	poorly graded GRAVEL with sand	GP		8.1%	61.4	35.7	2.9	NP	NP	NP				
S-26-07		TP19-26	2-4 ft														
S-26-08	19-060-22	TP19-26	6-8 ft	clayey SAND with gravel	SC		20.9%	15.9	55.9	28.2	21	53	32				
S-27-01	19-060-23	TP19-27	3-5 ft	silty SAND with gravel	SM		22.5%	23.4	60.8	15.8	NP	NP	NP				
S-27-02		TP19-27	8-12 ft														
S-28-03	19-106-08	TP19-28	1-3 ft	fat CLAY with sand	СН		30.7%	4.4	16.1	79.5	26	63	37				
S-28-04	19-060-24	TP19-28	5-9 ft	well-graded GRAVEL with silt and sand	GW-GM		6.6%	51.5	43	5.5	NP	NP	NP				
S-29-35	19-060-25	TP19-29	4-7 ft	silty SAND with gravel	SM		8.1%	42.5	42.9	14.6	NP	NP	NP				
S-29-36		TP19-29	11-13 ft														

Notes:


NP Non Plastic

*ASTM D4718-15 Oversized Rock Correction Applied

Moisture contents measured as per ASTM D2216 (weight of water divided by weight of total dry solids)

USCS classifications based on test pit log descriptions in absense of gradation lab test data

Appendix A1 – Particle Size Analysis and Atterberg Limit Results

SIEVE	PERCENT	SPEC.*	PASS?	
SIZE	FINER	PERCENT	(X=NO)	
4	100.0			
3	95.3			
2	95.3			
1.5	92.4			
1	89.5			
.75	88.5			
.5	87.2			
.375	86.7			
#4	83.8			
#10	77.8			
#16	73.2			
#40	64.1			
#50	60.9			
#100	51.9			
#200	36.2			

6.8

Fine

4.7

Coarse

6.0

Medium

13.7

Fine

27.9

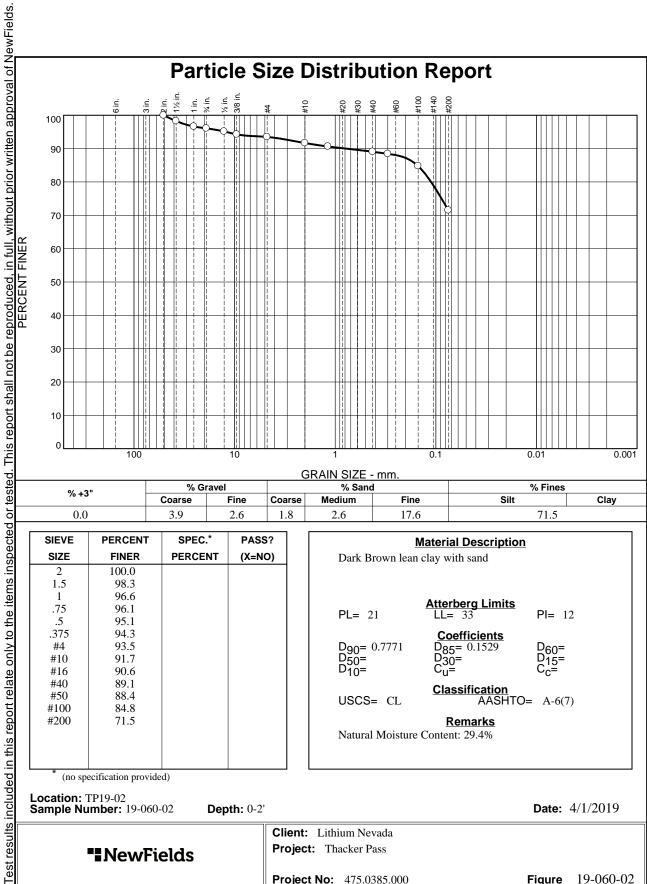
Material Description Light Brown silty sand									
PL= NP									
D ₉₀ = 28.0127 D ₅₀ = 0.1357 D ₁₀ =	Coefficients D ₈₅ = 5.9592 D ₃₀ = C _u =	D ₆₀ = 0.2747 D ₁₅ = C _c =							
USCS= SM	Classification AASHT	O= A-4(0)							
Remarks Natural Moisture Content: 12.9%									

Clay

36.2

(no specification provided)

4.7


Location: TP19-01 Sample Number: 19-060-01 **Date:** 4/1/2019**Depth: 4-7**'

NewFields

Client: Lithium Nevada **Project:** Thacker Pass

Figure 19-060-01 **Project No:** 475.0385.000

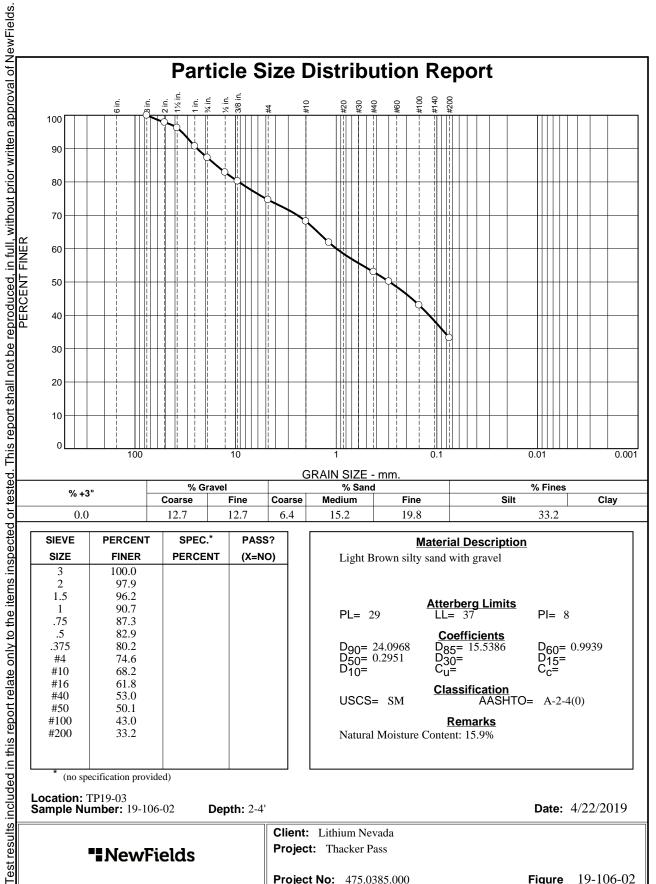
% +3"	% Gı	ravel		% Sand	i	% Fines		
76 +3	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay	
0.0	3.9	2.6	1.8	2.6	17.6	71.5	-	

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
2	100.0		
1.5	98.3		
1	96.6		
.75	96.1		
.5	95.1		
.375	94.3		
#4	93.5		
#10	91.7		
#16	90.6		
#40	89.1		
#50	88.4		
#100	84.8		
#200	71.5		

	Material Description Dark Brown lean clay with sand						
PL= 21	Atterberg Limits LL= 33	PI= 12					
D ₉₀ = 0.7771 D ₅₀ = D ₁₀ =	Coefficients D ₈₅ = 0.1529 D ₃₀ = C _u =	D ₆₀ = D ₁₅ = C _c =					
USCS= CL	Classification AASHT	O= A-6(7)					
Natural Moisture	Remarks Natural Moisture Content: 29.4%						

(no specification provided)

Location: TP19-02 Sample Number: 19-060-02


Depth: 0-2'

Date: 4/1/2019

NewFields

Client: Lithium Nevada **Project:** Thacker Pass

Figure 19-060-02 **Project No:** 475.0385.000

6.4

12.7

Medium

15.2

Fine

19.8

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
3	100.0		
2	97.9		
1.5	96.2		
1	90.7		
.75	87.3		
.5	82.9		
.375	80.2		
#4	74.6		
#10	68.2		
#16	61.8		
#40	53.0		
#50	50.1		
#100	43.0		
#200	33.2		

Coarse

12.7

Material Description Light Brown silty sand with gravel					
PL= 29	Atterberg Limits LL= 37	PI= 8			
D ₉₀ = 24.0968 D ₅₀ = 0.2951 D ₁₀ =	Coefficients D ₈₅ = 15.5386 D ₃₀ = C _u =	D ₆₀ = 0.9939 D ₁₅ = C _c =			
USCS= SM	Classification AASHT	O= A-2-4(0)			
Remarks Natural Moisture Content: 15.9%					

Clay

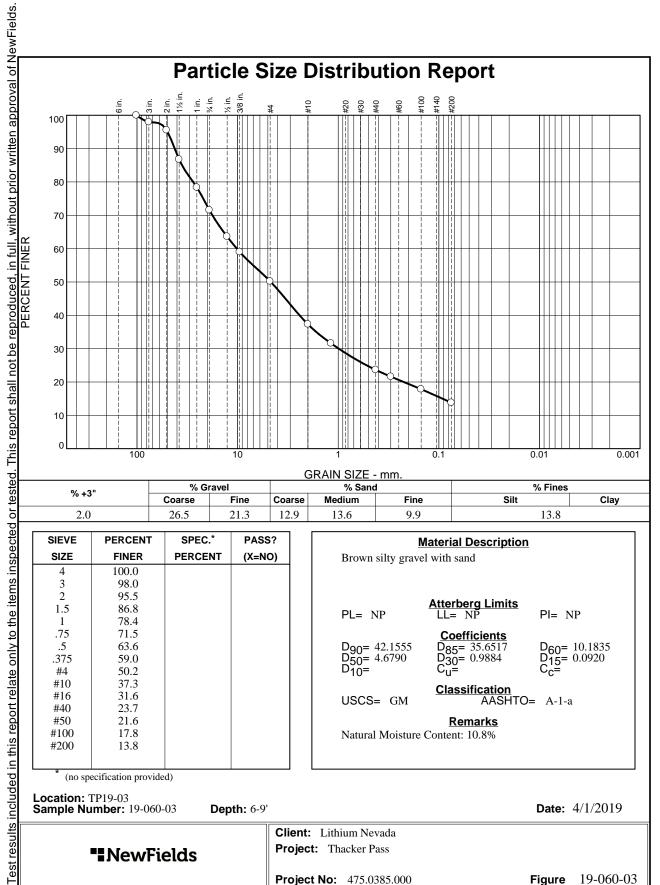
Date: 4/22/2019

Figure 19-106-02

33.2

(no specification provided)

0.0


Location: TP19-03 Sample Number: 19-106-02

NewFields

Depth: 2-4'

Client: Lithium Nevada **Project:** Thacker Pass

Project No: 475.0385.000

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
4	100.0		
3	98.0		
2	95.5		
1.5	86.8		
1	78.4		
.75	71.5		
.5	63.6		
.375	59.0		
#4	50.2		
#10	37.3		
#16	31.6		
#40	23.7		
#50	21.6		
#100	17.8		
#200	13.8		

26.5

Fine

21.3

Coarse

12.9

Medium

13.6

Fine

9.9

Material Description Brown silty gravel with sand						
PL= NP	Atterberg Limits LL= NP	PI= NP				
D ₉₀ = 42.1555 D ₅₀ = 4.6790 D ₁₀ =	Coefficients D ₈₅ = 35.6517 D ₃₀ = 0.9884 C _u =	D ₆₀ = 10.1835 D ₁₅ = 0.0920 C _c =				
USCS= GM	Classification AASHT	O= A-1-a				
Natural Moisture	Remarks Natural Moisture Content: 10.8%					

Clay

13.8

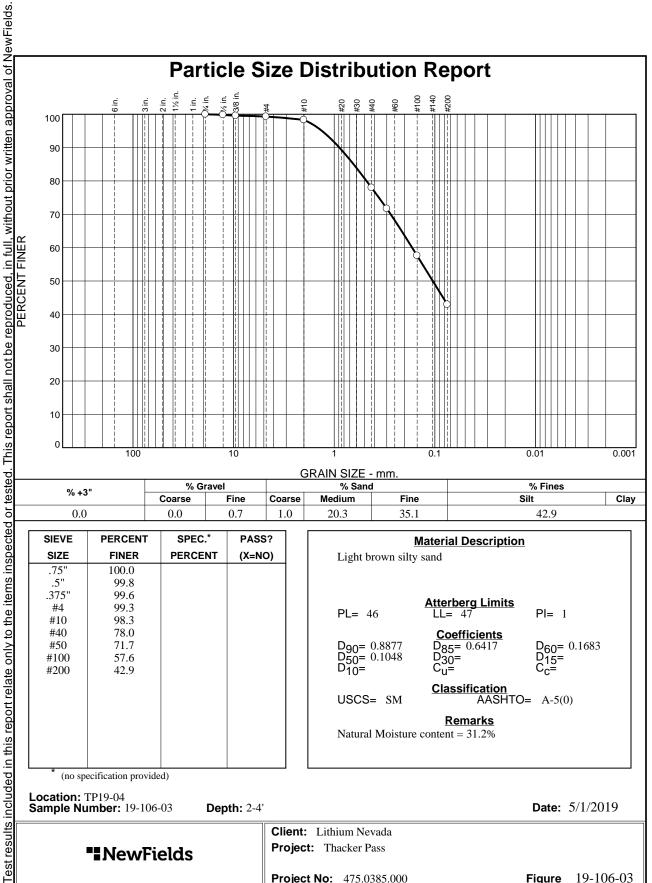
Date: 4/1/2019

Figure 19-060-03

(no specification provided)

2.0

Location: TP19-03 Sample Number: 19-060-03 **Depth:** 6-9'


NewFields

Client: Lithium Nevada **Project:** Thacker Pass

Project No: 475.0385.000

Tested By: KS/JB

Checked By: JH

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
.75"	100.0		
.5"	99.8		
.375"	99.6		
#4	99.3		
#10	98.3		
#40	78.0		
#50	71.7		
#100	57.6		
#200	42.9		

0.7

1.0

20.3

35.1

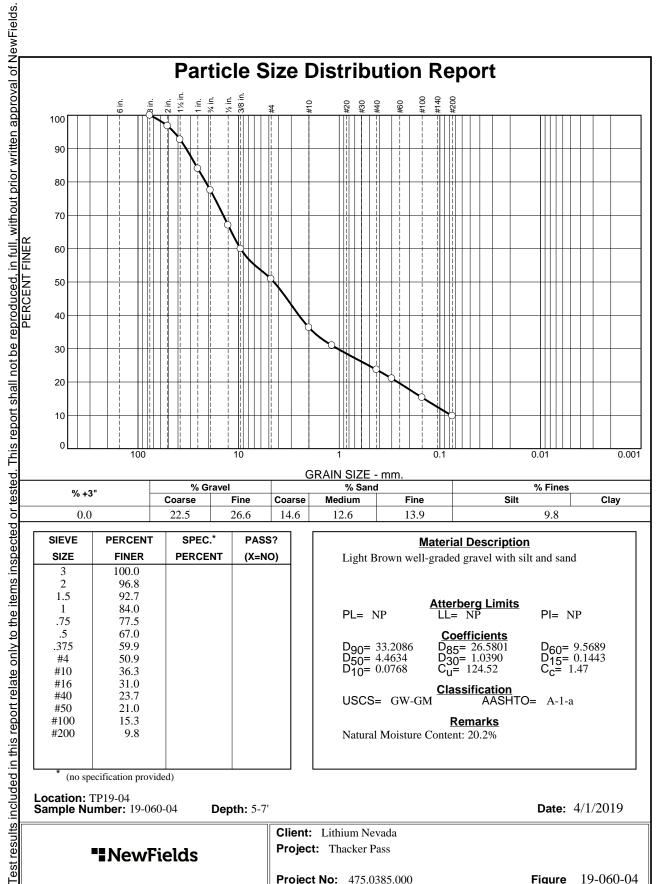
_	Material Description Light brown silty sand						
PL= 46	Atterberg Limits LL= 47	PI= 1					
D ₉₀ = 0.8877 D ₅₀ = 0.1048 D ₁₀ =	Coefficients D ₈₅ = 0.6417 D ₃₀ = C _u =	D ₆₀ = 0.1683 D ₁₅ = C _C =					
USCS= SM	Classification AASHT	O= A-5(0)					
Natural Moisture	Remarks Natural Moisture content = 31.2%						

42.9

Date: 5/1/2019

(no specification provided)

0.0


Location: TP19-04 Sample Number: 19-106-03 **Depth: 2-4'**

NewFields

Client: Lithium Nevada **Project:** Thacker Pass

Figure 19-106-03 **Project No:** 475.0385.000

Tested By: JH Checked By: KE

13.9

14.6

26.6

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
3	100.0		
2	96.8		
1.5	92.7		
1	84.0		
.75	77.5		
.5	67.0		
.375	59.9		
#4	50.9		
#10	36.3		
#16	31.0		
#40	23.7		
#50	21.0		
#100	15.3		
#200	9.8		

22.5

	Material Description Light Brown well-graded gravel with silt and sand						
DI VID	Atterberg Limits	DI M					
PL= NP	LL= NP	PI= NP					
D ₉₀ = 33.2086 D ₅₀ = 4.4634 D ₁₀ = 0.0768	Coefficients D ₈₅ = 26.5801 D ₃₀ = 1.0390 C _u = 124.52	D ₆₀ = 9.5689 D ₁₅ = 0.1443 C _c = 1.47					
USCS= GW-GM	USCS= GW-GM Classification AASHTO= A-1-a						
Remarks Natural Moisture Content: 20.2%							

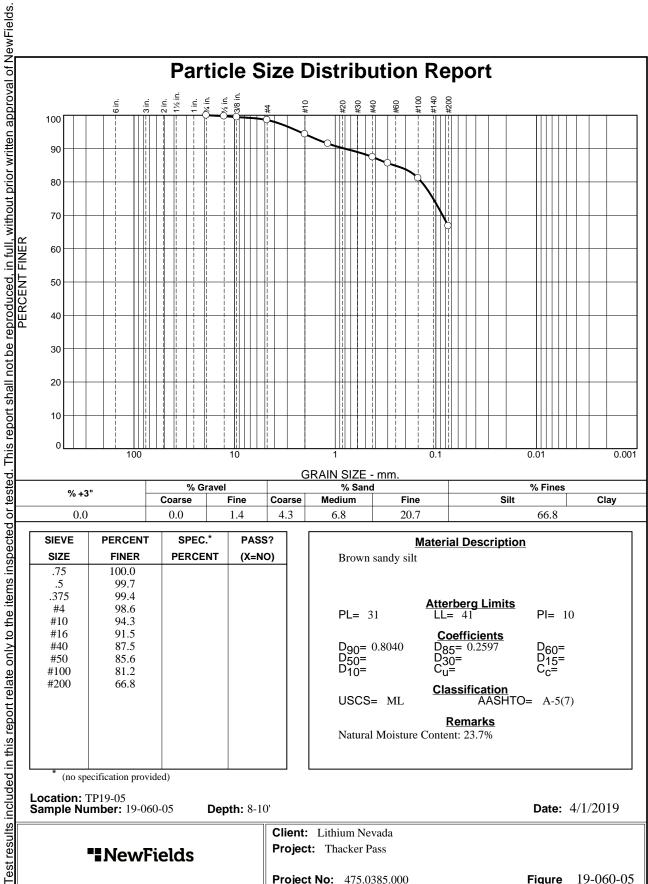
9.8

Date: 4/1/2019

Figure 19-060-04

(no specification provided)

0.0


Location: TP19-04 Sample Number: 19-060-04 **Depth:** 5-7'

NewFields

Client: Lithium Nevada **Project:** Thacker Pass

Project No: 475.0385.000

% +3"		% Gra	avei		% Sand		% Fines		
	70 +3		Coarse	Fine	Coarse	Medium	Fine	Silt	Clay
	0.0		0.0	1.4	4.3	6.8	20.7	66.8	
	SIEVE	PERCENT	SPEC.*	PASS	?		Mater	ial Description	
	SIZE	FINER	PERCEN	IT (X=NC	D)	Brown	sandy silt		
	.75	100.0							

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
.75	100.0		
.5	99.7		
.375	99.4		
#4	98.6		
#10	94.3		
#16	91.5		
#40	87.5		
#50	85.6		
#100	81.2		
#200	66.8		
*	l	L	L

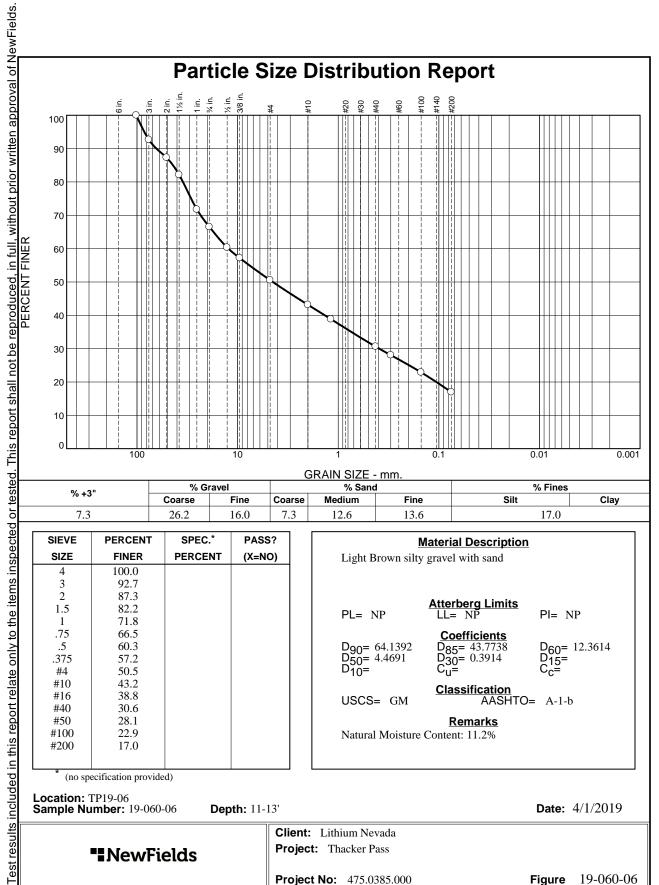
Brown sandy silt	t	<u></u>
PL= 31	Atterberg Limits	PI= 10
D ₉₀ = 0.8040 D ₅₀ = D ₁₀ =	Coefficients D ₈₅ = 0.2597 D ₃₀ = C _u =	D ₆₀ = D ₁₅ = C _c =
USCS= ML	Classification AASHT	O= A-5(7)
Natural Moisture	Remarks e Content: 23.7%	

Date: 4/1/2019

Figure 19-060-05

* (no specification provided)

Location: TP19-05 Sample Number: 19-060-05 **Depth:** 8-10'


> Client: Lithium Nevada **Project:** Thacker Pass

Project No: 475.0385.000

Checked By: JH

NewFields

Tested By: KS/JB

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
4	100.0		
3	92.7		
2	87.3		
1.5	82.2		
1	71.8		
.75	66.5		
.5	60.3		
.375	57.2		
#4	50.5		
#10	43.2		
#16	38.8		
#40	30.6		
#50	28.1		
#100	22.9		
#200	17.0		

26.2

Fine

16.0

Coarse

7.3

Medium

12.6

Fine

13.6

Material Description Light Brown silty gravel with sand			
PL= NP	Atterberg Limits	PI= NP	
D ₉₀ = 64.1392 D ₅₀ = 4.4691 D ₁₀ =	Coefficients D ₈₅ = 43.7738 D ₃₀ = 0.3914 C _u =	D ₆₀ = 12.3614 D ₁₅ = C _c =	
USCS= GM	Classification AASHT	O= A-1-b	
Natural Moisture	Remarks Natural Moisture Content: 11.2%		

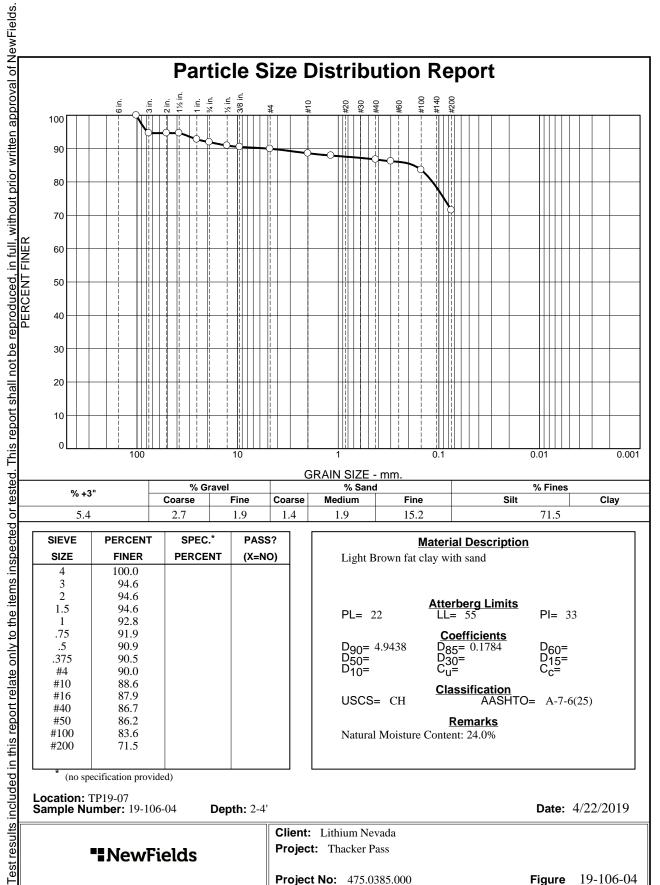
Clay

17.0

Date: 4/1/2019

(no specification provided)

7.3


Location: TP19-06 Sample Number: 19-060-06 **Depth:** 11-13'

> Client: Lithium Nevada **Project:** Thacker Pass

NewFields

Figure 19-060-06 **Project No:** 475.0385.000

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
4	100.0		
3	94.6		
2	94.6		
1.5	94.6		
1	92.8		
.75	91.9		
.5	90.9		
.375	90.5		
#4	90.0		
#10	88.6		
#16	87.9		
#40	86.7		
#50	86.2		
#100	83.6		
#200	71.5		

2.7

Fine

1.9

Coarse

1.4

Medium

1.9

Fine

15.2

_	Material Description Light Brown fat clay with sand			
PL= 22	Atterberg Limits LL= 55	PI= 33		
D ₉₀ = 4.9438 D ₅₀ = D ₁₀ =	<u>Coefficients</u> D ₈₅ = 0.1784 D ₃₀ = C _u =	D ₆₀ = D ₁₅ = C _c =		
USCS= CH	Classification AASHT	O= A-7-6(25)		
Remarks Natural Moisture Content: 24.0%				

Clay

Date: 4/22/2019

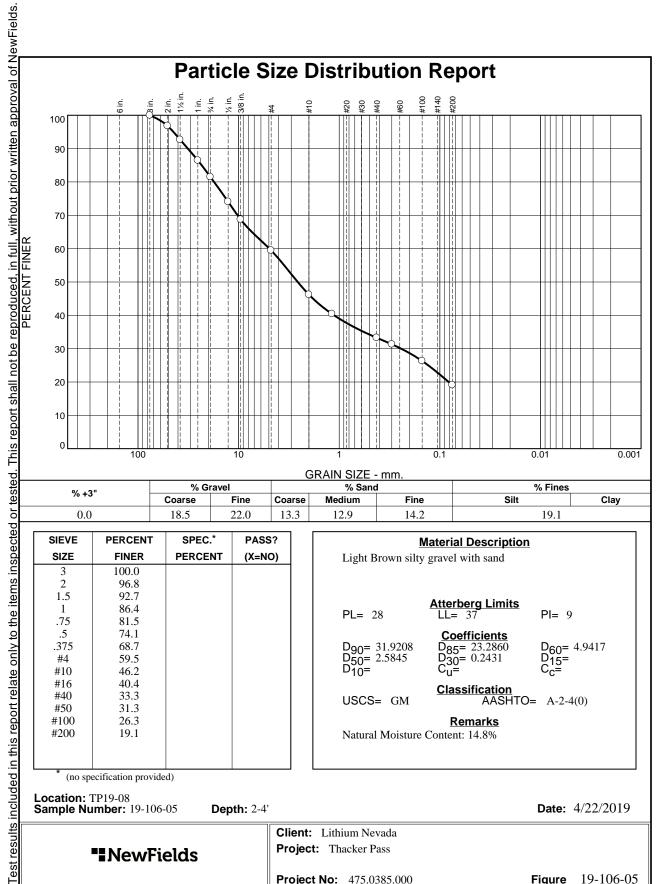
Figure 19-106-04

71.5

(no specification provided)

5.4

Location: TP19-07 Sample Number: 19-106-04 **Depth: 2-4'**


NewFields

Client: Lithium Nevada **Project:** Thacker Pass

Project No: 475.0385.000

Tested By: KS

Checked By: JH

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
3	100.0		
2	96.8		
1.5	92.7		
1	86.4		
.75	81.5		
.5	74.1		
.375	68.7		
#4	59.5		
#10	46.2		
#16	40.4		
#40	33.3		
#50	31.3		
#100	26.3		
#200	19.1		

18.5

Fine

22.0

Coarse

13.3

Medium

12.9

Fine

14.2

Light Brown silty	Material Description gravel with sand	<u>on</u>	
PL= 28	Atterberg Limits LL= 37	PI= 9	
D ₉₀ = 31.9208 D ₅₀ = 2.5845 D ₁₀ =	Coefficients D ₈₅ = 23.2860 D ₃₀ = 0.2431 C _u =	D ₆₀ = 4.9417 D ₁₅ = C _c =	
USCS= GM	Classification AASHT	O= A-2-4(0)	
Natural Moisture	Remarks Natural Moisture Content: 14.8%		

Clay

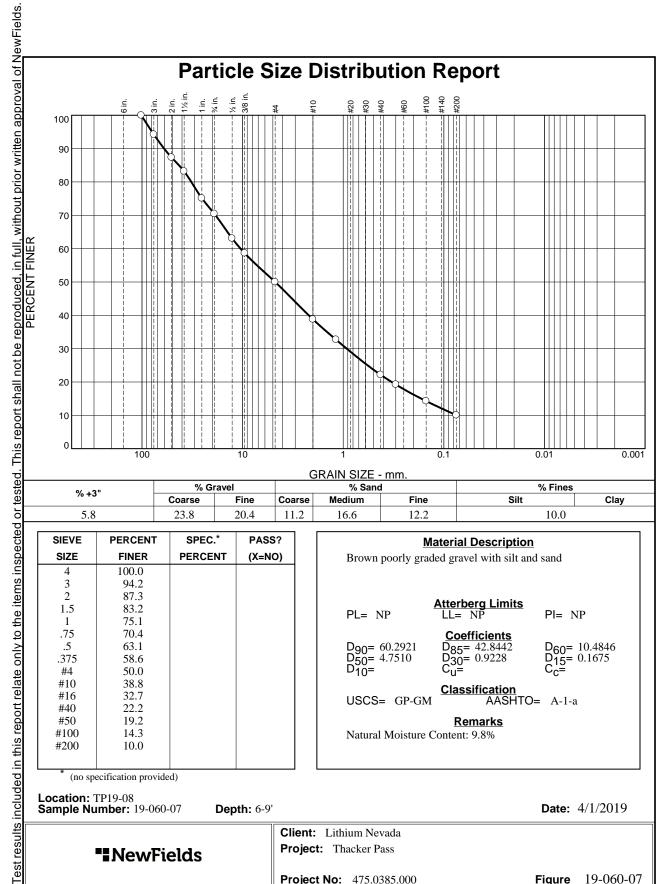
Date: 4/22/2019

Figure 19-106-05

19.1

(no specification provided)

0.0


Location: TP19-08 Sample Number: 19-106-05

NewFields

Depth: 2-4'

Client: Lithium Nevada **Project:** Thacker Pass

Project No: 475.0385.000

16.6

20.4

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
4	100.0		
3	94.2		
2	87.3		
1.5	83.2		
1	75.1		
.75	70.4		
.5	63.1		
.375	58.6		
#4	50.0		
#10	38.8		
#16	32.7		
#40	22.2		
#50	19.2		
#100	14.3		
#200	10.0		

23.8

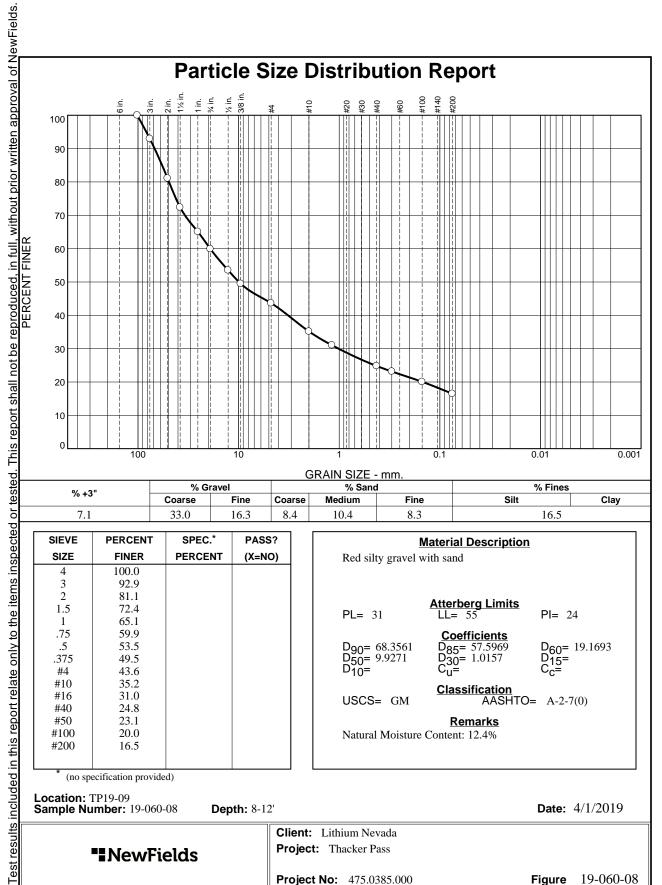
N	Material Description			
Brown poorly grad	Brown poorly graded gravel with silt and sand			
PL= NP	Atterberg Limits LL= NP	PI= NP		
	Coefficients			
D ₉₀ = 60.2921 D ₅₀ = 4.7510	D ₈₅ = 42.8442 D ₃₀ = 0.9228	D ₆₀ = 10.4846 D ₁₅ = 0.1675		
D ₅₀ = 4.7310 D ₁₀ =	C _u = 0.9228	C _C =		
	Classification			
USCS= GP-GM	AASH1	ΓO= A-1-a		
	Remarks			
Natural Moisture	Natural Moisture Content: 9.8%			

10.0

Date: 4/1/2019

12.2

(no specification provided)


5.8

Location: TP19-08 Sample Number: 19-060-07 **Depth:** 6-9'

NewFields

Client: Lithium Nevada **Project:** Thacker Pass

Figure 19-060-07 **Project No:** 475.0385.000

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
4	100.0		
3	92.9		
2	81.1		
1.5	72.4		
1	65.1		
.75	59.9		
.5	53.5		
.375	49.5		
#4	43.6		
#10	35.2		
#16	31.0		
#40	24.8		
#50	23.1		
#100	20.0		
#200	16.5		
<u> </u>			

33.0

Fine

16.3

Coarse

8.4

Medium

10.4

Fine

8.3

Red silty gravel w	Material Description with sand	<u>on</u>	
PL= 31	Atterberg Limits LL= 55	PI= 24	
D ₉₀ = 68.3561 D ₅₀ = 9.9271 D ₁₀ =	Coefficients D ₈₅ = 57.5969 D ₃₀ = 1.0157 C _u =	D ₆₀ = 19.1693 D ₁₅ = C _c =	
USCS= GM	Classification AASHT	O= A-2-7(0)	
Natural Moisture	Remarks Natural Moisture Content: 12.4%		

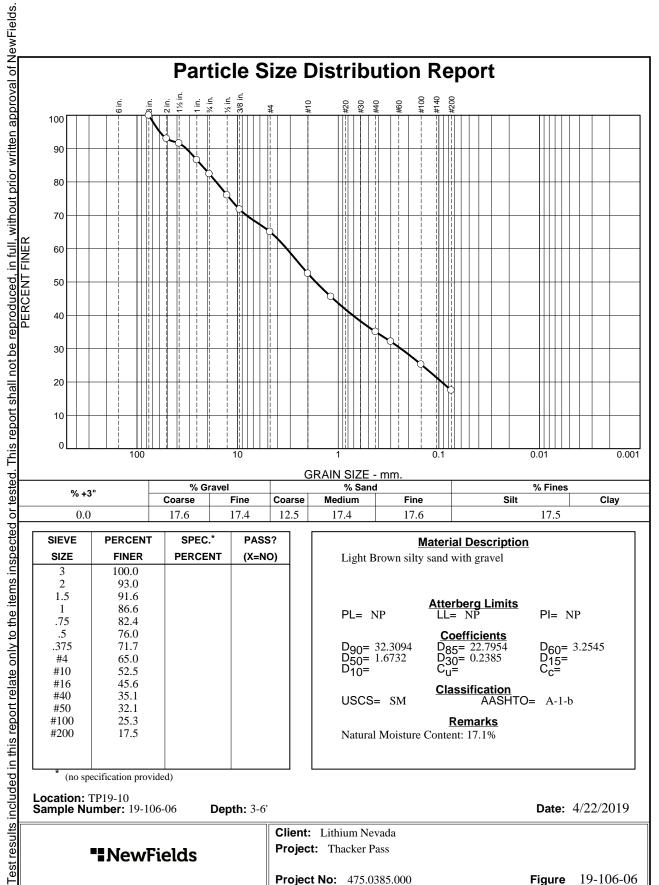
Clay

16.5

Date: 4/1/2019

* (no specification provided)

7.1


Location: TP19-09 Sample Number: 19-060-08 **Depth:** 8-12'

NewFields

Client: Lithium Nevada **Project:** Thacker Pass

Figure 19-060-08 **Project No:** 475.0385.000

Tested By: JH/JB Checked By: JH

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
3	100.0		
2	93.0		
1.5	91.6		
1	86.6		
.75	82.4		
.5	76.0		
.375	71.7		
#4	65.0		
#10	52.5		
#16	45.6		
#40	35.1		
#50	32.1		
#100	25.3		
#200	17.5		

17.6

Fine

17.4

Coarse

12.5

Medium

17.4

Fine

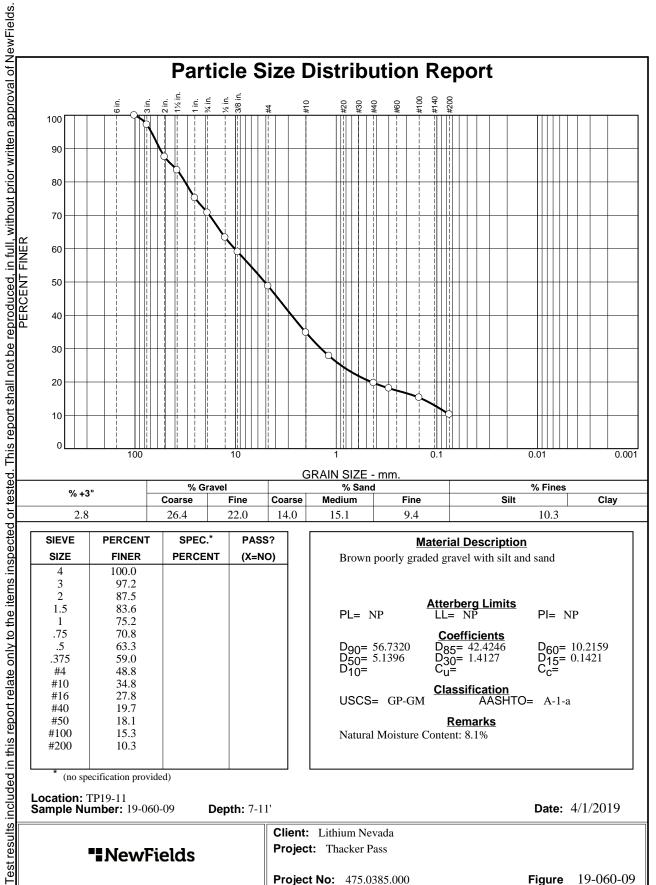
17.6

Material Description Light Brown silty sand with gravel			
PL= NP	Atterberg Limits	PI= NP	
D ₉₀ = 32.3094 D ₅₀ = 1.6732 D ₁₀ =	Coefficients D ₈₅ = 22.7954 D ₃₀ = 0.2385 C _u =	D ₆₀ = 3.2545 D ₁₅ = C _c =	
USCS= SM	Classification AASHT	O= A-1-b	
Natural Moisture	Remarks Natural Moisture Content: 17.1%		

Clay

17.5

(no specification provided)


0.0

Location: TP19-10 Sample Number: 19-106-06 **Date:** 4/22/2019 **Depth: 3-6'**

NewFields

Client: Lithium Nevada **Project:** Thacker Pass

Figure 19-106-06 **Project No:** 475.0385.000

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
4	100.0		
3	97.2		
2	87.5		
1.5	83.6		
1	75.2		
.75	70.8		
.5	63.3		
.375	59.0		
#4	48.8		
#10	34.8		
#16	27.8		
#40	19.7		
#50	18.1		
#100	15.3		
#200	10.3		

26.4

Fine

22.0

Coarse

14.0

Medium

15.1

Fine

9.4

<u>M</u>	Material Description			
Brown poorly grad	Brown poorly graded gravel with silt and sand			
	Atterberg Limits			
PL= NP	LL= NP	PI= NP		
	Coefficients			
D ₉₀ = 56.7320 D ₅₀ = 5.1396	D ₈₅ = 42.4246	D ₆₀ = 10.2159 D ₁₅ = 0.1421		
D ₅₀ = 5.1396	D ₃₀ = 1.4127 C ₁₁ =	D ₁₅ = 0.1421 C _c =		
10	Classification	- 0		
USCS= GP-GM	<u>Classification</u> USCS= GP-GM			
	Remarks			
Natural Moisture	Natural Moisture Content: 8.1%			

Clay

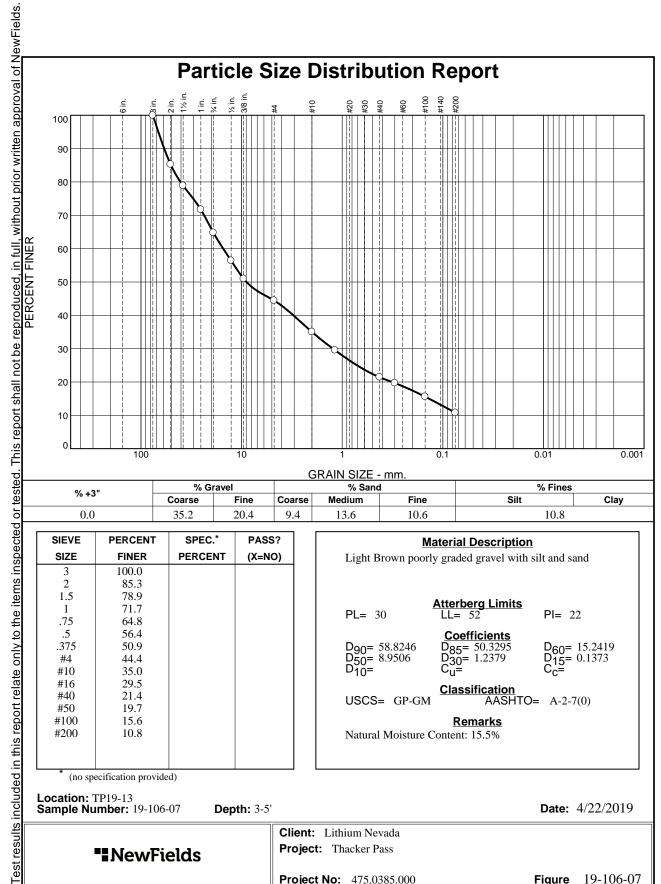
10.3

Date: 4/1/2019

(no specification provided)

Location: TP19-11 Sample Number: 19-060-09

2.8


Depth: 7-11'

NewFields

Client: Lithium Nevada **Project:** Thacker Pass

Figure 19-060-09 **Project No:** 475.0385.000

Tested By: JH/JB Checked By: JH

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
3	100.0		
2	85.3		
1.5	78.9		
1	71.7		
.75	64.8		
.5	56.4		
.375	50.9		
#4	44.4		
#10	35.0		
#16	29.5		
#40	21.4		
#50	19.7		
#100	15.6		
#200	10.8		

35.2

Fine

20.4

Coarse

9.4

Medium

13.6

Fine

10.6

Material Description				
Light Brown poor	Light Brown poorly graded gravel with silt and sand			
5 1 • •	Atterberg Limits	DI		
PL= 30	LL= 52	PI= 22		
	Coefficients			
D ₉₀ = 58.8246 D ₅₀ = 8.9506	$D_{85} = 50.3295$	D ₆₀ = 15.2419 D ₁₅ = 0.1373		
D ₅₀ = 8.9506	$D_{30} = 1.2379$	$D_{15} = 0.1373$		
D ₁₀ =	C _u =	C _C =		
	Classification			
USCS= GP-GM	I AASHT	O= A-2-7(0)		
	Remarks			
Natural Moisture Content: 15.5%				

Clay

Date: 4/22/2019

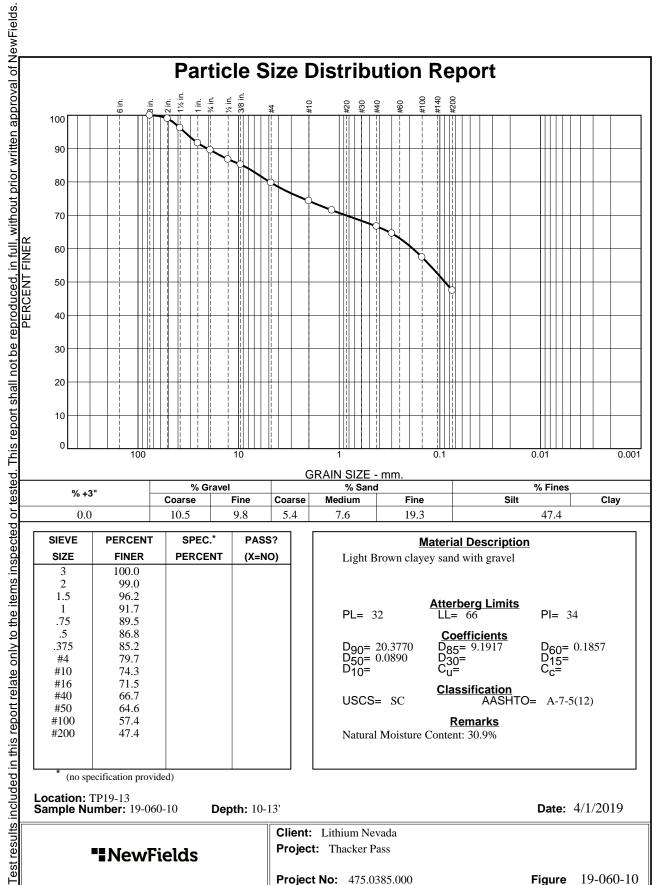
Figure 19-106-07

10.8

(no specification provided)

0.0

Location: TP19-13 Sample Number: 19-106-07 **Depth: 3-5'**


NewFields

Client: Lithium Nevada **Project:** Thacker Pass

Project No: 475.0385.000

Checked By: JH

Tested By: KS

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
3	100.0		
2	99.0		
1.5	96.2		
1	91.7		
.75	89.5		
.5	86.8		
.375	85.2		
#4	79.7		
#10	74.3		
#16	71.5		
#40	66.7		
#50	64.6		
#100	57.4		
#200	47.4		

10.5

Fine

9.8

Coarse

5.4

Medium

7.6

Fine

19.3

Material Description Light Brown clayey sand with gravel			
PL= 32	Atterberg Limits LL= 66	PI= 34	
D ₉₀ = 20.3770 D ₅₀ = 0.0890 D ₁₀ =	Coefficients D ₈₅ = 9.1917 D ₃₀ = C _u =	D ₆₀ = 0.1857 D ₁₅ = C _c =	
USCS= SC	Classification AASHT	O= A-7-5(12)	
Remarks Natural Moisture Content: 30.9%			

Clay

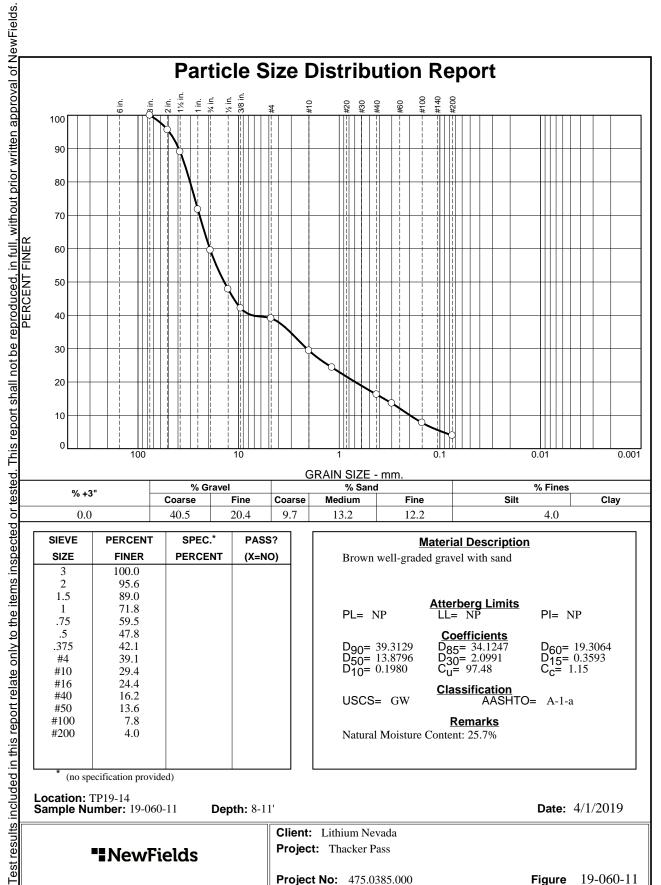
47.4

Date: 4/1/2019

Figure 19-060-10

(no specification provided)

0.0


Location: TP19-13 Sample Number: 19-060-10 **Depth:** 10-13'

NewFields

Client: Lithium Nevada **Project:** Thacker Pass

Project No: 475.0385.000

Tested By: JH/JB Checked By: JH

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
3	100.0		
2	95.6		
1.5	89.0		
1	71.8		
.75	59.5		
.5	47.8		
.375	42.1		
#4	39.1		
#10	29.4		
#16	24.4		
#40	16.2		
#50	13.6		
#100	7.8		
#200	4.0		

20.4

9.7

13.2

12.2

Material Description				
Brown well-grade	Brown well-graded gravel with sand			
	Atterberg Limits			
PL= NP	LL= NP	PI= NP		
D 20 2120	Coefficients	D 10 2064		
D ₉₀ = 39.3129 D ₅₀ = 13.8796 D ₁₀ = 0.1980	D ₈₅ = 34.1247 D ₃₀ = 2.0991	D ₆₀ = 19.3064 D ₁₅ = 0.3593 C _c = 1.15		
$D_{10}^{30} = 0.1980$	$C_{u}^{33} = 97.48$	$C_{c}^{13} = 1.15$		
Hece cw	Classification	D A 1 -		
USCS= GW	AASHTO	O= A-1-a		
37 . 137 .	<u>Remarks</u>			
Natural Moisture	Content: 25.7%			

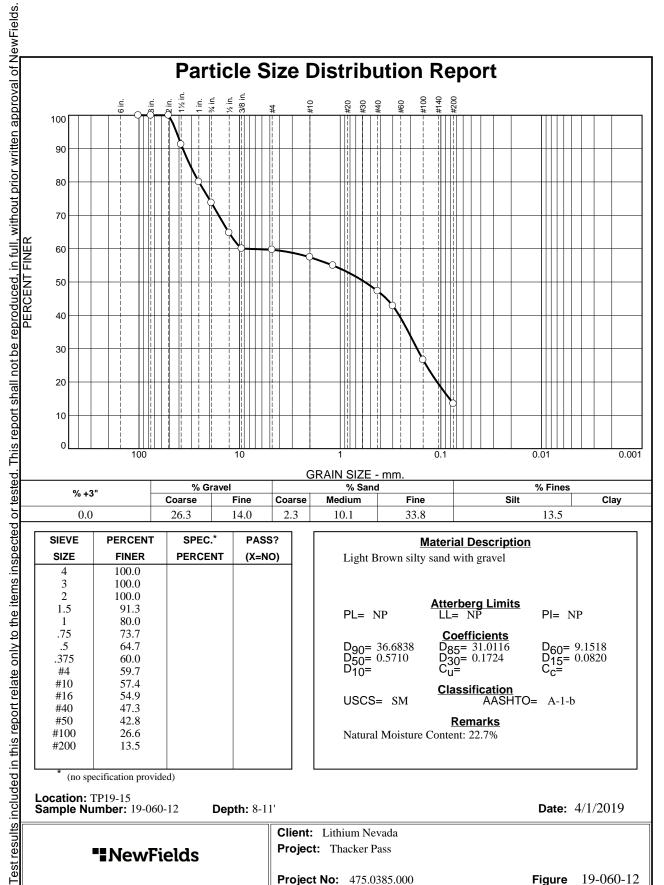
4.0

Date: 4/1/2019

Figure 19-060-11

(no specification provided)

0.0


Location: TP19-14 Sample Number: 19-060-11 Depth: 8-11'

> Client: Lithium Nevada **Project:** Thacker Pass

Project No: 475.0385.000

NewFields

Tested By: JH/JB Checked By: JH

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
4	100.0		
3	100.0		
2	100.0		
1.5	91.3		
1	80.0		
.75	73.7		
.5	64.7		
.375	60.0		
#4	59.7		
#10	57.4		
#16	54.9		
#40	47.3		
#50	42.8		
#100	26.6		
#200	13.5		

Material Description Light Brown silty sand with gravel				
PL= NP	Atterberg Limits LL= NP	PI= NP		
D ₉₀ = 36.6838 D ₅₀ = 0.5710 D ₁₀ =	Coefficients D ₈₅ = 31.0116 D ₃₀ = 0.1724 C _u =	D ₆₀ = 9.1518 D ₁₅ = 0.0820 C _c =		
USCS= SM	Classification AASHT	O= A-1-b		
Natural Moisture	Remarks Natural Moisture Content: 22.7%			

13.5

Date: 4/1/2019

Figure 19-060-12

(no specification provided)

Location: TP19-15 Sample Number: 19-060-12

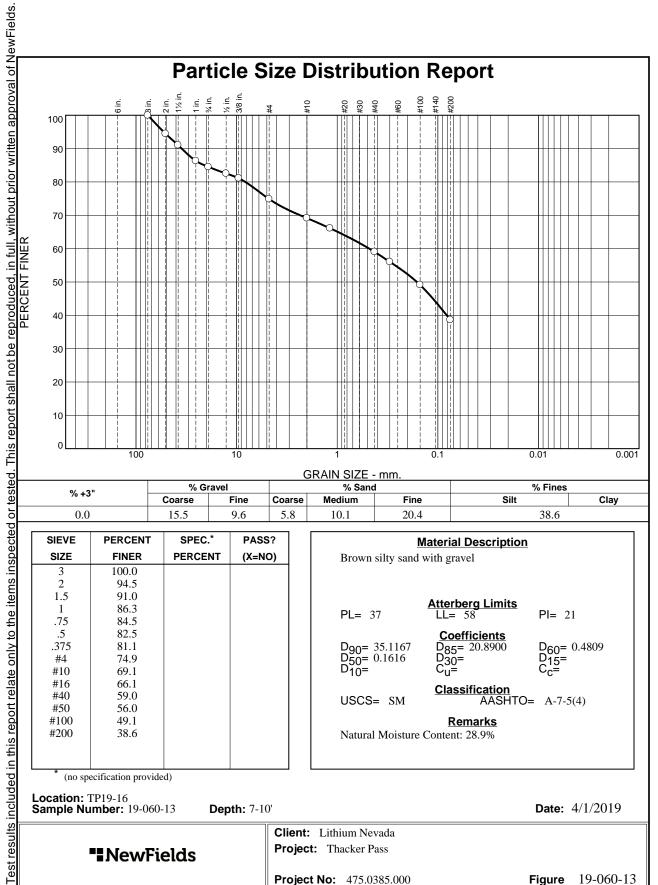
0.0

Depth: 8-11'

NewFields

Client: Lithium Nevada **Project:** Thacker Pass

Project No: 475.0385.000


Tested By: JH/JB Checked By: JH

14.0

2.3

10.1

33.8

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
3	100.0		
2	94.5		
1.5	91.0		
1	86.3		
.75	84.5		
.5	82.5		
.375	81.1		
#4	74.9		
#10	69.1		
#16	66.1		
#40	59.0		
#50	56.0		
#100	49.1		
#200	38.6		

15.5

Fine

9.6

Coarse

5.8

Medium

10.1

Fine

20.4

Material Description Brown silty sand with gravel			
PL= 37	Atterberg Limits LL= 58	PI= 21	
D ₉₀ = 35.1167 D ₅₀ = 0.1616 D ₁₀ =	<u>Coefficients</u> D ₈₅ = 20.8900 D ₃₀ = C _u =	D ₆₀ = 0.4809 D ₁₅ = C _c =	
USCS= SM	Classification AASHT	O= A-7-5(4)	
Remarks Natural Moisture Content: 28.9%			

Clay

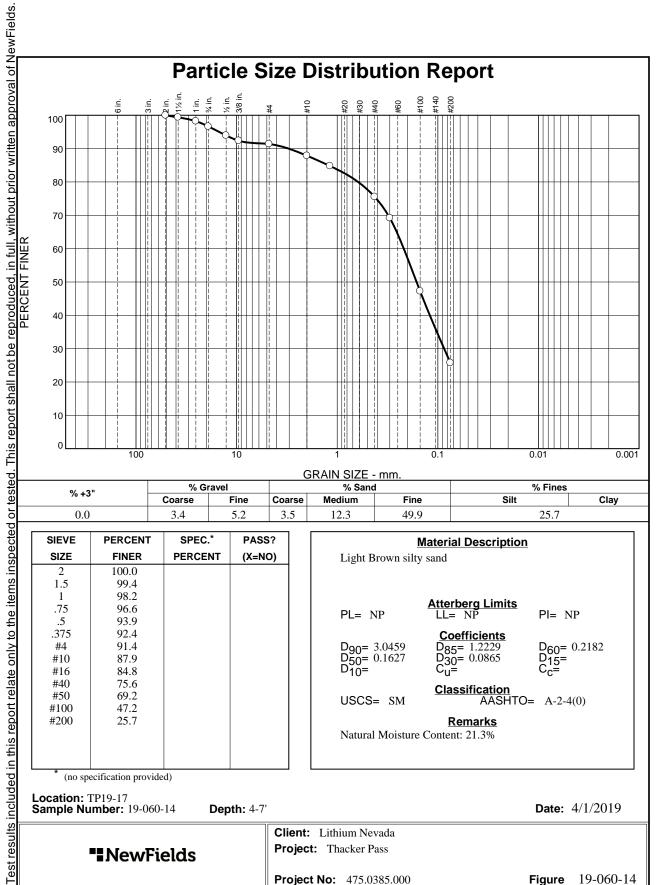
38.6

Date: 4/1/2019

(no specification provided)

0.0

Location: TP19-16 Sample Number: 19-060-13 **Depth:** 7-10'


NewFields

Client: Lithium Nevada **Project:** Thacker Pass

Figure 19-060-13 **Project No:** 475.0385.000

Tested By: JH/JB Checked By: JH

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
2	100.0		
1.5	99.4		
1	98.2		
.75	96.6		
.5	93.9		
.375	92.4		
#4	91.4		
#10	87.9		
#16	84.8		
#40	75.6		
#50	69.2		
#100	47.2		
#200	25.7		

3.4

Fine

5.2

Coarse

3.5

Medium

12.3

Fine

49.9

Light Brown silt	Material Description y sand	<u>on</u>
PL= NP	Atterberg Limits LL= NP	PI= NP
D ₉₀ = 3.0459 D ₅₀ = 0.1627 D ₁₀ =	Coefficients D ₈₅ = 1.2229 D ₃₀ = 0.0865 C _u =	D ₆₀ = 0.2182 D ₁₅ = C _c =
USCS= SM	Classification AASHT	O= A-2-4(0)
Natural Moisture	Remarks Content: 21.3%	

Clay

25.7

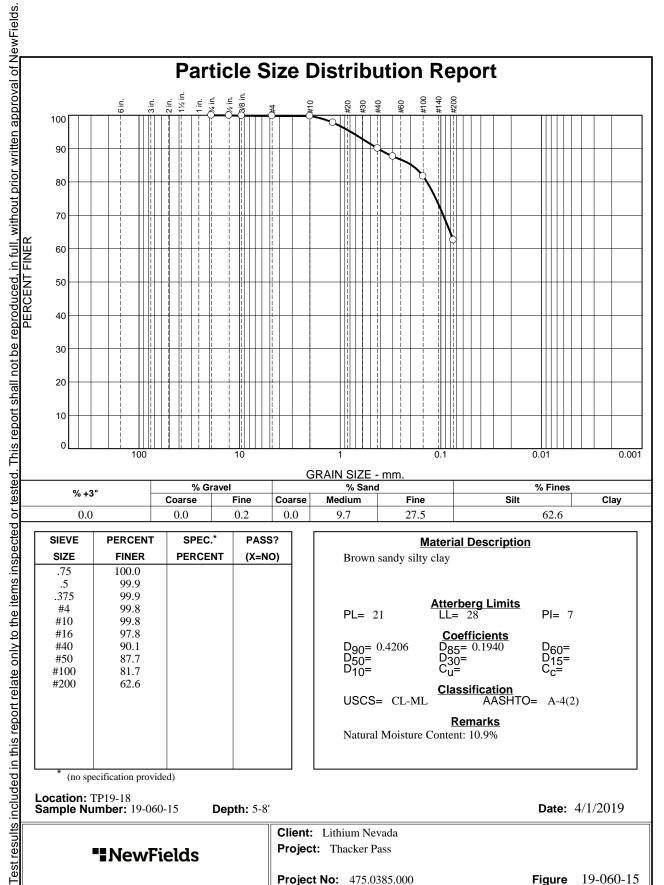
Date: 4/1/2019

Figure 19-060-14

(no specification provided)

0.0

Location: TP19-17 Sample Number: 19-060-14 **Depth: 4-7'**


NewFields

Client: Lithium Nevada **Project:** Thacker Pass

Project No: 475.0385.000

Tested By: JH/JB Checked By: JH

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
.75	100.0		
.5	99.9		
.375	99.9		
#4	99.8		
#10	99.8		
#16	97.8		
#40	90.1		
#50	87.7		
#100	81.7		
#200	62.6		
* (no spe	ecification provide	ed)	

0.2

0.0

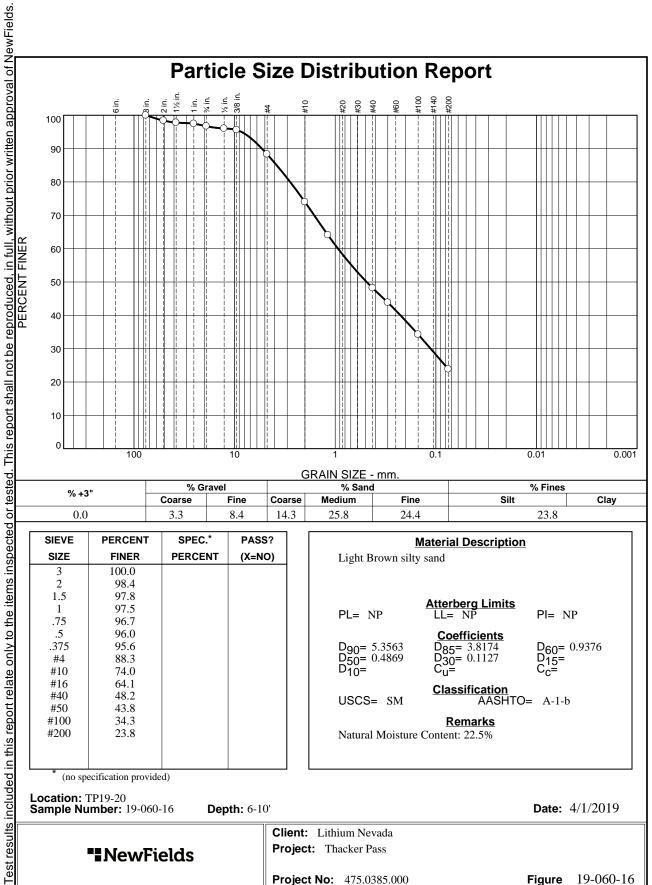
9.7

27.5

Brown sandy silt	Material Descriptio y clay	<u>on</u>	
PL= 21	Atterberg Limits LL= 28	PI= 7	
D ₉₀ = 0.4206 D ₅₀ = D ₁₀ =	Coefficients D ₈₅ = 0.1940 D ₃₀ = C _u =	D ₆₀ = D ₁₅ = C _c =	
USCS= CL-MI	Classification AASHT	O= A-4(2)	
Remarks Natural Moisture Content: 10.9%			

62.6

0.0


Location: TP19-18 Sample Number: 19-060-15 **Date:** 4/1/2019**Depth: 5-8'**

NewFields

Client: Lithium Nevada **Project:** Thacker Pass

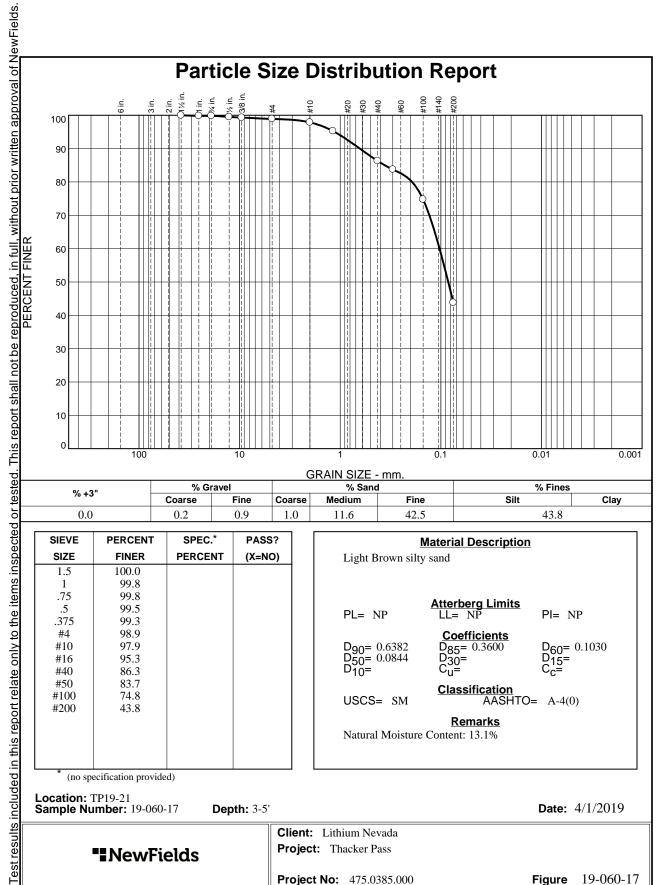
Figure 19-060-15 **Project No:** 475.0385.000

% +3"	% Gı	ravel		% Sand		% Fines	
76 +3	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay
0.0	3.3	8.4	14.3	25.8	24.4	23.8	
SIEVE PERCEN	IT SPEC.	.* PASS	3?		Materi	al Description	

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
3	100.0		
2	98.4		
1.5	97.8		
1	97.5		
.75	96.7		
.5	96.0		
.375	95.6		
#4	88.3		
#10	74.0		
#16	64.1		
#40	48.2		
#50	43.8		
#100	34.3		
#200	23.8		

Light Brown silty	Material Description y sand	<u>on</u>
PL= NP	Atterberg Limits	PI= NP
D ₉₀ = 5.3563 D ₅₀ = 0.4869 D ₁₀ =	Coefficients D ₈₅ = 3.8174 D ₃₀ = 0.1127 C _u =	D ₆₀ = 0.9376 D ₁₅ = C _c =
USCS= SM	Classification AASHT	O= A-1-b
Natural Moisture	Remarks Content: 22.5%	

(no specification provided)


Location: TP19-20 Sample Number: 19-060-16 **Date:** 4/1/2019**Depth:** 6-10'

NewFields

Client: Lithium Nevada **Project:** Thacker Pass

Figure 19-060-16 **Project No:** 475.0385.000

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
1.5	100.0		
1	99.8		
.75	99.8		
.5	99.5		
.375	99.3		
#4	98.9		
#10	97.9		
#16	95.3		
#40	86.3		
#50	83.7		
#100	74.8		
#200	43.8		
* (no sp	ecification provide	ed)	

0.9

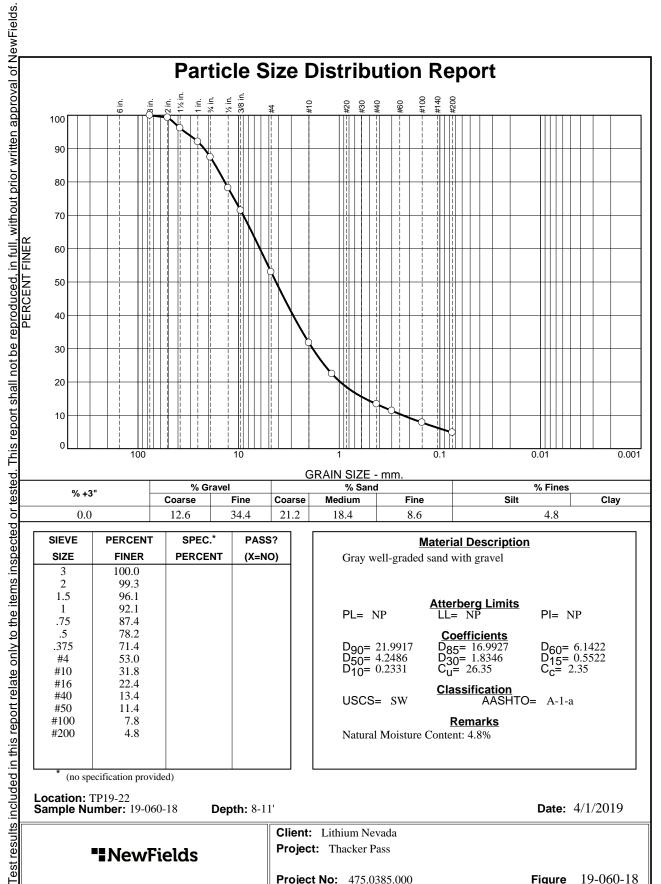
1.0

11.6

Light Brown silt	Material Description y sand	<u>on</u>
PL= NP	Atterberg Limits LL= NP	PI= NP
D ₉₀ = 0.6382 D ₅₀ = 0.0844 D ₁₀ =	Coefficients D ₈₅ = 0.3600 D ₃₀ = C _u =	D ₆₀ = 0.1030 D ₁₅ = C _c =
USCS= SM	Classification AASHT	O= A-4(0)
Natural Moisture	Remarks Content: 13.1%	

43.8

42.5


0.0

Location: TP19-21 Sample Number: 19-060-17 **Date:** 4/1/2019**Depth: 3-5'**

NewFields

Client: Lithium Nevada **Project:** Thacker Pass

Figure 19-060-17 **Project No:** 475.0385.000

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
3	100.0		
2	99.3		
1.5	96.1		
1	92.1		
.75	87.4		
.5	78.2		
.375	71.4		
#4	53.0		
#10	31.8		
#16	22.4		
#40	13.4		
#50	11.4		
#100	7.8		
#200	4.8		
<u> </u>			

34.4

21.2

18.4

8.6

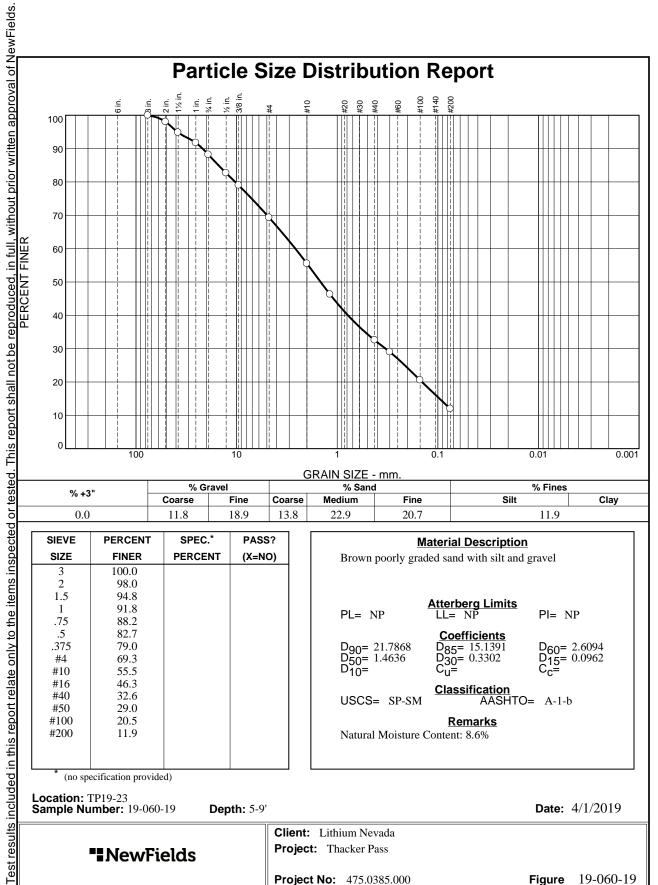
Material Description Gray well-graded sand with gravel				
PL= NP	Atterberg Limits	PI= NP		
D ₉₀ = 21.9917 D ₅₀ = 4.2486 D ₁₀ = 0.2331	Coefficients D ₈₅ = 16.9927 D ₃₀ = 1.8346 C _u = 26.35	D ₆₀ = 6.1422 D ₁₅ = 0.5522 C _c = 2.35		
USCS= SW	Classification AASHT	O= A-1-a		
Remarks Natural Moisture Content: 4.8%				

4.8

Date: 4/1/2019

* (no specification provided)

0.0


Location: TP19-22 Sample Number: 19-060-18 Depth: 8-11'

> Client: Lithium Nevada **Project:** Thacker Pass

> > Figure 19-060-18 **Project No:** 475.0385.000

NewFields

% +3	"	% Gra	avei		% Sand	0	% Fines	
70 +3		Coarse	Fine	Coarse	Medium	Fine	Silt	Clay
0.0		11.8	18.9	13.8	22.9	20.7	11.9	
SIEVE	PERCENT	SPEC.*			Drown		ial Description	

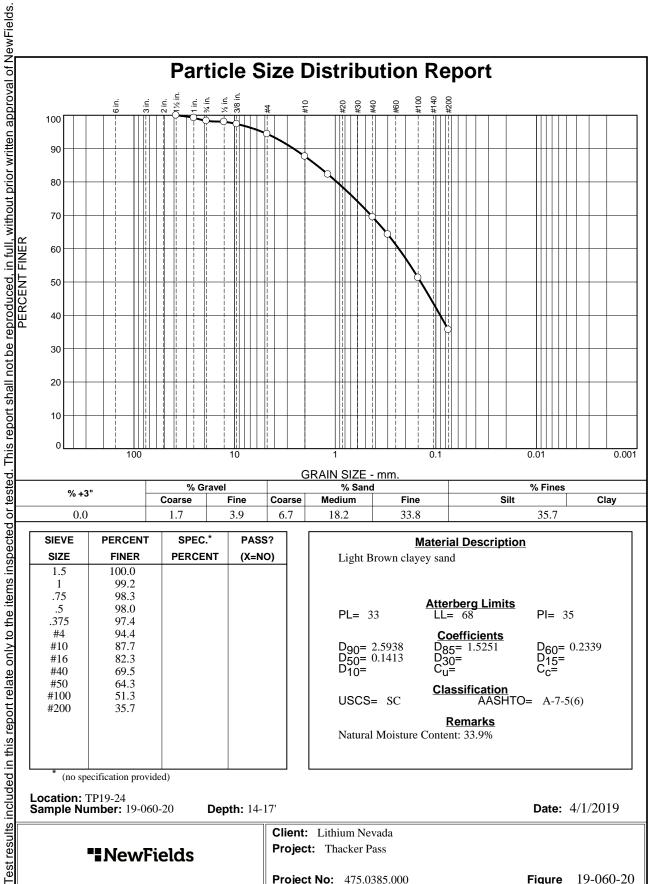
SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
3	100.0		
2	98.0		
1.5	94.8		
1	91.8		
.75	88.2		
.5	82.7		
.375	79.0		
#4	69.3		
#10	55.5		
#16	46.3		
#40	32.6		
#50	29.0		
#100	20.5		
#200	11.9		

Material Description Brown poorly graded sand with silt and gravel				
PL= NP	Atterberg Limits	S PI= NP		
D ₉₀ = 21.7868 D ₅₀ = 1.4636 D ₁₀ =	Coefficients D ₈₅ = 15.1391 D ₃₀ = 0.3302 C _u =	D ₆₀ = 2.6094 D ₁₅ = 0.0962 C _c =		
USCS= SP-SM	Classification AASH	ΓO= A-1-b		
Remarks Natural Moisture Content: 8.6%				

Date: 4/1/2019

(no specification provided)

Location: TP19-23 Sample Number: 19-060-19 **Depth:** 5-9'


NewFields

Client: Lithium Nevada **Project:** Thacker Pass

Project No: 475.0385.000

Figure 19-060-19

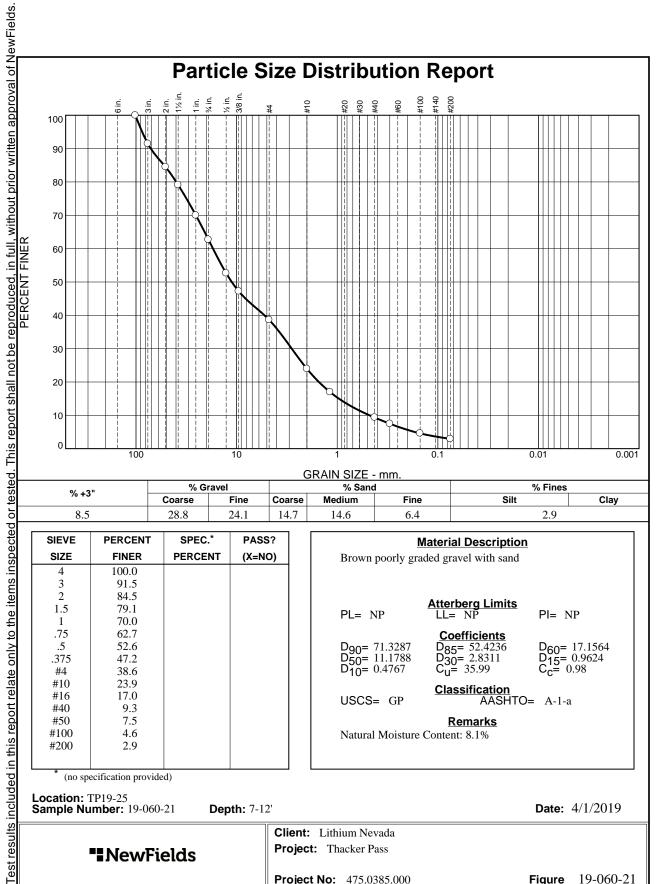
% +3"			% Gi	ravel		% Sand	1	% Fines		
	70 ±3		Coarse	Fine	Coarse	Medium	Fine	Silt	Clay	
	0.0		1.7	3.9	6.7	18.2	33.8	35.7		
	SIEVE P	FRCENT	SPEC	* PASS	32		Matari	ial Description		

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
1.5	100.0		
1	99.2		
.75	98.3		
.5	98.0		
.375	97.4		
#4	94.4		
#10	87.7		
#16	82.3		
#40	69.5		
#50	64.3		
#100	51.3		
#200	35.7		

<u>Material Description</u> Light Brown clayey sand				
PL= 33	Atterberg Limits LL= 68	PI= 35		
D ₉₀ = 2.5938 D ₅₀ = 0.1413 D ₁₀ =	Coefficients D ₈₅ = 1.5251 D ₃₀ = C _u =	D ₆₀ = 0.2339 D ₁₅ = C _c =		
USCS= SC	Classification AASHT	O= A-7-5(6)		
Natural Moisture	Remarks Content: 33.9%			

Date: 4/1/2019

Figure 19-060-20


* (no specification provided)

Location: TP19-24 Sample Number: 19-060-20 **Depth:** 14-17'

NewFields

Client: Lithium Nevada **Project:** Thacker Pass

Project No: 475.0385.000

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
4	100.0		
3	91.5		
2	84.5		
1.5	79.1		
1	70.0		
.75	62.7		
.5	52.6		
.375	47.2		
#4	38.6		
#10	23.9		
#16	17.0		
#40	9.3		
#50	7.5		
#100	4.6		
#200	2.9		
*			

24.1

14.7

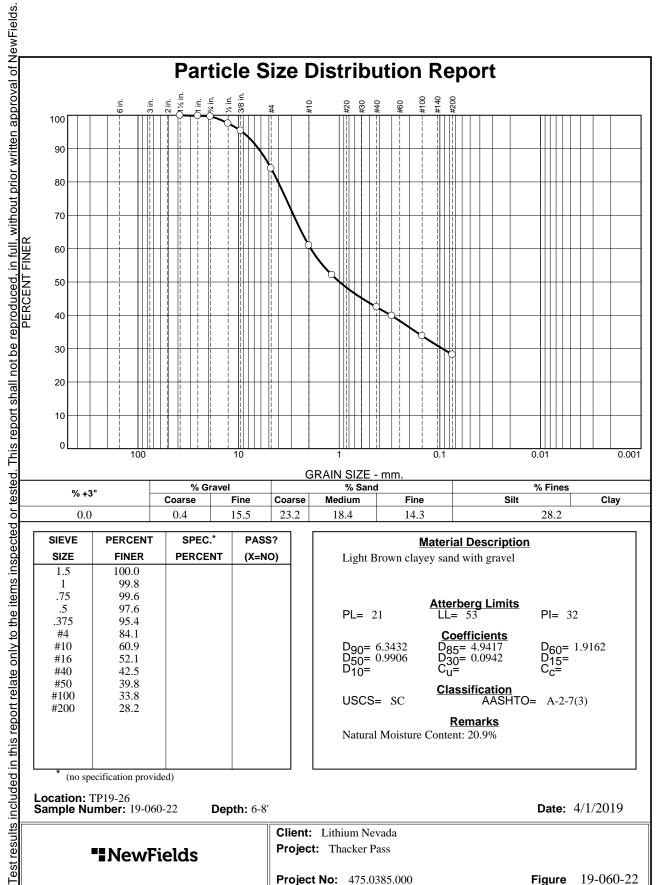
14.6

Material Description Brown poorly graded gravel with sand				
PL= NP	Atterberg Limits LL= NP	PI= NP		
D ₉₀ = 71.3287 D ₅₀ = 11.1788 D ₁₀ = 0.4767	Coefficients D85= 52.4236 D30= 2.8311 Cu= 35.99	D ₆₀ = 17.1564 D ₁₅ = 0.9624 C _c = 0.98		
USCS= GP	Classification AASHT	O= A-1-a		
Remarks Natural Moisture Content: 8.1%				

2.9

6.4

* (no specification provided)


8.5

Location: TP19-25 Sample Number: 19-060-21 **Date:** 4/1/2019**Depth:** 7-12'

NewFields

Client: Lithium Nevada **Project:** Thacker Pass

Figure 19-060-21 **Project No:** 475.0385.000

15.5

18.4

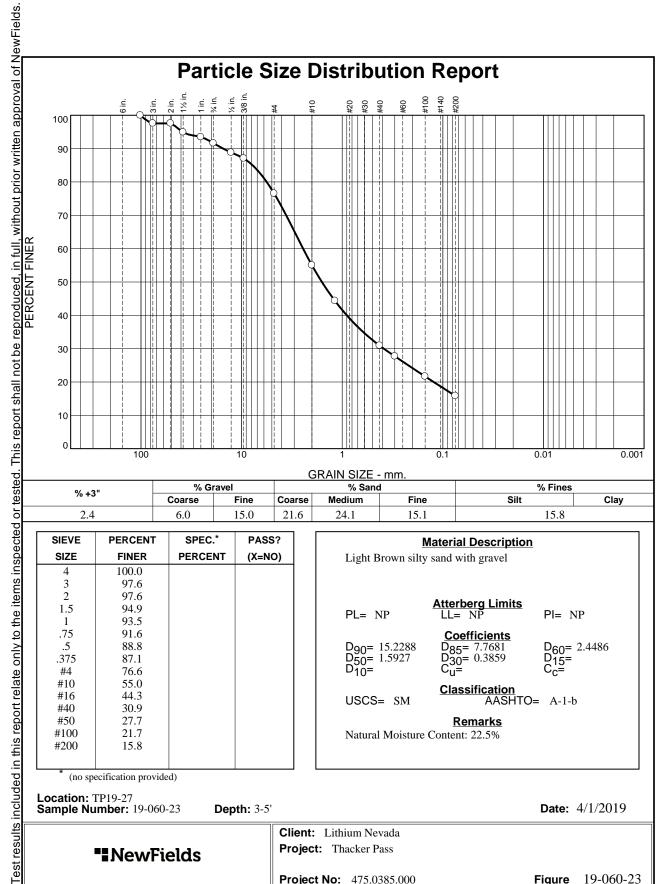
14.3

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
1.5	100.0		
1	99.8		
.75	99.6		
.5	97.6		
.375	95.4		
#4	84.1		
#10	60.9		
#16	52.1		
#40	42.5		
#50	39.8		
#100	33.8		
#200	28.2		
* (no sp	ecification provide	ed)	1

0.4

Material Description Light Brown clayey sand with gravel				
PL= 21	Atterberg Limits	PI= 32		
D ₉₀ = 6.3432 D ₅₀ = 0.9906 D ₁₀ =	Coefficients D ₈₅ = 4.9417 D ₃₀ = 0.0942 C _u =	D ₆₀ = 1.9162 D ₁₅ = C _c =		
USCS= SC	Classification AASHT	TO= A-2-7(3)		
Natural Moisture	Remarks Content: 20.9%			

28.2


0.0

Location: TP19-26 Sample Number: 19-060-22 **Date:** 4/1/2019**Depth:** 6-8'

NewFields

Client: Lithium Nevada **Project:** Thacker Pass

Figure 19-060-22 **Project No:** 475.0385.000

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
4	100.0		
3	97.6		
2	97.6		
1.5	94.9		
1	93.5		
.75	91.6		
.5	88.8		
.375	87.1		
#4	76.6		
#10	55.0		
#16	44.3		
#40	30.9		
#50	27.7		
#100	21.7		
#200	15.8		

6.0

Fine

15.0

Coarse

21.6

Medium

24.1

Fine

15.1

Material Description Light Brown silty sand with gravel				
PL= NP	Atterberg Limits	PI= NP		
D ₉₀ = 15.2288 D ₅₀ = 1.5927 D ₁₀ =	Coefficients D ₈₅ = 7.7681 D ₃₀ = 0.3859 C _u =	D ₆₀ = 2.4486 D ₁₅ = C _c =		
USCS= SM	Classification AASH	ΓO= A-1-b		
Remarks Natural Moisture Content: 22.5%				

Clay

15.8

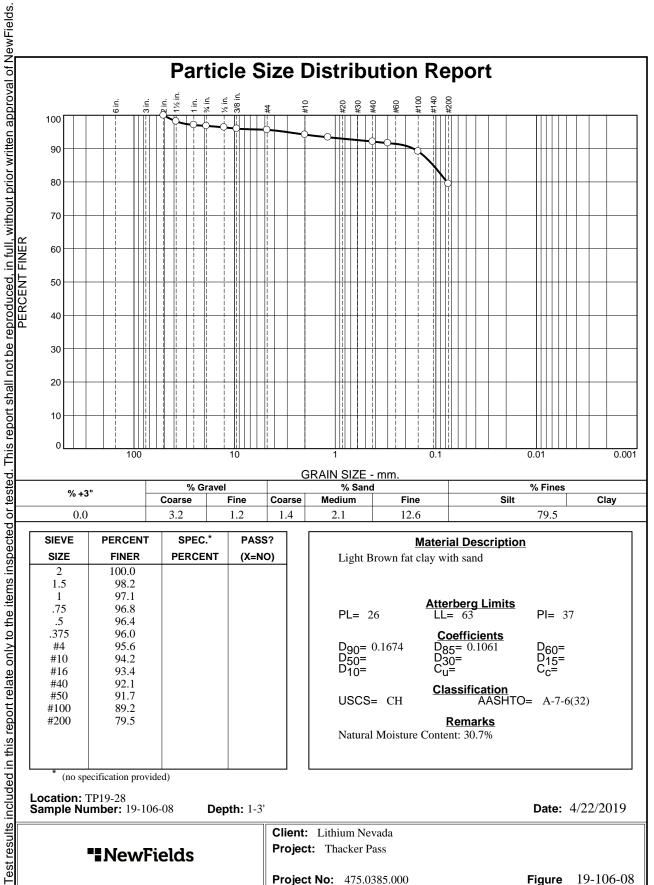
Date: 4/1/2019

Figure 19-060-23

(no specification provided)

2.4

Location: TP19-27 Sample Number: 19-060-23


NewFields

Depth: 3-5'

Client: Lithium Nevada **Project:** Thacker Pass

Project No: 475.0385.000

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
2	100.0		
1.5	98.2		
1	97.1		
.75	96.8		
.5	96.4		
.375	96.0		
#4	95.6		
#10	94.2		
#16	93.4		
#40	92.1		
#50	91.7		
#100	89.2		
#200	79.5		

3.2

Fine

1.2

Coarse

1.4

Medium

2.1

Fine

12.6

	Material Description Light Brown fat clay with sand						
PL= 26	Atterberg Limits LL= 63	PI= 37					
D ₉₀ = 0.1674 D ₅₀ = D ₁₀ =	Coefficients D ₈₅ = 0.1061 D ₃₀ = C _u =	D ₆₀ = D ₁₅ = C _c =					
USCS= CH	USCS= CH Classification AASHTO= A-7-6(32)						
Remarks Natural Moisture Content: 30.7%							

Clay

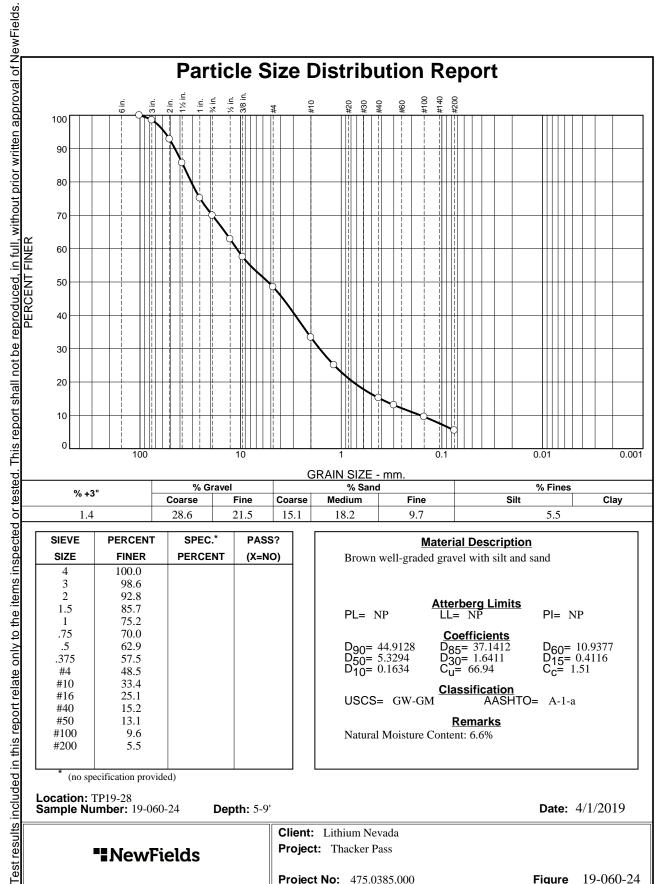
Figure 19-106-08

79.5

(no specification provided)

Tested By: KS

0.0


Location: TP19-28 Sample Number: 19-106-08 **Date:** 4/22/2019 **Depth:** 1-3'

NewFields

Client: Lithium Nevada **Project:** Thacker Pass

Project No: 475.0385.000

Checked By: JH

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
4	100.0		
3	98.6		
2	92.8		
1.5	85.7		
1	75.2		
.75	70.0		
.5	62.9		
.375	57.5		
#4	48.5		
#10	33.4		
#16	25.1		
#40	15.2		
#50	13.1		
#100	9.6		
#200	5.5		

28.6

Fine

21.5

Coarse

15.1

Medium

18.2

Fine

9.7

<u>N</u>	Material Description						
Brown well-grade	d gravel with silt and	sand					
DI ND	Atterberg Limits	DI ND					
PL= NP	LL= NP	PI= NP					
	Coefficients						
$D_{90} = 44.9128$	D ₈₅ = 37.1412 D ₃₀ = 1.6411	$D_{60} = 10.9377$					
D ₉₀ = 44.9128 D ₅₀ = 5.3294 D ₁₀ = 0.1634	$C_{11} = 66.94$	D ₆₀ = 10.9377 D ₁₅ = 0.4116 C _C = 1.51					
D ₁₀ = 0.1034	O _u - 00.94	OC- 1.31					
	Classification						
USCS= GW-GM	M AASHTO	= A-1-a					
	Remarks						
Natural Moisture	Natural Moisture Content: 6.6%						

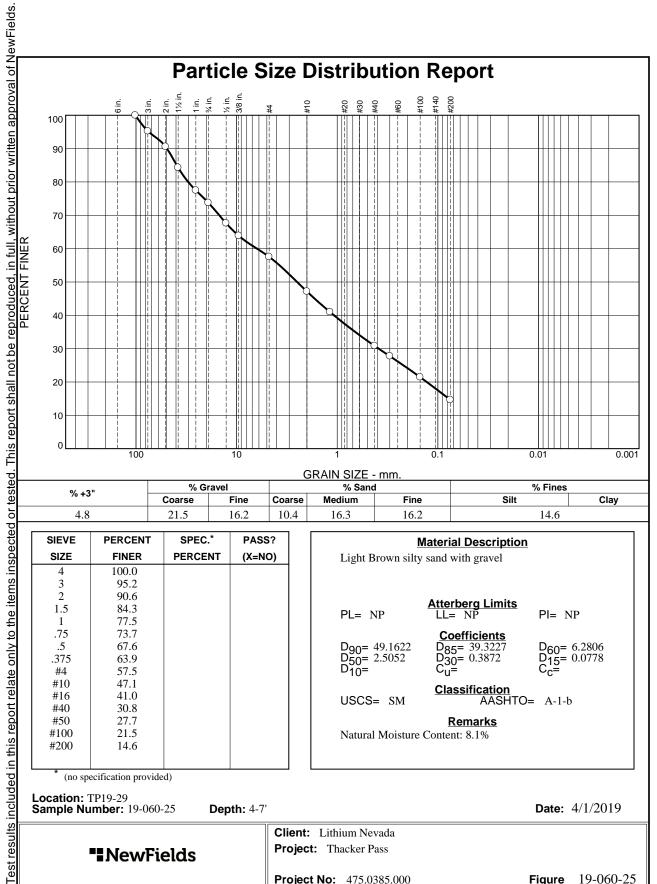
Clay

5.5

Date: 4/1/2019

Figure 19-060-24

(no specification provided)


1.4

Location: TP19-28 Sample Number: 19-060-24 **Depth:** 5-9'

NewFields

Client: Lithium Nevada **Project:** Thacker Pass

Project No: 475.0385.000

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
4	100.0		
3	95.2		
2	90.6		
1.5	84.3		
1	77.5		
.75	73.7		
.5	67.6		
.375	63.9		
#4	57.5		
#10	47.1		
#16	41.0		
#40	30.8		
#50	27.7		
#100	21.5		
#200	14.6		
*		1	

21.5

Fine

16.2

Coarse

10.4

Medium

16.3

Fine

16.2

Material Description Light Brown silty sand with gravel					
PL= NP	Atterberg Limits	PI= NP			
D ₉₀ = 49.1622 D ₅₀ = 2.5052 D ₁₀ =	Coefficients D ₈₅ = 39.3227 D ₃₀ = 0.3872 C _u =	D ₆₀ = 6.2806 D ₁₅ = 0.0778 C _c =			
USCS= SM AASHTO= A-1-b					
Remarks Natural Moisture Content: 8.1%					

Clay

14.6

Date: 4/1/2019

Figure 19-060-25

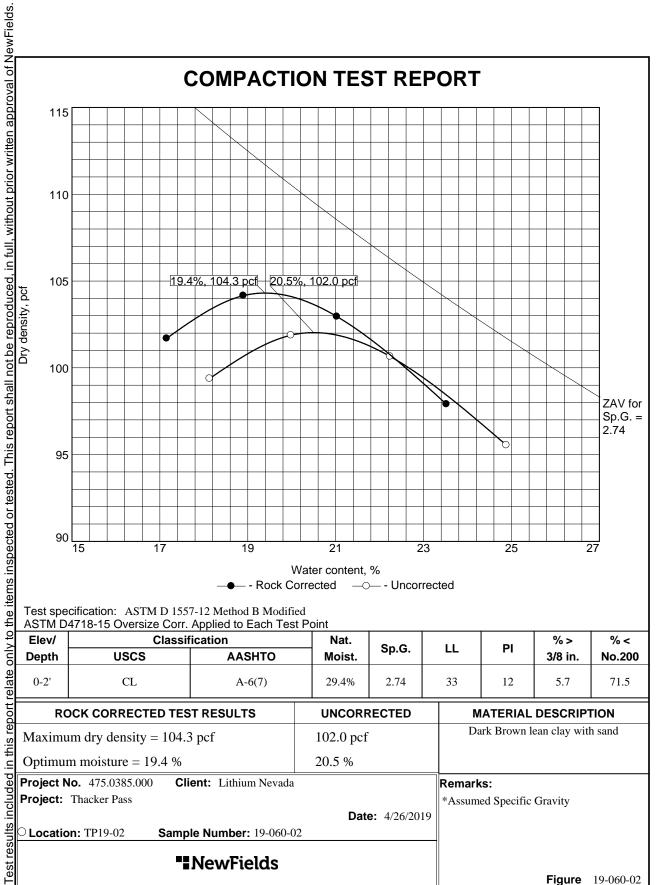
* (no specification provided)

4.8

Location: TP19-29 Sample Number: 19-060-25 **Depth: 4-7**'

NewFields

Client: Lithium Nevada **Project:** Thacker Pass


Project No: 475.0385.000

Checked By: JH

Tested By: KS/JB

-- Rock Corrected -- -- Uncorrected Test specification: ASTM D 1557-12 Method B Modified

ASTM D4718-15 Oversize Corr. Applied to Each Test Point Elev/ Classification Nat. %> %< Sp.G. LL Ы Depth USCS **AASHTO** Moist. 3/8 in. No.200 0-2' CL71.5 A-6(7)29.4% 2.74 33 12 5.7

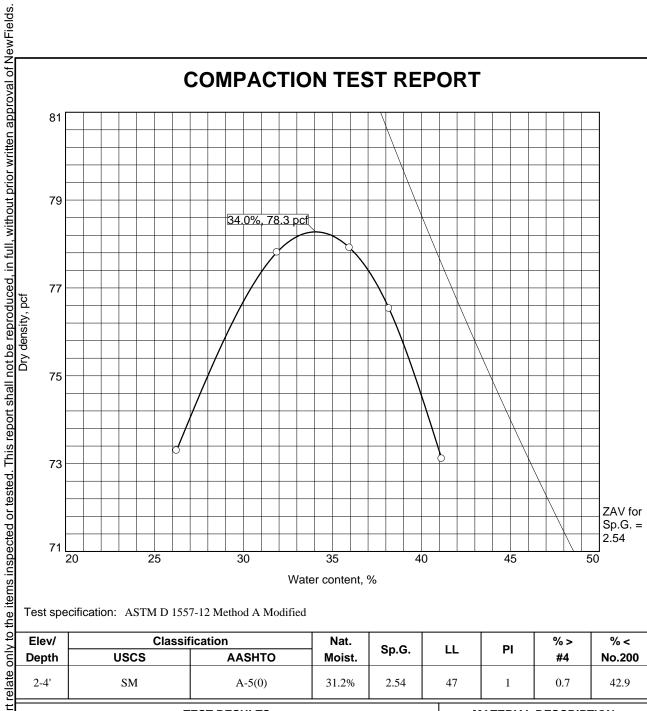
21

Water content, %

23

25

ROCK CORRECTED TEST RESULTS	UNCORRECTED	MATERIAL DESCRIPTION
Maximum dry density = 104.3 pcf	102.0 pcf	Dark Brown lean clay with sand
Optimum moisture = 19.4 %	20.5 %	
Project No. 475.0385.000 Client: Lithium Nevada	<u> </u>	Remarks:


Project: Thacker Pass *Assumed Specific Gravity

Date: 4/26/2019

CLocation: TP19-02 **Sample Number:** 19-060-02

NewFields

Figure 19-060-02

Test specification: ASTM D 1557-12 Method A Modified

Elev/	Classification		Nat.	- 1	PI	% >	% <					
Depth	USCS	AASHTO	Moist.	Sp.G.	3 μ. G .	Sp.G.	Sp.G.	Sp.G.	LL	PI	#4	No.200
2-4'	SM	A-5(0)	31.2%	2.54	47	1	0.7	42.9				

Ö	TEST RESULTS	MATERIAL DESCRIPTION
this rep	Maximum dry density = 78.3 pcf	Light brown silty sand
.⊑	Optimum moisture = 34.0 %	
cluded	Project No. 475.0385.000 Client: Lithium Nevada	Remarks:
onic	Project: Thacker Pass	*Tested Specific Gravity
.⊑	Date: 5/1/2019	
ults	O Location: TP19-04 Sample Number: 19-106-03	
Fest resu	***NewFields	Figure 19-106-03
[1 igule 19-100-03

Tested By: CB Checked By: KE **Appendix A3 – Natural Moisture Content Results**

MOISTURE CONTENT (ASTM D 2216 / ASTM D 4643)

		•	ORY WORKSH	•		
Client:					7	- D
		Lithium Neva		Location:		<u>P</u>
Project Title:		Thacker Pas	S	Elevation:		Below
Project Number:		475.0385.00	00	Test Date:	3/5/	2019
Project Engineer:		Eric Niebler	r	Tested By:	KS	/JB
Field Sample ID:		TP		Checked By:	J	Н
Drying Conditions: 60 deg	C / 110	deg C 19-060-01	Method: Ove 19-060-02	n (O) / Microwa		1
Sample No.		19-060-01	19-060-02	19-060-03	19-060-04	19-060-05
Location		TP19-01	TP19-02	TP19-03	TP19-04	TP19-05
Depth		4-7'	0-2'	6-9'	5-7'	8-10'
Soil Description						
(USCS)						
Trial No.		1	2	3	4	5
Tare No.						
Tare + Wet Soil	Α	603.3	580	895	602.1	664.7
Tare + Dry Soil	В	539.7	506.7	819.3	521.8	564.4
Tare	С	44.9	257.5	120.6	125.1	141.2

rare + Dry Soli	В	539.7	506.7	819.3	521.8	564.4
Tare	С	44.9	257.5	120.6	125.1	141.2
Wt. of Water	D= A-B	63.6	73.3	75.7	80.3	100.3
Dry Soil, Ws	E= B-C	494.8	249.2	698.7	396.7	423.2
Moisture Content, (%)	(D/E) x100	12.9%	29.4%	10.8%	20.2%	23.7%
Sample No.		19-060-06	19-060-07	19-060-08	19-060-09	19-060-10
Location		TP19-06	TP19-08	TP19-09	TP19-11	TP19-13
Depth		11-13'	6-9'	8-12'	7-11'	10-13'
Soil Description						
(USCS)						
Trial No.		6	7	8	9	10
Tare No.						
Tare + Wet Soil	А	642.9	926.2	789.7	658.1	605.1
Tare + Dry Soil	В	597.1	854.8	732.5	618.3	514.9
Tare	С	189.5	124.9	270.1	125.3	223.4
Wt. of Water	D= A-B	45.8	71.4	57.2	39.8	90.2
5 6 H 14						

729.9

9.8%

462.4

12.4%

493

8.1%

291.5

30.9%

Remarks:

Dry Soil, Ws

Moisture Content, (%) (D/E) x100

E= B-C

407.6

11.2%

MOISTURE CONTENT (ASTM D 2216 / ASTM D 4643)

LABORATORY WORKSHEET

Client:	Lithium Nevada	Location:	TP
Project Title:	Thacker Pass	Elevation:	See Below
Project Number:	475.0385.000	Test Date:	3/5/2019
Project Engineer:	Eric Niebler	Tested By:	KS/JB
Field Sample ID:	TP	Checked By:	JH

Drying Conditions: 60	deg C / 110	deg C	Method: Over	<mark>1 (0)</mark> / Microwa	ive (M) / Hot P	late (H)
Sample No.		19-060-11	19-060-12	19-060-13	19-060-14	19-060-15
Location		TP19-14	TP19-15	TP19-16	TP19-17	TP19-18
Depth		8-11'	8-11'	7-10'	4-7'	5-8'
Soil Description						
(USCS)						
Trial No.		11	12	13	14	15
Tare No.						
Tare + Wet Soil	Α	632.6	934.6	859.5	654.3	460.1
Tare + Dry Soil	В	527.9	783.8	709.7	572.4	419.2
Tare	С	121	120.8	190.6	188.6	45
Wt. of Water	D= A-B	104.7	150.8	149.8	81.9	40.9
Dry Soil, Ws	E= B-C	406.9	663	519.1	383.8	374.2
Moisture Content, (%)	(D/E) x100	25.7%	22.7%	28.9%	21.3%	10.9%
Sample No.		19-060-16	19-060-17	19-060-18	19-060-19	19-060-20
Location		TP19-20	TP19-21	TP19-22	TP19-23	TP19-24
Depth		6-10'	3-5'	8-11'	5-9'	14-17'
Soil Description						
(USCS)						
Trial No.		16	17	18	19	20
Tare No.						
Tare + Wet Soil	Α	352.8	347.2	614.6	837.6	649.7
Tare + Dry Soil	В	296.3	312.3	592	786.2	542.3
Tare	С	44.9	45.1	121.1	189.3	225.5
Wt. of Water	D= A-B	56.5	34.9	22.6	51.4	107.4
Dry Soil, Ws	E= B-C	251.4	267.2	470.9	596.9	316.8
Moisture Content, (%)	(D/E) x100	22.5%	13.1%	4.8%	8.6%	33.9%

Remarks:

MOISTURE CONTENT (ASTM D 2216 / ASTM D 4643)

LABORATORY WORKSHEET

Client:	Lithium Nevada	Location:	TP
Project Title:	Thacker Pass	Elevation:	See Below
Project Number:	475.0385.000	Test Date:	3/5/2019
Project Engineer:	Eric Niebler	Tested By:	KS/JB
Field Sample ID:	TP	Checked By:	JH

Drying Conditions: 60	deg C / 110	deg C	Method: Over	(O) / Microwa	ive (M) / Hot P	late (H)	
Sample No.		19-060-21	19-060-22	19-060-23	19-060-24	19-060-25	
Location		TP19-25	TP19-26	TP19-27	TP19-28	TP19-29	
Depth		7-12'	6-8'	3-5'	5-9'	4-7'	
Soil Description							
(USCS)							
Trial No.		21	22	23	24	25	
Tare No.							
Tare + Wet Soil	А	746.1	852.9	644	704.4	871.1	
Tare + Dry Soil	В	699.3	738.3	533.9	668.6	814.8	
Tare	С	123.9	190.9	45.2	124.6	123.5	
Wt. of Water	D= A-B	46.8	114.6	110.1	35.8	56.3	
Dry Soil, Ws	E= B-C	575.4	547.4	488.7	544	691.3	
Moisture Content, (%)	(D/E) x100	8.1%	20.9%	22.5%	6.6%	8.1%	
Sample No.							
Location							
Depth							
Soil Description							
(USCS)							
Trial No.		26	27	28	29	30	
Tare No.							
Tare + Wet Soil	Α						
Tare + Dry Soil	В						
Tare	С						
Wt. of Water	D= A-B						
Dry Soil, Ws	E= B-C						
Moisture Content, (%)	(D/E) x100						

Remarks:		

MOISTURE CONTENT (ASTM D 2216 / ASTM D 4643)

LABORATORY WORKSHEET

Client:	Lithium Nevada	Location:	TP
Project Title:	Thacker Pass	Elevation:	See Below
Project Number:	475.0385.000	Test Date:	4/22/2019
Project Engineer:	Eric Niebler	Tested By:	KS
Field Sample ID:	TP	Checked By:	JH

Drying Conditions: 60 deg C / 110 deg C Method: Oven (O) / Microwave (M) / Hot Plate (H)

Sample No.		19-106-02	19-106-03	19-106-04	19-106-05	19-106-06
Location		TP19-03	TP19-04	TP19-07	TP19-08	TP19-10
Depth		2-4'	2-4'	2-4'	2-4'	3-6'
Soil Description						
(USCS)						
Trial No.		1	2	3	4	5
Tare No.						
Tare + Wet Soil	Α	401.7	432.9	650.3	618.1	555.5
Tare + Dry Soil	В	363.7	358.6	574.2	563.2	492.6
Tare	С	124.7	120.8	257.4	191.2	125.3
Wt. of Water	D= A-B	38	74.3	76.1	54.9	62.9
Dry Soil, Ws	E= B-C	239	237.8	316.8	372	367.3
Moisture Content, (%)	(D/E) x100	15.9%	31.2%	24.0%	14.8%	17.1%

Sample No.		19-106-07	19-106-08			
Location		TP19-13	TP19-28			
Depth		3-5'	1-3'			
Soil Description						
(USCS)						
Trial No.		6	7	8	9	10
Tare No.						
Tare + Wet Soil	Α	433.6	440			
Tare + Dry Soil	В	381.7	347.3			
Tare	С	44.9	45			
Wt. of Water	D= A-B	51.9	92.7			
Dry Soil, Ws	E= B-C	336.8	302.3			
Moisture Content, (%)	(D/E) x100	15.4%	30.7%			

_					
R۹	m	а	r	kς	•

Appendix A4 – Specific Gravity Results

NewFields

SPECIFIC GRAVITY SOILS (ASTM D854)

LABORATORY WORKSHEET

Client:	Lithium Nevada	Field Sample ID:	TP19-04	Test Start Date:	4/30/2019
Project Title:	Thacker Pass	Laboratory Sample ID:	19-106-03	Tested By:	KE
Project Number:	475.0385.000	Location:	TP19-04	Checked By:	JH
Project Engineer:	Eric Niebler	Elevation:	2-4'	Sample Description:	

Sample Number	19-10	06-03				
Sample Location	TP19-04	4 (2'-4')				
Prep Dish						
Flask No.	3	15				
1) Wt. of Flask + Soil	115.90	116.63				
2) Wt. of Flask	86.05	86.66				
3) Wt. of Soil = 1-2	29.85	29.97				
4) Calibrated Wt. of Flask + Water	335.19	335.73				
5) (3+4)	365.04	365.70				
6) Wt. of Flask + Water +Soil	353.34	353.98				
7) Volume of Soil = (5-6)	11.70	11.72				
8) Test Temperature, deg.C (Ta)	19.1	19.2				
9) Temperature Correction, k	1.00018	1.00016				
10) Specific Gravity	2.538	2.546				
11) Average Specific Gravity, Gs	2.5	2.542		 	 	

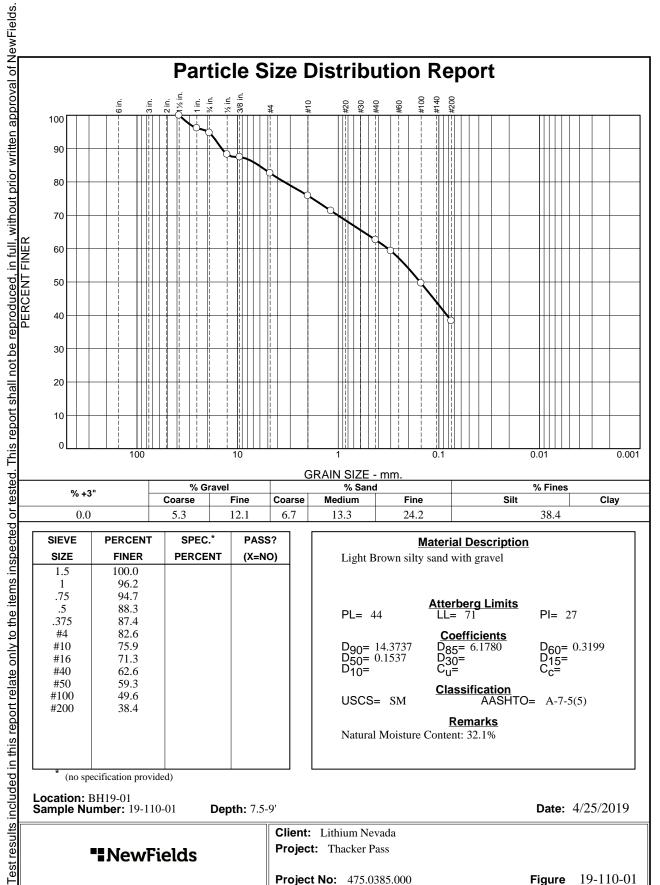
General Notes:			

APPENDIX BBorehole Laboratory Data

	SAN	MPLE LOCATI	ON		s Z	Z			OLL LAD IL		RADATION (%)	AT	TERBERG LIN	IITS		CHEMIC	AL TESTS	
Field Sample Number	Laboratory Sample Number	Borehole ID	Depth From (ft)	Depth To (ft)	UNIFIED SOILS CLASSIFICATION (USCS)	USCS ABBREVIATION	NATURAL DENSITY (wet) (pcf)	NATURAL DENSITY (Dry) (pcf)	NATURAL MOISTURE CONTENT (%)	Gravel >#4	Sand	Silt & Clay <#200	Plastic Limit	Liquid Limit	Plasticity Index	Soluble Sulfate (ppm)	Soluble Chloride (ppm)	Resistivity (Minimum ohm-cm)	Н
SPT-02	19-110-01	BH19-01	7.5	9	Silty Sand with Gravel	SM			32.1	17.4	44.2	38.4	44	71	27				
SPT-04	19-110-02	BH19-01	25.0	26.5	Silty Sand	SM			30.0	13.6	66.3	20.1	30	55	25				
SPT-04	19-110-03	BH19-02	25.0	26.5	Sandy Elastic Silt	MH			58.8	4.2	34.6	61.2	55	105	50				
SPT-06	19-110-04	BH19-02	45	46.5	Silty Sand	SM			37.4	8.1	47.8	44.1	40	80	40				
SPT-01		BH19-03	3	4															,
CAL-01		BH19-03	5	7															,
SPT-02		BH19-03	8	9															<u>, </u>
CAL-02		BH19-03	10	11															<u>, </u>
SPT-03		BH19-03	15	17															<u>, </u>
SPT-01		BH19-04	3	4															<u>, </u>
CAL-01		BH19-04	5	7															
SPT-02		BH19-04	8	9															<u>, </u>
CAL-02		BH19-04	10	12															<u>, </u>
SPT-03		BH19-04	15	16															<u>, </u>
CAL-03		BH19-04	20	21															<u>, </u>
SPT-01		BH19-05	3	4															
CAL-01		BH19-05	5	7															
SPT-02		BH19-05	8	8															
CAL-02A		BH19-05	10	11															
CAL-02B		BH19-05	11	12															
SPT-03		BH19-05	15	17															
CAL-03A		BH19-05	20	21															
CAL-03B		BH19-05	21	21															
SPT-01		BH19-06	3	3'2.5"															
CAL-01		BH19-06	5	7															1
SPT-02		BH19-06	8	9															<u> </u>
CAL-02		BH19-06	10	12															<u>, </u>
SPT-03		BH19-06	15	16'2"															
CAL-03		BH19-06	20	20'10"															
SPT-01	19-110-05	BH19-08	2.5	4	Silty Sand with Gravel	SM			19.4	19.9	44.9	35.2	28	46	18				
CAL-01		BH19-08	5.0	6.5															
SPT-02		BH19-08	7.5	9															
CAL-02		BH19-08	10	10'5.5"															
SPT-01	19-110-06	BH19-09	2.5	4	Poorly Graded Gravel with Silt and Sand	GP-GM			10.3	49.1	39.5	11.4	NP	NP	NP				
CAL-01		BH19-09	5	6'4"															
SPT-02		BH19-09	7.5	9															
CAL-02		BH19-09	10	10'5"															
SPT-03		BH19-09	15	16'3"															
CAL-03		BH19-09	20	20'5"															
CPT-01		BH19-10	2.5	4															

	SAN	/IPLE LOCATI	ON		S Z	Z	- F				RADATION (%)	AT	TERBERG LIN	IITS		CHEMIC	AL TESTS	
Field Sample Number	Laboratory Sample Number	Borehole ID	Depth From (ft)	Depth To (ft)	UNIFIED SOILS CLASSIFICATION (USCS)	USCS ABBREVIATION	NATURAL DENSITY (wet) (pcf)	NATURAL DENSITY (Dry) (pcf)	NATURAL MOISTURE CONTENT (%)	Gravel >#4	Sand	Silt & Clay <#200	Plastic Limit	Liquid Limit	Plasticity Index	Soluble Sulfate (ppm)	Soluble Chloride (ppm)	Resistivity (Minimum ohm-cm)	Нф
CAL-01		BH19-10	5	6.5															
SPT-02		BH19-10	7.5	9															
CAL-02		BH19-10	10	11.5															
SPT-03		BH19-10	15	16.5															
CAL-03		BH19-10	20	20.5															
SPT-04		BH19-10	25	26.5															
CAL-04		BH19-10	30	31															
SPT-01	19-110-07	BH19-11	2.5	4	Silty Sand	SM			23.6	11.3	61.9	26.8	NP	NP	NP				
CAL-01		BH19-11	5	6'1"															
SPT-01		BH19-12	2.5	4												691.9	1246.9	150	7.65
CAL-01		BH19-12	5	6.5															
SPT-02		BH19-12	7.5	9															
CAL-02		BH19-12	10.5	11															
SPT-03	19-110-08	BH19-12	15	16.5	Clayey Gravel with Sand	GC			10.5	49.7	35.8	14.5	21	48	27				
CAL-03A		BH19-12	20	21															
CAL-03B		BH19-12	21	21.5															
SPT-04		BH19-12	25	25.5															
CAL-04		BH19-12	30	30'9"															
SPT-01		BH19-13	2.5	3'9"															
CAL-01		BH19-13	5	5'11"												45.5	102.2	700	7.00
SPT-02		BH19-13	7.5	9												45.5	103.2	780	7.88
CAL-02		BH19-13	10	10'10.5"															
SPT-03		BH19-13	15	16'3"															
CAL-03		BH19-13	20	21'5.5"															
SPT-04		BH19-13	25	26'5.5"												-			
CAL-04 SPT-01		BH19-13 BH19-14	2.5	30'11.5"												-			
CAL-01		BH19-14 BH19-14	5	6.5			-									1			
SPT-02		BH19-14	7.5	9													<u> </u>		
CAL-02		BH19-14	10	11															
SPT-03		BH19-14	15	16															
SPT-04		BH19-14	25	26.5			 									 	 		
CAL-04		BH19-14	31	31.5			 									 	 		
SPT-01		BH19-15	2.5	4												 			
CAL-01	19-110-09	BH19-15	5.5	6	Silty Sand	SM	93.4	82.6	13.1	7.2	78	14.8	NP	NP	NP	 			
SPT-02	00	BH19-15	7.5	8'9"	,		1									<u> </u>			
CAL-02		BH19-15	10	10'9"			<u> </u>									<u> </u>			
SPT-01	19-110-10	BH19-16	2.5	4	Sandy Lean Clay	CL			18.5	4.4	32.3	63.3	24	41	17				
CAL-01		BH19-16	5	6'5.5"	. ,											<u> </u>			
SPT-02		BH19-16	7.5	8'2"												<u> </u>			

	SAN	MPLE LOCATI	ON		ري در ک	Z			OLL LAD IL		RADATION (%)	AT	TERBERG LIN	1ITS		CHEMIC	AL TESTS	
Field Sample Number	Laboratory Sample Number	Borehole ID	Depth From (ft)	Depth To (ft)	UNIFIED SOILS CLASSIFICATION (USCS)	USCS ABBREVIATION	NATURAL DENSITY (wet) (pcf)	NATURAL DENSITY (Dry) (pcf)	NATURAL MOISTURE CONTENT (%)	Gravel >#4	Sand	Silt & Clay <#200	Plastic Limit	Liquid Limit	Plasticity Index	Soluble Sulfate (ppm)	Soluble Chloride (ppm)	Resistivity (Minimum ohm-cm)	Hd
SPT-01		BH19-17	2.5	4															<u> </u>
CAL-01		BH19-17	5	6.5															<u> </u>
SPT-02		BH19-17	7.5	9															ļ
CAL-02	19-110-11	BH19-17	10.5	11	Sandy Fat Clay	СН	93.6	71	31.8	4.8	36.3	58.9	27	50	23				
SPT-03		BH19-17	15	16.5	2 1 2 1 15 1 11 511														
CAL-03	19-110-12	BH19-17	20	20'10"	Poorly Graded Sand with Silt and Gravel	SP-SM			10	35.1	53.7	11.2	25	32	7				
SPT-04		BH19-17	25	25'9"															
CAL-04		BH19-17	30	30'5"															
SPT-01		BH19-18	2.5	4															
CAL-01		BH19-18	5	6.5			-								-		-		
SPT-02	10.140.10	BH19-18	7.5	9	Flority City 111 C	.	07.1		27.2		47.5	00.5		440					
CAL-02A	19-110-13	BH19-18	10.5	11	Elastic Silt with Sand	МН	87.1	63.4	37.3	0	17.5	82.5	55	110	55				
CAL-02B		BH19-18	11	11.5															<u> </u>
SPT-03	10 110 14	BH19-18	15	16.5	Cilty Cand	CM	07.5	72.1	25.2	3.3	72.1	22.6	NP	NP	ND				
CAL-03 SPT-04	19-110-14	BH19-18 BH19-18	20.5	21 26.5	Silty Sand	SM	97.5	/2.1	35.3	3.3	73.1	23.6	NP	NP	NP				
SPT-04		BH19-18	35	36'3"															
SPT-03		BH19-19	2.5	4															
CAL-01		BH19-19	5.5	6															
SPT-02		BH19-19	7.5	9															
CAL-02		BH19-19	10.5	11															
SPT-03		BH19-19	15.0	16.5															
SPT-01		BH19-20	2.5	4.0															
CAL-01	19-110-15	BH19-20	5.0	6.5	Silty Gravel with Sand	GM			10.9	51.7	34.7	13.6	NP	NP	NP				
CAL-02		BH19-20	10.5	11.0															
SPT-03		BH19-20	15.0	16.5															·
CAL-03		BH19-20	20	20'5"															<u> </u>
SPT-04		BH19-20	25.0	26.5															
CAL-04	19-110-16	BH19-20	30	30.5	Silty Sand with Gravel	SM			17.3	29.3	49.1	21.6	30	46	16				
SPT-05		BH19-20	35	35'11"															
SPT-01	19-110-17	BH19-21	2.5	4.0	Silty Sand with Gravel	SM			23.5	22.4	60.2	17.4	NP	NP	NP				
CAL-01		BH19-21	5.0	6.5															
SPT-02		BH19-21	8	8'4"															
CAL-02		BH19-21	10.0	11'5"															
SPT-03		BH19-21	15	15'11"															
SPT-01		BH19-22	3	4															
CAL-01		BH19-22	5	7															
SPT-02		BH19-22	8	7'10.5"															
CAL-02		BH19-22	10	10'4"															
SPT-01	19-110-18	BH19-23	2.5	4.0	Silty Sand with Gravel	SM			14.6	36.9	45.6	17.5	NP	NP	NP				


	SAN	MPLE LOCATI	ON		S Z	Z	£	~	•	G	RADATION (%)	AT	TERBERG LIN	IITS		CHEMIC	AL TESTS	
Field Sample Number	Laboratory Sample Number	Borehole ID	Depth From (ft)	Depth To (ft)	UNIFIED SOILS CLASSIFICATION (USCS)	USCS ABBREVIATION	NATURAL DENSITY (wet) (pcf)	NATURAL DENSITY (Dry) (pcf)	NATURAL MOISTURE CONTENT (%)	Gravel >#4	Sand	Silt & Clay <#200	Plastic Limit	Liquid Limit	Plasticity Index	Soluble Sulfate (ppm)	Soluble Chloride (ppm)	Resistivity (Minimum ohm-cm)	Нф
CAL-01		BH19-23	5.0	5'11.5"															
SPT-02	19-110-19	BH19-23	7.5	9	Silty Sand with Gravel	SM			11.3	40.2	46.6	13.2	NP	NP	NP				
CAL-02		BH19-23	10.0	10'2.5"															
SPT-01	19-110-20	BH19-24	2.5	4.0	Silty Sand with Gravel	SM			15.0	16.6	56.7	26.7	NP	NP	NP				
CAL-01		BH19-24	5.0	6.5															
SPT-02		BH19-24	7.5	8.5															
CAL-02		BH19-24	10.5	11.0															
SPT-03	19-110-21	BH19-24	15	16.5	Silty Sand with Gravel	SM			11.6	34.7	52.4	12.9	NP	NP	NP				
SPT-04		BH19-24	25	26.5															
CAL-04		BH19-24	30	31.0															
SPT-05	19-110-22	BH19-24	35.0	36.5	Silty Sand	SM			42.5	1.4	66.1	32.5	43	60	17				
CAL-05		BH19-24	41.0	41.5															
SPT-01	19-110-23	BH19-25	2.5	4	Silty Sand	SM			18.4	5.1	62.2	32.7	NP	NP	NP				
CAL-01		BH19-25	5	7															
SPT-02	19-110-24	BH19-25	7.5	9.0	Silty Sand	SM			22.3	1.4	74.1	24.5	NP	NP	NP				
CAL-02		BH19-25	10.5	11.0															1
SPT-03	19-110-25	BH19-25	15.0	16.5	Silty Sand	SM			35.3	0	78.2	21.8	NP	NP	NP				
SPT-01		BH19-26	2.5	4.0															
CAL-01A	19-110-26	BH19-26	5.0	6.0	Silty Sand with Gravel	SM	91.5	80.6	13.5	28.3	54.6	17.1	NP	NP	NP				
CAL-01B		BH19-26	6	6.5															
SPT-02		BH19-26	7.5	9.0															
CAL-02		BH19-26	10.0	11.5												295.2	97.2	750	7.85
SPT-03		BH19-26	15.0	16.0															
CAL-03		BH19-26	20.0	21.0															
SPT-04		BH19-26	25.0	26.0															
CAL-04		BH19-26	30.0	31.0															
SPT-01		BH19-27	2.5	4.0															
CAL-01		BH19-27	5.0	6.5															
SPT-02		BH19-27	7.5	9.0															
SPT-01		BH19-28	2.5	4.0															
CAL-01A		BH19-28	6	6															
CAL-01B		BH19-28	5	7															
SPT-02	19-110-27	BH19-28	8.5	9	Clayey Sand with Gravel	SC			15.6	16.1	43	40.9	16	37	21				
SPT-03		BH19-28	15	16'3"															
CAL-04A		BH19-28	31	31															
CAL-04B		BH19-28	30	31'4"															
CAL-02		BH19-28	5	6															
CAL-03		BH19-28	20	20'9"															
SPT-02A		BH19-28	9	9															
SPT-02B		BH19-28	8	9															

	SAN	MPLE LOCATI	ION		s Z	z	E IABLE D	ı	OLL LAD IL		RADATION (%)	AT	TERBERG LIN	MITS		CHEMIC	AL TESTS	
Field Sample Number	Laboratory Sample Number	Borehole ID	Depth From (ft)	Depth To (ft)	UNIFIED SOILS CLASSIFICATION (USCS)	USCS ABBREVIATION	NATURAL DENSITY (wet) (pcf)	NATURAL DENSITY (Dry) (pcf)	NATURAL MOISTURE CONTENT (%)	Gravel >#4	Sand	Silt & Clay <#200	Plastic Limit	Liquid Limit	Plasticity Index	Soluble Sulfate (ppm)	Soluble Chloride (ppm)	Resistivity (Minimum ohm-cm)	Hd
CAL-02		BH19-28	10	10'9"															
SPT-04		BH19-28	25.0	25'9"															
SPT-01	19-110-28	BH19-29	2.5	4.0	Silty Sand with Gravel	SM			12.7	31.5	49.3	19.2	NP	NP	NP				
CAL-01		BH19-29	6	6															
SPT-02	19-110-29	BH19-29	7.5	9	Clayey Sand with Gravel	SC			7.5	34.0	44.5	21.5	21	31	10				
CAL-02		BH19-29	10	12															
SPT-03	19-110-30	BH19-29	15	16.5	Clayey Sand with Gravel	SC			15.3	18.4	42.8	38.8	19	47	28				
SPT-04A	19-110-31	BH19-29	25.0	26.0	Clayey Sand	SC			23.4	1.1	54.1	44.8	25	62	37				
SPT-04B		BH19-29	26.0	26.5															
CAL-04		BH19-29	30	32															
SPT-01		BH19-30	3	4															
CAL-01		BH19-30	5	5'5"															
SPT-02		BH19-30	8	9															
CAL-02		BH19-30	10	12															
SPT-03		BH19-30	15	17															
CAL-03		BH19-30	20	22															
SPT-04		BH19-30	25.0	26.5															
CAL-04A		BH19-30	30.5	31.0															
CAL-04B		BH19-30	31	31'5"															
SPT-01		BH19-31	2.5	4.0															
CAL-01	19-110-32	BH19-31	5.5	6	Clayey Sand	SC			16.8	10.1	52.6	37.3	22	61	39				
SPT-02		BH19-31	8	9															
CAL-02		BH19-31	10.5	11.0															
SPT-03		BH19-31	15.0	16.5															
CAL-03		BH19-31	20.5	21.0															
SPT-05		BH19-31	28.0	29.5															
CAL-04		BH19-31	30.0	30'5"															
SPT-01		BH19-32	3	4															
CAL-01		BH19-32	5.5	6.0															
SPT-02		BH19-32	8.5	9.0															
CAL-02		BH19-32	10.5	11.0															
SPT-03	19-110-33	BH19-32	15.0	16.5	Clayey Sand	SC			20.3	7.6	42.9	49.5	21	55	34				
CAL-03		BH19-32	20	20'9"															
SPT-04		BH19-32	25	25'9"															
CAL-04		BH19-32	30.0	30'5"															
Notes:																			

Moisture contents measured as per ASTM D2216 (weight of water divided by weight of total dry solids)

Appendix B1 – Particle Size Analysis and Atterberg Limit Results

6.7

12.1

Medium

13.3

Fine

24.2

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
1.5	100.0		
1	96.2		
.75	94.7		
.5	88.3		
.375	87.4		
#4	82.6		
#10	75.9		
#16	71.3		
#40	62.6		
#50	59.3		
#100	49.6		
#200	38.4		
* (no sp	ecification provide	ed)	

Coarse

5.3

_	Material Description sand with gravel	<u>on</u>
PL= 44	Atterberg Limits	PI= 27
D ₉₀ = 14.3737 D ₅₀ = 0.1537 D ₁₀ =	<u>Coefficients</u> D ₈₅ = 6.1780 D ₃₀ = C _u =	D ₆₀ = 0.3199 D ₁₅ = C _c =
USCS= SM	Classification AASH	ΓO= A-7-5(5)
Natural Moisture	Remarks Content: 32.1%	

Clay

Date: 4/25/2019

38.4

NewFields

Location: BH19-01 Sample Number: 19-110-01

0.0

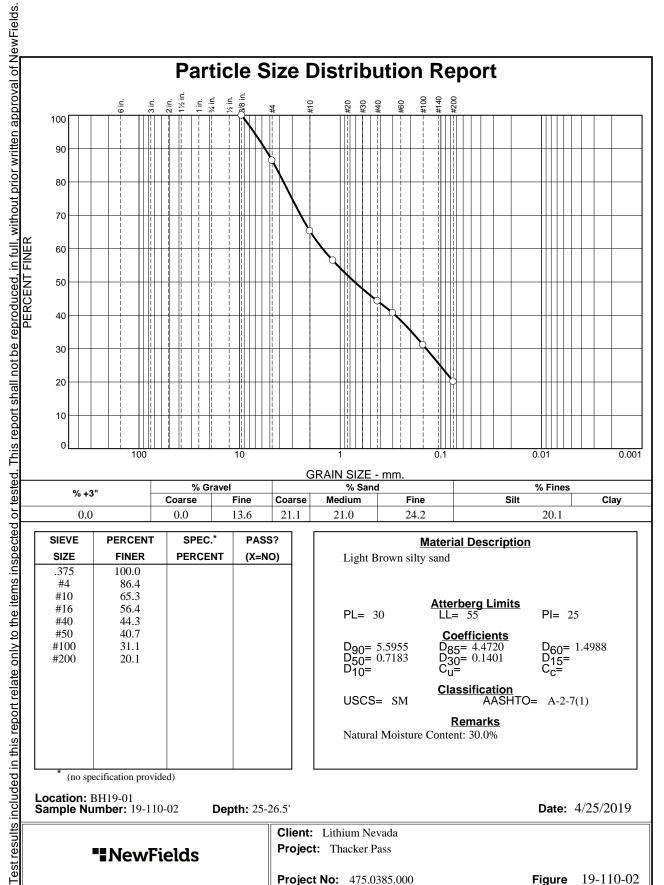

Client: Lithium Nevada **Project:** Thacker Pass

Figure 19-110-01 **Project No:** 475.0385.000

Tested By: JH Checked By: JH

Depth: 7.5-9'

13.6

21.0

24.2

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
.375	100.0		
#4	86.4		
#10	65.3		
#16	56.4		
#40	44.3		
#50	40.7		
#100	31.1		
#200	20.1		
* (no spe	ecification provide	d)	

0.0

Light Brown silty	Material Description	<u>on</u>
PL= 30	Atterberg Limits LL= 55	PI= 25
D ₉₀ = 5.5955 D ₅₀ = 0.7183 D ₁₀ =	Coefficients D ₈₅ = 4.4720 D ₃₀ = 0.1401 C _u =	D ₆₀ = 1.4988 D ₁₅ = C _c =
USCS= SM	Classification AASHT	O= A-2-7(1)
Natural Moisture	Remarks Content: 30.0%	

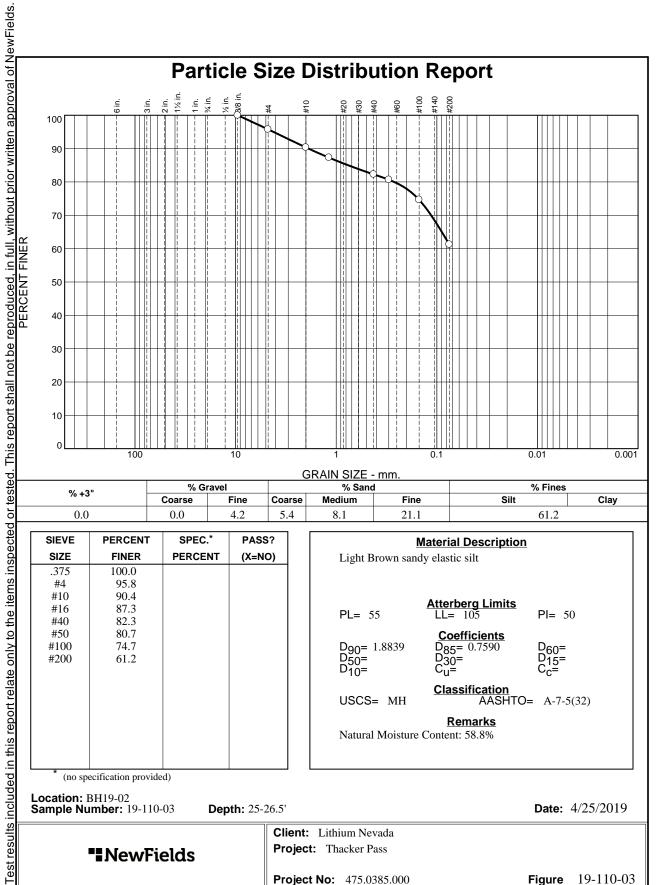
20.1

Date: 4/25/2019

Figure 19-110-02

NewFields

Location: BH19-01 Sample Number: 19-110-02


0.0

Depth: 25-26.5'

Client: Lithium Nevada **Project:** Thacker Pass

Project No: 475.0385.000

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
.375	100.0		
#4	95.8		
#10	90.4		
#16	87.3		
#40	82.3		
#50	80.7		
#100	74.7		
#200	61.2		
* (no sp	ecification provide	ed)	

0.0

Fine

4.2

Coarse

5.4

Medium

8.1

Fine

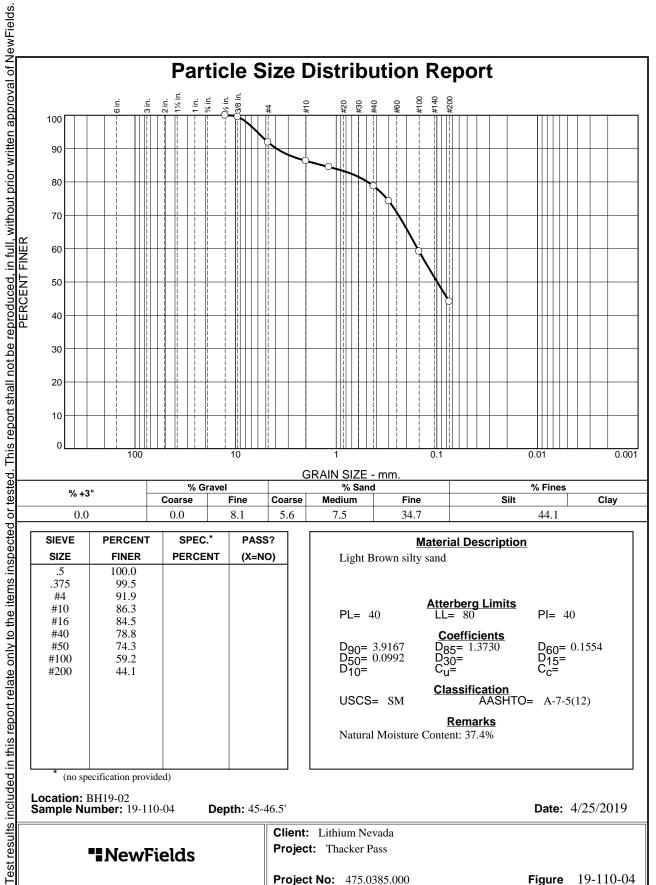
21.1

Light Brown sand	Material Description dy elastic silt	<u>on</u>					
PL= 55	Atterberg Limits	PI= 50					
D ₉₀ = 1.8839 D ₅₀ = D ₁₀ =	Coefficients D ₈₅ = 0.7590 D ₃₀ = C _u =	D ₆₀ = D ₁₅ = C _c =					
USCS= MH	Classification AASHT	O= A-7-5(32)					
Natural Moisture	Remarks Natural Moisture Content: 58.8%						

Clay

61.2

0.0


Location: BH19-02 Sample Number: 19-110-03 **Date:** 4/25/2019 **Depth: 25-26.5'**

NewFields

Client: Lithium Nevada **Project:** Thacker Pass

Figure 19-110-03 **Project No:** 475.0385.000

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
.5	100.0		
.375	99.5		
#4	91.9		
#10	86.3		
#16	84.5		
#40	78.8		
#50	74.3		
#100	59.2		
#200	44.1		

0.0

Fine

8.1

Coarse

5.6

Medium

7.5

Fine

34.7

Light Brown silt	Material Description y sand	<u>on</u>
PL= 40	Atterberg Limits	PI= 40
D ₉₀ = 3.9167 D ₅₀ = 0.0992 D ₁₀ =	Coefficients D ₈₅ = 1.3730 D ₃₀ = C _u =	D ₆₀ = 0.1554 D ₁₅ = C _c =
USCS= SM	Classification AASHT	O= A-7-5(12)
Natural Moistur	Remarks e Content: 37.4%	
Natural Moistur	e Content: 37.4%	

(no specification provided)

0.0

Location: BH19-02 Sample Number: 19-110-04 **Depth:** 45-46.5'

NewFields

Client: Lithium Nevada **Project:** Thacker Pass

Project No: 475.0385.000

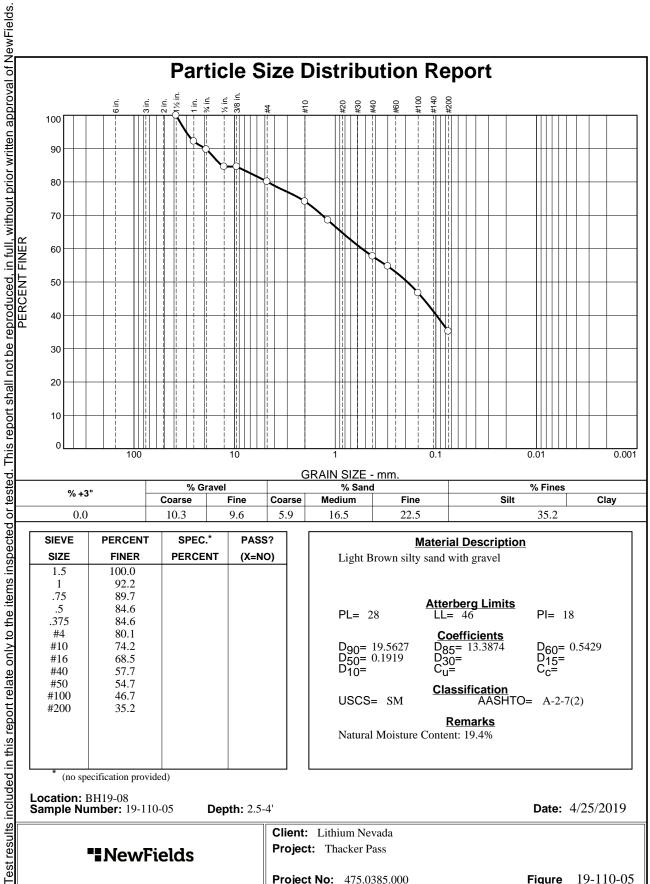

Date: 4/25/2019

Figure 19-110-04

Clay

44.1

% +3"		% Gr	ravel		% Sand		% Fines		
	70 +3		Coarse	Fine	Coarse	Medium	Fine	Silt	Clay
	0.0		10.3	9.6	5.9	16.5	22.5	35.2	
				. 1					
- 1	OIEVE	DEDOENI	- 00-0	* DAGG		I			

		SPEC.*	PASS?
ZE	FINER	PERCENT	(X=NO)
.5	100.0		
.	92.2		
5	89.7		
5	84.6		
75	84.6		
4	80.1		
0	74.2		
16	68.5		
10	57.7		
50	54.7		
00	46.7		
00	35.2		
	55 55 55 75 4 10 16 40 60 000 000	5 100.0 92.2 5 89.7 5 84.6 75 84.6 4 80.1 10 74.2 16 68.5 40 57.7 50 54.7 00 46.7	5 100.0 92.2 5 89.7 5 84.6 75 84.6 4 80.1 10 74.2 16 68.5 40 57.7 50 54.7 00 46.7

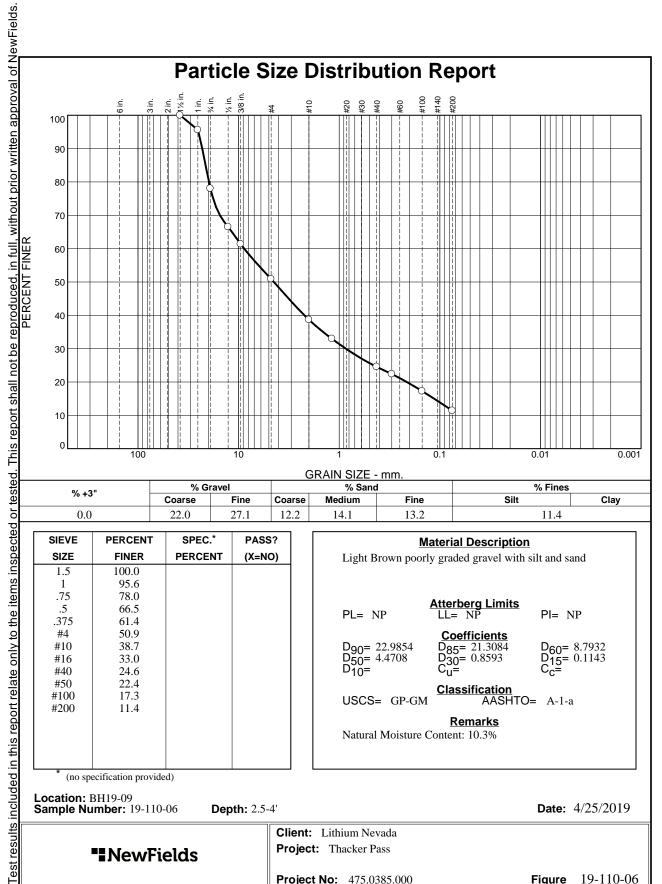
Material Description Light Brown silty sand with gravel							
PL= 28	Atterberg Limits LL= 46	PI= 18					
D ₉₀ = 19.5627 D ₅₀ = 0.1919 D ₁₀ =	Coefficients D ₈₅ = 13.3874 D ₃₀ = C _u =	D ₆₀ = 0.5429 D ₁₅ = C _c =					
USCS= SM	Classification AASHT	O= A-2-7(2)					
Remarks Natural Moisture Content: 19.4%							

* (no specification provided)

Location: BH19-08 Sample Number: 19-110-05

Depth: 2.5-4'

NewFields


Client: Lithium Nevada **Project:** Thacker Pass

Project No: 475.0385.000

Figure 19-110-05

Date: 4/25/2019

				_	
SIEVE	PERCENT	SPEC.*	PASS?		
SIZE	FINER	PERCENT	(X=NO)		Light Brown poo
1.5	100.0			1	
1	95.6				
.75	78.0				
.5	66.5				PL= NP
.375	61.4				PL= NP
#4	50.9				
#10	38.7				$D_{00} = 22.9854$
#16	33.0				D ₉₀ = 22.9854 D ₅₀ = 4.4708 D ₁₀ =
#40	24.6				D ₁₀ =
#50	22.4				-
#100	17.3				HCCC CDC

Fine

27.1

Coarse

12.2

Medium

14.1

13.2

Coarse

22.0

Light Brown poorly graded gravel with silt and sand					
PL= NP	Atterberg Limits	PI= NP			
D ₉₀ = 22.9854 D ₅₀ = 4.4708 D ₁₀ =	Coefficients D ₈₅ = 21.3084 D ₃₀ = 0.8593 C _u =	D ₆₀ = 8.7932 D ₁₅ = 0.1143 C _c =			
USCS= GP-GM Classification AASHTO= A-1-a					
Remarks Natural Moisture Content: 10.3%					

Material Description

Silt

11.4

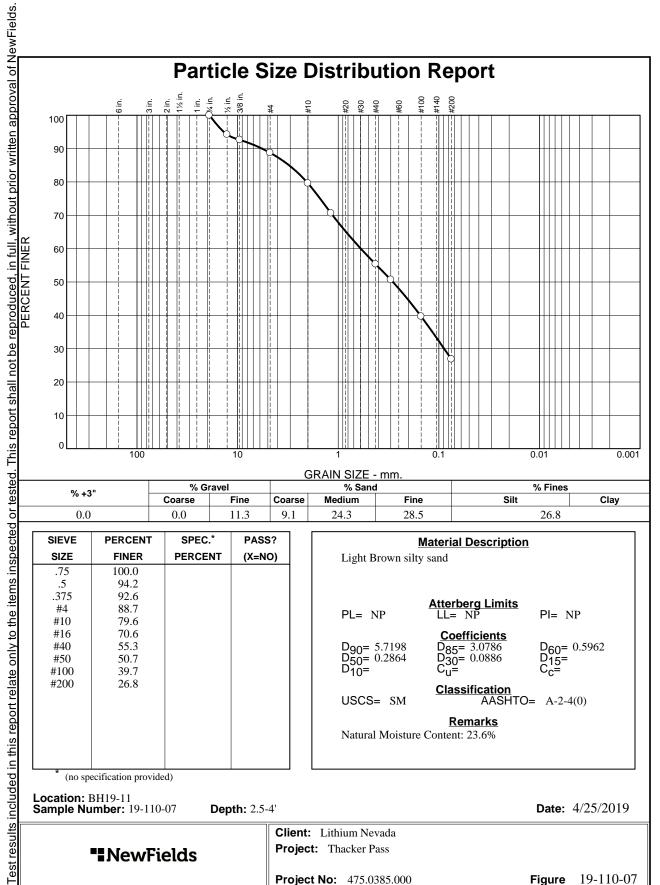
Clay

Date: 4/25/2019

(no specification provided)

11.4

#200


0.0

Location: BH19-09 Sample Number: 19-110-06 **Depth:** 2.5-4'

NewFields

Client: Lithium Nevada **Project:** Thacker Pass

Figure 19-110-06 **Project No:** 475.0385.000

11.3

24.3

28.5

100.0 94.2 92.6 88.7 79.6 70.6 55.3	PERCENT	(X=NO)
94.2 92.6 88.7 79.6 70.6		
92.6 88.7 79.6 70.6		
88.7 79.6 70.6		
79.6 70.6		
70.6		
55.3		
50.7		
39.7		
26.8		
	1	

0.0

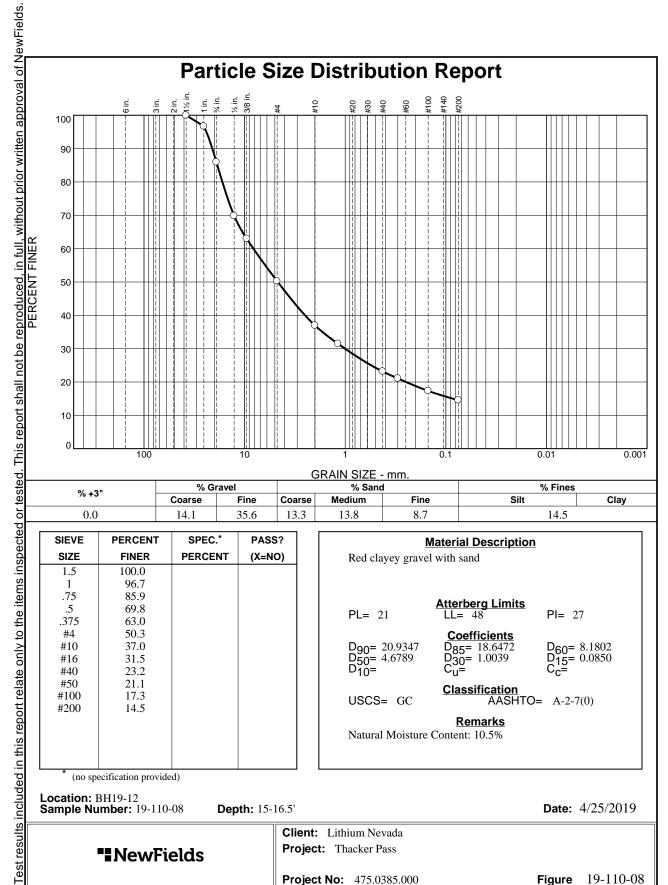
<u>Material Description</u> Light Brown silty sand						
PL= NP	Atterberg Limits	PI= NP				
D ₉₀ = 5.7198 D ₅₀ = 0.2864 D ₁₀ =	Coefficients D ₈₅ = 3.0786 D ₃₀ = 0.0886 C _u =	D ₆₀ = 0.5962 D ₁₅ = C _c =				
USCS= SM	Classification AASHT	TO= A-2-4(0)				
Remarks Natural Moisture Content: 23.6%						

26.8

Date: 4/25/2019

Figure 19-110-07

(no specification provided)


0.0

Location: BH19-11 Sample Number: 19-110-07 **Depth:** 2.5-4'

NewFields

Client: Lithium Nevada **Project:** Thacker Pass

Project No: 475.0385.000

35.6

13.8

8.7

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
1.5	100.0		
1	96.7		
.75	85.9		
.5	69.8		
.375	63.0		
#4	50.3		
#10	37.0		
#16	31.5		
#40	23.2		
#50	21.1		
#100	17.3		
#200	14.5		

14.1

Material Description Red clayey gravel with sand						
PL= 21	Atterberg Limits	PI= 27				
D ₉₀ = 20.9347 D ₅₀ = 4.6789 D ₁₀ =	Coefficients D ₈₅ = 18.6472 D ₃₀ = 1.0039 C _u =	D ₆₀ = 8.1802 D ₁₅ = 0.0850 C _c =				
USCS= GC	Classification AASHT	TO= A-2-7(0)				
Remarks Natural Moisture Content: 10.5%						

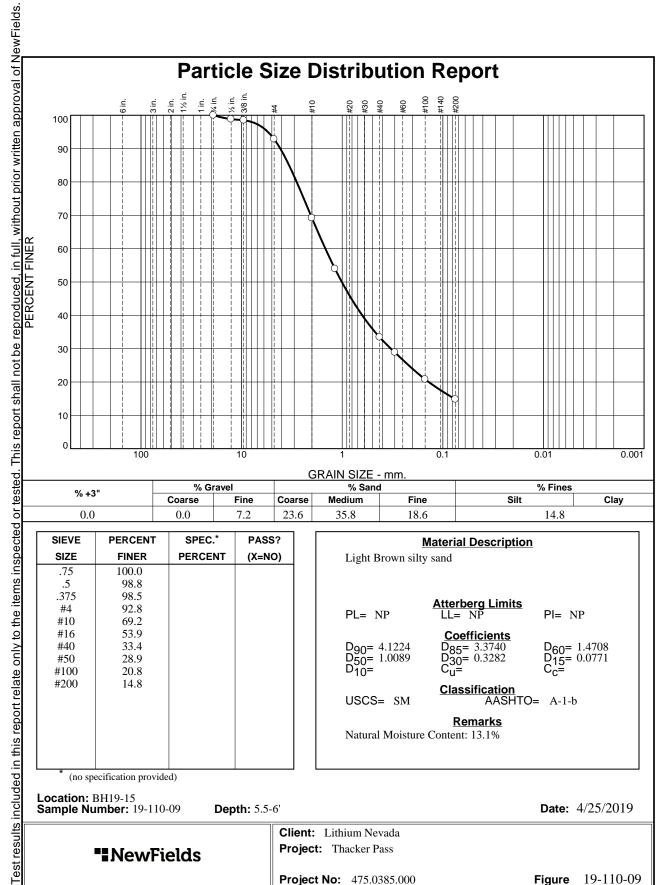
14.5

Date: 4/25/2019

Figure 19-110-08

(no specification provided)

NewFields


Location: BH19-12 Sample Number: 19-110-08

0.0

Depth: 15-16.5'

Client: Lithium Nevada **Project:** Thacker Pass

Project No: 475.0385.000

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
.75	100.0		
.5	98.8		
.375	98.5		
#4	92.8		
#10	69.2		
#16	53.9		
#40	33.4		
#50	28.9		
#100	20.8		
#200	14.8		
* (no sp	ecification provide	:d)	I

7.2

23.6

35.8

18.6

0.0

Atterberg Limits LL= NP	PI= NP				
	1 1- 111				
Coefficients D ₈₅ = 3.3740 D ₃₀ = 0.3282 C _u =	D ₆₀ = 1.4708 D ₁₅ = 0.0771 C _c =				
Classification AASHTO=	= A-1-b				
Remarks Natural Moisture Content: 13.1%					
	D ₈₅ = 3.3740 D ₃₀ = 0.3282 C _u = Classification AASHTO= Remarks				

14.8

Date: 4/25/2019

NewFields

Location: BH19-15 Sample Number: 19-110-09

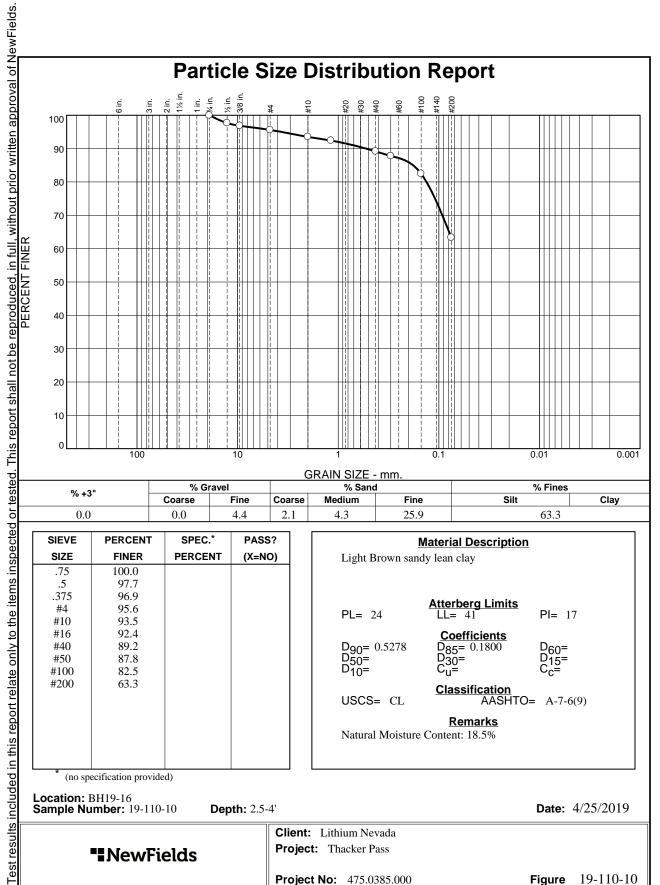

Client: Lithium Nevada **Project:** Thacker Pass

Figure 19-110-09 **Project No:** 475.0385.000

Tested By: JH Checked By: JH

Depth: 5.5-6'

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
.75	100.0		
.5	97.7		
.375	96.9		
#4	95.6		
#10	93.5		
#16	92.4		
#40	89.2		
#50	87.8		
#100	82.5		
#200	63.3		
* (no sp	ecification provide	ed)	

0.0

Fine

4.4

Coarse

2.1

Medium

4.3

Fine

25.9

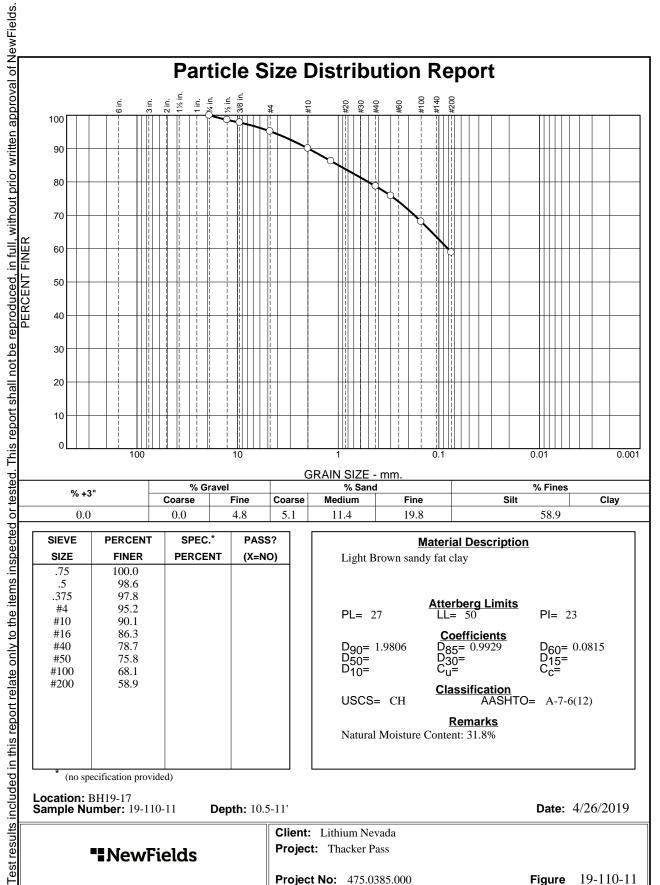
<u>Material Description</u> Light Brown sandy lean clay				
PL= 24	Atterberg Limits	PI= 17		
D ₉₀ = 0.5278 D ₅₀ = D ₁₀ =	<u>Coefficients</u> D ₈₅ = 0.1800 D ₃₀ = C _u =	D ₆₀ = D ₁₅ = C _c =		
USCS= CL Classification AASHTO= A-7-6(9)				
Remarks Natural Moisture Content: 18.5%				

Clay

Date: 4/25/2019

63.3

0.0


Location: BH19-16 Sample Number: 19-110-10 **Depth:** 2.5-4'

NewFields

Client: Lithium Nevada **Project:** Thacker Pass

Figure 19-110-10 **Project No:** 475.0385.000

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
.75	100.0		
.5	98.6		
.375	97.8		
#4	95.2		
#10	90.1		
#16	86.3		
#40	78.7		
#50	75.8		
#100	68.1		
#200	58.9		
* (no sp	ecification provide	ed)	

0.0

Fine

4.8

Coarse

5.1

Medium

11.4

Fine

19.8

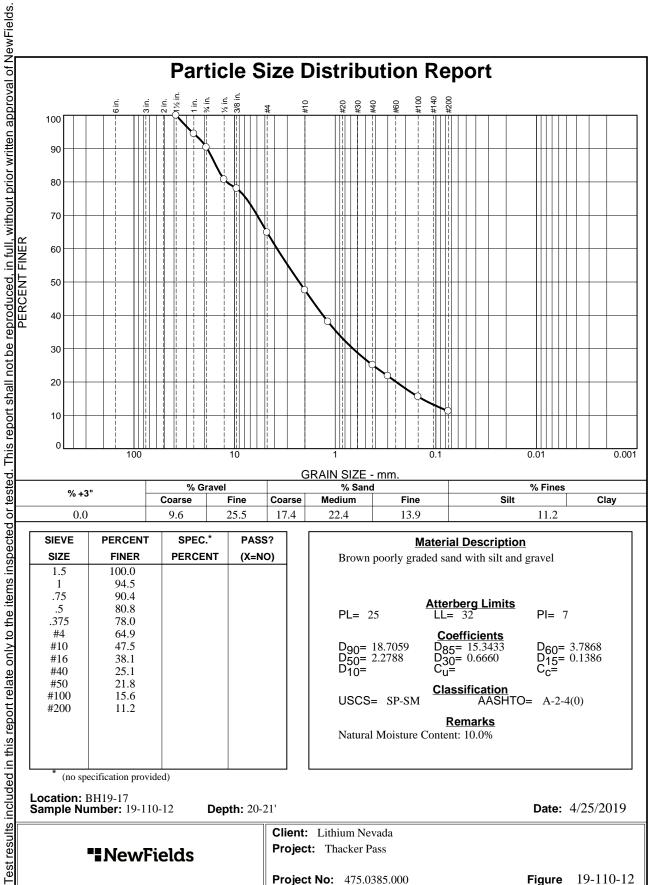
Material Description Light Brown sandy fat clay				
PL= 27	Atterberg Limits	PI= 23		
D ₉₀ = 1.9806 D ₅₀ = D ₁₀ =	Coefficients D ₈₅ = 0.9929 D ₃₀ = C _u =	D ₆₀ = 0.0815 D ₁₅ = C _c =		
USCS= CH Classification AASHTO= A-7-6(12)				
Remarks Natural Moisture Content: 31.8%				

Clay

Figure 19-110-11

58.9

0.0


Location: BH19-17 Sample Number: 19-110-11 Date: 4/26/2019 **Depth:** 10.5-11'

NewFields

Client: Lithium Nevada **Project:** Thacker Pass

Project No: 475.0385.000

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
1.5	100.0		
1	94.5		
.75	90.4		
.5	80.8		
.375	78.0		
#4	64.9		
#10	47.5		
#16	38.1		
#40	25.1		
#50	21.8		
#100	15.6		
#200	11.2		

Coarse

9.6

Fine

25.5

Coarse

17.4

Medium

22.4

Fine

13.9

Material Description Brown poorly graded sand with silt and gravel		
PL= 25	Atterberg Limits LL= 32	<u>s</u> Pl= 7
D ₉₀ = 18.7059 D ₅₀ = 2.2788 D ₁₀ =	Coefficients D85= 15.3433 D30= 0.6660 Cu=	D ₆₀ = 3.7868 D ₁₅ = 0.1386 C _c =
USCS= SP-SM	Classification AASH	ΓO= A-2-4(0)
Remarks Natural Moisture Content: 10.0%		

Clay

Date: 4/25/2019

Figure 19-110-12

11.2

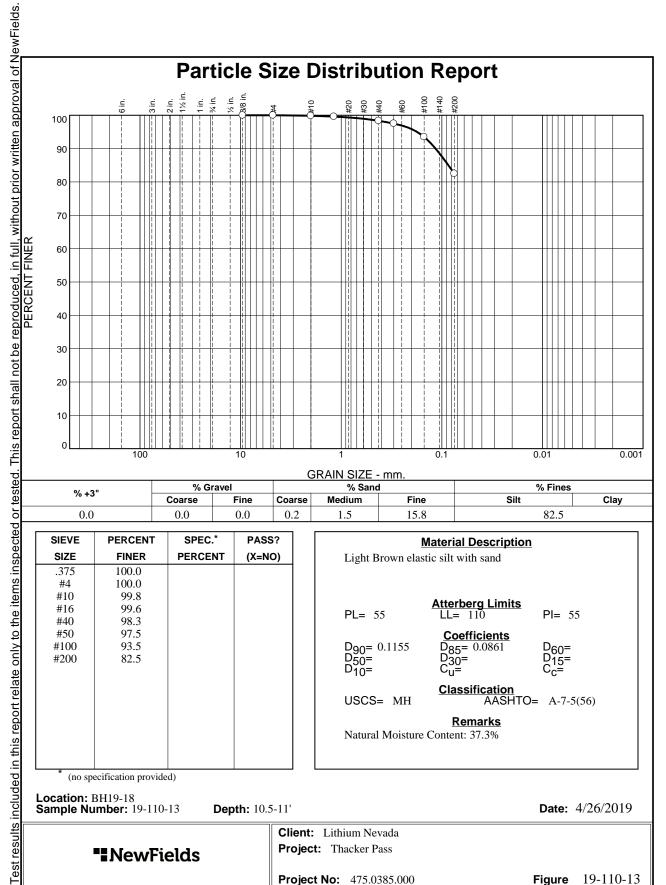
(no specification provided)

0.0

Location: BH19-17 Sample Number: 19-110-12

Tested By: JH/CB

Depth: 20-21'


NewFields

Client: Lithium Nevada **Project:** Thacker Pass

Project No: 475.0385.000

Checked By: JH

15.8

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
.375	100.0		
#4	100.0		
#10	99.8		
#16	99.6		
#40	98.3		
#50	97.5		
#100	93.5		
#200	82.5		
* (no sp	ecification provide	ed)	

0.0

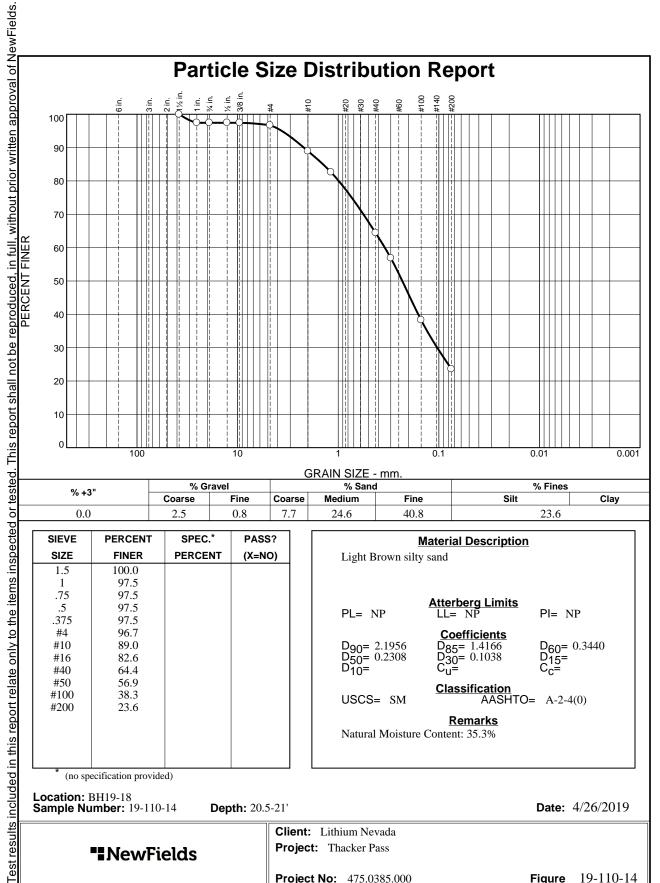
0.0

0.2

Material Description Light Brown elastic silt with sand			
PL= 55	Atterberg Limits	PI= 55	
D ₉₀ = 0.1155 D ₅₀ = D ₁₀ =	Coefficients D ₈₅ = 0.0861 D ₃₀ = C _u =	D ₆₀ = D ₁₅ = C _c =	
USCS= MH	Classification AASHT	TO= A-7-5(56)	
Natural Moisture	Remarks Natural Moisture Content: 37.3%		

82.5

0.0


Location: BH19-18 Sample Number: 19-110-13 **Date:** 4/26/2019 **Depth:** 10.5-11'

NewFields

Client: Lithium Nevada **Project:** Thacker Pass

Figure 19-110-13 **Project No:** 475.0385.000

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
1.5	100.0		
1	97.5		
.75	97.5		
.5	97.5		
.375	97.5		
#4	96.7		
#10	89.0		
#16	82.6		
#40	64.4		
#50	56.9		
#100	38.3		
#200	23.6		
* (no spe	ecification provide	ed)	

Coarse

2.5

Fine

8.0

Coarse

7.7

Medium

24.6

Fine

40.8

24.0	+0.6		23.0	
Light E	Material Description Light Brown silty sand			
PL= 1	NP LL	erberg Limits = NP	PI= NP	
D ₉₀ = D ₅₀ = D ₁₀ =	2.1956 Dg 0.2308 Dg Cu	oefficients 35= 1.4166 30= 0.1038	D ₆₀ = 0.3440 D ₁₅ = C _c =	
USCS		assification AASHTO=	A-2-4(0)	
Remarks Natural Moisture Content: 35.3%				

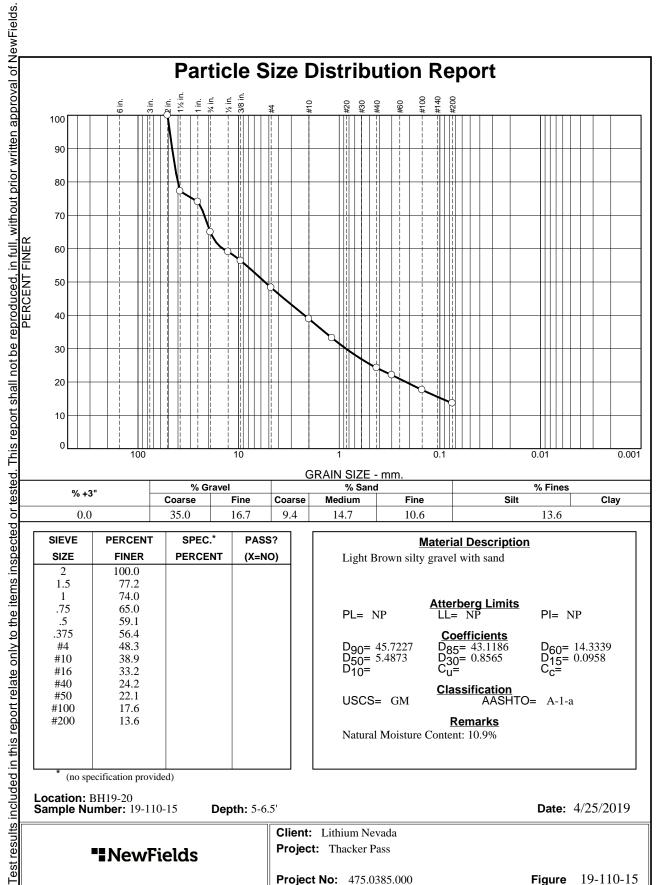
Clay

Date: 4/26/2019

Figure 19-110-14

23.6

Location: BH19-18 Sample Number: 19-110-14


NewFields

0.0

Depth: 20.5-21'

Client: Lithium Nevada **Project:** Thacker Pass

Project No: 475.0385.000

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
2	100.0		
1.5	77.2		
1	74.0		
.75	65.0		
.5	59.1		
.375	56.4		
#4	48.3		
#10	38.9		
#16	33.2		
#40	24.2		
#50	22.1		
#100	17.6		
#200	13.6		
* (no sp	ecification provide	ed)	

16.7

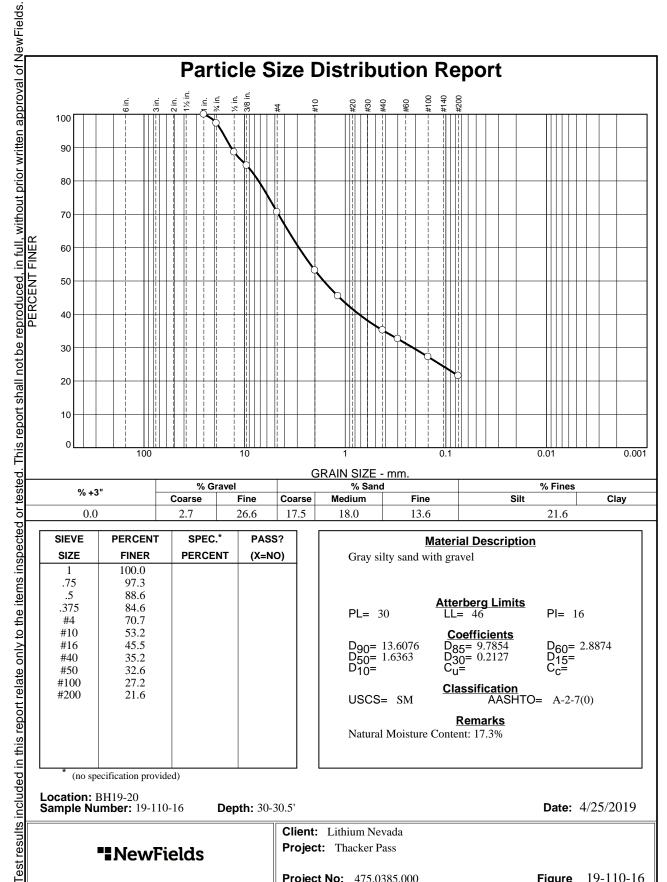
9.4

14.7

10.6

_	Material Description Light Brown silty gravel with sand			
PL= NP	Atterberg Limits LL= NP	PI= NP		
D ₉₀ = 45.7227 D ₅₀ = 5.4873 D ₁₀ =	Coefficients D85= 43.1186 D30= 0.8565 Cu=	D ₆₀ = 14.3339 D ₁₅ = 0.0958 C _c =		
USCS= GM	Classification AASHTO	O= A-1-a		
Remarks Natural Moisture Content: 10.9%				

13.6


0.0

Location: BH19-20 Sample Number: 19-110-15 Date: 4/25/2019 **Depth:** 5-6.5'

NewFields

Client: Lithium Nevada **Project:** Thacker Pass

Figure 19-110-15 **Project No:** 475.0385.000

26.6

18.0

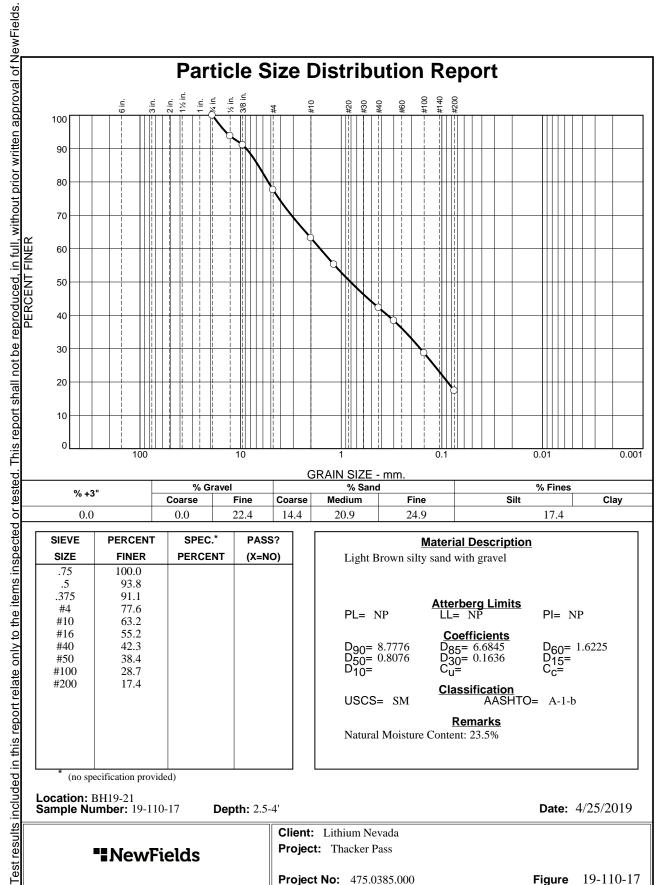
13.6

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
1	100.0		
.75	97.3		
.5	88.6		
.375	84.6		
#4	70.7		
#10	53.2		
#16	45.5		
#40	35.2		
#50	32.6		
#100	27.2		
#200	21.6		
* (no sp	ecification provide	ed)	1

2.7

Gray silty sand w	Material Description	<u>on</u>
PL= 30	Atterberg Limits	PI= 16
D ₉₀ = 13.6076 D ₅₀ = 1.6363 D ₁₀ =	Coefficients D ₈₅ = 9.7854 D ₃₀ = 0.2127 C _u =	D ₆₀ = 2.8874 D ₁₅ = C _c =
USCS= SM	Classification AASHT	O= A-2-7(0)
Remarks Natural Moisture Content: 17.3%		

21.6


0.0

Location: BH19-20 Sample Number: 19-110-16 Date: 4/25/2019 Depth: 30-30.5'

NewFields

Client: Lithium Nevada **Project:** Thacker Pass

Figure 19-110-16 **Project No:** 475.0385.000

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
.75	100.0		
.5	93.8		
.375	91.1		
#4	77.6		
#10	63.2		
#16	55.2		
#40	42.3		
#50	38.4		
#100	28.7		
#200	17.4		

_	Material Description Light Brown silty sand with gravel			
PL= NP	Atterberg Limits LL= NP	PI= NP		
D ₉₀ = 8.7776 D ₅₀ = 0.8076 D ₁₀ =	Coefficients D ₈₅ = 6.6845 D ₃₀ = 0.1636 C _U =	D ₆₀ = 1.6225 D ₁₅ = C _c =		
USCS= SM	Classification AASHT	O= A-1-b		
Remarks Natural Moisture Content: 23.5%				

17.4

Date: 4/25/2019

Figure 19-110-17

(no specification provided)

Tested By: JH/CB

0.0

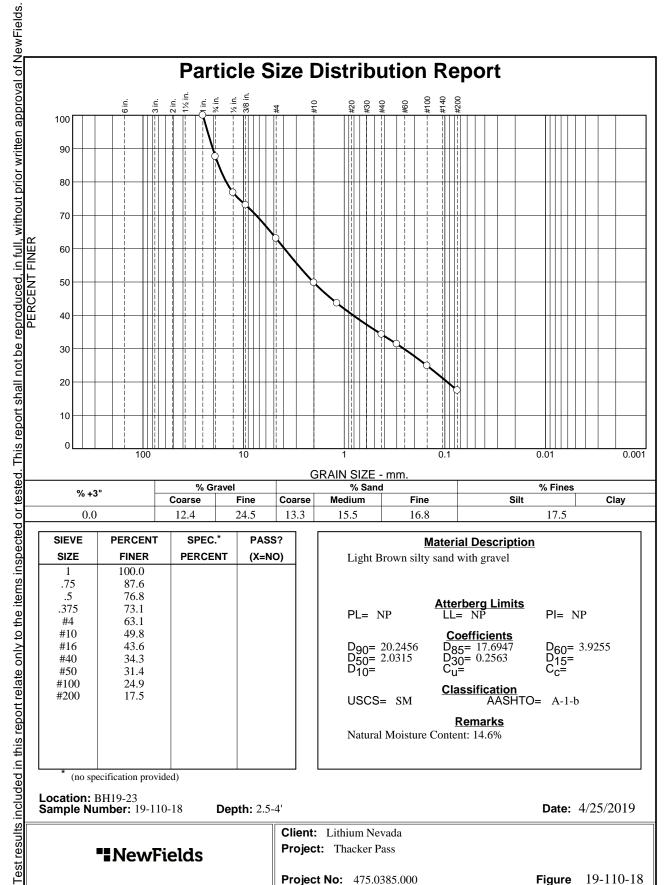
Location: BH19-21 Sample Number: 19-110-17

NewFields

Depth: 2.5-4'

22.4

14.4


20.9

24.9

Client: Lithium Nevada **Project:** Thacker Pass

Project No: 475.0385.000

Checked By: JH

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
1	100.0		
.75	87.6		
.5	76.8		
.375	73.1		
#4	63.1		
#10	49.8		
#16	43.6		
#40	34.3		
#50	31.4		
#100	24.9		
#200	17.5		
* (no spe	ecification provide	ed)	

24.5

13.3

15.5

16.8

Material Description Light Brown silty sand with gravel						
PL= NP	Atterberg Limits	PI= NP				
D ₉₀ = 20.2456 D ₅₀ = 2.0315 D ₁₀ =	Coefficients D ₈₅ = 17.6947 D ₃₀ = 0.2563 C _u =	D ₆₀ = 3.9255 D ₁₅ = C _c =				
USCS= SM	Classification AASHT	O= A-1-b				
Remarks Natural Moisture Content: 14.6%						

17.5

Date: 4/25/2019

Figure 19-110-18

Tested By: JH/CB

0.0

Location: BH19-23 Sample Number: 19-110-18


Depth: 2.5-4'

NewFields

Client: Lithium Nevada **Project:** Thacker Pass

Project No: 475.0385.000

Checked By: JH

21.6

17.0

16.8

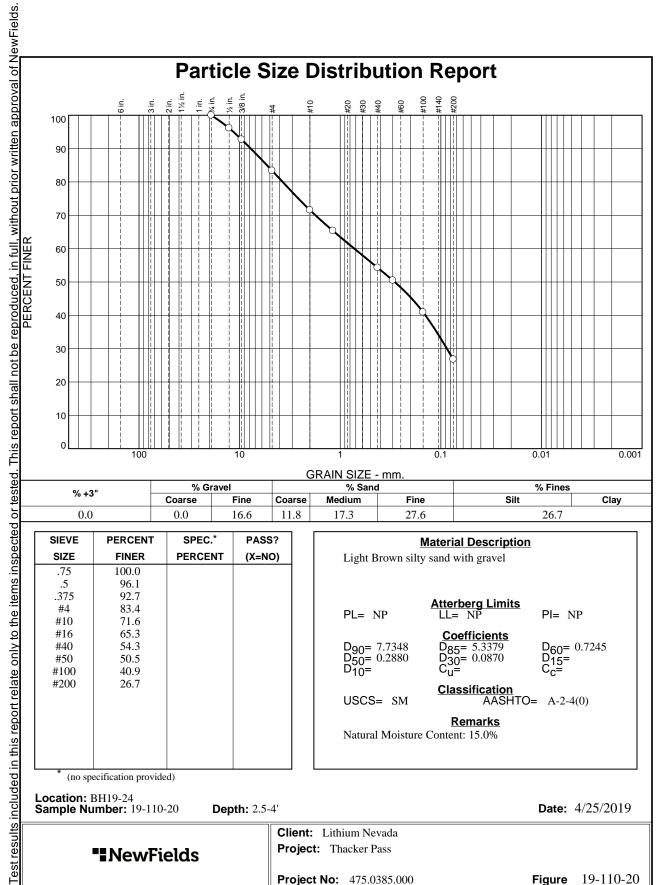
SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
1	100.0		
.75	81.4		
.5	76.8		
.375	73.1		
#4	59.8		
#10	47.0		
#16	41.0		
#40	30.0		
#50	26.6		
#100	19.4		
#200	13.2		

18.6

Material Description Brown silty sand with gravel						
PL= NP	Atterberg Limits LL= NP	PI= NP				
D ₉₀ = 22.1901 D ₅₀ = 2.5271 D ₁₀ =	Coefficients D ₈₅ = 20.4974 D ₃₀ = 0.4238 C _u =	D ₆₀ = 4.8152 D ₁₅ = 0.0923 C _c =				
USCS= SM	Classification AASHT	O= A-1-a				
Remarks Natural Moisture Content: 11.3%						

13.2

(no specification provided)


0.0

Location: BH19-23 Sample Number: 19-110-19 Date: 4/25/2019 **Depth:** 7.5-9'

NewFields

Client: Lithium Nevada **Project:** Thacker Pass

Figure 19-110-19 **Project No:** 475.0385.000

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
.75	100.0		
.5	96.1		
.375	92.7		
#4	83.4		
#10	71.6		
#16	65.3		
#40	54.3		
#50	50.5		
#100	40.9		
#200	26.7		
* (no sp	ecification provide	ed)	

Material Description Light Brown silty sand with gravel						
PL= NP	Atterberg Limits	PI= NP				
D ₉₀ = 7.7348 D ₅₀ = 0.2880 D ₁₀ =	Coefficients D ₈₅ = 5.3379 D ₃₀ = 0.0870 C _u =	D ₆₀ = 0.7245 D ₁₅ = C _c =				
USCS= SM	Classification AASHT	O= A-2-4(0)				
Remarks Natural Moisture Content: 15.0%						

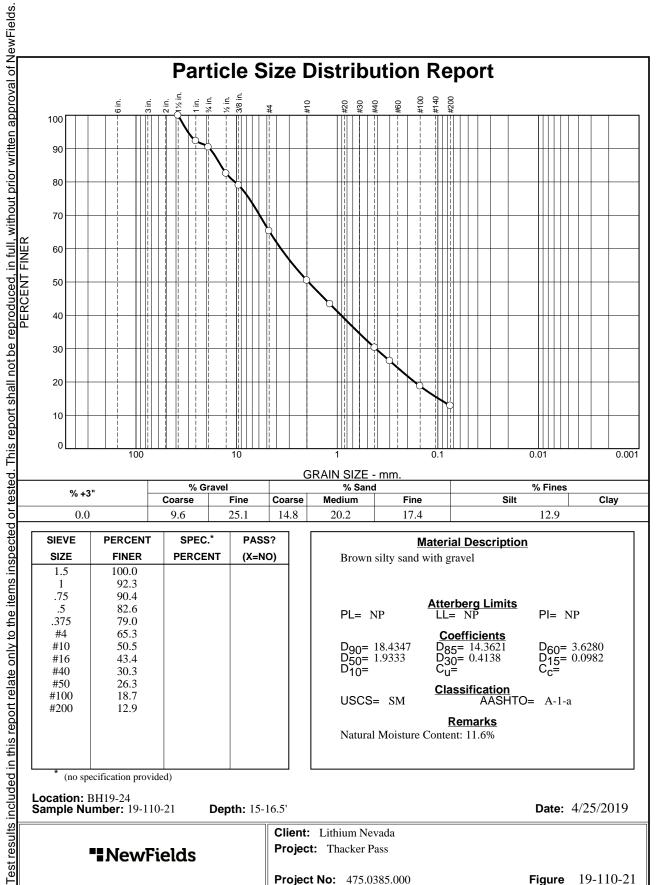
26.7

0.0

Location: BH19-24 Sample Number: 19-110-20 Date: 4/25/2019 **Depth:** 2.5-4'

11.8

16.6


17.3

27.6

NewFields

Client: Lithium Nevada **Project:** Thacker Pass

Figure 19-110-20 **Project No:** 475.0385.000

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
1.5	100.0		
1	92.3		
.75	90.4		
.5	82.6		
.375	79.0		
#4	65.3		
#10	50.5		
#16	43.4		
#40	30.3		
#50	26.3		
#100	18.7		
#200	12.9		
* (no sp	ecification provide	ed)	

Coarse

9.6

Fine

25.1

Coarse

14.8

Medium

20.2

Fine

17.4

Material Description Brown silty sand with gravel					
PL= NP	Atterberg Limits LL= NP	PI= NP			
D ₉₀ = 18.4347 D ₅₀ = 1.9333 D ₁₀ =	Coefficients D ₈₅ = 14.3621 D ₃₀ = 0.4138 C _u =	D ₆₀ = 3.6280 D ₁₅ = 0.0982 C _c =			
USCS= SM Classification AASHTO= A-1-a					
Remarks Natural Moisture Content: 11.6%					

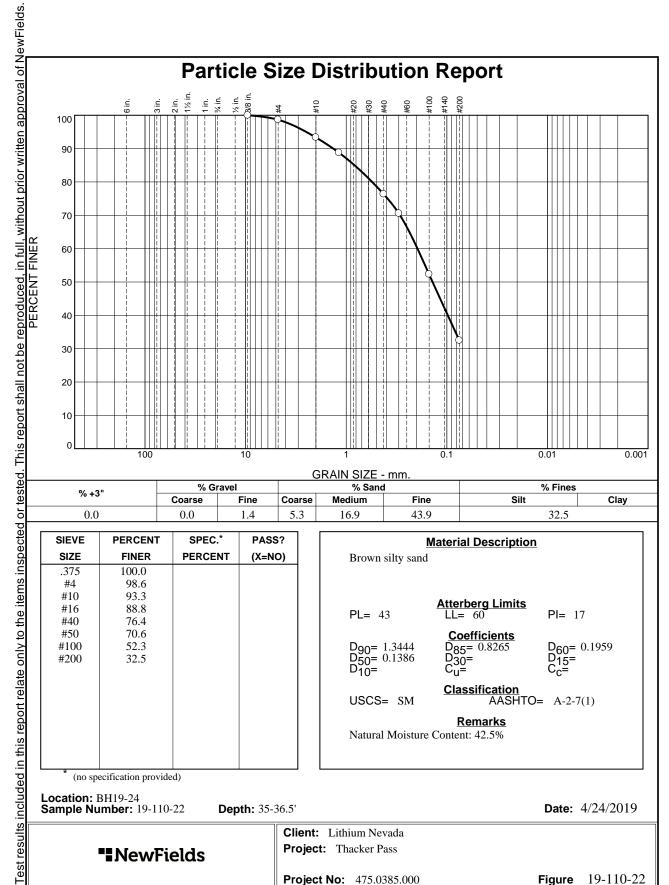
Clay

Date: 4/25/2019

Figure 19-110-21

12.9

Location: BH19-24 Sample Number: 19-110-21


NewFields

0.0

Depth: 15-16.5'

Client: Lithium Nevada **Project:** Thacker Pass

Project No: 475.0385.000

16.9

43.9

1.4

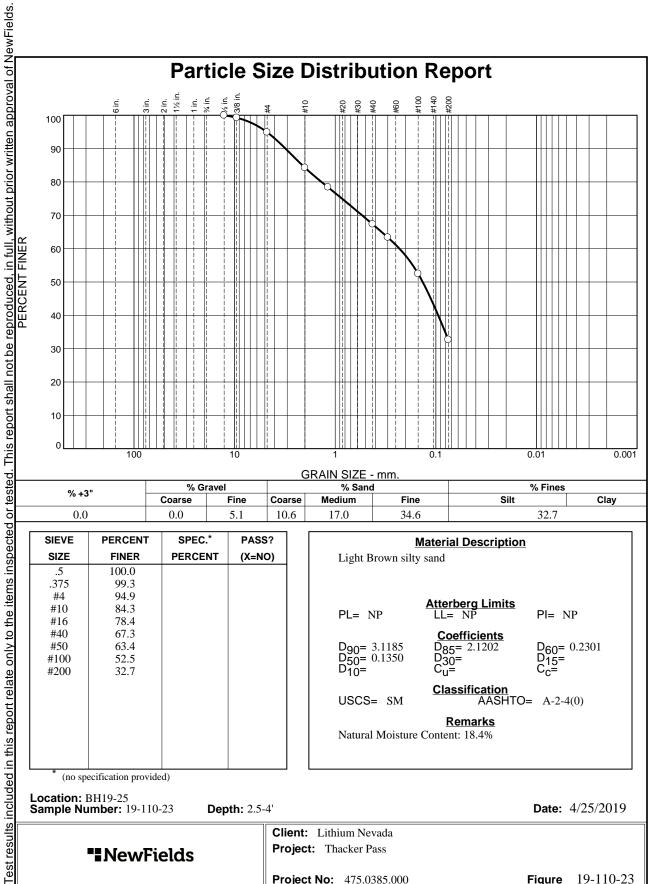
SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
.375	100.0		
#4	98.6		
#10	93.3		
#16	88.8		
#40	76.4		
#50	70.6		
#100	52.3		
#200	32.5		
* (no sp	ecification provide	ed)	

0.0

<u>!</u>	Material Description	<u>on</u>			
Brown silty sand					
PL= 43	Atterberg Limits LL= 60	PI= 17			
D ₉₀ = 1.3444 D ₅₀ = 0.1386 D ₁₀ =	<u>Coefficients</u> D ₈₅ = 0.8265 D ₃₀ = C _u =	D ₆₀ = 0.1959 D ₁₅ = C _c =			
USCS= SM	Classification AASHT	O= A-2-7(1)			
Remarks Natural Moisture Content: 42.5%					

32.5

0.0


Location: BH19-24 Sample Number: 19-110-22 **Date:** 4/24/2019 **Depth:** 35-36.5'

NewFields

Client: Lithium Nevada **Project:** Thacker Pass

Figure 19-110-22 **Project No:** 475.0385.000

% +3"		% G	ravel	% Sand		% Fines			
	70 ±3		Coarse	Fine	Coarse	Medium	Fine	Silt	Clay
	0.0		0.0	5.1	10.6	17.0	34.6	32.7	
	015/15	DEDOENI		* 5400					

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
.5	100.0		
.375	99.3		
#4	94.9		
#10	84.3		
#16	78.4		
#40	67.3		
#50	63.4		
#100	52.5		
#200	32.7		
*		l	

Material Description Light Brown silty sand				
PL= NP	Atterberg Limits	PI= NP		
D ₉₀ = 3.1185 D ₅₀ = 0.1350 D ₁₀ =	Coefficients D ₈₅ = 2.1202 D ₃₀ = C _u =	D ₆₀ = 0.2301 D ₁₅ = C _c =		
USCS= SM	Classification AASHT	O= A-2-4(0)		
Remarks Natural Moisture Content: 18.4%				

Date: 4/25/2019

* (no specification provided)

Location: BH19-25 Sample Number: 19-110-23

Depth: 2.5-4'

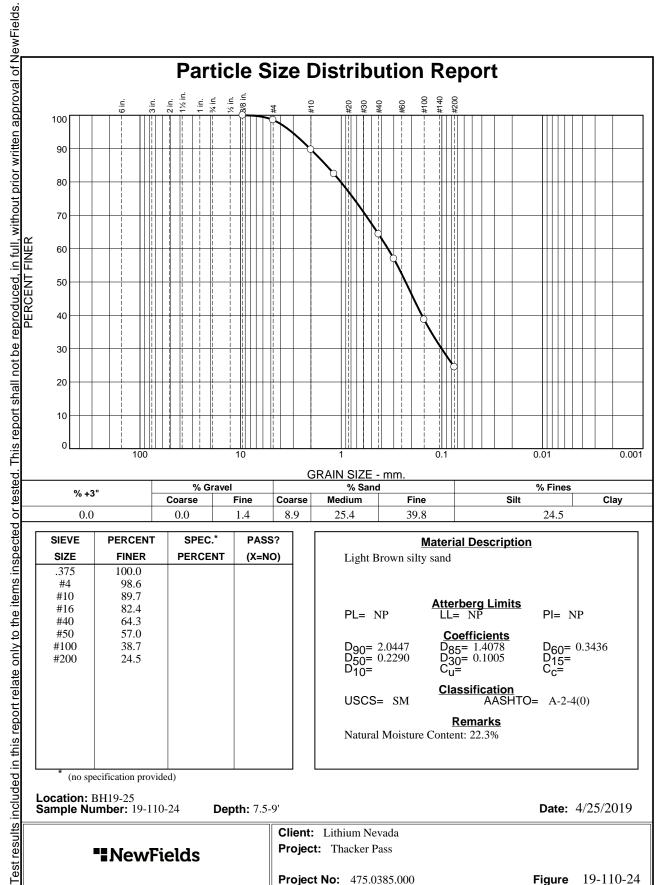

Client: Lithium Nevada **Project:** Thacker Pass

Figure 19-110-23 **Project No:** 475.0385.000

NewFields

Tested By: JH

Checked By: JH

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
.375	100.0		
#4	98.6		
#10	89.7		
#16	82.4		
#40	64.3		
#50	57.0		
#100	38.7		
#200	24.5		
* (no sp	ecification provide	ed)	

1.4

8.9

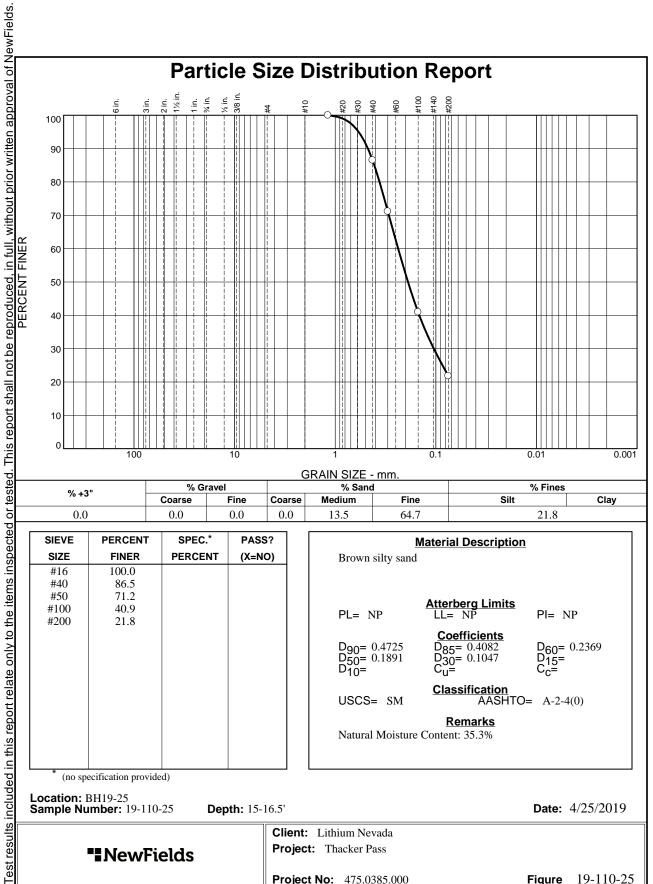
25.4

39.8

Material Description Light Brown silty sand				
PL= NP	Atterberg Limits	PI= NP		
D ₉₀ = 2.0447 D ₅₀ = 0.2290 D ₁₀ =	Coefficients D ₈₅ = 1.4078 D ₃₀ = 0.1005 C _u =	D ₆₀ = 0.3436 D ₁₅ = C _c =		
USCS= SM	Classification AASHT	O= A-2-4(0)		
Remarks Natural Moisture Content: 22.3%				

24.5

Date: 4/25/2019


0.0

Location: BH19-25 Sample Number: 19-110-24 **Depth:** 7.5-9'

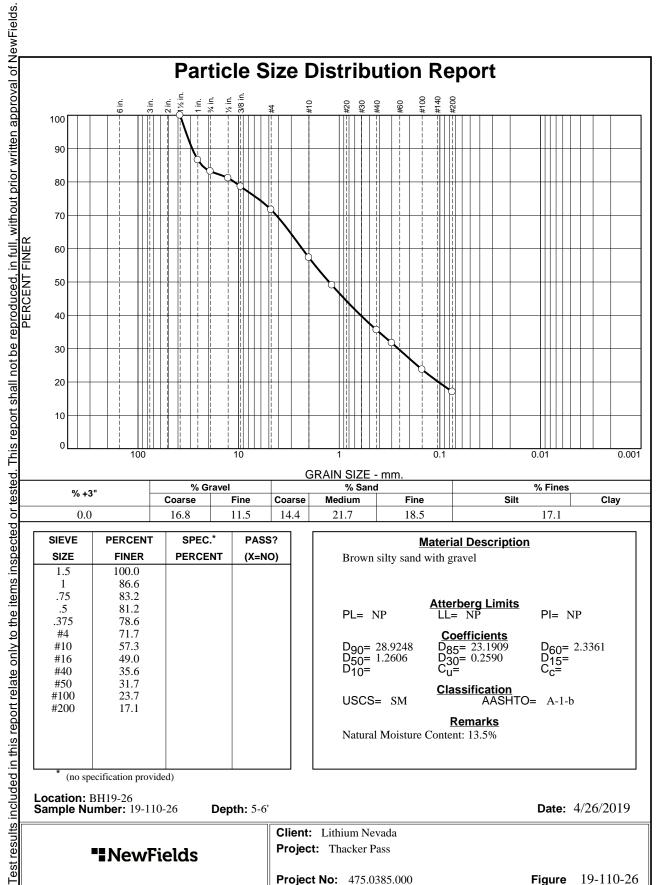
NewFields

Client: Lithium Nevada **Project:** Thacker Pass

Figure 19-110-24 **Project No:** 475.0385.000

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
#16	100.0		
#40	86.5		
#50	71.2		
#100	40.9		
#200	21.8		
*	cification provide		

Brown silty sand	Material Description	<u>on</u>		
PL= NP	Atterberg Limits LL= NP	PI= NP		
D ₉₀ = 0.4725 D ₅₀ = 0.1891 D ₁₀ =	Coefficients D ₈₅ = 0.4082 D ₃₀ = 0.1047 C _u =	D ₆₀ = 0.2369 D ₁₅ = C _c =		
USCS= SM	Classification AASHT	O= A-2-4(0)		
Remarks Natural Moisture Content: 35.3%				


Location: BH19-25 Sample Number: 19-110-25 **Date:** 4/25/2019 **Depth:** 15-16.5'

NewFields

Client: Lithium Nevada **Project:** Thacker Pass

Figure 19-110-25 **Project No:** 475.0385.000

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
1.5	100.0		
1	86.6		
.75	83.2		
.5	81.2		
.375	78.6		
#4	71.7		
#10	57.3		
#16	49.0		
#40	35.6		
#50	31.7		
#100	23.7		
#200	17.1		
* (no sp	ecification provide	ed)	

NewFields

Coarse

16.8

Fine

11.5

Coarse

14.4

Medium

21.7

Fine

18.5

Brown silty sand	Material Description with gravel	<u>on</u>			
PL= NP	Atterberg Limits LL= NP	PI= NP			
D ₉₀ = 28.9248 D ₅₀ = 1.2606 D ₁₀ =	Coefficients D ₈₅ = 23.1909 D ₃₀ = 0.2590 C _u =	D ₆₀ = 2.3361 D ₁₅ = C _c =			
USCS= SM	Classification				
Remarks Natural Moisture Content: 13.5%					

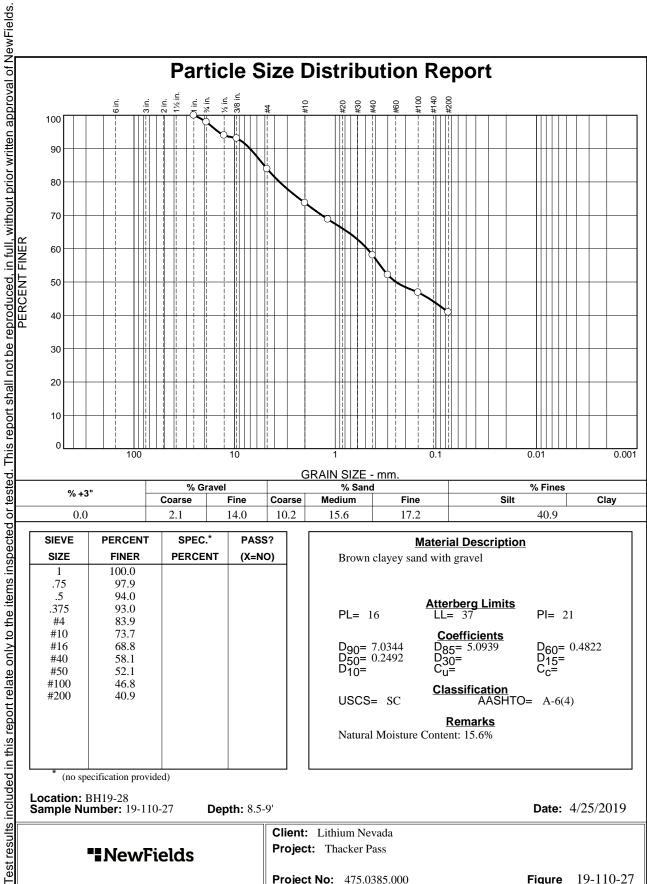
Clay

Date: 4/26/2019

Figure 19-110-26

17.1

Location: BH19-26 Sample Number: 19-110-26


0.0

Depth: 5-6'

Client: Lithium Nevada **Project:** Thacker Pass

Project No: 475.0385.000

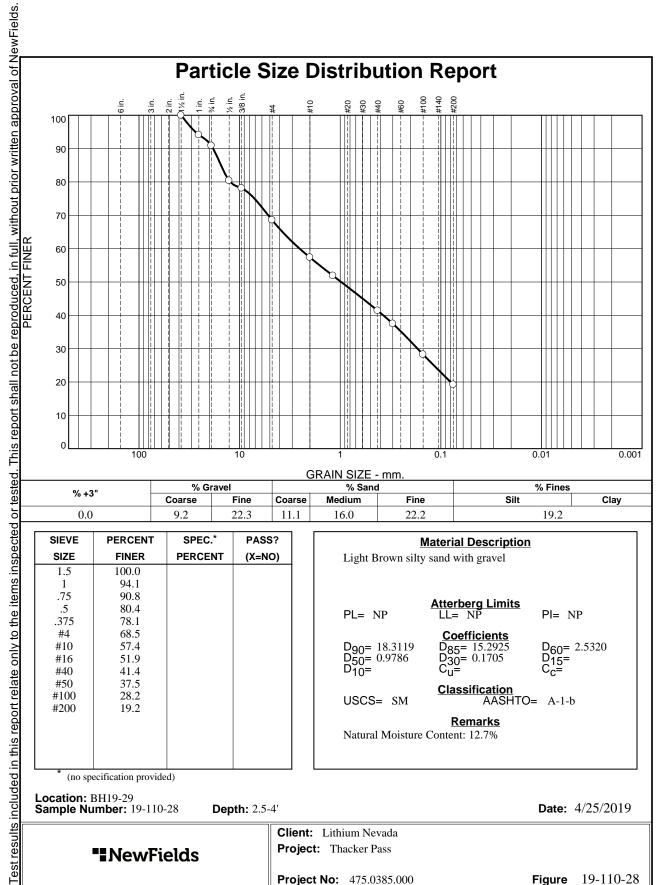
% +3"	% Gı	% Gravel % Sand		% Gravel % Sand % Fines		% Gravel		
% +3	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay	
0.0	2.1	14.0	10.2	15.6	17.2	40.9		

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
1	100.0		
.75	97.9		
.5	94.0		
.375	93.0		
#4	83.9		
#10	73.7		
#16	68.8		
#40	58.1		
#50	52.1		
#100	46.8		
#200	40.9		

Material Description Brown clayey sand with gravel				
PL= 16	Atterberg Limits LL= 37	PI= 21		
D ₉₀ = 7.0344 D ₅₀ = 0.2492 D ₁₀ =	Coefficients D ₈₅ = 5.0939 D ₃₀ = C _u =	D ₆₀ = 0.4822 D ₁₅ = C _c =		
USCS= SC	Classification AASHT	O= A-6(4)		
Remarks Natural Moisture Content: 15.6%				

* (no specification provided)

Location: BH19-28 Sample Number: 19-110-27


Depth: 8.5-9'

Date: 4/25/2019 Client: Lithium Nevada

NewFields

Project: Thacker Pass

Figure 19-110-27 **Project No:** 475.0385.000

22.2

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
1.5	100.0		
1	94.1		
.75	90.8		
.5	80.4		
.375	78.1		
#4	68.5		
#10	57.4		
#16	51.9		
#40	41.4		
#50	37.5		
#100	28.2		
#200	19.2		
* (no sp	ecification provide	ed)	

9.2

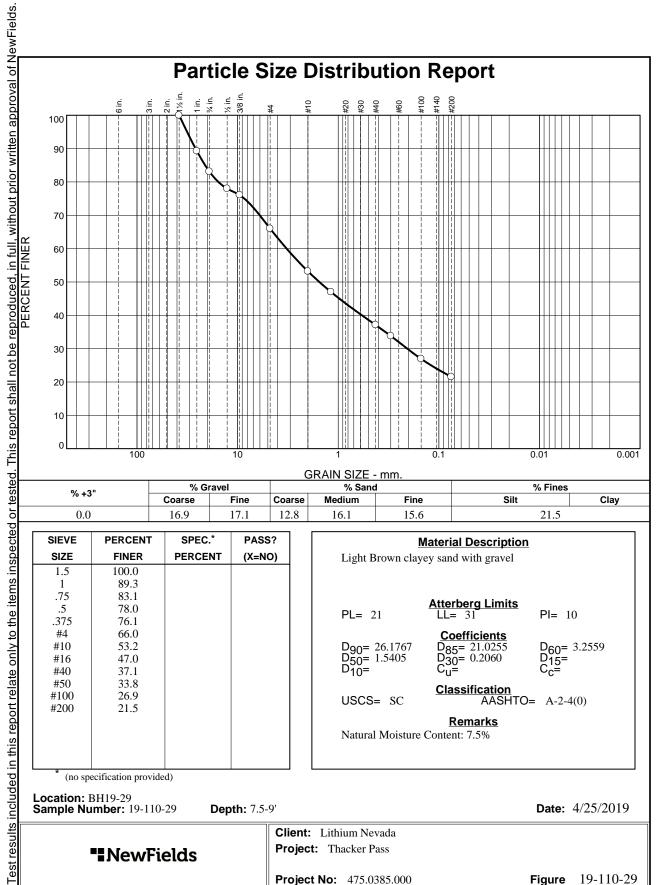
22.3

11.1

Material Description Light Brown silty sand with gravel				
PL= NP	Atterberg Limits LL= NP	PI= NP		
D ₉₀ = 18.3119 D ₅₀ = 0.9786 D ₁₀ =	Coefficients D ₈₅ = 15.2925 D ₃₀ = 0.1705 C _u =	D ₆₀ = 2.5320 D ₁₅ = C _c =		
USCS= SM	Classification AASHT	O= A-1-b		
Remarks Natural Moisture Content: 12.7%				

19.2

0.0


Location: BH19-29 Sample Number: 19-110-28 Date: 4/25/2019 **Depth:** 2.5-4'

NewFields

Client: Lithium Nevada **Project:** Thacker Pass

Figure 19-110-28 **Project No:** 475.0385.000

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
1.5	100.0		
1	89.3		
.75	83.1		
.5	78.0		
.375	76.1		
#4	66.0		
#10	53.2		
#16	47.0		
#40	37.1		
#50	33.8		
#100	26.9		
#200	21.5		
* (no sp	ecification provide	ed)	1

Coarse

16.9

Fine

17.1

Coarse

12.8

Medium

16.1

Fine

15.6

Material Description Light Brown clayey sand with gravel							
PL= 21	Atterberg Limits LL= 31	PI= 10					
D ₉₀ = 26.1767 D ₅₀ = 1.5405 D ₁₀ =	Coefficients D ₈₅ = 21.0255 D ₃₀ = 0.2060 C _u =	D ₆₀ = 3.2559 D ₁₅ = C _c =					
USCS= SC	Classification AASHT	O= A-2-4(0)					
Remarks Natural Moisture Content: 7.5%							

Location: BH19-29 Sample Number: 19-110-29

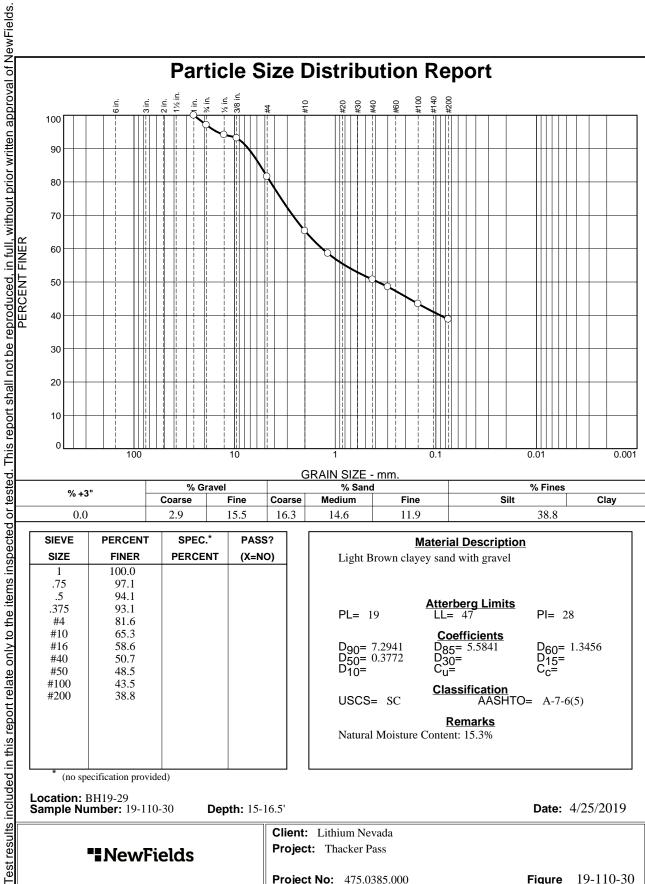
0.0

Depth: 7.5-9'

NewFields

Client: Lithium Nevada **Project:** Thacker Pass

Project No: 475.0385.000


Figure 19-110-29

Date: 4/25/2019

Clay

21.5

	GRAIN SIZE - IIIIII.						
9/ .2"	% G	ravel % Sand		% Fines			
% +3"	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay
0.0	2.9	15.5	16.3	14.6	11.9	38.8	

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
1	100.0		
.75	97.1		
.5	94.1		
.375	93.1		
#4	81.6		
#10	65.3		
#16	58.6		
#40	50.7		
#50	48.5		
#100	43.5		
#200	38.8		
	23.0		

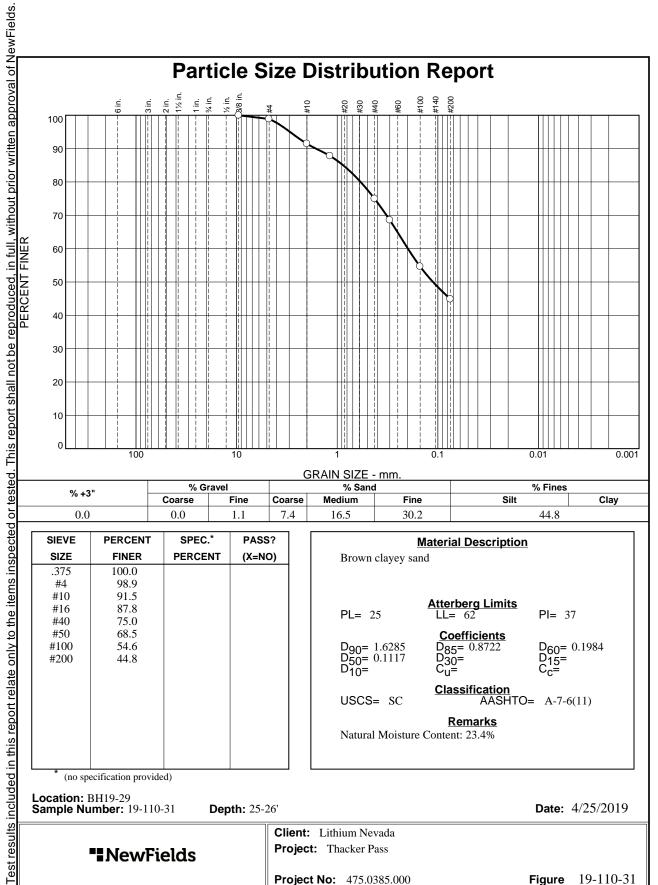
Material Description Light Brown clayey sand with gravel							
PL= 19	Atterberg Limits	PI= 28					
D ₉₀ = 7.2941 D ₅₀ = 0.3772 D ₁₀ =	Coefficients D ₈₅ = 5.5841 D ₃₀ = C _u =	D ₆₀ = 1.3456 D ₁₅ = C _c =					
USCS= SC	Classification AASHT	TO= A-7-6(5)					
Remarks Natural Moisture Content: 15.3%							

* (no specification provided)

Location: BH19-29 Sample Number: 19-110-30

Depth: 15-16.5'

Date: 4/25/2019


NewFields

Client: Lithium Nevada **Project:** Thacker Pass

Project No: 475.0385.000

Figure 19-110-30

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
.375	100.0		
#4	98.9		
#10	91.5		
#16	87.8		
#40	75.0		
#50	68.5		
#100	54.6		
#200	44.8		
* /	.0		

Coarse

0.0

Fine

1.1

Coarse

7.4

Medium

16.5

Fine

30.2

Brown clayey san	Material Descriptiond	<u>on</u>
PL= 25	Atterberg Limits	PI= 37
D ₉₀ = 1.6285 D ₅₀ = 0.1117 D ₁₀ =	Coefficients D ₈₅ = 0.8722 D ₃₀ = C _u =	D ₆₀ = 0.1984 D ₁₅ = C _c =
USCS= SC	Classification AASHT	O= A-7-6(11)
Natural Moisture	Remarks Content: 23.4%	

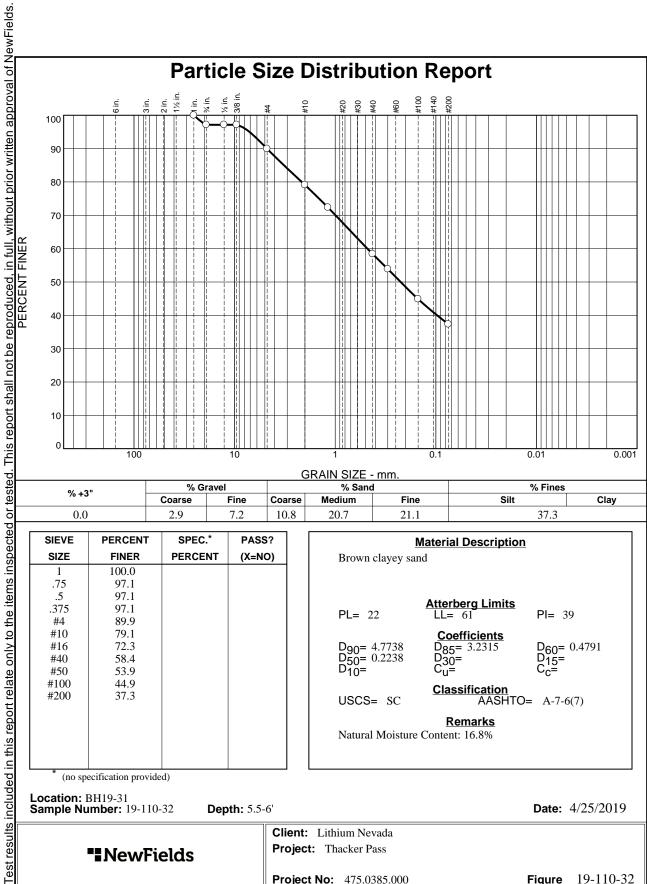
Clay

Date: 4/25/2019

44.8

(no specification provided)

0.0


Location: BH19-29 Sample Number: 19-110-31 **Depth: 25-26'**

> Client: Lithium Nevada **Project:** Thacker Pass

NewFields

Figure 19-110-31 **Project No:** 475.0385.000

% +3"	% Gravel		% Sand		% Fines		
% +3	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay
0.0	2.9	7.2	10.8	20.7	21.1	37.3	

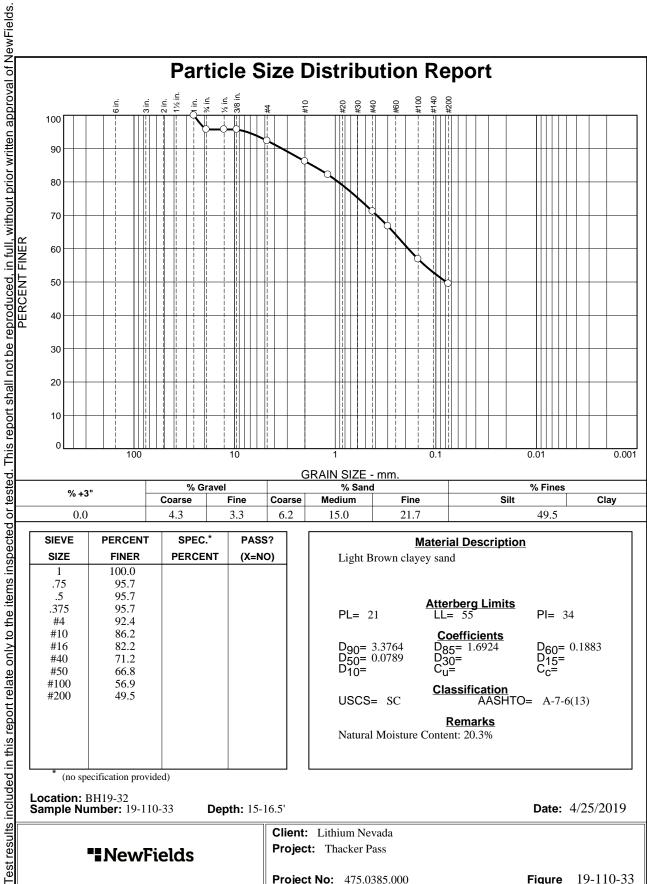
	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
1	100.0		
.75	97.1		
.5	97.1		
.375	97.1		
#4	89.9		
#10	79.1		
#16	72.3		
#40	58.4		
#50	53.9		
#100	44.9		
#200	37.3		
	1 .75 .5 .375 #4 #10 #16 #40 #50 #100 #200	1 100.0 .75 97.1 .5 97.1 .375 97.1 #4 89.9 #10 79.1 #16 72.3 #40 58.4 #50 53.9 #100 44.9	1 100.0 .75 97.1 .5 97.1 .375 97.1 #4 89.9 #10 79.1 #16 72.3 #40 58.4 #50 53.9 #100 44.9 #200 37.3

Brown clayey sa	Material Description	<u>on</u>				
PL= 22	Atterberg Limits LL= 61	PI= 39				
D ₉₀ = 4.7738 D ₅₀ = 0.2238 D ₁₀ =	Coefficients D ₈₅ = 3.2315 D ₃₀ = C _u =	D ₆₀ = 0.4791 D ₁₅ = C _c =				
USCS= SC	Classification AASHT	O= A-7-6(7)				
Remarks Natural Moisture Content: 16.8%						

Date: 4/25/2019

* (no specification provided)

Location: BH19-31 Sample Number: 19-110-32


Depth: 5.5-6'

Client: Lithium Nevada **Project:** Thacker Pass

Figure 19-110-32 **Project No:** 475.0385.000

NewFields

3	9/ .3"	% Gravel		% Sand			% Fines	
٤	% +3"	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay
5	0.0	4.3	3.3	6.2	15.0	21.7	49.5	
-								

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
1	100.0		
.75	95.7		
.5	95.7		
.375	95.7		
#4	92.4		
#10	86.2		
#16	82.2		
#40	71.2		
#50	66.8		
#100	56.9		
#200	49.5		
	SIZE 1 .75 .5 .375 #4 #10 #16 #40 #50 #100	SIZE FINER 1 100.0 .75 95.7 .5 95.7 .375 95.7 #4 92.4 #10 86.2 #16 82.2 #40 71.2 #50 66.8 #100 56.9	SIZE FINER PERCENT 1 100.0 .75 95.7 .5 95.7 .375 95.7 #4 92.4 #10 86.2 #16 82.2 #40 71.2 #50 66.8 #100 56.9

Light Brown clay	Material Description yey sand	<u>on</u>
PL= 21	Atterberg Limits LL= 55	PI= 34
D ₉₀ = 3.3764 D ₅₀ = 0.0789 D ₁₀ =	Coefficients D ₈₅ = 1.6924 D ₃₀ = C _u =	D ₆₀ = 0.1883 D ₁₅ = C _c =
USCS= SC	Classification AASHT	O= A-7-6(13)
Natural Moisture	Remarks Content: 20.3%	

Date: 4/25/2019

Figure 19-110-33

(no specification provided)

Location: BH19-32 Sample Number: 19-110-33 **Depth:** 15-16.5'

NewFields

Client: Lithium Nevada **Project:** Thacker Pass

Project No: 475.0385.000

Tested By: JH/CB

Checked By: JH

Appendix B2 – Natural Moisture Content Results

MOISTURE CONTENT (ASTM D 2216 / ASTM D 4643)

LABORATORY WORKSHEET

Client:	Lithium Nevada	Location:	See Below
Project Title:	Thacker Pass	Elevation:	See Below
Project Number:	475.0385.000	Test Date:	4/24/2019
Project Engineer:	Eric Niebler	Tested By:	JH
Field Sample ID:	ВН	Checked By:	JH

Drying Conditions: 60 deg C / 110 deg C Method: Oven (O) / Microwave (M) / Hot Plate (H)

Sample No.		19-110-01	19-110-02	19-110-03	19-110-04	19-110-05
Location		BH19-01	BH19-01	BH19-02	BH19-02	BH19-08
Depth		7.5-9'	25-26.5'	25-26.5'	45-46.5'	2.5-4'
Soil Description						
(USCS)						
Trial No.		1	2	3	4	5
Tare No.						
Tare + Wet Soil	Α	674.9	1000.5	599	869.5	509.3
Tare + Dry Soil	В	516.2	774.8	385.5	638.9	430.3
Tare	С	22.3	22.1	22.2	22.1	22.3
Wt. of Water	D= A-B	158.7	225.7	213.5	230.6	79
Dry Soil, Ws	E= B-C	493.9	752.7	363.3	616.8	408
Moisture Content, (%)	(D/E) x100	32.1%	30.0%	58.8%	37.4%	19.4%

Sample No.		19-110-06	19-110-07	19-110-08	19-110-09	19-110-10
Location		BH19-09	BH19-11	BH19-12	BH19-15	BH19-16
Depth		2.5-4'	2.5-4'	15-16.5'	5.5-6'	2.5-4'
Soil Description						
(USCS)						
Trial No.		6	7	8	9	10
Tare No.						
Tare + Wet Soil	Α	748.6	489.4	760.8	702.2	474.2
Tare + Dry Soil	В	681	400.1	690.5	623.5	403.7
Tare	С	22.2	22.2	22.4	22.3	22.1
Wt. of Water	D= A-B	67.6	89.3	70.3	78.7	70.5
Dry Soil, Ws	E= B-C	658.8	377.9	668.1	601.2	381.6
Moisture Content, (%)	(D/E) x100	10.3%	23.6%	10.5%	13.1%	18.5%

Remarks:

MOISTURE CONTENT (ASTM D 2216 / ASTM D 4643)

LABORATORY WORKSHEET

Client:	Lithium Nevada	Location:	See Below
Project Title:	Thacker Pass	Elevation:	See Below
Project Number:	475.0385.000	Test Date:	4/24/2019
Project Engineer:	Eric Niebler	Tested By:	JH
Field Sample ID:	ВН	Checked By:	JH

Drying Conditions: 60 deg C / 110 deg C Method: Oven (O) / Microwave (M) / Hot Plate (H)

Sample No.		19-110-11	19-110-12	19-110-13	19-110-14	19-110-15
Location		BH19-17	BH19-17	BH19-18	BH19-18	BH19-20
Depth		10.5-11'	20-21'	10.5-11'	20.5-21'	5-6.5'
Soil Description						
(USCS)						
Trial No.		11	12	13	14	15
Tare No.						
Tare + Wet Soil	Α	685.3	1746.3	645.2	711.7	1912.4
Tare + Dry Soil	В	525.4	1590.1	475.8	531.9	1726.9
Tare	С	22	21.8	22.1	22.1	21.9
Wt. of Water	D= A-B	159.9	156.2	169.4	179.8	185.5
Dry Soil, Ws	E= B-C	503.4	1568.3	453.7	509.8	1705
Moisture Content, (%)	(D/E) x100	31.8%	10.0%	37.3%	35.3%	10.9%

Sample No.		19-110-16	19-110-17	19-110-18	19-110-19	19-110-20
Location		BH19-20	BH19-21	BH19-23	BH19-23	BH19-24
Depth		30-30.5'	2.5-4'	2.5-4'	7.5-9	2.5-4'
Soil Description						
(USCS)						
Trial No.		16	17	18	19	20
Tare No.						
Tare + Wet Soil	Α	1638.1	614.4	759.7	672.9	554.5
Tare + Dry Soil	В	1399.6	501.7	665.5	606.7	485.2
Tare	С	22.2	22	22.4	22.3	22.3
Wt. of Water	D= A-B	238.5	112.7	94.2	66.2	69.3
Dry Soil, Ws	E= B-C	1377.4	479.7	643.1	584.4	462.9
Moisture Content, (%)	(D/E) x100	17.3%	23.5%	14.6%	11.3%	15.0%

Re	em	ıar	ks:
----	----	-----	-----

MOISTURE CONTENT (ASTM D 2216 / ASTM D 4643)

LABORATORY WORKSHEET

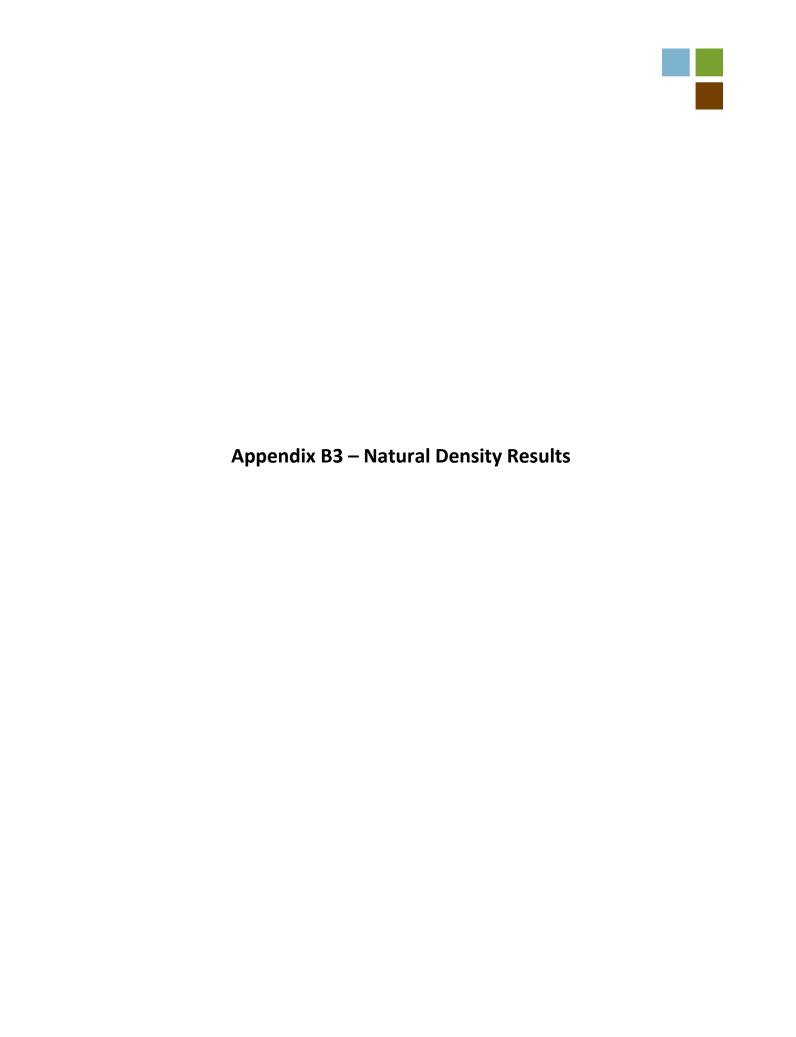
Client:	Lithium Nevada	Location:	See Below
Project Title:	Thacker Pass	Elevation:	See Below
Project Number:	475.0385.000	Test Date:	4/24/2019
Project Engineer:	Eric Niebler	Tested By:	JH
Field Sample ID:	ВН	Checked By:	JH

Drying Conditions: 60 deg C / 110 deg C Method: Oven (O) / Microwave (M) / Hot Plate (H)

Sample No.		19-110-21	19-110-22	19-110-23	19-110-24	19-110-25
Location		BH19-24	BH19-24	BH19-25	BH19-25	BH19-25
Depth		15-16.5'	35-36.5'	2.5-4'	7.5-9'	15-16.5'
Soil Description						
(USCS)						
Trial No.		21	22	23	24	25
Tare No.						
Tare + Wet Soil	Α	671.9	882.8	501.5	523.1	622.6
Tare + Dry Soil	В	604.4	626.1	427	431.8	466
Tare	С	22	22	22.1	22.4	22.4
Wt. of Water	D= A-B	67.5	256.7	74.5	91.3	156.6
Dry Soil, Ws	E= B-C	582.4	604.1	404.9	409.4	443.6
Moisture Content, (%)	(D/E) x100	11.6%	42.5%	18.4%	22.3%	35.3%

Sample No.		19-110-26	19-110-27	19-110-28	19-110-29	19-110-30
Location		BH19-26	BH19-28	BH19-29	BH19-29	BH19-29
Depth		5-6'	8.5-9'	2.5-4'	7.5-9'	15-16.5'
Soil Description						
(USCS)						
Trial No.		26	27	28	29	30
Tare No.						
Tare + Wet Soil	Α	691	751.3	708.9	631.2	924.8
Tare + Dry Soil	В	611.2	652.7	631.5	588.6	805.2
Tare	С	22.1	22.4	22.2	22.2	22
Wt. of Water	D= A-B	79.8	98.6	77.4	42.6	119.6
Dry Soil, Ws	E= B-C	589.1	630.3	609.3	566.4	783.2
Moisture Content, (%)	(D/E) x100	13.5%	15.6%	12.7%	7.5%	15.3%

Remarks:


Moisture Content, (%) (D/E) x100

MOISTURE CONTENT (ASTM D 2216 / ASTM D 4643)

LABORATORY WORKSHEET

Client:	Lithium N	levada	Location:	See Below
Project Title:	Thacker	Pass	Elevation:	See Below
Project Number:	475.038	5.000	Test Date:	4/24/2019
Project Engineer:	Eric Nie	ebler	Tested By:	JH
Field Sample ID:	ВН		Checked By:	JH

, 8	0 - 7			(-//	- \ //	,
Sample No.		19-110-31	19-110-32	19-110-33		
Location		BH19-29	BH19-31	BH19-32		
Depth		25-26'	5.5-6'	15-16.5'		
Soil Description						
(USCS)						
Trial No.		31	32	33	4	5
Tare No.						
Tare + Wet Soil	Α	427.1	754.7	892.2		
Tare + Dry Soil	В	350.3	649.4	745.6		
Tare	С	22	21.8	22.4		
Wt. of Water	D= A-B	76.8	105.3	146.6		
Dry Soil, Ws	E= B-C	328.3	627.6	723.2		
Moisture Content, (%)	(D/E) x100	23.4%	16.8%	20.3%		
Sample No.						
Location						
Depth						
Soil Description						
(USCS)						
Trial No.		6	7	8	9	10
Tare No.						
Tare + Wet Soil	Α					
Tare + Dry Soil	В					
Tare	С					
Wt. of Water	D= A-B					
Dry Soil, Ws	E= B-C					
		·	· · · · · · · · · · · · · · · · · · ·	1	1	1

Dry Soil, Ws

Moisture Content, (%)

LABORATORY WORKSHEET

Client:	Li	thium Nevada		Location:	See B	elow			
Project Title:		Thacker Pass		Elevation:	See Below				
Project Number:		175.0385.000		Test Date:	4/26/2019				
Project Engineer:		Eric Niebler		Tested By:	JH				
Field Sample ID: Laboratory Sample ID:		BH 19-110		Checked By:	JH				
Laboratory Sample ID.		19-110							
Drying Condition	ons: 60 deg C / 1	10 deg C	Met	ethod: Oven (O) / Microwave (M)					
Trail No.		1	2	3	4	5			
Sample No.		19-110-09	19-110-11	19-110-13	19-110-14	19-110-26			
Location		BH19-15	BH19-17	BH19-18	BH19-18	BH19-26			
Depth		5.5-6'	10.5-11'	10.5-11'	20.5-21'	5-6'			
Soil Description									
(USCS)									
Soil + Liner Wt., g.	Α	914.8	912.4	855.4	930.1	898.8			
Liner Wt., g.	В	233.9	240.6	232.0	237.6	230.0			
Soil Wt., g.	C= A-B	680.9	671.8	623.4	692.5	668.8			
Liner Length, in.	D_1	5.995	5.959	5.965	5.973	5.942			
Sample Length, in.	D ₂	5.995	5.959	5.965	5.973	5.942			
Liner Diameter, in.	E	2.429	2.417	2.413	2.402	2.443			
Liner Area, in ²	F= (D ₂ ² /4)*pi	4.63	4.59	4.57	4.53	4.69			
Sample Volume, in ³	G= D ₂ *F	27.78	27.34	27.28	27.07	27.85			
Sample Wet Density, pcf	H= (C/G)*3.81	93.4	93.6	87.1	97.5	91.5			
Sample Dry Density, pcf	H/(1+(N/100))	82.6	71.0	63.4	72.1	80.6			
Tare No.									
Tare + Wet Soil	1	702.2	685.3	645.2	711.7	691			
Tare + Dry Soil	J	623.5	525.4	475.8	531.9	611.2			
Tare	К	22.3	22	22.1	22.1	22.1			
Wt. of Water	L= I-J	78.7	159.9	169.4	179.8	79.8			
					_				

Remarks:

601.2

13.1%

503.4

31.8%

453.7

37.3%

509.8

35.3%

589.1

13.5%

M=-J-K

N= (L/M) x100

APPENDIX CBorehole Exploration Logs

CLIENT Lithium Nevada PROJECT NAME Thacker Pass Geotechnical Investigation **PROJECT NUMBER** 475.0385.000 PROJECT LOCATION _ Thacker Pass, Nevada DATE STARTED 3/28/19 **COMPLETED** 3/28/19 GROUND ELEVATION 4914.4 ft HOLE SIZE 4.25in COORDINATES (WGS-84): **DRILLING CONTRACTOR** HazTech DRILLING METHOD HSA **NORTHING** 15149319 _ **EASTING** 1345248 GEOTECH ROCK CORE LOG-GINT STD US LAB GDT - 9/23/19 10:31 - Y/PROJECTS/0385.000-THACKER PASS LITHIUM NEVADAIL-GEOTECH DATA - ELKOIBOREHOLES/BOREHOLE SOIL LOGS-CC 19.08.29 GP, LOGGED BY M. Erdmann CHECKED BY K. Magner DEPTH TO WATER (FT BGS) No free water encountered NOTES Backfilled with cement grout **DISCONTINUITY LOG** SAMPLE TYPE NUMBER WEATHERING **WATER LEVEL** ELEVATION (ft) RUN LENGTH HARDNESS GRAPHIC LOG BLOW COUNTS (N VALUE) ROUGHNESS RQD (%) REC (%) DEPTH (ft) RUN NO. **APERTURE** SPACING TYPE MATERIAL DESCRIPTION 딤 Surface details: Snow/Mud 0 Top Soil / Root Zone (SM) silty SAND (SM), with gravel, fine to coarse grained, well graded, subangular, high plasticity fines, medium to very dense, brown, dry SS 5-11-15 \$PT-0 (26)4910 6-9-6 MC (15)SS 7-19-22 \$PT-02 (41)4905 10 MC 25-33-22 CAL-02 (55) 4900 SS 11-22-20 \$PT-03 (42)4895 MC 27-40-55 (95) 4890 25 SS 21-22-28 \$PT-04 (50) 4885 MC 24-37-52 (89)4880 SS 23-20-23 \$PT-05 (43)

CLIENT Lithium Nevada PROJECT NAME Thacker Pass Geotechnical Investigation **PROJECT NUMBER** 475.0385.000 PROJECT LOCATION Thacker Pass, Nevada DISCONTINUITY LOG SAMPLE TYPE NUMBER WEATHERING RUN LENGTH **WATER LEVEL** ELEVATION (ft) HARDNESS GRAPHIC LOG BLOW COUNTS (N VALUE) ROUGHNESS RQD (%) REC (%) DEPTH (ft) RUN NO. **APERTURE** SPACING TYPE INFILL MATERIAL DESCRIPTION 딤 40 (SM) silty SAND (SM), with gravel, fine to coarse grained, well graded, subangular, high plasticity MC 16-39-63 CAL-05 (102) fines, medium to very dense, brown, dry (continued) 4870 45 SS 24-44-48 \$PT-06 (92) (SP) SAND (SP), poorly graded, fine grained, sub angular, very dense, brown, moist 4865 50

MC 25-33-70

CAL-06 (103)

very dense, light brown, moist Borehole terminated at 51.5'

(CL) CLAY (CL), with sand, low plasticity fines,

NF-GEOTECH ROCK CORE LOG-GINT STD US LAB.GDT - 9/23/19 10:31 - Y/PROJECTS/0385.000-THACKER PASS LITHIUM NEVADAIL-GEOTECH DATA - ELKO/BOREHOLES/BOREHOLE SOIL LOGS-CC.19.08.29.GPJ

CLIENT Lithium Nevada PROJECT NAME _Thacker Pass Geotechnical Investigation **PROJECT NUMBER** 475.0385.000 PROJECT LOCATION Thacker Pass, Nevada DATE STARTED 3/26/19 **COMPLETED** 3/27/19 **GROUND ELEVATION** 4928.3 ft HOLE SIZE 4.25in COORDINATES (WGS-84): **DRILLING CONTRACTOR** HazTech DRILLING METHOD HSA NORTHING <u>15151138</u> _ **EASTING** 1357073 GEOTECH ROCK CORE LOG-GINT STD US LAB GDT - 9/23/19 10:31 - Y/PROJECTS/0385.000-THACKER PASS LITHIUM NEVADAIL-GEOTECH DATA - ELKOIBOREHOLES/BOREHOLE SOIL LOGS-CC 19.08.29 GP, LOGGED BY C. Coleman CHECKED BY K. Magner DEPTH TO WATER (FT BGS) 93.2 NOTES Backfilled with benontie chips and cement grout **DISCONTINUITY LOG** WEATHERING SAMPLE TYPE NUMBER **WATER LEVEL** RUN LENGTH ELEVATION (ft) HARDNESS GRAPHIC LOG BLOW COUNTS (N VALUE) ROUGHNESS RQD (%) REC (%) DEPTH (ft) RUN NO. **APERTURE** SPACING TYPE MATERIAL DESCRIPTION 딤 Surface details: Snow/Mud 0 Top Soil / Root Zone (SM) silty SAND (SM), with gravel, fine to coarse grained sand and gravel, sub angular, nonplastic fines, dense to very dense, light brown, dry SS 8-23-26 4925 \$PT-0 (49)37-40-63 AL-01 (103)(SW-SM) SAND (SW-SM), with gravel and silt, fine SS 50/5cm 4920 to coarse sand and gravel, MPS 2.5", sub angular, SPT-0 nonplastic fines, dense to very dense, brown ,dry 10 ■ MC 70/6cm CAL-0 4915 SS 13-22-26 \$PT-08 (48)<u>491</u>0 20 17-30-25 (55)4905 25 SS 22-13-12 (ML) SILT (ML), with sand, fine grained, low to high plasticity, very stiff to hard, light brown, dry \$PT-04 (25)4900 30 MC 12-18-27 (45)4895 SS 9-29-21 \$PT-05 (50)

PAGE 2 OF 2

NewFields

CLIENT Lithium Nevada PROJECT NAME Thacker Pass Geotechnical Investigation **PROJECT NUMBER** 475.0385.000 PROJECT LOCATION Thacker Pass, Nevada DISCONTINUITY LOG SAMPLE TYPE NUMBER WEATHERING RUN LENGTH **WATER LEVEL** ELEVATION (ft) HARDNESS GRAPHIC LOG BLOW COUNTS (N VALUE) ROUGHNESS RQD (%) REC (%) RUN NO. **APERTURE** DEPTH (ft) SPACING INFILL MATERIAL DESCRIPTION 딤 NF-GEOTECH ROCK CORE LOG-GINT STD US LAB.GDT-9/23/19 10:31 - Y/PROJECTS/0385.000-THACKER PASS LITHIUM NEVADAIL-GEOTECH DATA - ELKO/BOREHOLES/BOREHOLE SOIL LOGS-CC.19:08.29.GPJ 40 MC 17-66-58 AL-05 (124) (ML) SILT (ML), with sand, fine grained, low to high plasticity, very stiff to hard, light brown, dry (continued) 4885 (SM) silty SAND (SM), fine grained, high plasticity fines, medium to very dense, dark brown, damp, 45 SS 10-18-29 \$PT-06 (47) (highly weathered rock) 4880 50 MC 34-25-31 CAL-06 (56)4875 55 SS | 9-32-2 \$PT-07 (57) SS 9-32-25 4870 60 MC 30-49-70/5cm 4865 65 Switched to rock core at 65'

NOTE	:S _B	аск	illec	l WIT	n ce	men	it gro	out										
2			_			ני				ш		بـ		DISCO	NTIN	/TIU	/ LOC	3
ELEVATION (ft)	(#)	RUN NO.	RUN LENGTH	REC (%)	RQD (%)	WEATHERING	HARDNESS	GRAPHIC LOG	MATERIAL DESCRIPTION Surface details: Snow/Mud	SAMPLE TYPE NUMBER	BLOW COUNTS (N VALUE)	WATER LEVEL	TYPE	DIP	SPACING	APERTURE	ROUGHNESS	INFILL
4860 4860	70	1	5	100	66	sw	R3		[Continuation from soil log at 65 feet] Basalt, black, moderately weathered to slightly weathered, medium strong rock, very close to close joint spacing, slightly rough joint surfaces, some oxidization and clay alteration on joint surfaces			- - -	JT		VC to C		SR	ΟX
(H)		2	6	100	72	sw	R3					- - - -	JT		to C		SR	OX
4850 	80	3	5	100	90	SW	R3					- - - -	JT		to C		SR SR	OX OX
4845	85	4	5	100	99	SW	R3					- - - -	JT		to C		SR	CL
4840 4840	90	5	5	100	80	SW	R3					- - - -	JT		VC to C		SR	CL
4835 4835 	95	6	5	100	100	sw	R3					- - <u>Ā</u> -	JT		VC to C		SR	CL
4830	100	7	5	100	75	sw	R3					- - - -	JT		VC		SR	CL
4825	105	8	5	100	75	sw	R3					- -			to C		5.1	J.

PAGE 2 OF 2

NewFields

-GEOTECH ROCK CORE LOG - GINT STD US LAB GDT - 9/23/19 10:29 - YAPROJECTS/0385.000-THACKER PASS LITHIUM NEVADAIL-GEOTECH DATA - ELKOJBOREHOLES/ROCK CORE LOGS-CC.GPJ

CLIENT Lithium Nevada PROJECT NAME Thcker Pass Geotechnical Investigation **PROJECT NUMBER** 475.0385.000 PROJECT LOCATION Thacker Pass, Nevada DISCONTINUITY LOG SAMPLE TYPE NUMBER WEATHERING WATER LEVEL RUN LENGTH ELEVATION (ft) HARDNESS GRAPHIC LOG BLOW COUNTS (N VALUE) ROUGHNESS RQD (%) RUN NO. REC (%) **APERTURE** DEPTH (ft) SPACING NFIL. MATERIAL DESCRIPTION 딤 100 75 SW R3 5 [Continuation from soil log at 65 feet] VC JT SR CL Basalt, black, moderately weathered to slightly to C weathered, medium strong rock, very close to close joint spacing, slightly rough joint surfaces, some oxidization and clay alteration on joint 4820 5 100 66 SW R3 surfaces (continued) VC SR CL to C 4815 10 5 100 80 SW R3 115 JT SR CL to C 4810 5 100 80 SW R3 11 120 С SR CL JT 4805 12 5 100 98 SW R3 125 С CL SR JT 4800 13 5 100 100 SW R3 130 С SR CL 4795 100 100 SW R3 14 5 135 С SR CL 4790 15 5 100 100 SW R3 140 С SR CL 4785 16 5 100 66 SW R3 Clay Gouge 145'-150' SR CL 17 4 100 90 SW R3 150

Borehole terminated at 150

NF-GEOTECH ROCK CORE LOG - GINT STD US LAB GDT - 9/23/19 10:31 - Y-PROJECTS/0385.000-THACKER PASS LITHIUM NEVADAIL-GEOTECH DATA - ELKOIBOREHOLE SIBOREHOLE SOIL LOGS-CC.19.08.29 GP-

CLIENT Lithium Nevada PROJECT NAME Thacker Pass Geotechnical Investigation **PROJECT NUMBER** 475.0385.000 PROJECT LOCATION Thacker Pass, Nevada DATE STARTED 3/19/19 **COMPLETED** 3/19/19 **GROUND ELEVATION** 4828 ft HOLE SIZE 4.25in **DRILLING CONTRACTOR** HazTech **COORDINATES (WGS-84):** DRILLING METHOD HSA NORTHING <u>15150430</u> _ EASTING 1359957 LOGGED BY C. Coleman CHECKED BY K. Magner DEPTH TO WATER (FT BGS) No free water encountered NOTES Backfilled with cement grout **DISCONTINUITY LOG** WEATHERING SAMPLE TYPE NUMBER **WATER LEVEL** RUN LENGTH ELEVATION (ft) HARDNESS GRAPHIC LOG BLOW COUNTS (N VALUE) ROUGHNESS REC (%) RQD (%) DEPTH (ft) RUN NO. **APERTURE** SPACING TYPE MATERIAL DESCRIPTION 딤 Surface details: Snow/Mud 0 Top Soil / Root Zone (SM) silty SAND (SM), with gravel, fine to coarse sand and gravel, MPS 1.5", sub angular, nonplastic 4825 fines, dense, light brown, dry SS \$PT-01 25-19-18 (37)(GW-GM) GRAVEL (GW-GM), with sand and silt, fine to coarse grained, MPS 3", sub angular, 16-39-59 MC nonplastic fines, very dense, brown, dry AL-0 (98)4820 SS 23-48-33 \$PT-02 (81) 10 ✓ MC 70/5cm CAL-0 (SW-SC) SAND (SW-SC), with gravel and clay, fine to coarse sand and gravel, MPS 1.0", sub 4815 angular, low plasticity fines, very dense, brown, dry SS 23-36-42 \$PT-03 (78)4810 MC 70/5cm Switched to rock core at 21.5'

ELKO/BOREHOLES/ROCK CORE LOGS-CC.GP.

PASS LITHIUM NEVADA/L-GEOTECH DATA -

NF-GEOTECH ROCK CORE LOG - GINT STD US LAB.GDT - 9/23/19 10:29 - Y:\PROJECTS\0385.000-THACKER

CLIENT Lithium Nevada PROJECT NAME The Pass Geotechnical Investigation **PROJECT NUMBER** 475.0385.000 PROJECT LOCATION _ Thacker Pass, Nevada DATE STARTED 3/19/19 **COMPLETED** 3/19/19 GROUND ELEVATION 4828 ft HOLE SIZE 4.25 in **DRILLING CONTRACTOR** HazTech **COORDINATES (WGS84):** DRILLING METHOD HQ Core NORTHING <u>15150430</u> _ EASTING 1359957 LOGGED BY C. Coleman CHECKED BY K. Magner DEPTH TO WATER (FT BGS) No free water encountered

NOTES Backfilled with bentonite chips and cement grout DISCONTINUITY LOG SAMPLE TYPE NUMBER WEATHERING **WATER LEVEL** RUN LENGTH ELEVATION (ft) HARDNESS GRAPHIC LOG BLOW COUNTS (N VALUE) ROUGHNESS REC (%) RQD (%) DEPTH (ft) RUN NO. **APERTURE** SPACING TYPE MATERIAL DESCRIPTION 딤 Surface details: Snow/Mud 20 SR [Continuation from soil log at 20 feet] to C Blocky volcanic rock, brown to black, moderately weathered, medium strong rock, very close to close joint spacing, slightly rough joint surfaces, 5 100 33 MW R3 4805 clay alteration on joint surfaces 25 JT SR CL to C 2 5 100 75 MW R3 4800 30 SR CL JT 3 5 100 92 MW R3 4795 35 VC JT SR CL 5 99 92 MW R3 4790 VC 40 JT SR CL to C 5 5 100 88 MW R3 4785 45 VC SR CL JT to C 100 95 MW R3 5 6 4780

Borehole terminated at 50

NF-GEOTECH ROCK CORE LOG - GINT STD US LAB GDT - 9/23/19 10:31 - Y-PROJECTS/0385, 000-THACKER PASS LITHIUM NEVADAIL-GEOTECH DATA - ELKOIBOREHOLES/BOREHOLE SOIL LOGS-CC 19.08.29 GP.

CLIENT Lithium Nevada PROJECT NAME Thacker Pass Geotechnical Investigation **PROJECT NUMBER** 475.0385.000 PROJECT LOCATION _ Thacker Pass, Nevada DATE STARTED 3/17/19 **COMPLETED** 3/18/19 GROUND ELEVATION 4725.4 ft HOLE SIZE 4.25in **DRILLING CONTRACTOR** HazTech **COORDINATES (WGS-84):** DRILLING METHOD HSA **NORTHING** 15145149 _ EASTING 1359752 LOGGED BY M. Erdmann CHECKED BY K. Magner DEPTH TO WATER (FT BGS) 92.5 NOTES Backfilled with cement grout DISCONTINUITY LOG SAMPLE TYPE NUMBER WEATHERING **WATER LEVEL** RUN LENGTH ELEVATION (ft) HARDNESS GRAPHIC LOG BLOW COUNTS (N VALUE) ROUGHNESS RQD (%) REC (%) DEPTH (ft) RUN NO. **APERTURE** SPACING TYPE MATERIAL DESCRIPTION 딤 Surface details: Snow/Mud 0 Top Soil / Root Zone (SM) silty SAND (SM), with gravel, fine to corase grained, sub angular, loose to dense, light brown, 5-5-6 SS \$PT-0 (11)4720 8-18-27 MC (45)SS 7-8-10 \$PT-02 (18) 10 4715 (SM) silty SAND (SM), with gravel, well graded, fine MC 16-21-22 AL-02 to coarse grained, sub angular, dense to very (43)dense, light brown, dry 4710 SS 20-50/6cm 20 4705 MC 70/5cm Switched to rock core at 21.5'

PAGE 1 OF 2

NewFields

CLIENT Lithium Nevada PROJECT NAME That Pass Geotechnical Investigation

PROJECT NUMBER 475.0385.000 PROJECT LOCATION Thacker Pass, Nevada

DATE STARTED 3/17/19 COMPLETED 3/18/19 GROUND ELEVATION 4725.4 ft HOLE SIZE 4.25 in

DRILLING CONTRACTOR HazTech COORDINATES (WGS84):

DRILLING METHOD HQ Core NORTHING 15145149 EASTING 1359752

LOGGED BY M. Erdmann CHECKED BY K. Magner DEPTH TO WATER (FT BGS) 92.5

NO	TES	Ba	ackf	illed	with	h ce	mer	nt gr	out										
GB				I			Ö				М		긢	[DISC	NTINC	\UIT\	/ LOC	3
K CORE L	2	(#) 120	RUN NO.	RUN LENGTH	REC (%)	RQD (%)	WEATHERING	HARDNESS	GRAPHIC LOG	MATERIAL DESCRIPTION Surface details: Snow/Mud	SAMPLE TYPE NUMBER	BLOW COUNTS (N VALUE)	WATER LEVEL	TYPE	DIP	SPACING	APERTURE	ROUGHNESS	INFILL
20 470	5	_							X	[Continuation from soil log at 20 feet] Blocky volcanic rock, moderately weathered, very			_	JT		VC		S	
SOREHOLE		-	1	3.5	79	0	ΜV	/ R1		weak rock, very close joint spacing, smooth joint surfaces			-	JT		VC		S	
 		25	2	2	88	0	MW	R1					_						
470 470	_	+	3	2	90	0	MW	/ D1	K				-	JT		VC		S	
70 HD	+	+	3		90	0	IVIV	KI					-	JT		VC		s	
	-]	4	3	100	55	MW	/ R1					-						
469	5 3	30	_						X				_	JT		vc		SR	
S LITHIUM NEVA		-	5	5	100	41	ΜV	/ R1		Basalt, black to brown, moderately weathered to slightly weathered, very weak to medium strong rock, very close to close joint spacing, slightly rough joint surfaces, clay and calcite alteration on joint surfaces			- - -						
86 469	0 3	35	_						X				_	JT		vc		SR	
385.000-1HACKER		40	6	5	100	43	ΜV	/ R1					- - -			•		517	
468	5	-	_						X				_	JT		VC		SR	
9 10:29 - Y:\PROJE	- - - - - - - - - - - - - - -	45	7	5	100	58	ΜV	/ R1					- - -						
723/19	_	+											-	JT		VC		SR	
US LAB.GD1 - 9	- - - - - 5	50	8	5	100	49	ΜV	/ R1					- - -						
467	5	+							K				_	JT		VC		SR	
CORE LOG - GIN	5	55	9	5	100	79	ΜV	/ R1					- -						
3 467 3 467	<u>U - </u>	+											_	JT		С		SR	CA
-GEOTECH R(4	10	5	100	65	SW	R3					-						
ż	6	60							$\square \!$							Contin			ب

PAGE 2 OF 2

NewFields

CLIENT Lithium Nevada PROJECT NAME The Pass Geotechnical Investigation **PROJECT NUMBER** 475.0385.000 PROJECT LOCATION Thacker Pass, Nevada DISCONTINUITY LOG SAMPLE TYPE NUMBER WEATHERING WATER LEVEL RUN LENGTH ELEVATION (ft) HARDNESS GRAPHIC LOG BLOW COUNTS (N VALUE) ROUGHNESS RQD (%) REC (%) RUN NO. **APERTURE** DEPTH (ft) SPACING NFIL. MATERIAL DESCRIPTION 딤 60 Basalt, black to brown, moderately weathered to С SR CA JT NF-GEOTECH ROCK CORE LOG-GINT STD US LAB GDT - 9/23/19 10:29 - Y/PROJECTS/0385.000-THACKER PASS LITHIUM NEVADAIL-GEOTECH DATA - ELKOIBOREHOLES/ROCK CORE LOGS-CC.GP, slightly weathered, very weak to medium strong rock, very close to close joint spacing, slightly rough joint surfaces, clay and calcite alteration on 5 100 87 SW R3 joint surfaces (continued) 65 4660 С SR CA JT 12 5 100 90 SW R3 70 4655 С SR CL JT 100 83 SW R3 13 5 75 4650 JT С SR CL 5 100 95 SW R3 14 80 4645 С SR CL JT 15 5 100 85 SW R3 85 4640 С SR CL 16 5 100 88 SW R2 90 4635 SR CL JT С <u>A</u> 17 5 100 90 SW R2 95 4630 CL С SR JT 5 100 86 SW R2 18 100 4625 Borehole terminated at 100.5'

	CLIE						1201	5.00								estiga	tion			
	PRO.									OMPLETED _3/13/19	PROJECT LOCAT					7F 1	25in			
-	DRIL									OWPLETED <u>3/13/19</u>	COORDINATES (V		5.9 11	HOL	.E 314	<u>4</u>	.23111			
	DRIL							216	<u> </u>		NORTHING 1			EVSI	LING	125	7/01			
ЗРJ									C	HECKED BY K. Magner					IING	133	1491			—
8.29.0	NOTE									nd cement grout	DEF III 10 WA		<u> </u>							_
3.19.0		 														DISC	NITIAC	UI IITV	/ 0(<u> </u>
EHOLE SOIL LOGS-CC	ELEVATION (ft)		RUN NO.	RUN LENGTH	REC (%)	RQD (%)	WEATHERING	HARDNESS	GRAPHIC LOG	MATERIAL DESCRI Surface details: Snow/Mud	PTION	SAMPLE TYPE NUMBER	BLOW COUNTS (N VALUE)	WATER LEVEL	TYPE	alo	SPACING	APERTURE	ROUGHNESS	INFILL
CTS\0385.000-THACKER PASS LITHIUM NEVADAIL-GEOTECH DATA - ELKO\BOREHOLES\BOREHOLE SOIL LOGS-CC.19.08.29.GPJ	4795	Top Soil / Root Zone (SM) silty SAND (SM), vifine to corase sand and rounded, nonplastic fine dry 10 10 (GW-GM) GRAVEL (GV fine to coarse grained, Nonplastic fines, very deal (SM) silty SAND (SM), viplasticty fines, very deal (SM) silty SAND (SM), viplastic								Top Soil / Root Zone (SM) silty SAND (SM), with grafine to corase sand and gravel, rounded, nonplastic fines, very	with sand and silt, 0", sub angular, rown, dry y, fine grained, low	SS \$PT-0 MC AL-0 SPT-0 MC AL-0	31-43-43 1 (86) 29-32-29 2 (61) 21-32-38 2 (70)	- - - - - - - - - - - - - - - - - - -						
ECTS/03	 											MC CAL-0	34-70/5cm	_						
ROJE		1	1					I	<u>6.4747</u>	Switched to rock core at 21.5'		₩. 1 <u>L</u> U	T.	1	-	1	<u> </u>	I		
NF-GEOTECH ROCK CORE LOG - GINT STD US LAB.GDT - 9/23/19 10:31 - Y:\PROJE																				

CLIENT Lithium Nevada PROJECT NAME Thoker Pass Geotechnical Investigation

PROJECT NUMBER 475.0385.000 PROJECT LOCATION Thacker Pass, Nevada

DATE STARTED 3/12/19 COMPLETED 3/12/19 GROUND ELEVATION 4798.9 ft HOLE SIZE 4.25 in

DRILLING CONTRACTOR HazTech COORDINATES (WGS84):

DRILLING METHOD HQ Core NORTHING 15148159 EASTING 1357491

LOGGED BY C. Coleman CHECKED BY K. Magner DEPTH TO WATER (FT BGS) 83.5

LOGG	SED E	3Y _	C. C	Cole	man	1		c	HECKED BY K. Magner DEPTH TO WA	TER (FT I	BGS) <u>83.5</u>							_
NOTE	S _B	ack	filled	witl	h be	ntor	nite (chips a	and cement grout	T								
			E			ō	S			出		Π̈́		DISC	NITNC	/TIUI		3
ELEVATION (ft)	DEPTH (ff)	RUN NO.	RUN LENGTH	REC (%)	RQD (%)	WEATHERING	HARDNESS	GRAPHIC LOG	MATERIAL DESCRIPTION Surface details: Snow/Mud	SAMPLE TYPE NUMBER	BLOW COUNTS (N VALUE)	WATER LEVEL	TYPE	DIP	SPACING	APERTURE	ROUGHNESS	INFILL
	20							\Rightarrow	[Continuation from soil log at 20 feet]								_	274
4775	25	1	4.5	33	0	HW	' R1		Blocky volcanic rock, highly weathered, weak rock, very close joint spacing, oxidization on joint surface			-	JT		VC VC			OX OX
		2	3	100	9	HW	'R1											
4770	30	3	2.5	100	13	HW	' R1					- -	JT		VC			OX OX
	 -	4	3.5	100	12	HW	' R1					- -						
4765	35											_ _	JT		VC			ОХ
4760	- - - - -	5	5	100	15	HW	'R1					- - -	JT		VC			ох
HOLOGO (4775) 4775 4775 4775 4775 4775 4775 4775 4775	40	6	6.5	100	0	HW	' R1					- - -						
4755	45								Basalt, black, moderately weathered to slightly			_ _	JT		VC			ОХ
		7	5	100	13	ΜW	/ R2		weathered, weak rock to medium strong rock, very close to close joint spacing, oxidization and calcite alteration on joint surface			- - -						
	50	p	E	100	10	HW	/ D1		Broken zone, clay gouge, highly weathered, very			- - -	JT		VC			CL
4745	55	8	5	100	10	ΠVV	רו		weak, potential fault			- - -	JT		VC			ох
4745 4740 4740	 	9	5	100	32	MW	/ R2		Basalt, black, moderately weathered to slightly weathered, weak rock to medium strong rock, very close to close joint spacing, oxidization and calcite alteration on joint surface			- - -						
<u> </u>	60							1 \rightarrow \rightarrow		1								

CLIENT Lithium Nevada PROJECT NAME The Pass Geotechnical Investigation **PROJECT NUMBER** 475.0385.000 PROJECT LOCATION Thacker Pass, Nevada DISCONTINUITY LOG SAMPLE TYPE NUMBER WEATHERING RUN LENGTH WATER LEVEL ELEVATION (ft) HARDNESS GRAPHIC LOG BLOW COUNTS (N VALUE) ROUGHNESS RQD (%) REC (%) RUN NO. **APERTURE** DEPTH (ft) SPACING INFILL MATERIAL DESCRIPTION 딤 60 Basalt, black, moderately weathered to slightly ΟX NF-GEOTECH ROCK CORE LOG-GINT STD US LAB GDT - 9/23/19 10:29 - YAPROJECTS/0385.000-THACKER PASS LITHIUM NEVADAIL-GEOTECH DATA - ELKOJBOREHOLES/ROCK CORE LOGS-CC.GP. weathered, weak rock to medium strong rock, very close to close joint spacing, oxidization and calcite 100 6 MW R2 alteration on joint surface (continued) 4735 65 JT С OX 100|100|SW|R3 70 С OX 100 99 SW R3 4725 75 JT С OX 13 5 100 99 SW R3 80 С OX JT 5 100 66 SW R3 Ā 85 JT С OX 100 74 SW R3 15 7 4710 90 VC CA 4705 16 4 100 31 SW R1 95 VC CA 100 73 SW R1 17 4 4700 Borehole terminated at 100

NF-GEOTECH ROCK CORE LOG - GINT STD US LAB GDT - 9/23/19 10:31 - Y-PROJECTS/0385.000-THACKER PASS LITHIUM NEVADAIL-GEOTECH DATA - ELKOIBOREHOLE SIBOREHOLE SOIL LOGS-CC.19.08.29 GP-

CLIENT Lithium Nevada PROJECT NAME Thacker Pass Geotechnical Investigation **PROJECT NUMBER** 475.0385.000 PROJECT LOCATION _ Thacker Pass, Nevada DATE STARTED 3/14/19 **COMPLETED** 3/15/19 GROUND ELEVATION 4792.4 ft HOLE SIZE 4.25in **DRILLING CONTRACTOR** HazTech **COORDINATES (WGS-84):** DRILLING METHOD HSA NORTHING 15149656 _ **EASTING** 1358695 DEPTH TO WATER (FT BGS) No free water encountered LOGGED BY M. Erdmann CHECKED BY K. Magner NOTES Backfilled with cement grout DISCONTINUITY LOG SAMPLE TYPE NUMBER WEATHERING RUN LENGTH **WATER LEVEL** ELEVATION (ft) HARDNESS GRAPHIC LOG BLOW COUNTS (N VALUE) ROUGHNESS RQD (%) REC (%) DEPTH (ft) RUN NO. **APERTURE** SPACING TYPE MATERIAL DESCRIPTION 딤 Surface details: Snow/Mud 0 Top Soil / Root Zone (SM) silty SAND (SM), with gravel, well graded, fine 4790 to coarse grained, sub angular, dense to very dense, light brown, dry SS 13-27-50 \$PT<u>-0</u>1 (77)MC 31-31-29 CAL-01 (60)4785 SS 20-28-18 \$PT-02 (46) 10 MC 22-44-27 CAL-02 (71) 4780 15 SS 5-2-SPT-03 50/2cm SS 9-23-4775 20 MC 33-70/4cm Switched to rock core at 21.5'

CLIENT Lithium Nevada PROJECT NAME The Pass Geotechnical Investigation PROJECT NUMBER 475.0385.000 PROJECT LOCATION Thacker Pass, Nevada **DATE STARTED** 3/14/19 **COMPLETED** 3/15/19 GROUND ELEVATION 4792.4 ft HOLE SIZE 4.25 in DRILLING CONTRACTOR HazTech **COORDINATES (WGS84):** DRILLING METHOD HQ Core NORTHING 15149656 ____ **EASTING** 1358695 LOGGED BY M. Erdmann CHECKED BY K. Magner DEPTH TO WATER (FT BGS) No free water encountered

NOTES Backfilled with cement grout

			_			נח				III			[DISC	NITNC	\UIT\	Y LOC	3
ELEVATION (ft)	DEPTH (ft)	RUN NO.	RUN LENGTH	REC (%)	RQD (%)	WEATHERING	HARDNESS	GRAPHIC LOG	MATERIAL DESCRIPTION Surface details: Snow/Mud	SAMPLE TYPE NUMBER	BLOW COUNTS (N VALUE)	WATER LEVEL	TYPE	DIP	SPACING	APERTURE	ROUGHNESS	INFILL
4770	 25	1	4	80	11	HW	R1		[Continuation from soil log at 21.5 feet] Blocky volcanic rock, brown, highly weathered, extremely weak rock, very close joint spacing, slightly rough joint surfaces, oxidization on joint surface			- - -	JT		VC		SR	
	30	2	5	100	0	HW	R1					- - -	JT		VC		SR	ox
4760 	 35	3	5	100	0	HW	R1		Basalt, black to brown, slightly weathered, weak rock, close joint spacing, slightly rough joint surface, calcite alteration on joint surface			- - -	JT		VC		SR	ox
4770 4765 4766 4760 4750 4745		4	5	100	15	SW	R2					- - - -	JT		С		SR	CA
4750 	 	5	5	100	63	SW	R2					- - -	JT		С		SR	CA
 4745 	45_	6	4.5	100	53	SW	R2					- - - -	JT		С		SR	CA
	50								Borehole terminated at 50'									

CLIENT Lithium Nevada PROJECT NAME Thacker Pass Geotechnical Investigation **PROJECT NUMBER** 475.0385.000 PROJECT LOCATION Thacker Pass, Nevada DATE STARTED 3/19/19 **COMPLETED** 3/19/19 GROUND ELEVATION 4756.3 ft HOLE SIZE 4.25in **DRILLING CONTRACTOR** HazTech **COORDINATES (WGS-84):** DRILLING METHOD HSA NORTHING 15147040 __ **EASTING** 1357703 NF-GEOTECH ROCK CORE LOG - GINT STD US LAB. GDT - 9/23/19 10:31 - Y:/PROJECTS/0385.000-THACKER PASS LITHIUM NEVADAIL-GEOTECH DATA - ELKOIBOREHOLES/BOREHOLE SOIL LOGS-CC.19:08.29;GP. LOGGED BY M. Walden CHECKED BY K. Magner DEPTH TO WATER (FT BGS) No free water encountered NOTES Backfilled with benontie chips and cement grout DISCONTINUITY LOG SAMPLE TYPE NUMBER WEATHERING RUN LENGTH **WATER LEVEL** ELEVATION (ft) HARDNESS GRAPHIC LOG BLOW COUNTS (N VALUE) ROUGHNESS RQD (%) REC (%) DEPTH (ft) RUN NO. **APERTURE** SPACING TYPE MATERIAL DESCRIPTION 딤 Surface details: Snow/Mud 0 Top Soil / Root Zone 4755 (SM) silty SAND (SM), some gravel, fine to coarse grained, well graded, sub angular, medium 4-8-11 SS plasticity fines, medium dense to very dense, light \$PT-0 (19)brown, dry MC 20-38-52 4750 AL-0 (90)SS 19-24-28 \$PT-02 (52) (SM) silty SAND (SM), fine to coarse grained, well graded, sub angular, very dense, brown, dry 10 70/6cm ■ MC 4745 CAL-0

Switched to rock core at 11.5'

CLIENT Lithium Nevada PROJECT NAME Thoker Pass Geotechnical Investigation

PROJECT NUMBER 475.0385.000 PROJECT LOCATION Thacker Pass, Nevada

DATE STARTED 3/3/19 COMPLETED 3/3/19 GROUND ELEVATION 4756.3 ft HOLE SIZE 4.25 in

DRILLING CONTRACTOR HazTech COORDINATES (WGS84):

DRILLING METHOD HQ Core NORTHING 15147040 EASTING 1357703

LOGGED BY M. Walden CHECKED BY K. Magner DEPTH TO WATER (FT BGS) No free water encountered

NOTES Backfilled with bentonite chips and cement grout

NOIE	S _B	ack	tilled	wit	h be	ntor	nite c	chips a	and cement grout									
			_			ני)				Ш		بے		DISC	NTIN	VUIT	/ LO	3
4745 4740 4735 4730 4725	DEPTH (ft)	RUN NO.	RUN LENGTH	REC (%)	RQD (%)	WEATHERING	HARDNESS	GRAPHIC LOG	MATERIAL DESCRIPTION Surface details: Snow/Mud	SAMPLE TYPE NUMBER	BLOW COUNTS (N VALUE)	WATER LEVEL	TYPE	DIP	SPACING	APERTURE	ROUGHNESS	INFILL
4745		1	4.5	100	13	HW	R1		[Continuation from soil log at 10.5 feet] Blocky volcanic rock, fine grained, reddish brown, highly weathered, very close joint spacing, oxidization on joint surface			- - -	- -		VC			OX
4740		2	5	100	0	HW	R1		Basalt, grey to black, moderately to slightly weathered, very weak to medium strong rock, very close to close joint spacing, oxidization and calcite alteration on joint surfaces			- - -	JT		VC			OX
4735	20											- - -	JT		VC			0>
 	25	3	6	100	0	HW	R1					- - -						
4730		4	4	100	0	MW	'R1					- - -	JT		VC			CA
4725	30	5	5	100	0	N 41 A	'R1					-	JT		VC			CA
 4720	35	, J	3	100		IVIVV	IX I					- - -	JT		VC			C/
 		6	5	90	0	MW	R1					- -						
4715	40	7	5	94	49	MW	R1					- - -	JT		VC			CA
4710	 _45_ 											- - -	JT		С			CA
 	50	8	5	100	54	MW	R3					- - -	JT		С			C.F

CLIENT Lithium Nevada PROJECT NAME The Pass Geotechnical Investigation **PROJECT NUMBER** 475.0385.000 PROJECT LOCATION Thacker Pass, Nevada DISCONTINUITY LOG SAMPLE TYPE NUMBER WEATHERING WATER LEVEL RUN LENGTH ELEVATION (ft) HARDNESS GRAPHIC LOG BLOW COUNTS (N VALUE) ROUGHNESS RQD (%) RUN NO. REC (%) **APERTURE** DEPTH (ft) SPACING MATERIAL DESCRIPTION 딤 4705 Basalt, grey to black, moderately to slightly NF-GEOTECH ROCK CORE LOG - GINT STD US LAB, GDT - 9/23/19 10:29 - Y/PROJECTS/0385.000-THACKER PASS LITHIUM NEVADAIL-GEOTECH DATA - ELKO/BOREHOLES/ROCK CORE LOGS-CC.GPJ weathered, very weak to medium strong rock, very close to close joint spacing, oxidization and calcite 5 100 48 MW R3 alteration on joint surfaces (continued) 55 JT С CA 4700 10 5 100 37 MW R3 60 JT CA 4695 100 77 SW R3 7 65 4690 JT VC OX 12 7.5 100 0 SW R1 4685 OX JT С 75 4680 13 | 5.5 | 90 | 52 | SW | R1 80 VC OX 4675 5 78 0 HW R1 85 OX 4670 5 100 38 MW R2 90 CL Clay gouge 90'-100' 4665 5 100 53 HW 16 CL 5 100 38 HW 17

NewFields

 CLIENT
 Lithium Nevada
 PROJECT NAME
 Thcker Pass Geotechnical Investigation

PROJECT NUMBER 475.0385.000 PROJECT LOCATION Thacker Pass, Nevada

														DISCO	NTINC	/UIT	/ LOC	3
99 ELEVATION (ft)		RUN NO.	RUN LENGTH	REC (%)	RQD (%)	WEATHERING	HARDNESS	GRAPHIC LOG	MATERIAL DESCRIPTION	SAMPLE TYPE NUMBER	BLOW COUNTS (N VALUE)	WATER LEVEL	TYPE	AIO	SPACING	APERTURE	ROUGHNESS	INFILL
	100	17	5	100	38	HW			Clay gouge 90'-100' (continued)			- - -						

Borehole terminated at 100'

NF-GEOTECH ROCK CORE LOG - GINT STD US LAB GDT - 9/23/19 10:29 - Y/PROJECTS/0385.000-THACKER PASS LITHIUM NEVADAIL-GEOTECH DATA - ELKO'BOREHOLES/ROCK CORE LOGS-CC.GPJ

	CLIE	NT L	.ithiu	ım N	eva	da					PROJECT NAME	Thacker F	Pass Geote	chnica	ıl Inve	estiga	tion			
	PRO.	IECT	NUN	/IBEI	R _4	75.0	0385	5.00			PROJECT LOCATI	ON Thac	ker Pass, N	levad	а					
	DATE	STA	RTE	D _3	3/6/1	9			_ c	OMPLETED <u>3/6/19</u>	GROUND ELEVAT	ION 4769	9.6 ft	HOL	E SIZ	E _4	.25in			
	DRIL	LING	CON	NTR/	ACTO	OR	Haz	zTe	ch		COORDINATES (V	VGS-84):								
	DRIL	LING	MET	THOI) <u> </u>	ISA					NORTHING _1	5147040		EAST	ING	135	7491			
29.GF										HECKED BY K. Magner	DEPTH TO WA	TER (FT E	BGS) No fr	ee wa	ter er	ncoun	tered			_
19.08	NOTE	ES _B	ackt	filled	with	ı be	nont	ie c	hips a	nd cement grout										
S-CC.	7			핃			Ď	S				H.		Ē	[DISC	IITNC	VUIT'		G
HOLE SOIL LOGS	ELEVATION (ft)	DEPTH (ft)	RUN NO.	RUN LENGTH	REC (%)	RQD (%)	WEATHERING	HARDNESS	GRAPHIC LOG	MATERIAL DESCRI Surface details: Snow/Mud	PTION	SAMPLE TYPE NUMBER	BLOW COUNTS (N VALUE)	WATER LEVEI	TYPE	DIP	SPACING	APERTURE	ROUGHNESS	INFILL
ORE		0							7	·									IĽ.	
NF-GEOTECH ROCK CORE LOG - GINT STD US LAB.GDT - 9/23/19 10:31 - Y:\PROJECTS\0385.000-THACKER PASS LITHIUM NEVADAIL-GEOTECH DATA - ELKO\BOREHOLES\BOREHOLE SOIL LOGS-CC.19.08.29.GPJ	4765 - 4760 - 4755 - 4750 - 4745	15 20 25								·	raded, sub angular y dense, light avel, some cobbles, d, well graded, sub	SS \$PT-0 MC AL-0 SS \$PT-0 MC AL-0	20-32-70 1 (102) 20-47-50 2 (97) 2 70 32-49-50 3 (99) 70/5cm							
GEOTECH ROCK CORE LOG - GINT STD US L																				

PROJECT NAME The Pass Geotechnical Investigation CLIENT Lithium Nevada PROJECT NUMBER 475.0385.000 PROJECT LOCATION _ Thacker Pass, Nevada **DATE STARTED** 3/6/19 **COMPLETED** 3/6/19 GROUND ELEVATION 4769.6 ft HOLE SIZE 4.25 in DRILLING CONTRACTOR HazTech **COORDINATES (WGS84):** DRILLING METHOD HQ Core NORTHING 15147040 ____ **EASTING** 1357491 LOGGED BY M. Walden CHECKED BY K. Magner DEPTH TO WATER (FT BGS) No free water encountered

NOTES Backfilled with bentonite chips and cement grout

2						۲۵.								DISCO	NTIN	/UIT\	/ LOC	}
CORE LOGS-CC.G ELEVATION (ft)	DEPTH (ft)	RUN NO.	RUN LENGTH	REC (%)	RQD (%)	WEATHERING	HARDNESS	GRAPHIC LOG	MATERIAL DESCRIPTION Surface details: Snow/Mud	SAMPLE TYPE NUMBER	BLOW COUNTS (N VALUE)	WATER LEVEL	TYPE	DIP	SPACING	APERTURE	ROUGHNESS	INFILL
TRO/BOREHOLES/ROCI	30	1	5	40	12	HW	R1		[Continuation from soil log at 25.5 feet] Blocky volcanic rock, red to brown, highly weathered, very weak rock, very close joint spacing, oxidization on joint surface			-	JT		VC			OX
All-GEOTECH DATA - 6	35	2	5	52	13	HW	R1		Basalt, grey to brown, highly weathered, very weak rock, very close joint spacing, oxidization on joint surface			-	JT		VC			OX
=VAD									Borehole terminated at 35.5'	•	•							
NF-GEOTECH ROCK CORE LOG - GINT STD US LAB.GDT - 9/23/19 10:29 - Y/PROJECTS/0385,000-THACKER PASS LITHIUM NEVADAIL-GEOTECH DATA - ELKOIBOREHOLES/ROCK CORE LOGS-CC.GPJ ELEVATION CORE LOG - GINT STD US LAB.GDT - 9/23/19 10:29 - Y/PROJECTS/0385,000-THACKER PASS LITHIUM NEVADAIL-GEOTECH DATA - ELKOIBOREHOLES/ROCK CORE LOGS-CC.GPJ ELEVATION (#)																		

CLIENT Lithium Nevada **PROJECT NUMBER** 475.0385.000 PROJECT LOCATION _ Thacker Pass, Nevada DATE STARTED 3/14/19 **COMPLETED** 3/14/19 GROUND ELEVATION 4763.6 ft HOLE SIZE 4.25in COORDINATES (WGS-84): **DRILLING CONTRACTOR** HazTech DRILLING METHOD HSA NORTHING 15147580 **_ EASTING** 1358013 NF-GEOTECH ROCK CORE LOG - GINT STD US LAB GDT - 9/23/19 10:31 - Y-PROJECTS/0385.000-THACKER PASS LITHIUM NEVADAIL-GEOTECH DATA - ELKOIBOREHOLE SIBOREHOLE SOIL LOGS-CC.19.08.29 GP-LOGGED BY M. Erdmann CHECKED BY K. Magner DEPTH TO WATER (FT BGS) No free water encountered NOTES Backfilled with cement grout **DISCONTINUITY LOG** SAMPLE TYPE NUMBER WEATHERING **WATER LEVEL** RUN LENGTH ELEVATION (ft) HARDNESS GRAPHIC LOG BLOW COUNTS (N VALUE) ROUGHNESS RQD (%) REC (%) DEPTH (ft) RUN NO. **APERTURE** SPACING TYPE MATERIAL DESCRIPTION 딤 Surface details: Snow/Mud 0 Top Soil / Rot Zone (SM) silty SAND (SM), with gravel, fine to coarse grained, well graded, sub angular, dense, light brown, dry 25-41-47 SS 4760 \$PT-0∤ (88)26-60-70/2cm SS 13-30-30 \$PT-02 (60) 4755 (SM) silty SAND (SM), with gravel, fine to corase grained, well graded, sub angular, very dense, 10 brown, dry MC 30-65-66 AL-02 (131)4750 SS 16-44-\$PT-03 50/4cm 4745 MC 70/4cm CAL-0 4740 25 9-34-23 SS \$PT-04 (57)4735 MC 16-70/1cm CAL-0 4730 Borehole terminated at 35'

	CLIEN	41 <u>L</u>	ıııııu	III IN	leva	ua					PROJECT NAME _	macker F	ass Geole	CHILICA	II IIIVE	estiga	lion			
	PROJ	ECT	NUN	/IBEI	R _4	175.0	038	5.00	0		PROJECT LOCATION	ON Thac	ker Pass, N	levada	a					
	DATE	STA	RTE	D_	3/11	/19			c	COMPLETED _3/11/19	GROUND ELEVATI	ON 4784	1.6 ft	HOL	E SIZ	E 4.	25in			
	DRILL																			
	DRILL										NORTHING 15			FAST	ING	1357	7539			
ЗРЈ	LOGG									CHECKED BY K. Magner										
3.29.0	NOTE									T. Magnor	DEI III IO WA	(1 1 6	<u> </u>	oc wa	COI CI	ioouii	coreu			_
.19.08			JUNI	cu	vvill	, 00		gr	Jul			1				21001	> I = ' ·		/ 1 2 2	_
3-CC.				핕			Ď	S				出	_	Ē		DISCO	אר נון	\UIT\		ز
NF-GEOTECH ROCK CORE LOG-GINT STD US LAB GDT - 9/23/19 10:31 - Y?PROJECTS/0385.000-THACKER PASS LITHIUM NEVADAIL-GEOTECH DATA - ELKO\BOREHOLES\BOREHOLES SOIL LOGS-CC.19.08.29.GPJ	ELEVATION (ft)	DEPTH (ft)	RUN NO.	RUN LENGTH	REC (%)	RQD (%)	WEATHERING	HARDNESS	GRAPHIC LOG	MATERIAL DESCR	IDTION	SAMPLE TYPE NUMBER	BLOW COUNTS (N VALUE)	WATER LEVEI	ш	_	NG	APERTURE	ROUGHNESS	7
SOII	LEV, (f	DEF (1	NN	Z	REC	RQE	AT	ARD A	J. L	WIATERIAL DESCR	II HON	MPL VUN	BLO SOU N VA	TER	TYPE	OIP	SPACING	ERT	ΕĐ	INFILL
HOLE	Ш		_	S.			WE	主		Surface details: Snow/Mud		SAI	2)	WA			SF	APE	300	_
ORE		0							7, 1 ^N . 7										_	
ES\B										(SM) silty SAND (SM), some g	ravel, fine to corase			-						
EHOL										grained, MPS 1.5", sub angula medium dense to dense, light l	r, nonplastic fines,	1 00	3-4-9	_						
BOR										: modium dense to dense, light i	orown, ary	SS \$PT-0		_						
.∃LKO	4780	5										4 110	45.55							
TA - E												MC CAL-0	15-55- 1 70/1cm	_						
HDA	_													_						
ЭТЕС												SPT-0	<u>50/3cm</u> 2	-						
L-GE	4775	10												_						
'ADA												MC CAL-0	70/2cm	_						
NE							<u> </u>		<u>Estate</u>	Switched to rock core at 11.5'		Q/IL O	<u> </u>							
₽																				
Ξ																				
PASS																				
KER																				
HAC																				
L-000																				
0385.																				
CTS																				
ROJE																				
Υ:\P																				
0:31 -																				
1191																				
- 9/23																				
GDT																				
LAB.																				
D US																				
IT ST																				
- GIN																				
LOG																				
ORE																				
CKC																				
H RO																				
TEC																				
-GEC																				
Ż																				

PROJECT NAME The Pass Geotechnical Investigation CLIENT Lithium Nevada PROJECT NUMBER 475.0385.000 PROJECT LOCATION Thacker Pass, Nevada **DATE STARTED** <u>3/11/19</u> **COMPLETED** <u>3/11/19</u> GROUND ELEVATION 4784.6 ft HOLE SIZE 4.25 in DRILLING CONTRACTOR HazTech **COORDINATES (WGS84):** DRILLING METHOD HQ Core NORTHING <u>15147740</u> ____ **EASTING** 1357539 LOGGED BY C. Coleman CHECKED BY K. Magner DEPTH TO WATER (FT BGS) No free water encountered

NOTES Backfilled with cement grout

	_									1				Nec.	ALTIA	U UTV	/ LOC	_
ELEVATION (ft)	DEPTH (ft)	RUN NO.	RUN LENGTH	REC (%)	RQD (%)	WEATHERING	HARDNESS	GRAPHIC LOG	MATERIAL DESCRIPTION	SAMPLE TYPE NUMBER	BLOW COUNTS (N VALUE)	WATER LEVEL	TYPE	alo Bisco	SPACING	APERTURE 5	ROUGHNESS	INFILL
			Ж			>			Surface details: Snow/Mud	<i>'</i> S		8				Ą	RO	
- - - -	 	1	3	100	10	HW	R3		[Continuation from soil log at 10.5 feet] Blocky volcanic rock, brown, moderately to highly weathered, medium strong rock, very close to close joint spacing, oxidization on joint surface			-	JT		VC			ox ox
4770	_ 15_	2	3	100	0	HW	R3		, 1 3,			-						
4765	 20	3	4	100	0	HW	R3					- - -	JT		VC			OX
 		4	4	88	31	HW	R3					-	JT		VC			OX
4760	25	_										-	JT		VC			ОХ
 	 	5	7	100	0	HW	R3					-						
4755	30_	_										-	JT		VC			OX
4750	35	6	5	100	8	HW	R3					-						
								$\triangleright \bigcirc$	Borehole terminated at 36'									

CLIENT Lithium Nevada PROJECT NAME Thacker Pass Geotechnical Investigation **PROJECT NUMBER** 475.0385.000 PROJECT LOCATION Thacker Pass, Nevada DATE STARTED 3/18/19 **COMPLETED** 3/19/19 GROUND ELEVATION 4717.5 ft HOLE SIZE 4.25in DRILLING CONTRACTOR HazTech COORDINATES (WGS-84): DRILLING METHOD HSA **NORTHING** 15147611 _ EASTING 1357942 NF-GEOTECH ROCK CORE LOG - GINT STD US LAB GDT - 9/23/19 10:31 - Y-PROJECTS/0385.000-THACKER PASS LITHIUM NEVADAIL-GEOTECH DATA - ELKOIBOREHOLE SIBOREHOLE SOIL LOGS-CC.19.08.29 GP-LOGGED BY C. Coleman CHECKED BY K. Magner DEPTH TO WATER (FT BGS) No free water encountered NOTES Backfilled with cuttings and cement grout **DISCONTINUITY LOG** WEATHERING SAMPLE TYPE NUMBER **WATER LEVEL** RUN LENGTH ELEVATION (ft) HARDNESS GRAPHIC LOG BLOW COUNTS (N VALUE) ROUGHNESS RQD (%) REC (%) DEPTH (ft) RUN NO. **APERTURE** SPACING TYPE MATERIAL DESCRIPTION 딤 Surface details: Snow/Mud 0 Top Soil / Root Zone (SM) silty SAND (SM), with gravel, fine to coarse sand and gravel, MPS 1.0", sub angular, nonplastic 4715 fines, dense, light brown, dry SS 7-15-31 \\$PT-01 (46)(GW-GM) GRAVEL (GW-GM), with sand and s fine to coarse sand and gravel, MPS 3.0", sub angular, nonplastic to high plasticitiy fines, very (GW-GM) GRAVEL (GW-GM), with sand and silt, MC 30-45-48 CAL-0 (93)angular, nonplastic to high plasticitiy fines, very 4710 dense, brown, dry 21-27-SS \$PT-02 50/4cm 10 43-70/5cm 4705 15 SS 22-27-34 \$PT-03 (61) 4700 (CL) CLAY (CL), with sand, trace gravel, fine grained sand, fine to coarse gravel, MPS 1.5", sub angular, medium plasticity fines, hard, brown, damp 20 14-18-24 (42)4695 25 SS 28-50/4cm \$PT-0 (SW-SC) SAND (SW-SC), some clay and gravel, fine to coarse sand and gravel, low plasticty fines, 4690 very dense, brown, dry 30 MC 68-70/3cm Borehole terminated at 31.5'

CLIENT Lithium Nevada **PROJECT NUMBER** 475.0385.000 PROJECT LOCATION _ Thacker Pass, Nevada DATE STARTED 3/16/19 **COMPLETED** 3/16/19 GROUND ELEVATION 4740.2 ft HOLE SIZE 4.25in **DRILLING CONTRACTOR** HazTech **COORDINATES (WGS-84):** DRILLING METHOD HSA NORTHING <u>15148367</u> _ **EASTING** 1359448 ELKO/BOREHOLES/BOREHOLE SOIL LOGS-CC.19.08.29.GP. LOGGED BY M. Erdmann CHECKED BY K. Magner DEPTH TO WATER (FT BGS) No free water encountered NOTES Backfilled with cement grout **DISCONTINUITY LOG** SAMPLE TYPE NUMBER WEATHERING RUN LENGTH **WATER LEVEL** ELEVATION (ft) HARDNESS GRAPHIC LOG BLOW COUNTS (N VALUE) ROUGHNESS RQD (%) REC (%) DEPTH (ft) RUN NO. **APERTURE** SPACING TYPE MATERIAL DESCRIPTION 딤 Surface details: Snow/Mud 0 Top Soil / Root Zone (SM) silty SAND (SM), with gravel, well graded, fine to coarse grained, sub angular, very dense, brown, dry SS 12-36-\$PT-01 50/3cm 4735 MC CAL-0 62-70/6cm NF-GEOTECH ROCK CORE LOG - GINT STD US LAB.GDT - 9/23/19 10:31 - Y:\PROJECTS\0385.000-THACKER PASS LITHIUM NEVADA\L-GEOTECH DATA -SS 20-41-\$PT-02 50/4cm 4730 10 MC 59-70/5cm CAL-02 15 4725 SS 20-30-\$PT-03 50/3cm 20 4720 MC 35-41-AL-03 70/5cm 25 4715 SS 12-35-\$PT-04 50/5cm 30 4710 MC 28-70/5cm Switched to rock core at 31.5'

CLIENT Lithium Nevada PROJECT NUMBER _475.0385.000 PROJECT LOCATION Thacker Pass, Nevada **DATE STARTED** <u>3/16/19</u> **COMPLETED** <u>3/16/19</u> GROUND ELEVATION 4740.2 ft HOLE SIZE 4.25 in DRILLING CONTRACTOR HazTech **COORDINATES (WGS84):** DRILLING METHOD HQ Core NORTHING 15148367 _____ **EASTING** _1357448 LOGGED BY M. Erdmann CHECKED BY K. Magner DEPTH TO WATER (FT BGS) No free water encountered

NOTES Backfilled with cement grout

			I			ഗ				Щ				DISC	NTIN	VUITY		3
Ш	OEPTH (ft)	RUN NO.	RUN LENGTH	REC (%)	RQD (%)	WEATHERING	HARDNESS	GRAPHIC LOG	MATERIAL DESCRIPTION Surface details: Snow/Mud	SAMPLE TYPE NUMBER	BLOW COUNTS (N VALUE)	WATER LEVEL	TYPE	DIP	SPACING	APERTURE	ROUGHNESS	INFILL
<u>4710</u> 4705	 35	1	5	100	8	HW	'R1		[Continuation from soil log at 30 feet] Basalt, black, highly to moderately weathered, very weak to medium strong rock, very close joint spacing, smooth joint surface, calcite alteration on joint surface			- - -	JT		VC		S	
<u>4703</u> - – - –	 	2	5	100	24	HW	'R1					- - -	JT		VC		S	
4700	40 	3	5	100	53	MW	'R2					- - -	JT		VC		S	
4695 - - -	45 - 	4	5	100	59	sw	R3					- - -	JT		VC		S	CA
	50								Borehole terminated at 50'			-						

CLIENT Lithium Nevada PROJECT NAME Thacker Pass Geotechnical Investigation **PROJECT NUMBER** 475.0385.000 PROJECT LOCATION Thacker Pass, Nevada DATE STARTED 3/25/19 **COMPLETED** 3/26/19 GROUND ELEVATION 4689.8 ft HOLE SIZE 4.25in **DRILLING CONTRACTOR** HazTech **COORDINATES (WGS-84):** DRILLING METHOD HSA **NORTHING** <u>15147664</u> _ **EASTING** 1360891 ELKO/BOREHOLES/BOREHOLE SOIL LOGS-CC.19.08.29.GP. LOGGED BY C. Coleman CHECKED BY K. Magner DEPTH TO WATER (FT BGS) No free water encountered NOTES Backfilled with benontie chips and cement grout DISCONTINUITY LOG SAMPLE TYPE NUMBER WEATHERING RUN LENGTH **WATER LEVEL** ELEVATION (ft) HARDNESS GRAPHIC LOG BLOW COUNTS (N VALUE) ROUGHNESS RQD (%) REC (%) DEPTH (ft) RUN NO. **APERTURE** SPACING TYPE MATERIAL DESCRIPTION 딤 Surface details: Snow/Mud 0 Top Soil / Root Zone (GW-GM) GRAVEL (GW-GM), with silt and sand, fine to coarse grained, MPS 4.0", sub angular, medium plasticity fines, very dense, dry, brown SS 43-50/1cm \$PT-0 4685 MC 56-61-56 NF-GEOTECH ROCK CORE LOG - GINT STD US LAB.GDT - 9/23/19 10:31 - Y∴PROJECTS/0385,000-THACKER PASS LITHIUM NEVADA\L-GEOTECH DATA -CAL-0 (117)16-50-SS \$PT-02 50/5cm 4680 10 MC 38-70/4cm CAL-02 4675 SS 21-50/4cm \$PT-0 4670 20 70/4cm MC CAL-0 (SC) clayey SAND (SC), fine grained sand, low to medium plasticity fines, very dense, brown, moist 4665 25 SS 18-36-44 \$PT-04 (80)4660 30 MC 23-36-54 Borehole terminated at 31.5'

	CLIE	NT L	ithiu	ım N	leva	da					PROJECT NAME	Thacker F	Pass Geote	chnica	al Inve	estiga	tion			
	PRO.	IECT	NUN	/IBEI	R _4	75.0	385	5.000)		PROJECT LOCATION	ON Thac	ker Pass, N	levad	а					
	DATE	STA	RTE	D _	3/19/	/19			_ c	OMPLETED <u>3/19/19</u>	GROUND ELEVATI	ON _4769	9.9 ft	HOL	E SIZ	E 4.	25in			
	DRIL	LING	CON	NTR/	ACT	OR	На	zTec	ch		COORDINATES (W	(GS-84):								
	DRIL	LING	MET	ГНОІ	⊃ _⊦	ISA					NORTHING 15	5147036		EAS1	ING	1357	7330			
9.GPJ	LOG	SED E	3Y _	M. V	Vald	en			_ c	HECKED BY K. Magner	DEPTH TO WA	TER (FT E	BGS) No fr	ee wa	ter er	ncoun	tered			_
.08.2	NOTE	S _E	ackt	filled	with	n be	nont	ie cł	nips a	nd cement grout										
CC.19				_			ניז					ш			[DISCO	IITNC	\UIT\	/ LOC	3
HOLE SOIL LOGS-C	ELEVATION (ft)	DEPTH (ft)	RUN NO.	RUN LENGTH	REC (%)	RQD (%)	WEATHERING	HARDNESS	GRAPHIC LOG	MATERIAL DESCRIF	PTION	SAMPLE TYPE NUMBER	BLOW COUNTS (N VALUE)	WATER LEVEL	TYPE	DIP	SPACING	APERTURE	ROUGHNESS	INFILL
30RE		0							<u>'' '' '' ''</u>	Top Soil / Root Zone									_	
NF-GEOTECH ROCK CORE LOG - GINT STD US LAB.GDT - 9/23/19 10:31 - Y:/PROJECTS\0385.000-THACKER PASS LITHIUM NEVADAIL-GEOTECH DATA - ELKO\BOREHOLES\BOREHOLE SOIL LOGS-CC.19.08.29.GPJ	4765 	10 15								Top Soil / Root Zone (SM) silty SAND (SM), some grained, well grade, sub angula very dense, light brown, dry Switched to rock core at 16.5'	ravel, fine to coarse r, nonplastic fines,	MC CAL-0	14-25-36 1 (61) 25-43- 2 50/3cm 50-70/5cm							

PROJECT NAME The Pass Geotechnical Investigation CLIENT Lithium Nevada PROJECT NUMBER 475.0385.000 PROJECT LOCATION _ Thacker Pass, Nevada **DATE STARTED** 3/3/19 **COMPLETED** 3/3/19 GROUND ELEVATION 4769.9 ft HOLE SIZE 4.25 in DRILLING CONTRACTOR HazTech **COORDINATES (WGS84):** DRILLING METHOD HQ Core NORTHING 15147036 ____ **EASTING** 1357330 LOGGED BY M. Walden CHECKED BY K. Magner DEPTH TO WATER (FT BGS) No free water encountered

NOTES Backfilled with bentonite chips and cement grout

	111				DISC	IITNC	NUIT	Y LOC	3
RUN LENGTH RUN LENGTH (#) (#) (#) (#) (#) (#) (#) RUN LENGTH (#) (#) RUN NO. RUN LENGTH (#) (#) MATERIAL DESCRIPTION Surface details: Snow/Mud	SAMPLE TYPE NUMBER	BLOW COUNTS (N VALUE)	WATER LEVEL	TYPE	DIP	SPACING	APERTURE	ROUGHNESS	INFILL
[Continuation from soil log at 15 feet] Basalt, dark grey, highly to moderately weathered, weak to medium strong rock, very close to close joint spacing, calcite alteration and oxidization on joint surfaces HW R1 4750 20 1 9.5 100 16 to MW R3			-	- - - - -		VC			CA
4745 25 HW R1			- -	JT		VC			CA
4740 30 2 6 90 13 to to MW R3			-	-					
MATERIAL DESCRIPTION Surface details: Snow/Mud Continuation from soil log at 15 feet) Basalt, dark grey, highly to moderately weathered, weak to medium strong rock, very close to close oint spacing, calcite alteration and oxidization on joint surfaces 4750 20 1 9.5 100 16 MW R3 Borehole terminated at 30.5' Borehole terminated at 30.5'									

	CLIE	NT L	ithiu	ım N	leva	da					PROJECT NAME	Thacker F	Pass Geote	chnica	ıl Inve	estiga	tion			
	PROJ	ECT	NUN	ИВЕ	R _4	175.0	0385	5.000	0		PROJECT LOCATI	ON Thac	ker Pass, I	Nevad	а					
	DATE	STA	RTE	D _	3/5/	19			c	COMPLETED 3/5/19	GROUND ELEVAT	ION <u>4779</u>	9.9 ft	HOL	E SIZ	ZE 4.	25in			
	DRILI	ING	CON	NTR	ACT	OR	Ha	zTe	ch		COORDINATES (W	VGS-84):								
	DRILI	ING	MET	ГНО	D H	HSA					NORTHING 1	5147424		EAST	ING	1357	7355			
.GPJ	LOGO	SED I	3Y _	M. V	Valc	len			c	CHECKED BY K. Magner										
08.29	NOTE	S_E	Back	filled	with	h be	nont	tie cl	hips a	and cement grout										
C.19.												T		Ι.	[DISCO	ITNC	YUITY	/ LO	
EHOLE SOIL LOGS-C	ELEVATION (ft)	O DEPTH (ft)	RUN NO.	RUN LENGTH	REC (%)	RQD (%)	WEATHERING	HARDNESS	GRAPHIC LOG	MATERIAL DESCRI Surface details: Snow/Mud	PTION	SAMPLE TYPE NUMBER	BLOW COUNTS (N VALUE)	WATER LEVEL	TYPE	DIP	SPACING	APERTURE	ROUGHNESS	INFILL
ES\BOR	_								1. 7.1. 7.1.	Top Soil / Root Zone				-	-					
ATA - ELKO\BOREHOL		 - 5								(CL) sandy lean CLAY (CL), fin plasticity, stiff to hard, brown, o	e grained, medium lry	SS \$PT-0	9-26-	- - - -						
NEVADA/L-GEOTECH D	 4770 	10								(SM) silty SAND (SM), with gra grained, well graded, sub angu brown, dry	avel, fine to coarse lar to angular, light	SS SPT-0; MC CAL-0;	70/3cm	- - - - -						
HIUM		ļ -												_						
NF-GEOTECH ROCK CORE LOG-GINT STD US LAB.GDT-9/23/19 10:31 - Y:\PROJECTS\0385.000-THACKER PASS LITHIUM NEVADAIL-GEOTECH DATA - ELKO\BOREHOLES\BOREHOLES SOIL LOGS-CC.19.08.29.GPJ										Switched to rock core at 13.5'										

PROJECT NAME The Pass Geotechnical Investigation CLIENT Lithium Nevada PROJECT NUMBER 475.0385.000 PROJECT LOCATION _ Thacker Pass, Nevada **DATE STARTED** 3/5/19 **COMPLETED** 3/5/19 GROUND ELEVATION 4779.9 ft HOLE SIZE 4.25 in DRILLING CONTRACTOR HazTech **COORDINATES (WGS84):** DRILLING METHOD HQ Core NORTHING 15147424 ____ EASTING 1357355 LOGGED BY M. Walden CHECKED BY K. Magner DEPTH TO WATER (FT BGS) No free water encountered

NOTES Backfilled with bentonite chips and cement grout

5 _			I			G				й		닒	[DISCO	IITNC	VUITY		3
ELEVATION (ft)	DEPTH (ft)	RUN NO.	RUN LENGTH	REC (%)	RQD (%)	WEATHERING	HARDNESS	GRAPHIC LOG	MATERIAL DESCRIPTION Surface details: Snow/Mud	SAMPLE TYPE NUMBER	BLOW COUNTS (N VALUE)	WATER LEVEL	TYPE	DIP	SPACING	APERTURE	ROUGHNESS	INFILL
4765		1	5	100	0	HW	R1		[Continuation from soil log at 13.5 feet] Blocky volcanic rock, reddish brown, highly to moderately weathered, very weak rock, very close joint spacing, oxidization on joint surfaces			- - - -	JT		VC			ΟX
4760		2	1.5	56	0	HW	R1					- -	JT		vc vc			ox ox
	 	3	5	20	0	HW	R1					- - -						
4755	 _ 25 	4	1.5	100	0	MW	R3					_ 	JT		С			ОХ
		5	3.5	100	27	MW	R3		Basalt, grey, moderately weathered, medium strong rock, close joint spacing, oxidization on joint surface			- -	JT		С			ox
NO(((1))) - 4765 4760 4755 4750																		

CLIENT Lithium Nevada	PROJECT NAME	Thacker P	ass Geote	chnica	al Inve	stiga	tion			
PROJECT NUMBER 475.0385.000	PROJECT LOCATION	ON Thac	ker Pass, I	Nevad	а					
DATE STARTED 3/2/19 COMPLETED 3/2/19	GROUND ELEVATION					E _4.	 25in			
DRILLING CONTRACTOR HazTech	COORDINATES (W	GS-84):								
DRILLING METHOD HSA	NORTHING 15			EAST	ING	1357	7330			
LOGGED BY M. Walden CHECKED BY K. Magner										
NOTES _Backfilled with benontie chips and cement grout										
					Г	DISCO	NTIN	JUITY	/ L O G	-
		SAMPLE TYPE NUMBER	w îii	/EL		71000				
ELEVATION (ft) (ft) (ft) (ft) (RUN LENGTH (RUN LENGTH (ROD (%) (ROD (%) (ROD (%) (ROD (WEATHERING (RAPHIC (LOG (ROBERING (ROBE	DTION	ET	BLOW COUNTS (N VALUE)	Ē	111		NG	JRE	ZES	_
	PTION	IPLI IUM	BL(VoU	ER	TYPE	DIP	SPACING	RTI	GH G	INFILL
		SAN	02	WATER LEVEL	-		SP	APERTURE	ROUGHNESS	
Surface details: Snow/Mud									œ	
(SM) silty SAND (SM), some gi	avel fine to coarse	-		-	-					
g	ar, medium dense			_	1					
4785 to dense, light brown, dry		SS SPT-0	8-12-12 (24)	-	1					
		4	(= .)	-	1					
		MC	6-9-13							
		CAL-01	(22)	_						
[4780]		√ ss	9-12-17	-						
		∕\$PT-02	2 (29)	-	-					
		MC	9-12-13		-					
(CL) sandy CLAY (CL), fine gra	ined, high plasticity,	CAL-02	2 (25)	_	-					
				-	1					
4775				-	1					
				_						
(SM) silty SAND (SM), trace gr	avel and clay, fine to	SS SPT-03	19-24-36 3 (60)							
coarse grained, well graded, ve	ry derise, brown,	/ AP1-00	(60)	-						
<u> </u>				_						
				-	-					
20	silt and gravel	MC MC	39-70/4cm	_	1					
입는 - 기	es, very dense,	¢AL-0	3	-	1					
2 d fbrown, dry 2 4765 d f fbrown, dry				-	1					
2 4 / 105 - 				-						
		SPT-0	49-50/3cm I	-						
		1		_	-					
<u> </u>				-	-					
				-	-					
		MC MC	70/5cm	_	1					
Borehole terminated at 31.5'		¢AL-0	ļ <u> </u>	-						
borenole terminated at 31.5										
3										

PAGE 1 OF 1

CLIENT Lithium Nevada PROJECT NAME Thacker Pass Geotechnical Investigation **PROJECT NUMBER** 475.0385.000 PROJECT LOCATION Thacker Pass, Nevada DATE STARTED 3/1/19 COMPLETED 3/2/19 GROUND ELEVATION 4804.6 ft HOLE SIZE 4.25in COORDINATES (WGS-84): **DRILLING CONTRACTOR** HazTech DRILLING METHOD HSA NORTHING 15147424 _ **EASTING** 1356823 ELKO/BOREHOLES/BOREHOLE SOIL LOGS-CC.19.08.29.GP. LOGGED BY M. Walden CHECKED BY K. Magner DEPTH TO WATER (FT BGS) No free water encountered NOTES Backfilled with cement grout **DISCONTINUITY LOG** SAMPLE TYPE NUMBER WEATHERING **WATER LEVEL** RUN LENGTH ELEVATION (ft) HARDNESS GRAPHIC LOG BLOW COUNTS (N VALUE) ROUGHNESS REC (%) RQD (%) DEPTH (ft) RUN NO. **APERTURE** SPACING TYPE MATERIAL DESCRIPTION 딤 Surface details: Snow/Mud 0 Top Soil / Root Zone (SM) silty SAND (SM), with gravel, trace cobbles, sub angular, MPS 2.0", nonplasitc fines, medium dense, light brown, dry SS | 13-17-19 \\$PT-01 (36)4800 13-19-15 GEOTECH ROCK CORE LOG - GINT STD US LAB.GDT - 9/23/19 10:32 - Y./PROJECTS/0385.000-THACKER PASS LITHIUM NEVADAIL-GEOTECH DATA -AL-0 (34)SS 9-10-11 \$PT-02 (21)4795 10 MC 6-16-20 (MH) SILT (MH), with sand, fine grained, high CAL-02 (36)plasticty, very stiff, brown, dry 4790 (SM) silty SAND (SM), fine to coarse grained, MPS SS | 12-28-50 \$PT-03 (78) 1.0", sub angular, nonplasite fines, very dense, brown, dry 4785 20 MC 18-38-70 AL-03 (108) 4780 25 SS 28-43-50 \$PT-04 (93)4775 30 MC 70/4cm CAL-0 4770 √ ss (SM) silty SAND (SM), with gravel, trace clay, fine 30-36-∑\$PT-<u>0\$_50/3cm</u> to coarse grained, well graded, sub angular, brown, dry MC 50/2cm CAL-0

NewFields

	CLIE		:41-:-	N							DDO IFCT NAME	The advant	D Ct-	_ - - - - - - - - - - - - -		4!	4:			
	PRO						038 <i>i</i>	5.00			PROJECT NAME _ PROJECT LOCATION					estiga	ition			
	DATE						0000			OMPLETED 3/2/19	GROUND ELEVATI					ZE 4	.25in			
	DRIL									<u> </u>	COORDINATES (W									
	DRIL										NORTHING 15			EAST	ING	1356	6938			
.GPJ	LOG	GED I	3Y _	M. V	Valo	len			c	HECKED BY K. Magner	DEPTH TO WA	TER (FT I								
.08.29	NOTE	S_E	Backt	filled	with	n be	non	tie c	hips a	nd cement grout										
CC.19				_			ניז					ш		_	[DISC	IITNO	TIUN	/ LO	3
REHOLE SOIL LOGS-	ELEVATION (ft)	O DEPTH (ft)	RUN NO.	RUN LENGTH	REC (%)	RQD (%)	WEATHERING	HARDNESS	GRAPHIC LOG	MATERIAL DESCRI Surface details: Snow/Mud	PTION	SAMPLE TYPE NUMBER	BLOW COUNTS (N VALUE)	WATER LEVEI	TYPE	OIP	SPACING	APERTURE	ROUGHNESS	INFILL
S/BOF		ļ -							12. 14. 12. 12.	Top Soil / Root Zone				_						
A - ELKO\BOREHOLE	4795 	 - 5								(SM) silty SAND (SM), some g grained, well graded, sub angul to dense, light brown, dry	ravel, fine to coarse ar, medium dense	SS \$PT-0	18-23-24	_ _ 						
L-GEOTECH DAT	4790	 - 10	-									SS \$PT-0	7-12-13	- - -						
S LITHIUM NEVADA	 4785 	† - + -										MC :AL-0	25-42-53 2 (95)	- - - -						
5.000-THACKER PAS	 4780 	15										SS \$PT-0	12-28-42 3 (70)	- - - -						
\$\038	-	20	L							(SW) SAND (SW), with gravel,	some silt fine to	MC	70/3cm	_						
· Y:\PROJECT	4775 -	+ - + - + -								coarse grained, well graded, su dense, brown, dry		¢AL-0		- - -						
10:32									<u> </u>	Switched to rock core at 24'										
NF-GEOTECH ROCK CORE LOG - GINT STD US LAB.GDT - 9/23/19 10:32 - Y:\PROJECTS\0385.000-THACKER PASS LITHIUM NEVADA\L-GEOTECH DATA - ELKO\BOREHOLES\BOREHOLES\BOREHOLES\0386.00\L LOGS-CC.19.08.29.GPJ																				

PROJECT NAME The Pass Geotechnical Investigation CLIENT Lithium Nevada PROJECT NUMBER 475.0385.000 PROJECT LOCATION _ Thacker Pass, Nevada **DATE STARTED** 3/2/19 **COMPLETED** 3/2/19 GROUND ELEVATION 4796.9 ft HOLE SIZE 4.25 in DRILLING CONTRACTOR HazTech **COORDINATES (WGS84):** DRILLING METHOD HQ Core NORTHING 15147273 _____ **EASTING** 1356938 LOGGED BY M. Walden CHECKED BY K. Magner DEPTH TO WATER (FT BGS) No free water encountered

NOTES Backfilled with bentonite chips and cement grout

E .		_			(D				111			[DISCO	NTIN	VUITY	′ LOG	j .
CORE LOGS-CC.G ELEVATION (ft) DEPTH	(#) RUN NO.	RUN LENGTH	REC (%)	RQD (%)	WEATHERING	HARDNESS	GRAPHIC LOG	MATERIAL DESCRIPTION Surface details: Snow/Mud	SAMPLE TYPE NUMBER	BLOW COUNTS (N VALUE)	WATER LEVEL	TYPE	DIP	SPACING	APERTURE	ROUGHNESS	INFILL
Š 20	+-	1		_			\rightarrow	[Continuation from soil log at 24 feet]				JT		VC		ш.	CA
	1	1.5	50	0	MW	R1		Basalt, dark grey, moderately weathered, weak to medium strong rock, very close joint spacing, calcite alteration on joint surfaces			-	JT		VC			CA
4770 BOR HE 4770 - 30	2	5	100	14	MW	R1		calcite alteration on joint surfaces			- - -	JT		VC			CA
4765 4765	3	3	100	0	MW	R3					-]		V			CA
95	5 4	2	100	37	MW	R3					-	JT		VC			CA
Σ Z								Borehole terminated at 35.5'									
NF-GEOTECH ROCK CORE LOG - GINT STD US LAB.GDT - 9/23/19 10:29 - Y:\PROJECTS\0385.000-THACKER PASS LITHIUM NEVADAIL-GEOTECH DATA - ELKO\BORREHOLES\ROCK CORE LOGS-CC.GPU CAPION (#)																	

CLIENT Lithium Nevada PROJECT NAME Thacker Pass Geotechnical Investigation **PROJECT NUMBER** 475.0385.000 PROJECT LOCATION _ Thacker Pass, Nevada DATE STARTED 3/1/19 COMPLETED 3/1/19 GROUND ELEVATION 4812.6 ft HOLE SIZE 4.25in COORDINATES (WGS-84): **DRILLING CONTRACTOR** HazTech DRILLING METHOD HSA NORTHING 15147591 _ **EASTING** 1356709 GEOTECH ROCK CORE LOG-GINT STD US LAB GDT - 9/23/19 10:32 - Y/PROJECTS/0385, 000-THACKER PASS LITHIUM NEVADAIL-GEOTECH DATA - ELKOIBOREHOLES/BOREHOLE SOIL LOGS-CC 19.08.29 GP, LOGGED BY M. Walden CHECKED BY K. Magner DEPTH TO WATER (FT BGS) No free water encountered NOTES Backfilled with benontie chips and cement grout **DISCONTINUITY LOG** SAMPLE TYPE NUMBER WEATHERING **WATER LEVEL** RUN LENGTH ELEVATION (ft) HARDNESS GRAPHIC LOG BLOW COUNTS (N VALUE) ROUGHNESS RQD (%) REC (%) DEPTH (ft) RUN NO. **APERTURE** SPACING TYPE MATERIAL DESCRIPTION 딤 Surface details: Snow/Mud 0 Top Soil / Root Zone (SM) silty SAND (SM), with gravel, trace cobbles, fine to coarse grained, well graded, sub angular, 4810 nonplastic to medium plasticity fines, dense to very SS 35-25-20 dense, light brown, dry \$PT-01 (45)MC 17-26-41 CAL-0 (67)4805 SS \$PT-0 10 MC 35-41-46 CAL-02 (87) 4800 SS 18-20-23 \$PT-03 (43)4795 20 ■ MC 70/5cm CAL-0 4790 25 SS 14-17-28 \$PT-04 (45) 4785 30 MC 41-70/4cm ¢AL-0 4780 SS 18-50/5cm \$PT-0 4775

PAGE 2 OF 2

NewFields

CLIENT Lithium Nevada PROJECT NAME _Thacker Pass Geotechnical Investigation

PROJECT NUMBER 475.0385.000 PROJECT LOCATION Thacker Pass, Nevada

						(D						1		ISCO	NTIN	\UIT\	/ LOG	}
9.08.29.GPJ ELEVATION (ft)	OEPTH (#)	RUN NO.	RUN LENGTH	REC (%)	RQD (%)	WEATHERING	HARDNESS	GRAPHIC LOG	MATERIAL DESCRIPTION	SAMPLE TYPE NUMBER	BLOW COUNTS (N VALUE)	WATER LEVEL	TYPE	DIP	SPACING	APERTURE	ROUGHNESS	INFILL
NF-GEOTECH ROCK CORE LOG - GINT STD US LAB.GDT - 9/23/19 10:32 - Y:\PROJECTS\\0385.000-THACKER PASS LITHIUM NEVADAIL-GEOTECH DATA - ELKO\BOREHOLES\\0385.001 LOGS-CC.19.08.29.GPJ	45								(SM) silty SAND (SM), with gravel, trace cobbles, fine to coarse grained, well graded, sub angular, nonplastic to medium plasticity fines, dense to very dense, light brown, dry (continued) Borehole terminated at 51.5'	SS SPT-0	_ 50/3cm _/	- - - - - - -						
35.000-THACKER PASS LITHIUM NEVADAIL-GEOTI																		
SINT STD US LAB.GDT - 9/23/19 10:32 - YAPROJECTSUG																		
NF-GEOTECH ROCK CORE LOG-C																		

NewFields

	CLIE	NT L	ithiu	ım N	leva	da					PROJECT NAME _	Thacker F	Pass Geote	chnica	al Inve	estiga	tion			
	PROJ	IECT	NUN	/IBEI	R _4	175.0	038	5.00	0		PROJECT LOCATI	ON Thac	ker Pass, N	Nevad	а					
	DATE	STA	RTE	D _	3/13	/19			_ (COMPLETED 3/13/19	GROUND ELEVAT	ION 4782	2.6 ft	HOL	E SIZ	E 4.	25in			
	DRIL	LING	CON	NTR/	ACT	OR	Ha	zTe	ch		COORDINATES (W	/GS-84):								
_	DRIL	LING	MET	THOI	⊃ _⊦	ISA					NORTHING 15	5147919		EAST	ING	1357	7756			
9.GP.	LOG	GED E	3Y _	M. E	rdm	nann	1		_ (CHECKED BY K. Magner	DEPTH TO WA	TER (FT E	BGS) No fr	ee wa	ter ei	ncoun	tered			_
.08.2	NOTE	S B	ack	filled	with	n be	non	tie c	hips a	and cement grout										
CC.19				_			(J					ш		یے	[DISCO	IITNC	YUITY	/ LO	3
REHOLE SOIL LOGS-	ELEVATION (ft)	O DEPTH (ft)	RUN NO.	RUN LENGTH	REC (%)	RQD (%)	WEATHERING	HARDNESS	GRAPHIC LOG	Surface details: Snow/Mud	PTION	SAMPLE TYPE NUMBER	BLOW COUNTS (N VALUE)	WATER LEVEL	TYPE	DIP	SPACING	APERTURE	ROUGHNESS	INFILL
NF-GEOTECH ROCK CORE LOG-GINT STD US LAB.GDT-9/23/19 10:32 - Y:/PROJECTS/0385.000-THACKER PASS LITHIUM NEVADAIL-GEOTECH DATA - ELKO\BOREHOLES\BOREHOLE SOIL LOGS-CC.19:08.29.GPJ	4770	0								Surface details: Snow/Mud Toe Soil / Root Zone (SM) silty SAND (SM), with gragrained, well graded, subrouding dense to very dense, light browns with the subset of the sub	ed. nonplastic fines.	SS \$PT-0 MC ;AL-0 SPT-0; MC ;AL-0;	27-37-68 1 (105) 27-50/4cm 2 57-56- 2 70/5cm						<u>~</u>	

NewFields PAGE 1 OF 1

CLIENT Lithium Nevada PROJECT NUMBER 475.0385.000 PROJECT LOCATION Thacker Pass, Nevada **DATE STARTED** <u>3/13/19</u> **COMPLETED** <u>3/13/19</u> GROUND ELEVATION 4782.6 ft HOLE SIZE 4.25 in DRILLING CONTRACTOR HazTech **COORDINATES (WGS84):** DRILLING METHOD HQ Core NORTHING 15147919 ____ **EASTING** 1357756 LOGGED BY M. Erdmann CHECKED BY K. Magner DEPTH TO WATER (FT BGS) No free water encountered

NOTES Backfilled with bentonite chips and cement grout

		I			G				Й		긢		DISC	NTINC	VUITY	/ LOC	3
DEPTH (ft)	RUN NO.	RUN LENGT	REC (%)	RQD (%)	WEATHERIN	HARDNESS	GRAPHIC LOG	MATERIAL DESCRIPTION Surface details: Snow/Mud	SAMPLE TYF NUMBER	BLOW COUNTS (N VALUE)	WATER LEVE	TYPE	DIP	SPACING	APERTURE	ROUGHNESS	INFILL
 	1	3.5	17	0	HW	R1		[Continuation from soil log at 15 feet] Blocky volcanic rock, brown, hgihly weathered, extremely weak rock, very close joint spacing, slightly rough joint surface, oxidization on joint surface.			-	JT		VC		SR	ΟX
	-2	3	100	0	HW	R1					- - -						ox ox
25	3	3.5	100	0	HW	R1					- - -	JT		VC		SR	ox
 	4	5	100	0	HW	R1					- - -						
30	5	5	67	0	HW	R1					- - -	JT		VC		SR	OX
 35 											_ 	JT		vc		SR	ОХ
 	6	5	100	0	HW	R1					- - -						
40							КЖ	Borehole terminated at 40'									
	15 	15	15	15	15	15	15	15	Surface details: SnowMud [Continuation from soul log at 15 feet] Blocky volcanic rock, brown, hgihly weathered, extremely weak rock, very close joint spacing, slightly rough joint surface, oxidization on joint surface 3 3.5 100 0 HW R1 4 5 100 0 HW R1 5 5 5 67 0 HW R1 6 5 100 0 HW R1	15	[Continuation from soil log at 15 feet] Blocky volcanic rock, brown, hgihly weathered, extremely weak rock, very close joint spacing, slightly rough joint surface, oxidization on joint surface 3 3 3.5 100 0 HW R1 4 5 100 0 HW R1 5 5 6 67 0 HW R1 6 5 100 0 HW R1	[Continuation from soil log at 15 feet] Blocky volcanic rock, brown, hgihly weathered, extremely weak rock, very close joint spacing, slightly rough joint surface. 20 2 3 100 0 HW R1 3 3.5 100 0 HW R1 4 5 100 0 HW R1 35 5 5 67 0 HW R1 4 5 100 0 HW R1 4 5 100 0 HW R1 4 5 100 0 HW R1	Hard Color Hard Color Hard Hard	Hard Section Hard Section Hard Section Hard Section Hard Section Hard Hard	Hand Hand	Hamilton Hamilton	1 3.5 17 0 HW R1

	CLIEN	IT L	ithiu	ım N	leva	da					PROJECT NAME	Thacker F	Pass Geote	chnica	ıl Inve	estiga	tion			
	PROJ	ECT	NUN	ИΒЕ	R _	175.0	0385	5.000	0		PROJECT LOCATI	ION Thac	ker Pass, I	Nevad	а					
	DATE	STA	RTE	D_	3/15	/19			_ c	COMPLETED 3/15/19	GROUND ELEVAT	ION <u>474</u>	1.9 ft	HOL	E SIZ	Έ <u>4</u> .	25in			
	DRILL	ING	CON	NTR	ACT	OR	Ha	zTe	ch		COORDINATES (V	VGS-84):								
	DRILL	ING	MET	ГНО	D _	HSA					NORTHING 1	5148106		EAST	ING	1359	9052			
9.GPJ	LOGG	ED E	3Y _	М. Е	Erdn	nann	1		_ c	CHECKED BY K. Magner	DEPTH TO WA	TER (FT E	BGS) No fr	ee wa	ter er	ncoun	tered			_
.08.2	NOTE	S _B	ack	filled	with	h be	non	tie cl	hips a	ind cement grout										
SC.19				_			ניז					ш			[DISCO	IITNC	YUITY	/ LO	}
REHOLE SOIL LOGS-C	ELEVATION (ft)	O DEPTH (ft)	RUN NO.	RUN LENGTH	REC (%)	RQD (%)	WEATHERING	HARDNESS	GRAPHIC LOG	Surface details: Snow/Mud	PTION	SAMPLE TYPE NUMBER	BLOW COUNTS (N VALUE)	WATER LEVEI	TYPE	DIP	SPACING	APERTURE	ROUGHNESS	INFILL
S/BOF		-							71 V					_						
NF-GEOTECH ROCK CORE LOG - GINT STD US LAB. GDT - 9/23/19 10:32 - Y:/PROJECTS/0385.000-THACKER PASS LITHIUM NEVADAIL-GEOTECH DATA - ELKO\BOREHOLES\BOREHOLES\BOREHOLE SOIL LOGS-CC. 19.08.29. GPJ	4740	0 5 5 10 									ded, fine grained, dense, light brown,	SS SPT-0 MC AL-0 SS SPT-0 MC CAL-0	19-37-50 1 (87) 50/5cm							

NewFields

PROJECT NAME Thcker Pass Geotechnical Investigation CLIENT Lithium Nevada PROJECT NUMBER 475.0385.000 PROJECT LOCATION _ Thacker Pass, Nevada **DATE STARTED** 3/15/19 **COMPLETED** 3/16/19 GROUND ELEVATION 4741.9 ft HOLE SIZE 4.25 in DRILLING CONTRACTOR HazTech **COORDINATES (WGS84):** DRILLING METHOD HQ Core NORTHING 15148106 ____ **EASTING** 1359051 LOGGED BY M. Erdmann CHECKED BY K. Magner DEPTH TO WATER (FT BGS) No free water encountered

NOTES Backfilled with bentonite chips and cement grout

-			Į			<u>0</u>	(0			Щ		긥		DISCO	NTINC	\UIT\		3
ELEVATION (ft)	DEPTH (ft)	RUN NO.	RUN LENGTH	REC (%)	RQD (%)	WEATHERING	HARDNESS	GRAPHIC LOG	MATERIAL DESCRIPTION Surface details: Snow/Mud	SAMPLE TYPE NUMBER	BLOW COUNTS (N VALUE)	WATER LEVEL	TYPE	DIP	SPACING	APERTURE	ROUGHNESS	INFILL
4730		1	2			HW		***	[Continuation from soil log at 11.5 feet] Blocky volcanic rock, brown, highly weathered, very			-	JT		VC			ОХ
	- - 	2	2	100	25	HW	R1		Blocky volcanic rock, brown, highly weathered, very weak to medium strong rock, very close joint spacing, oxidization on joint surface			-	JT		VC			ох
 	15											_						
4725		3	5	100	0	HW	R1					-						
 	- 											-	JT		VC			ОХ
	20	4	2.5	40	0	HW	R1					_	1					
4720	- -											-	JT		VC			ОХ
	- 	5	4	100	0	HW	R1					-						
	25											_	JT		VC			ОХ
4715	- - -	6	2.5	100	0	HW	R1					-						
 		7	1	75	0	HW	R1					-	JT		VC VC			OX OX
	30	-8	2	62	0	HW	R1					_						
4710	- 											-	JT		VC			ОХ
	-	9	4	43	0	HW	R1					-						
	35											_	JT		VC			ОХ
4705	 											-						
 L]		10	5	81	42	HW	R1					-	1					
	40							\boxtimes	Borehole terminated at 40'			_						
									Borefiole terminated at 40									

NewFields

5 50

3

0 HW R1

100 77 MW R3

CLIENT Lithium Nevada PROJECT NAME The Pass Geotechnical Investigation **PROJECT NUMBER** _475.0385.000 PROJECT LOCATION _ Thacker Pass, Nevada **DATE STARTED** <u>3/15/19</u> **COMPLETED** 3/15/19 GROUND ELEVATION 4766.2 ft HOLE SIZE 4.25 in DRILLING CONTRACTOR HazTech **COORDINATES (WGS84):** DRILLING METHOD HQ Core NORTHING 15148506 **EASTING** 1358723 LOGGED BY M. Erdmann CHECKED BY K. Magner DEPTH TO WATER (FT BGS) No free water encountered NOTES Backfilled with bentonite chips and cement grout

			I			G				Щ		닒		DISCO	NTIN	\UIT\	/ LOC	3
ELEVATION (ft)	DEPTH (ft)	RUN NO.	RUN LENGTH	REC (%)	RQD (%)	WEATHERING	HARDNESS	GRAPHIC LOG	MATERIAL DESCRIPTION Surface details: Snow/Mud	SAMPLE TYPE NUMBER	BLOW COUNTS (N VALUE)	WATER LEVEL	TYPE	DIP	SPACING	APERTURE	ROUGHNESS	INFILL
4755		1	1.5	30	0	HW	R1	X	[Continuation from soil log at 10 feet] Blocky volcanic rock, reddish brown, highly			_	JT		VC		S	
	-	2	2	40	0	HW	R1		weathered, very weak rock, very close joint spacing, smooth joint suface			_	JT		VC		S	
												- -	JT		VC		s	
≦ 	15_	3	2	40	0	HW	R1						JT		VC		s	
4750 	20	4	5	100	8	HW	'R1					- - - -	JT		VC		0	
4740	25	5	5	100	10	HW	R1					- - - -	JT		VC		S	
4735	30	6	5	100	0	HW	R1					- - - -	JT		VC		S	
	35	7	5	100	20	HW	'R1					- - -	JT		VC		S	
NOLVALUE (#) 100	40	8	5	37	25	HW	R1					- - - -						
<u>-</u>												_	JT		VC		s	

Basalt, black, moderately weathered, medium strong rock, close joint spacing, smooth joint

surface, calcite alteration on joint surface

SR CA

С

JT

SPACING
APERTURE
ROUGHNESS

DISCONTINUITY LOG

NewFields

CLIENT Lithium Nevada PROJECT NAME Theker Pass Geotechnical Investigation

PROJECT NUMBER 475.0385.000 PROJECT LOCATION Thacker Pass, Nevada

ELEVATION	(II) DEPTH	RUN NO.	RUN LENGT	REC (%)	RQD (%)	WEATHERIN	HARDNESS	GRAPHIC LOG	MATERIAL DESCRIPTION	SAMPLE TYP NUMBER	BLOW COUNTS (N VALUE)	
NO NO	_	o.	GTH	(%)		SING	S	<u></u>		IY PE	SI E)	

Basalt, black, moderately weathered, medium strong rock, close joint spacing, smooth joint surface, calcite alteration on joint surface

Borehole terminated at 50.5'

CLIENT Lithium Nevada PROJECT NAME Thacker Pass Geotechnical Investigation **PROJECT NUMBER** 475.0385.000 PROJECT LOCATION Thacker Pass, Nevada DATE STARTED 3/25/19 **COMPLETED** 3/25/19 GROUND ELEVATION 4706.3 ft HOLE SIZE 4.25in DRILLING CONTRACTOR HazTech COORDINATES (WGS-84): DRILLING METHOD HSA NORTHING 15148127 _ **EASTING** 1360558 ELKO\BOREHOLES\BOREHOLE SOIL LOGS-CC.19.08.29.GP. LOGGED BY C. Coleman CHECKED BY K. Magner DEPTH TO WATER (FT BGS) No free water encountered NOTES Backfilled with cement grout **DISCONTINUITY LOG** WEATHERING SAMPLE TYPE NUMBER **WATER LEVEL** RUN LENGTH ELEVATION (ft) HARDNESS GRAPHIC LOG BLOW COUNTS (N VALUE) ROUGHNESS REC (%) RQD (%) DEPTH (ft) RUN NO. **APERTURE** SPACING TYPE MATERIAL DESCRIPTION 딤 Surface details: Snow/Mud 0 Top Soil / Root Zone 4705 (SM) silty SAND (SM), with gravel fine to coarse grained sand and gravel, MPS 3.0", sub angular, nonplasitc fines, medium dense to very dense, SS | 16-11-10 brown, dry \$PT-01 (21)MC 30-34-59 GEOTECH ROCK CORE LOG - GINT STD US LAB.GDT - 9/23/19 10:32 - Y.\PROJECTS\0385.000-THACKER PASS LITHIUM NEVADAIL-GEOTECH DATA -4700 CAL-0 (93)(GW-GM) GRAVEL (GW-GM), with sand and silt, fine to coarse grained, MPS 3.0", sub angular, nonplastic fines, very dense, brown, dry SS 30-50/5cm SPT-0 10 19-41-62 4695 AL-02 (103) (SM) silty SAND (SM), with gravel, fine to coarse SS 16-33-35 4690 grained, well graded, nonplastic fines, very dense, \$PT-03 (68)brown, dry 20 70/4cm MC 4685 CAL-0 25 SS 17-49-(SC) clayey SAND (SC), fine to coarse sand, low to 4680 medium plasticity fines, very dense, brown, dry \$PT-04 50/4cm MC AL-0 (SM) silty SAND (SM), fine to coarse grained, 45-70 <u>4</u>675 poorly graded, medium plasticity fines, very dense, brown, dry, (weathered basalt) SS 16-31-46 4670 \$PT-05 (77)

NewFields

CLIENT Lithium Nevada **PROJECT NUMBER** 475.0385.000 PROJECT LOCATION Thacker Pass, Nevada DISCONTINUITY LOG SAMPLE TYPE NUMBER WEATHERING WATER LEVEL RUN LENGTH ELEVATION (ft) HARDNESS GRAPHIC LOG BLOW COUNTS (N VALUE) ROUGHNESS RQD (%) RUN NO. REC (%) DEPTH (ft) **APERTURE** SPACING TYPE MATERIAL DESCRIPTION INFILL MC 29-54-

70/5cm

Borehole terminated at 41.5'

NF-GEOTECH ROCK CORE LOG-GINT STD US LAB GDT - 9/23/19 10:32 - Y/PROJECTS/0385.000-THACKER PASS LITHIUM NEVADAIL-GEOTECH DATA - ELKOIBOREHOLESIBOREHOLE SOIL LOGS-CC.19.08.29.GPJ

4665

	CLIE	NT _L	₋ithi∟	ım N	leva	da					PROJECT NAME _	Thacker F	Pass Geote	chnica	ıl Inve	estiga	tion			
	PRO.	JECT	NUN	/IBE	R _4	175.	038	5.000)		PROJECT LOCATION	ON Thac	ker Pass, N	Nevad	а					
	DATE	STA	RTE	D _	3/20	/19			_ c	**OMPLETED <u>3/20/19</u>	GROUND ELEVATI	ON 4734	4.7 ft	HOL	E SIZ	E 4.	25in			
	DRIL	LING	CON	NTR/	ACT	OR	На	zTed	ch		COORDINATES (W	/GS-84):								
	DRIL	LING	MET	ГНО	D _	HSA					NORTHING 15	5148804		EAST	ING	1360	0063			
.GPJ	LOG	GED I	вү _	C. C	Coler	man			_ c	HECKED BY K. Magner	DEPTH TO WA	TER (FT E	BGS) No fr	ee wa	ter er	ncoun	tered			
08.29	NOTE	ES _E	Back	filled	l with	ı ce	mer	nt gro	out			•	,							
2.19.0															Г	DISCO	NTIN	ידונוני	(100	
JECTS10385.000-THACKER PASS LITHIUM NEVADAIL-GEOTECH DATA - ELKOJBOREHOLES)BOREHOLE SOIL LOGS-CC.19.08.29.GPJ	Z		. ا	H		_	WEATHERING	SS	ပ			SAMPLE TYPE NUMBER	φ (ii	WATER LEVEL						Ĺ
LLO	ELEVATION (ft)	DEPTH (ft)	RUN NO	RUN LENGTH	REC (%)	RQD (%)	用	HARDNESS	GRAPHIC LOG	MATERIAL DESCRI	PTION	E T	BLOW COUNTS (N VALUE)	빌	ш		SPACING	APERTURE	NES	ب ا
SOII	EV.	DEF		N	ZEC	3QL	₽	B	Ϋ́Α	WATERIAL DESCRI	HON	APL		H	TYPE	OIP	ACI	ERT	ШЭ	INFILL
우	Ш		"	B.		_	WE	🛨	0	Surface details: Snow/Mud		SAN	ے ا	WA.			SP	APE	ROUGHNESS	=
ORE		0							7/ 1× .7/										IĽ.	
ES/B			-							(SM) silty SAND (SM), fine to m	nedium grained,	_		_						
된		} -	1							porrly graded, subangular, nong medium dense to very dense, b	olastic fines,	1 00		_	-					
BORE		-	1							inledium dense to very dense, b	iowii, dry	SS \$PT-0	5-8-8 1 (16)	-	-					
LKO	4730	5																		
A-E												MC CAL-0	11-17-18 1 (35)	_						
I DAT	-	┞ -										VAL-0	(33)	_						
TECH	-	-	-									√ ss	7-9-9	_						
GEO.	- 4725		-									\$PT-0	2 (18)	_						
DA/L-		10										MC	6-16-22							
IEVAI		} -	1									CAL-0	2 (38)	_						
M			1											-						
Ħ																				
ASS	4720	15																		
ER P.	-	-										SS \$PT-0	13-25-25 3 (50)	_						
ACK	-	┼ -	-									4	(00)	_	-					
1T-00			-											_						
385.0	4715	20	1											-						
TS/03		20										MC_	70/4cm	_						
		-								Switched to rock core at 21.5'		¢AL-0	β	_						
:\PR(Switched to rock core at 21.5										
32 - Y																				
9 10:																				
/23/1																				
T- 9																				
\B.G⊑																				
JS L																				
STD (
INT																				
G-G																				
îE LO																				
COR																				
OCK																				
CH R																				
OTE																				
NF-GEOTECH ROCK CORE LOG - GINT STD US LAB.GDT - 9/23/19 10:32 - Y.\PRO.																				

ELKO/BOREHOLES/ROCK CORE LOGS-CC.GP.

NF-GEOTECH ROCK CORE LOG - GINT STD US LAB.GDT - 9/23/19 10:30 - Y∴PROJECTS/0385,000-THACKER PASS LITHIUM NEVADA\L-GEOTECH DATA -

4685

CLIENT Lithium Nevada PROJECT NAME The Pass Geotechnical Investigation **PROJECT NUMBER** 475.0385.000 PROJECT LOCATION _ Thacker Pass, Nevada DATE STARTED 3/20/19 **COMPLETED** 3/20/19 GROUND ELEVATION 4734.7 ft HOLE SIZE 4.25 in **DRILLING CONTRACTOR** HazTech **COORDINATES (WGS84):** DRILLING METHOD HQ Core NORTHING <u>15148804</u> _ EASTING 1360063 LOGGED BY C. Coleman CHECKED BY K. Magner DEPTH TO WATER (FT BGS) No free water encountered

NOTES Backfilled with cement grout DISCONTINUITY LOG SAMPLE TYPE NUMBER WEATHERING **WATER LEVEL** ELEVATION (ft) RUN LENGTH HARDNESS GRAPHIC LOG BLOW COUNTS (N VALUE) ROUGHNESS REC (%) RQD (%) DEPTH (ft) RUN NO. **APERTURE** SPACING TYPE MATERIAL DESCRIPTION 딤 Surface details: Snow/Mud [Continuation from soil log at 20 feet] Basalt, black, highly weathered, very weak rock, very close joint spacing, oxidization on joint surface 4.5 100 0 HW R1 JT VC 25

ΟX 4710 OX 2 4.5 100 0 HW R1 VC JT OX 4705 30 3 5.5 100 0 HW R1 4700 JT VC OX 35 100 43 HW R1 4695 VC JT OX 40 5 95 43 HW R1 4690 VC OX JT 45 6 5.5 95 58 HW R1

Borehole terminated at 50

CLIENT Lithium Nevada **PROJECT NUMBER** 475.0385.000 PROJECT LOCATION Thacker Pass, Nevada DATE STARTED 3/18/19 **COMPLETED** 3/19/19 GROUND ELEVATION 4715.4 ft HOLE SIZE 4.25in DRILLING CONTRACTOR HazTech COORDINATES (WGS-84): DRILLING METHOD HSA NORTHING <u>15147860</u> _ EASTING 1359848 NF-GEOTECH ROCK CORE LOG - GINT STD US LAB GDT - 9/23/19 10:32 - Y-PROJECTS/0385.000-THACKER PASS LITHIUM NEVADAIL-GEOTECH DATA - ELKOIBOREHOLE SIBOREHOLE SOIL LOGS-CC.19.08.29 GP-LOGGED BY C. Coleman CHECKED BY K. Magner DEPTH TO WATER (FT BGS) No free water encountered NOTES Backfilled with cement grout **DISCONTINUITY LOG** WEATHERING SAMPLE TYPE NUMBER **WATER LEVEL** RUN LENGTH ELEVATION (ft) HARDNESS GRAPHIC LOG BLOW COUNTS (N VALUE) ROUGHNESS RQD (%) REC (%) DEPTH (ft) RUN NO. **APERTURE** SPACING TYPE MATERIAL DESCRIPTION 딤 Surface details: Snow/Mud 0 Top Soil / Root Zone (SM) silty SAND (SM), with gravel, fine to medium sand, fine to coarse gravels, MPS 1.5", sub angular, nonplastic fines, medium dense to dense, SS 17-20-21 lgiht brown, dry \$PT-01 (41)4710 MC 24-18-14 CAL-01 (32)(SW-SM) SAND (SW-SM), with gravel and silt, fine to corase grained, MPS 1.5", sub angular, nonplastic fines, dense, brown, dry SS 16-32-39 \$PT-02 (71) 10 4705 37-45-AL-02 70/4cm 4700 SS 40-50/4cm SPT-08 (GW-GM) GRAVEL (GW-GM), with sand and silt, fine to corase grained, MPS 2.0", sub angular, nonplastic fines, dense, brown, dry 20 4695 MC 43-70/4cm CAL-0 25 4690 SS 31-50/4cm (SC) clayey SAND (SC), trace gravel, fine grained, \$PT-0# low plasticity fines, dense, dark brown, dry 30 4685 MC 70-70/3cm Borehole terminated at 31.5'

5140

CLIENT Lithium Nevada PROJECT NAME Thacker Pass Geotechnical Investigation **PROJECT NUMBER** 475.0385.000 PROJECT LOCATION _ Thacker Pass, Nevada DATE STARTED 2/26/19 **COMPLETED** 2/26/19 GROUND ELEVATION 5149.1 ft HOLE SIZE 4.25in **DRILLING CONTRACTOR** HazTech **COORDINATES (WGS-84):** DRILLING METHOD HSA NORTHING 15150690 _ **EASTING** 1346592 NF-GEOTECH ROCK CORE LOG - GINT STD US LAB. GDT - 9/23/19 10:32 - Y:/PROJECTS\0385.000-THACKER PASS LITHIUM NEVADAIL-GEOTECH DATA - ELKO\BOREHOLES\BOREHOLES\BOREHOLES\OLDGA - GINT STD US LAB. GDT - 9/23/19 10:32 - Y:/PROJECTS\0385.000-THACKER PASS LITHIUM NEVADAIL-GEOTECH DATA - ELKO\BOREHOLES\BOREHOLES\BOREHOLES\OLDGA - GINT STD US LAB. GDT - 9/23/19 10:32 - Y:/PROJECTS\0385.000-THACKER PASS LITHIUM NEVADAIL-GEOTECH DATA - ELKO\BOREHOLES\BOREHOLES\BOREHOLES\OLDGA - GINT STD US LITHIUM NEVADAIL-GEOTECH DATA - ELKO\BOREHOLES\BOREHOLES\BOREHOLES\OLDGA - GINT STD US LITHIUM NEVADAIL-GEOTECH DATA - ELKO\BOREHOLES\BOREHOLES\BOREHOLES\OLDGA - GINT STD US LITHIUM NEVADAIL-GEOTECH DATA - ELKO\BOREHOLES\BOREHOLES\BOREHOLES\OLDGA - GINT STD US LITHIUM NEVADAIL-GEOTECH DATA - ELKO\BOREHOLES\BOREHOLES\BOREHOLES\OLDGA - GINT STD US LITHIUM NEVADAIL-GEOTECH DATA - ELKO\BOREHOLES\BOREHOLES\BOREHOLES\OLDGA - GINT STD US LITHIUM NEVADAIL-GEOTECH DATA - ELKO\BOREHOLES\B LOGGED BY M. Walden DEPTH TO WATER (FT BGS) No free water encountered CHECKED BY K. Magner NOTES Backfilled with benontie chips and cement grout DISCONTINUITY LOG SAMPLE TYPE NUMBER WEATHERING **WATER LEVEL** RUN LENGTH ELEVATION (ft) HARDNESS GRAPHIC LOG BLOW COUNTS (N VALUE) ROUGHNESS REC (%) RQD (%) DEPTH (ft) RUN NO. **APERTURE** SPACING TYPE MATERIAL DESCRIPTION 딤 Surface details: Snow/Mud 0 Tope Soil / Root Zone (SW-SM) SAND (SW-SM), with gravel and silt, fine SS \$PT-0 to coarse grained, well graded, sub angular, very 5145 dense, light brown, dry SS 24-28-27 \$PT-02 (55)

Switched to rock core at 10

CLIENT Lithium Nevada PROJECT NAME Thcker Pass Geotechnical Investigation PROJECT NUMBER 475.0385.000 PROJECT LOCATION Thacker Pass, Nevada **DATE STARTED** 2/26/19 **COMPLETED** 2/26/19 GROUND ELEVATION 5149.1 ft HOLE SIZE 4.25 in DRILLING CONTRACTOR HazTech **COORDINATES (WGS84):** DRILLING METHOD HQ Core NORTHING 15150690 ____ **EASTING** _1346592 LOGGED BY M. Walden CHECKED BY K. Magner DEPTH TO WATER (FT BGS) No free water encountered

NOTES Backfilled with bentonite chips and cement grout

DEPTH (ft)	RUN NO.	ENGT	(%	<u> </u>	<u>Z</u>	(0)											
	<u> </u>	RUN LENGTH	REC (%)	RQD (%)	WEATHERING	HARDNESS	GRAPHIC LOG	MATERIAL DESCRIPTION Surface details: Snow/Mud	SAMPLE TYPE NUMBER	BLOW COUNTS (N VALUE)	WATER LEVEL	TYPE	DIP	SPACING	APERTURE	ROUGHNESS	INFILL
<u>10</u> 	1	3.5	100	23				(SM) [Continuation from soil log at 10 feet] silty SAND (SM), some clay, trace gravel, well graded, fine to coarse grained, sub angular, very dense, brown to dark grey, some oxidization of clay and ash, moderate cementation of ash layers, planar bedding, (highly weathered blocky volcanic			-						
 15	2	2	90	0				planar bedding, (highly weathered blocky volcanic rock)			<u>-</u>						
20	3	5	60	0							- - -						
 25	4	4.5	78	0							- - -						
 	5	4.5	80	0													
								Borehole terminated at 29.5'									
	 20 	15 2 - 3 20 - 4 25 - 4	15 2 2 3 5 - 20 4 4.5 - 25	3 5 60 3 5 60 4 4.5 78 - 25	2 2 90 0 3 5 60 0 4 4.5 78 0 - 25	2 2 90 0 3 5 60 0 4 4.5 78 0 - 25			15 2 2 90 0	15 2 2 90 0	15 2 2 90 0	15 2 2 90 0	15 2 2 90 0	15 2 2 90 0	15 2 2 90 0	15 2 2 90 0	15 2 2 90 0

NewFields

CLIENT Lithium Nevada PROJECT NAME Thacker Pass Geotechnical Investigation **PROJECT NUMBER** 475.0385.000 PROJECT LOCATION _ Thacker Pass, Nevada DATE STARTED 2/26/19 **COMPLETED** 2/26/19 GROUND ELEVATION 5118.4 ft HOLE SIZE 4.25in COORDINATES (WGS-84): **DRILLING CONTRACTOR** HazTech DRILLING METHOD HSA NORTHING 15150289 _ **EASTING** 1346628 NF-GEOTECH ROCK CORE LOG - GINT STD US LAB GDT - 9/23/19 10:32 - Y-PROJECTS/0385.000-THACKER PASS LITHIUM NEVADAIL-GEOTECH DATA - ELKOIBOREHOLE SIBOREHOLE SOIL LOGS-CC.19.08.29 GP-LOGGED BY M. Walden CHECKED BY K. Magner DEPTH TO WATER (FT BGS) No free water encountered NOTES Backfilled with benontie chips and cement grout **DISCONTINUITY LOG** SAMPLE TYPE NUMBER WEATHERING **WATER LEVEL** RUN LENGTH ELEVATION (ft) HARDNESS GRAPHIC LOG BLOW COUNTS (N VALUE) ROUGHNESS REC (%) RQD (%) DEPTH (ft) RUN NO. **APERTURE** SPACING TYPE MATERIAL DESCRIPTION 딤 Surface details: Snow/Mud 0 Top Soil / Root Zone (SW-SM) SAND (SW-SM), with silt and gravel, fine to coarse grained, well graded, sub angular, medium dense, light brown, dry 9-16-13 SS 5115 \$PT-01 (29)(SC) clayey SAND (SC), with gravel, fine to coarse CAL-0 MC 14-22-21 grained, well graded, sub angular, high plasiticity (43)fines, medium dense to very dense, brown, dry SS 16-11-9 5110 \$PT-02 (20)10 MC 36-70/3cm CAL-02 5105 SS 10-29-\$PT-03 50/3cm 5100 20 MC 30-70/3cm CAL-0 5095 25 SS 49-50/3cm 5090 30 36-45-70/4cm Borehole terminated at 31.5'

NewFields

CLIENT Lithium Nevada PROJECT NAME Thacker Pass Geotechnical Investigation **PROJECT NUMBER** 475.0385.000 PROJECT LOCATION _ Thacker Pass, Nevada DATE STARTED 2/28/19 **COMPLETED** 2/28/19 GROUND ELEVATION 5077.9 ft HOLE SIZE 4.25in **DRILLING CONTRACTOR** HazTech **COORDINATES (WGS-84):** DRILLING METHOD HSA NORTHING 15149992 _ EASTING 1346657 NF-GEOTECH ROCK CORE LOG - GINT STD US LAB GDT - 9/23/19 10:32 - Y-PROJECTS/0385.000-THACKER PASS LITHIUM NEVADAIL-GEOTECH DATA - ELKOIBOREHOLE SIBOREHOLE SOIL LOGS-CC.19.08.29 GP-LOGGED BY M. Walden CHECKED BY K. Magner DEPTH TO WATER (FT BGS) No free water encountered NOTES Backfilled with benontie chips and cement grout **DISCONTINUITY LOG** SAMPLE TYPE NUMBER WEATHERING **WATER LEVEL** RUN LENGTH ELEVATION (ft) HARDNESS GRAPHIC LOG BLOW COUNTS (N VALUE) ROUGHNESS REC (%) RQD (%) DEPTH (ft) RUN NO. **APERTURE** SPACING TYPE MATERIAL DESCRIPTION 딤 Surface details: Snow/Mud 0 Top Soil / Root Zone (SM) silty SAND (SM), with gravel, fine to coarse 5075 grained, well graded, angular to sub angular, SS 29-39-32 nonplastic fines, dense to very dense, light brown, \$PT-01 (71)moderate cementation, dry MC 14-23-24 CAL-0 (47)5070 SS 14-42-24 \$PT-02 (66) (SC) clayey SAND (SC), fine to coarse grained, well graded, sub angular, low to high plasticity fines, dense to very dense, light brown, dry 10 65-70 5065 SS 16-16-37 \$PT-03 (53)5060 20 ■ MC 70/5cm CAL-0 5055 25 SS 10-35-26 \$PT-04 (61)5050 MC 70/5cm CAL-0 Borehole terminated at 31.5'

CLIE	NT L	ithiu	m Ne	eva	da					PROJECT NAME	Thacker F	ass Geote	chnica	l Inve	stiga	tion			
1	JECT									PROJECT LOCATION	ON Thac	ker Pass, N	levada	a					
1									OMPLETED <u>2/28/19</u>	GROUND ELEVATI	ON <u>5038</u>	3.9 ft	HOL	E SIZ	E _4.	25in			
	LING						zTe	ch		COORDINATES (W									
·	LING									NORTHING 15									
2									HECKED BY K. Magner	DEPTH TO WA	TER (FT B	IGS) No fr	ee wa	ter en	coun	tered			_
NOTI	-S _B	Backi	illed	with	ı be	non	tie c	hips a	nd cement grout										_
ELEVATION (ft)	DEPTH (ft)	RUN NO.	RUN LENGTH	REC (%)	RQD (%)	WEATHERING	HARDNESS	GRAPHIC LOG	MATERIAL DESCRII	PTION	SAMPLE TYPE NUMBER	BLOW COUNTS (N VALUE)	WATER LEVEL	TYPE	alo Bisco	SPACING	APERTURE G	ROUGHNESS	INFILL
	0		ъ.			>			Surface details: Snow/Mud		Ø		>			•••	A	N.	
5035	 5	-							Top Soil / Root Zone (SM) silty SAND (SM), some gr. grained, well graded, sub angulto very dense, light brown, dry	avel, fine to coarse ar, medium dense	SS \$PT-0	11-11-8 1 (19)	- - -						
											MC CAL-0	70/5cm 1 18-26-24							
5030	10	_									/\$PT-02 ▲ MC	2 (50)	- -						
5025	 										AL-02	2 (67)	- - -						
	_ <u>15</u> 										SS \$PT-0	20-40-45 3 (85)	 _ _						
5020	20										MC CAL-00	28-38-61 3 (99)	- - -						
5015	25										V ss	18-20-25	- - -						
5010	 	-									<u> </u>		- - -						
	30_										MC AL-04	15-30- 1 70/5cm	_						
								<u> 1984</u> .	Borehole terminated at 31.5'		y ↓ AL-U	+ /U/OCM							

CLIENT Lithium Nevada PROJECT NAME Thacker Pass Geotechnical Investigation **PROJECT NUMBER** 475.0385.000 PROJECT LOCATION _ Thacker Pass, Nevada DATE STARTED 2/28/19 **COMPLETED** 2/28/19 GROUND ELEVATION 5089.1 ft HOLE SIZE 4.25in COORDINATES (WGS-84): **DRILLING CONTRACTOR** HazTech DRILLING METHOD HSA NORTHING 15149855 _ **EASTING** 1347766 NF-GEOTECH ROCK CORE LOG - GINT STD US LAB GDT - 9/23/19 10:32 - Y-PROJECTS/0385.000-THACKER PASS LITHIUM NEVADAIL-GEOTECH DATA - ELKOIBOREHOLE SIBOREHOLE SOIL LOGS-CC.19.08.29 GP-LOGGED BY M. Walden CHECKED BY K. Magner DEPTH TO WATER (FT BGS) No free wtaer encountered NOTES Backfilled with benontie chips and cement grout **DISCONTINUITY LOG** SAMPLE TYPE NUMBER WEATHERING **WATER LEVEL** RUN LENGTH ELEVATION (ft) HARDNESS GRAPHIC LOG BLOW COUNTS (N VALUE) ROUGHNESS RQD (%) REC (%) DEPTH (ft) RUN NO. **APERTURE** SPACING TYPE MATERIAL DESCRIPTION 딤 Surface details: Snow/Mud 0 Top Soil / Root Zone (SC) clayey SAND (SC), fine to coarse grained, well graded, sub angular, high plasticity fines, medium dense to dense, light brown, dry SS 4-6-9 \$PT-0 (15)5085 16-24-60 AL-0 (84)(SM) silty SAND (SM), fine to coarse grained, well graded, sub rounded, dense, white chalky, dry (ASH) SS 18-17-19 X\$PT-02 (36)5080 10 (ML) sandy SILT (ML), trace gravel, fine to coarse MC CAL-012 36/0cm grained, well graded, sub rounded, hard, light brown, dry 5075 SS 10-23-27 \$PT-0\$ (50)5070 20 MC 16-60-AL-03 70/5cm 5065 25 60/4cm ≤ ss \$PT-0 SS 49-26-25 5060 \$PT-05 (51)30 MC 70/5cm CAL-0 Borehole terminated at 31.5'

CLIENT Lithium Nevada **PROJECT NUMBER** 475.0385.000 PROJECT LOCATION _ Thacker Pass, Nevada DATE STARTED 2/28/19 **COMPLETED** 2/28/19 GROUND ELEVATION 5062.3 ft HOLE SIZE 4.25in COORDINATES (WGS-84): **DRILLING CONTRACTOR** HazTech DRILLING METHOD HSA NORTHING 15150169 _ **EASTING** 1348329 NF-GEOTECH ROCK CORE LOG - GINT STD US LAB GDT - 9/23/19 10:32 - Y-PROJECTS/0385.000-THACKER PASS LITHIUM NEVADAIL-GEOTECH DATA - ELKOIBOREHOLE SIBOREHOLE SOIL LOGS-CC.19.08.29 GP-LOGGED BY M. Walden CHECKED BY K. Magner DEPTH TO WATER (FT BGS) No free water encountered NOTES Backfilled with benontie chips and cement grout **DISCONTINUITY LOG** SAMPLE TYPE NUMBER WEATHERING RUN LENGTH **WATER LEVEL** ELEVATION (ft) HARDNESS GRAPHIC LOG BLOW COUNTS (N VALUE) ROUGHNESS RQD (%) REC (%) DEPTH (ft) RUN NO. **APERTURE** SPACING TYPE MATERIAL DESCRIPTION 딤 Surface details: Snow/Mud 0 Top Soil / Root Zone (SM) silty SAND (SM), some gravel, trace cobbles, 5060 fine to coarse grained, well graded, angular to sub SS 6-15-28 angular, dense to very dense, light brown, dry \$PT-0∤ (43)32-64-70/5cm 5055 SS 38-33-37 \$PT-02 (70)(SC) calyey SAND (SC), fine grained, poorly 10 graded, high plasticity fines, dense, light brown, dry MC 16-32-43 CAL-02 (75)5050 15 SS 6-16-20 \$PT-03 (36)5045 (SM) silty SAND (SM), fine grained, poorly graded, 20 rounded to sub rounded, very dense, white, dry MC 24-70/3cm CAL-0 <u>504</u>0 25 SS 29-50/3cm 5035 30 MC 70/5cm CAL-0 Borehole terminated at 31.5'

APPENDIX D Test Pit Exploration Logs

NewFields

CLIENT Lithium Nevada Corporation PROJECT NAME Thacker Pass Project PROJECT NUMBER 475.0385.000 PROJECT LOCATION Thacker Pass DATE STARTED 2/27/19 _____ COMPLETED _2/27/19 GROUND ELEVATION 4809 ft TOTAL PIT DEPTH 17 ft **EXCAVATION CONTRACTOR** Hunewill Construction COORDINATES (): **EQUIPMENT** CAT 320E NORTHING <u>15148138</u> ____ **EASTING** 1357163 LOGGED BY C.Coleman CHECKED BY M. Walden DEPTH TO WATER (FT BGS) No groundwater encountered

NOTES Backfilled with excavated material

NOTES BAC	mied with excavated material								-
ELEVATION (ft) O DEPTH (ft) COLORD	MATERIAL DESCRIPTION Surface Conditions: Mud	SAMPLE TYPE NUMBER	MOISTURE CONTENT (%)		PLASTICITY SLIN	% GRAVEL	% SAND	% FINES	REMARKS
4805	lean CLAY (CL) with sand, fine grained, medium plasticity, moist, brown (root zone) silty SAND (SM) with gravel, fine to coarse grained sand and gravel, subrounded to subangular, low plasticity, dry, light brown								Cobbles and boulders present at 3ft up to 16in diameter
	CDAVEL (CM CM) with a and and all fine to accome suring	S-01-1	12.9	NP	NP	11.5	47.6	36.2	% Cobble = 4.7
4800	GRAVEL (GW-GM) with sand and silt, fine to coarse grained sand and gravel, subrounded to subangular, low plasticity, dry, brown	© GB S-01-2	_ Ф _						Very hard digging at 10ft, blocky volcanic rock, large cobbles and boulders up to 20in diameter
4795									
ם ממלך	Test pit terminated at 17ft, refusal on blocky volcanics, large boulders								
4805 5									
		daile	(

NewFields

CLIENT Lithium Nevada Corporation

PROJECT NUMBER 475.0385.000

DATE STARTED 2/27/19 **COMPLETED** 2/27/19

EXCAVATION CONTRACTOR Hunewill Construction

EQUIPMENT CAT 320E

LOGGED BY _C.Coleman CHECKED BY _M. Walden

PROJECT NAME Thacker Pass Project

PROJECT LOCATION Thacker Pass

GROUND ELEVATION 4789 ft TOTAL PIT DEPTH 15 ft

COORDINATES ():

NORTHING <u>15148089</u> EASTING <u>1357687</u>

DEPTH TO WATER (FT BGS) No groundwater encountered

	NOTE	S _B	ackfille	d with excavated material								
,GPJ	ELEVATION (ft)	O DEPTH (ft)	GRAPHIC LOG	MATERIAL DESCRIPTION Surface Conditions: Mud	SAMPLE TYPE NUMBER	MOISTURE CONTENT (%)		PLASTICITY SIER	% GRAVEL	% SAND	% FINES	REMARKS
S LOG				lean CLAY (CL) with sand, fine grained, medium plasticity, moist, dark brown, (root zone)	Wn GB \$-02-1	29.4	33	12	6.5	22	71.5	
VEVADA/L-GEOTECH DATA/TEST PITS/THACKER PASS	4785	10		GRAVEL (GW-GM) with sand and silt, fine to coarse grained sand and gravel, subrounded, nonplastic, dry, brown	My GB S-02-1							Hard digging Caliche layers from 2-3ft Cobbles and boulders at 4ft up to 16in diameter Blocky volcanic rock with phenocrysts, extremely hard digging
ا≥				Test pit terminated at 15ft refusal on blocky volcanics and								

Test pit terminated at 15ft refusal on blocky volcanics and large boulders

NF-GEOTECH TEST PIT - GINT STD US LAB.GDT - 7/3/19 16:08 - S.:PROJECTS\0385.000-THACKER PASS LITHIUM NEVADAIL-GEOTECH DATA\TEST PITS\THACKER PASS LOGS.GPJ

NewFields

 CLIENT _ Lithium Nevada Corporation
 PROJECT NAME _ Thacker Pass Project

 PROJECT NUMBER _ 475.0385.000
 PROJECT LOCATION _ Thacker Pass

 DATE STARTED _ 2/27/19 _ COMPLETED _ 2/27/19 _ EXCAVATION CONTRACTOR _ Hunewill Construction _ Hunewill Construction _ COORDINATES ():
 COORDINATES ():

 EQUIPMENT _ CAT 320E
 NORTHING _ 15148047 _ EASTING _ 1358970 _

LOGGED BY C.Coleman CHECKED BY M. Walden DEPTH TO WATER (FT BGS) No groundwater encountered

NOTES Backfilled with excavated material

1											
ELEVATION (ft)	O (ft)	GRAPHIC LOG	MATERIAL DESCRIPTION Surface Conditions: Mud	SAMPLE TYPE NUMBER	MOISTURE CONTENT (%)		PLASTICITY 하 INDEX S	% GRAVEL	% SAND	% FINES	REMARKS
4740	5		lean CLAY (CL) with sand, fine grained, medium plasticity, moist, brown, (root zone) silty SAND (SM) with gravel, fine to coarse grained sand and gravel, subrounded, nonplastic, dry, brown	m GB \$-03-2	, 15.9	37	8	25.4	41.4	33.2	
4735			silty GRAVEL (GM) with sand, fine to coarse grained sand and gravel, subrounded, nonplastic, dry, brown	My GB S-03-28	10.8	NP	NP	47.8	36.4	13.8	Hard digging at 6ft, cobbles and boulders to 16in diameter, blocky volcanics % Cobble = 2.0
4730	- - -										

Test pit terminated at 14ft, refusal on weathered basalt

NF-GEOTECH TEST PIT - GINT STD US LAB.GDT - 7/3/19 16:08 - S.\PROJECTS\0385.000-THACKER PASS LITHIUM NEVADA\L-GEOTECH DATA\TEST PITS\THACKER PASS LOGS.GPJ

CLIENT Lithium Nevada Corporation PROJECT NAME Thacker Pass Project

PROJECT NUMBER 475.0385.000 PROJECT LOCATION Thacker Pass

DATE STARTED 2/27/19 COMPLETED 2/27/19 GROUND ELEVATION 4726 ft TOTAL PIT DEPTH 19 ft

EXCAVATION CONTRACTOR Hunewill Construction COORDINATES ():

EQUIPMENT CAT 320E NORTHING 15148120 EASTING 1359692

LOGGED BY C.Coleman CHECKED BY M. Walden DEPTH TO WATER (FT BGS) No groundwater encountered

NOTES Backfilled with excavated material

ELEVATION (ft) DEPTH	GRAPHIC	MATERIAL DESCRIPTION Surface Conditions: Mud	SAMPLE TYPE NUMBER	MOISTURE CONTENT (%)		PLASTICITY GINDEX INDEX	% GRAVEL	% SAND	% FINES	REMARKS
4725	5 - 10 - 15 - 15 - 1	GRAVEL (GW-GM) with sand and silt, fine to coarse grained sand and gravel, subangular, nonplastic, dry, light brown, (ash bed) GRAVEL (GW-GM) with sand and silt, fine to coarse grained sand and gravel, subrounded, nonplastic, dry, brown	© GB \$-04-29 © GB \$-04-30 © GB \$-04-3	20.2	NP NP	NP NP	49.1	56.4	9.8	Extremely hard digging at 4ft, dense soil layer, ash Cobbles and boulders up to 16in diameter at 8ft, blocky volcanics

Test pit terminated at 19ft, (Excavator limits)

NF-GEOTECH TEST PIT - GINT STD US LAB.GDT - 7/3/19 16:08 - S./PROJECTS/0385,000-THACKER PASS LITHIUM NEVADAIL-GEOTECH DATA/TEST PITS/ITHACKER PASS LOGS.GPJ

NewFields

CLIENT Lithium Nevada Corporation

PROJECT NUMBER 475.0385.000

DATE STARTED 2/28/19 _____ COMPLETED 2/28/19

EXCAVATION CONTRACTOR Hunewill Construction

EQUIPMENT CAT 320E

LOGGED BY C.Coleman CHECKED BY M. Walden

PROJECT NAME Thacker Pass Project

PROJECT LOCATION Thacker Pass

GROUND ELEVATION 4734 ft TOTAL PIT DEPTH 15 ft

COORDINATES ():

NORTHING <u>15148825</u> EASTING <u>1359965</u>

DEPTH TO WATER (FT BGS) No groundwater encountered

NOTES Backfilled with excavated material

ELEVATION (ft) O DEPTH (ft)	GRAPHIC LOG	MATERIAL DESCRIPTION Surface Conditions: Mud	SAMPLE TYPE NUMBER	MOISTURE CONTENT (%)	ATTER LIMIT LIMIT	PLASTICITY STATE OF S	% GRAVEL	% SAND	% FINES	REMARKS
4730		lean CLAY (CL) with sand, fine grained, medium plasticity, moist, brown, (root zone) GRAVEL (GW-GC) with sand and silt, fine to coarse grained sand and gravel, subrounded, low plasticity, moist, brown	om GB \$-05-33	3						Cobbles and boulders up to 12in diameter
4725 10 10 4720 15	- - -	sandy SILT (ML), fine to coarse grained sand, subrounded, low plasticity, damp, brown Test pit terminated at 15ft. refusal on weathered basalt	M GB \$-05-34	23.7	41	10	1.4	31.8	66.8	Weathered basalt starting at 10ft, soft digging

Test pit terminated at 15ft, refusal on weathered basalt

NF-GEOTECH TEST PIT - GINT STD US LAB.GDT - 7/3/19 16:09 - S:\PROJECTS\0385.000-THACKER PASS LITHIUM NEVADALL-GEOTECH DATA\TEST PITS\THACKER PASS LOGS.GPJ

NewFields

CLIENT Lithium Nevada Corporation PROJECT NAME Thacker Pass Project PROJECT NUMBER 475.0385.000 PROJECT LOCATION Thacker Pass **DATE STARTED** 2/27/19 **COMPLETED** 2/27/19 GROUND ELEVATION 4782 ft TOTAL PIT DEPTH 19 ft **EXCAVATION CONTRACTOR** Hunewill Construction COORDINATES (): EQUIPMENT CAT 320E **NORTHING** <u>15149032</u> **EASTING** 1358718 LOGGED BY C.Coleman CHECKED BY M. Walden DEPTH TO WATER (FT BGS) No groundwater encountered

NOTES Backfilled with excavated material

<u></u>	A WITT CACAVATCA MATCHAI								
		ш	(6)	ATTER	RBERG 11TS				
ELEVATION (ft) O DEPTH (R) GRAPHIC LOG	MATERIAL DESCRIPTION Surface Conditions: Mud	SAMPLE TYPE NUMBER	MOISTURE CONTENT (%)	LIQUID	PLASTICITY INDEX	% GRAVEL	% SAND	% FINES	REMARKS
4780	lean CLAY (CL) with sand, fine grained, medium plasticity, moist, dark brown, (root zone) silty SAND (SM) with gravel, fine to coarse grained sand and gravel, subangular, low plasticity, dry, light brown silty GRAVEL (GM) with sand, fine to coarse grained sand and gravel, subrounded, nonplastic, dry, brown	My GB S-06-29 S-06-29		NP	NP	42.2	33.5	17	Hard digging at 7ft, cobbles and boulders up to 24in diameter % Cobble = 7.3
4780	Test pit terminated at 19ft, (Excavator limits)								

NewFields

 CLIENT _ Lithium Nevada Corporation
 PROJECT NAME _ Thacker Pass Project

 PROJECT NUMBER _ 475.0385.000
 PROJECT LOCATION _ Thacker Pass

 DATE STARTED _ 2/26/19 _ COMPLETED _ 2/26/19 _ EXCAVATION CONTRACTOR _ Hunewill Construction _ Hunewill Construction _ COORDINATES ():
 COORDINATES ():

 EQUIPMENT _ CAT 320E _ Lithium Nevada Corporation _ PROJECT NAME _ Thacker Pass Project _ Thacker Pass Proj

DEPTH TO WATER (FT BGS) No groundwater encountered

NOTES Backfilled with excavated material

ELEVATION (ft)	O DEPTH (ft)	GRAPHIC LOG	MATERIAL DESCRIPTION Surface Conditions: Snowy-Mud	SAMPLE TYPE NUMBER	MOISTURE CONTENT (%)		PLASTICITY SIER	% GRAVEL	% SAND	% FINES	REMARKS
4810 	 5		lean CLAY (CL) with sand, fine grained, medium plasticity, moist, brown, (root zone) fat CLAY (CH) with sand, highly plastic, dry, light brown	m GB \$-07-1	3 24	55	33	4.6	18.5	71.5	% Cobbles = 5.4
4805	10		GRAVEL (GW-GM) with sand and silt, fine to coarse grained sand and gravel, subrounded, nonplastic, dry, light brown BASALT	GB \$-07-14	<u>.</u>						Hard digging at 8ft, blocky volcanic rock with phenocrysts, boulders up to 24in diameter

Test pit terminated at 10ft, refusal on basalt

LOGGED BY _C.Coleman CHECKED BY _M. Walden ____

NF-GEOTECH TEST PIT - GINT STD US LAB.GDT - 7/3/19 16:09 - S.\PROJECTS\0385.000-THACKER PASS LITHIUM NEVADA\L-GEOTECH DATA\TEST PITS\THACKER PASS LOGS.GPJ

NewFields

DEPTH TO WATER (FT BGS) No groundwater encountered

NOTES Backfilled with excavated material

LOGGED BY C.Coleman CHECKED BY M. Walden

		A WILL CAGGRAGE Material								
ELEVATION (ft)	O DEPTH (ft) GRAPHIC LOG	MATERIAL DESCRIPTION Surface Conditions: Snowy-Mud	SAMPLE TYPE NUMBER	MOISTURE CONTENT (%)		PLASTICITY SIER	% GRAVEL	% SAND	% FINES	REMARKS
4840		lean CLAY (CL) with sand, fine grained, medium plasticity, moist, brown silty GRAVEL (GM), with sand, fine to coarse grained gravel, subangular, low plasticity, dry, light brown	√n GB √s-08-1	14.8	37	9	40.5	40.4	19.1	Extremely hard digging
4835	5	GRAVEL (GP-GM) with sand and silt, fine to coarse grained sand and gravel, subrounded, nonplastic, dry, dark brown	GB \$-08-16	9.8	NP	NP	44.2	40	10	Blocky vesicular volcanic rock at 6ft, boulders up to 30in diameter % Cobble = 5.8
4830	10 00									

Test pit terminated at 13ft, refusal on blocky volcanic rock

NF-GEOTECH TEST PIT - GINT STD US LAB.GDT - 7/3/19 16:10 - S.\PROJECTS\0385.000-THACKER PASS LITHIUM NEVADA\L-GEOTECH DATA\TEST PITS\THACKER PASS LOGS.GPJ

NewFields

CLIENT Lithium Nevada Corporation	PROJECT NAME _ Thacker Pass Project
PROJECT NUMBER 475.0385.000	PROJECT LOCATION Thacker Pass
DATE STARTED 2/26/19 COMPLETED 2/26/19	GROUND ELEVATION 4870 ft TOTAL PIT DEPTH 15 ft
EXCAVATION CONTRACTOR Hunewill Construction	COORDINATES ():
EQUIPMENT CAT 320E	NORTHING 15149606 EASTING 1356846
LOGGED BY C.Coleman CHECKED BY M. Walden	DEPTH TO WATER (FT BGS) No groundwater encountered
NOTES Desiration with experience and the second sec	

NOTES Backfille	ed with excavated material								
O DEPTH (ft) GRAPHIC LOG	MATERIAL DESCRIPTION Surface Conditions: Snowy-Mud	SAMPLE TYPE NUMBER	MOISTURE CONTENT (%)	ATTER LIMIT LIMIT	PLASTICITY STIR	% GRAVEL	% SAND	% FINES	REMARKS
4865 5	lean CLAY (CL) with sand, fine grained, medium plasticity, moist, brown silty SAND (SM) with gravel, well graded, fine to coarse grained sand and gravel, subangular to subrounded, nonplastic, dry, light brown	W GB \$-09-09	•						Very hard digging at 2ft Caliche layer from 2-4ft
	silty GRAVEL (GM) with sand, trace silt, poorly graded, fine to coarse grained sand and gravel, subangular, medium plasticity, dry, brown								Cobbles and boulders up to 18in diameter at 7ft, digging through volcanic rock
4860 10 0	1	₩ GB \$-09-10	12.4	55	24	49.3	27.1	16.5	% Cobble = 7.1
4855 15	Test pit terminated at 15ft, refusal on blocky volcanics,								Very hard digging near the bottom of the test pit
4860 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0									

NewFields

NOTES Backfilled with excavated material

ELEVATION (ft)	O DEPTH (ft)	GKAPHIC LOG	MATERIAL DESCRIPTION Surface Conditions: Mud	SAMPLE TYPE NUMBER	MOISTURE CONTENT (%)		PLASTICITY STAN	% GRAVEL	% SAND	% FINES	REMARKS
20			lean CLAY (CL) with sand, fine grained, medium plasticity, moist, brown silty SAND (SM) with gravel, fine to coarse grained sand and gravel, subangular, nonplastic, dry, light brown								Dense layer from 3-7ft, cobbles up to 10in diameter
	5			nn GB S-10-24	17.1	NP	NP	35	47.5	17.5	

Test pit terminated at 7ft, refusal on dense cemented soil

NF-GEOTECH TEST PIT - GINT STD US LAB.GDT - 7/3/19 16:10 - S;PROJECTS\0385,000-THACKER PASS LITHIUM NEVADAIL-GEOTECH DATA\TEST PITS\THACKER PASS LOGS.GPJ

NewFields

CLIENT Lithium Nevada Corporation PROJECT NAME Thacker Pass Project

PROJECT NUMBER 475.0385.000 PROJECT LOCATION Thacker Pass

DATE STARTED 2/27/19 COMPLETED 2/27/19 GROUND ELEVATION 4821 ft TOTAL PIT DEPTH 15 ft

EXCAVATION CONTRACTOR Hunewill Construction COORDINATES ():

DEPTH TO WATER (FT BGS) No groundwater encountered

 EQUIPMENT
 CAT 320E
 NORTHING
 15149536
 EASTING
 1358054

NOTES Backfilled with excavated material

LOGGED BY C.Coleman CHECKED BY M. Walden

		d with excavated material								-
ELEVATION (ft)	O DEPTH (ft) GRAPHIC LOG	MATERIAL DESCRIPTION Surface Conditions: Mud	SAMPLE TYPE NUMBER	MOISTURE CONTENT (%)	LIQUID LIMIT		% GRAVEL	% SAND	% FINES	REMARKS
4820 4820 4815 4815	5	lean CLAY (CL) with sand, fine grained, medium plasticity, moist, brown, (root zone) silty SAND (SM) with gravel, fine to coarse grained sand and gravel, subrounded, low plastic, dry, light brown GRAVEL (GP-GM) with sand and silt, fine to coarse grained	m GB \$-11-2							Extremely hard digging at 5ft, blocky volcanics, cobbles and
	10 0	sand and gravel, subrounded, nonplastic, dry, brown	m GB S-11-22	8.1	NP	NP	48.4	38.5	10.3	% Cobble = 2.8
4810 - 4810 	15	SAND (SW-SM) with gravel and silt, fine to coarse grained sand and gravel, subrounded, low plasticity, dry, brown	₩ GB \$-11-23							Cobbles up to 12in diameter Weathered basalt at 13ft

Test pit terminated at 15ft refusal on weathered basalt

NF-GEOTECH TEST PIT - GINT STD US LAB.GDT - 7/3/19 16:10 - S.\PROJECTS\0385.000-THACKER PASS LITHIUM NEVADA\L-GEOTECH DATA\TEST PITS\THACKER PASS LOGS.GPJ

NewFields

CLIENT Lithium Nevada Corporation PROJECT NAME Thacker Pass Project PROJECT NUMBER 475.0385.000 PROJECT LOCATION Thacker Pass DATE STARTED 2/27/19 _____ COMPLETED 2/27/19 GROUND ELEVATION 4805 ft TOTAL PIT DEPTH 17 ft **EXCAVATION CONTRACTOR** Hunewill Construction COORDINATES (): EQUIPMENT CAT 320E **NORTHING** <u>15149781</u> **EASTING** 1359981 LOGGED BY C.Coleman CHECKED BY M. Walden DEPTH TO WATER (FT BGS) No groundwater encountered

NOTES Backfilled with excavated material

S.GPJ GRAPHIC GRAPHIC LOG	MATERIAL DESCRIPTION Surface Conditions: Mud	SAMPLE TYPE NUMBER	MOISTURE CONTENT (%)	ATTER LIM DINOII	PLASTICITY SERVINDEX	% GRAVEL	% SAND	% FINES	REMARKS
AVTEST PITSTHACKER PASS LOG ONE ONE ONE ONE ONE ONE ONE O	lean CLAY (CL) with sand, fine grained, medium plasticity, moist, brown GRAVEL (GP-GM) with silt and sand, fine to coarse grained sand and gravel, subrounded, nonplastic, dry, light brown	Mn GB \$-12-32	2						Hard digging Cobbles and boulders at 4ft up to 24in diameter Blocky volcanics at 8ft
4795 10 ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °	Test pit terminated at 17ft, refusal on blocky volcanics								
NF-GEOTECH TEST PIT - GINT STD US LAB. GDT - 7/3/19 16:11 - S.:PROJECTS)0385,000-THACKER PASS LITHIUM NEVADA/L-GEOTECH DATA/TEST PITS/THACKER PASS LOGS, GPU TO SECOTECH PAS									
NF-GEOTECH TEST PIT - GINT STD US LAB.GD					うう				

NewFields

CLIENT Lithium Nevada Corporation PROJECT NAME Thacker Pass Project PROJECT NUMBER 475.0385.000 PROJECT LOCATION Thacker Pass DATE STARTED 2/27/19 _____ COMPLETED 2/27/19 GROUND ELEVATION 4830 ft TOTAL PIT DEPTH 19 ft **EXCAVATION CONTRACTOR** Hunewill Construction COORDINATES ():

EQUIPMENT CAT 320E **NORTHING** <u>15150438</u> **EASTING** 1359953 LOGGED BY C.Coleman CHECKED BY M. Walden DEPTH TO WATER (FT BGS) No groundwater encountered

NOTES Backfilled with excavated material

NOTES BOOKING	d With Cacavated Matchai								
				ATTER	RBERG IITS				
© DEPTH (ft) GRAPHIC LOG	MATERIAL DESCRIPTION Surface Conditions: Mud	SAMPLE TYPE NUMBER	MOISTURE CONTENT (%)	LIQUID	PLASTICITY INDEX	% GRAVEL	% SAND	% FINES	REMARKS
4030	lean CLAY (CL) with sand, fine grained, medium plasticity, moist, brown GRAVEL (GP-GM) with sand and silt, fine coarse grained sand and gravel, subrounded, nonplastic, dry, light brown								Blocky volcanic rock at 2ft, extremely hard digging, cobbles and boulders
4825 5 0		wn GB s-13-3	15.5	52	22	55.6	33.6	10.8	Cobbles up to 12in diameter
4820 10	clayey SAND (SC) with gravel, fine to coarse grained sand and gravel, subangular, medium plasticity, dry, light brown								soft digging
		Mn GB s-13-32	30.9	66	34	20.3	32.3	47.4	Cobbles up to 8in diameter
4815 15									
	Test pit terminated at 19ft, (Excavator limits)								
4830 0 -									

NewFields

PROJECT NAME Thacker Pass Project CLIENT Lithium Nevada Corporation PROJECT NUMBER 475.0385.000 PROJECT LOCATION Thacker Pass DATE STARTED 2/28/19 _____ COMPLETED 2/28/19 GROUND ELEVATION 4795 ft TOTAL PIT DEPTH 19 ft **EXCAVATION CONTRACTOR** Hunewill Construction COORDINATES (): EQUIPMENT CAT 320E **NORTHING** <u>15150356</u> **EASTING** 1358895

DEPTH TO WATER (FT BGS) No groundwater encountered

NOTES Backfilled with excavated material

LOGGED BY C.Coleman CHECKED BY M. Walden

NOTES Backfille	ed with excavated material								
GRAPHIC LOG	MATERIAL DESCRIPTION Surface Conditions: Mud	SAMPLE TYPE NUMBER	MOISTURE CONTENT (%)	ATTEF LIMIT LIMIT	PLASTICITY SLIN	% GRAVEL	% SAND	% FINES	REMARKS
4790 5	lean CLAY (CL) with sand, fine grained, medium plasticity, moist, brown, (root zone) GRAVEL (GW-GM) with silt and sand, fine to coarse grained sand and gravel, subangular, nonplastic, dry, light brown GRAVEL (GW) with sand, fine to coarse grained sand and coarse gravel, subangular, nonplastic, dry, brown	6B \$-14-48	3						Cobbles up to 8in diameter
4785 10 4780 15		m GB \$-24-49	25.7	NP	NP	60.9	35.1	4	Weathered basalt at 8ft
4795 0 	Test pit terminated at 19ft, (Excavator limits)								

NOTES Backfilled with excavated material

ELEVATION (ft)	O DEPTH (ft)	GRAPHIC LOG	MATERIAL DESCRIPTION Surface Conditions: Mud	SAMPLE TYPE NUMBER	MOISTURE CONTENT (%)		PLASTICITY G B INDEX	% GRAVEL	% SAND	% FINES	REMARKS
4885	5		lean CLAY (CL) with sand, fine grained, medium plasticity, moist, brown, (root zone) silty GRAVEL (GM) with sand, fine to coarse grained sand and gravel, subangular, nonplastic, dry, light brown silty SAND (SM) with gravel, fine to coarse grained sand and gravel, nonplastic, dry, brown	on GB S=15-4							Cobbles up to 6in diameter Blocky volcanics at 6ft, cobbles up to 8in diameter
4875	10			GB S-15-42	22.7	NP	NP	40.3	46.2	13.5	

Test pit terminated at 14ft, refusal on weathered basalt

NF-GEOTECH TEST PIT - GINT STD US LAB.GDT - 7/3/19 16:12 - S.\PROJECTS\0385.000-THACKER PASS LITHIUM NEVADA\L-GEOTECH DATA\TEST PITS\\THACKER PASS LOGS.GPJ

CLIENT Lithium Nevada Corporation PROJECT NAME Thacker Pass Project PROJECT NUMBER 475.0385.000 PROJECT LOCATION Thacker Pass DATE STARTED 2/26/19 _____ COMPLETED 2/26/19 GROUND ELEVATION 4858 ft TOTAL PIT DEPTH 15 ft **EXCAVATION CONTRACTOR** Hunewill Construction COORDINATES (): EQUIPMENT CAT 320E NORTHING <u>15149833</u> **EASTING** 1357251 LOGGED BY C.Coleman CHECKED BY M. Walden DEPTH TO WATER (FT BGS) No groundwater encountered

NOTES Backfilled with excavated material

		dominio	d With Cacavated Matchai								
Z				PE	(%	ATTEF LIM	RBERG IITS				
ELEVATION (ft)	DEPTH (ft)	GRAPHIC LOG	MATERIAL DESCRIPTION	SAMPLE TYPE NUMBER	MOISTURE CONTENT (%)	۵۲	Ε×	% GRAVEL	% SAND	FINES	REMARKS
ELEV (DE)	GRA L		AMPL	MOIS	LIQUID	PLASTICITY INDEX	% GF	8	₩ ₩	REM
	0	,,,,,	Surface Conditions: Snowy-Mud	Ŋ	O		J				
	-		lean CLAY (CL) with sand, fine grained, medium plasticity, moist, brown (root zone)								
4855			silty SAND (SM) with gravel, well graded, fine to medium grained sand, fine to coarse gravel, subrounded, nonplastic,	sin GB							Cobbles up to 5in diameter
	 5		dry, light brown	wn GB s-16-1	1						
			silty SAND (SM) with gracel, fine to coarse grained sand and	_							Very hard digging at 6ft, cobbles and boulders, blocky volcanic rock
4850			gravel, low plastic, subangular, dry, brown	ww GB				05.4			Cobbles and boulders up to 18in diameter
-	10			wn GB s-16-12	28.9	58	21	25.1	36.3	38.6	Tom diameter
-											
4845											
	15										
			Test pit terminated at 15ft on blocky volcanics								
				w land							
							16 15		1		
							3				
							Y		*		
					OF STREET						
								3	5		
					2 2						
				w 14		M					
4855 					1	1		X	i Ja		

NewFields

CLIENT Lithium Nevada Corporation PROJECT NAME Thacker Pass Project PROJECT NUMBER _475.0385.000 PROJECT LOCATION Thacker Pass **DATE STARTED** 2/28/19 **COMPLETED** 2/28/19 GROUND ELEVATION 4930 ft TOTAL PIT DEPTH 19 ft **EXCAVATION CONTRACTOR** Hunewill Construction COORDINATES (): EQUIPMENT CAT 320E **NORTHING** <u>15150600</u> **EASTING** 1357532 LOGGED BY _C.Coleman CHECKED BY _M. Walden ____ DEPTH TO WATER (FT BGS) No groundwater encountered

NOTES Backfilled with excavated material

	A WILL CACAVALCA MATCHAI								
		<u> </u>		ATTEF LIM	RBERG IITS				
ELEVATION (ft) DEPTH (ft) GRAPHIC LOG	MATERIAL DESCRIPTION	SAMPLE TYPE NUMBER	MOISTURE CONTENT (%)	۵.	} E ¥	% GRAVEL	% SAND	FINES	REMARKS
CRA GRA		MPL	MOIS	LIQUID	PLASTICITY INDEX	% GR	8 %	% 	NEM.
4930 0	Surface Conditions: Mud	S/	-0		P.				_
	lean CLAY (CL) with sand, fine grained, medium plasticity, moist, brown (root zone)								
	silty SAND (SM) some gravel, fine to medium grained sand, fine to coarse gravel, subrounded, nonplastic, dry, light brown								
4925 5									
4925 5		M GB \$-17-39	21.3	NP	NP	8.6	65.7	25.7	Increased gravel content at 6ff
F + -									
4920 10									
	GRAVEL (GP-GM) with sand and silt, fine to coarse grained								Weathered basalt at 12ft, cobbles up to 10in diameter
	sand and gravel, low plastic, subangular, dry, brown	on GB s-17-40							·
4915 15		♥\$-17-40	,						
	Test pit terminated at 19ft (Excavator limits)								
4925 5					Wir Wir				

NewFields

 CLIENT Lithium Nevada Corporation
 PROJECT NAME Thacker Pass Project

 PROJECT NUMBER 475.0385.000
 PROJECT LOCATION Thacker Pass

 DATE STARTED 2/28/19
 COMPLETED 2/28/19
 GROUND ELEVATION 4899 ft
 TOTAL PIT DEPTH 12 ft

 EXCAVATION CONTRACTOR Hunewill Construction
 COORDINATES ():

 EQUIPMENT CAT 320E
 NORTHING 15150981
 EASTING 1357833

 LOGGED BY C.Coleman
 CHECKED BY M. Walden
 DEPTH TO WATER (FT BGS) No groundwater encountered

NOTES Backfilled with excavated material

NF-GEOTECH TEST PIT - GINT STD US LAB.GDT - 7/3/19 16:12 - S./PROJECTS/0385,000-THACKER PASS LITHIUM NEVADAIL-GEOTECH DATA/TEST PITS/THACKER PASS LOGS.GPJ

ELEVATION	O DEPTH	GRAPHIC LOG	MATERIAL DESCRIPTION Surface Conditions: Mud	SAMPLE TYPE NUMBER	MOISTURE CONTENT (%)	ATTER LIMIT LIMIT	PLASTICITY STATE INDEX	% GRAVEL	% SAND	S∃NIJ %	REMARKS
489		-	lean CLAY (CL) with sand, fine grained, medium plasticity, moist, brown (root zone) sandy silty CLAY (CL-ML), fine to coarse grained sand, low plasticity, dry, brown								
	<u> </u>			Mn GB s-18-43	10.9	28	7	0.2	37.2	62.6	Weathered Basalt starting at 6ft
489	10										Hard digging at 10ft

Test pit terminated at 12ft, refusal on weathered basalt

NewFields

NOTES Backfilled with excavated material

ELEVATION (ft)	GRAPHIC LOG	MATERIAL DESCRIPTION Surface Conditions: Mud	SAMPLE TYPE NUMBER	MOISTURE CONTENT (%)	LIQUID LIMIT	PLASTICITY STATE INDEX	% GRAVEL	% SAND	% FINES	REMARKS
4810		lean CLAY (CL) with sand, fine grained, medium plasticity, moist, brown (root zone) GRAVEL (GW-GM) with sand and silt, fine to coarse grained sand and gravel, subrounded to subangular, low plasticity, dry, brown	wn GB \$-19-46							Very hard digging at 5ft, cobbles and boulders up to 36in diameter

Test pit terminated at 9ft, refusal on cemented blocky volcanic

NF-GEOTECH TEST PIT - GINT STD US LAB.GDT - 7/3/19 16:13 - S./PROJECTS/0385,000-THACKER PASS LITHIUM NEVADAIL-GEOTECH DATA/TEST PITS/THACKER PASS LOGS.GPJ

CLIENT Lithium Nevada Corporation PROJECT NAME Thacker Pass Project PROJECT NUMBER 475.0385.000 PROJECT LOCATION Thacker Pass DATE STARTED 3/1/19 _____ COMPLETED 3/1/19 GROUND ELEVATION 4808 ft TOTAL PIT DEPTH 19 ft **EXCAVATION CONTRACTOR** Hunewill Construction COORDINATES (): EQUIPMENT CAT 320E **NORTHING** <u>15151075</u> **EASTING** 1360089 LOGGED BY C.Coleman CHECKED BY M. Walden DEPTH TO WATER (FT BGS) No groundwater encountered

NOTES Backfilled with excavated material

	du Willi excavateu material								
		ш	(e)	ATTER	RBERG IITS				
ELEVATION (ft) (DEPTH (ft) (GRAPHIC LOG	MATERIAL DESCRIPTION Surface Conditions: Frozen Ground	SAMPLE TYPE NUMBER	MOISTURE CONTENT (%)	LIQUID	PLASTICITY INDEX	% GRAVEL	% SAND	% FINES	REMARKS
4805	lean CLAY (CL) with sand, fine grained, medium plasticity, moist, brown (root zone) silty SAND (SM) with gravel, fine to coarse grained sand and gravel, subangular, nonplastic, dry, light brown								Cobbles up to 6in diameter
4800		GB 3-20-50	22.5	NP	NP	11.7	64.5	23.8	
4795									
4790	SAND (SW-SC) with clay and gravel, fine to coarse grained sand and gravel, subangular, low plasticity, dry, light brown	M GB \$-20-5	 						Cobbles up to 6in diameter
4805 - 5 - 4800 - 10 - 4795 - 15 - 4790 - 47	Test pit terminated at 19ft, (Excavator limits)						というできる。		

NewFields

CLIENT Lithium Nevada Corporation **PROJECT NUMBER** 475.0385.000

DATE STARTED 2/28/19 _____ COMPLETED 2/28/19

EXCAVATION CONTRACTOR Hunewill Construction

NOTES Backfilled with excavated material

EQUIPMENT CAT 320E

LOGGED BY C.Coleman CHECKED BY M. Walden

PROJECT NAME Thacker Pass Project

PROJECT LOCATION Thacker Pass

GROUND ELEVATION 4926 ft TOTAL PIT DEPTH 13 ft

COORDINATES ():

NORTHING <u>15151169</u> **EASTING** 1357072

DEPTH TO WATER (FT BGS) No groundwater encountered

		Ш	(9	ATTEF	RBERG ITS				
ELEVATION (ft) DEPTH (ft) GRAPHIC LOG	MATERIAL DESCRIPTION Surface Conditions: Mud	SAMPLE TYPE NUMBER	MOISTURE CONTENT (%)	LIQUID	PLASTICITY INDEX	% GRAVEL	% SAND	% FINES	REMARKS
0		O			П				
4925	lean CLAY (CL) with sand, fine grained, medium plasticity, moist, brown, (root zone)	-							
	silty SAND (SM) trace gravels, fine to coarse grained sand and gravel, subrounded, nonplastic, damp, light brown								
- +		wy GB s-21-37	, 13.1	NP	NP	1.1	55.1	43.8	
4920 5									Cobbles up to 8in diameter
- + -	GRAVEL (GP-GC) with sand, trace clay, fine to coarse grained sand and gravel, subrounded, low plasticity, dry,								Copples up to oill diameter
	brown	.a CP							Blocky volcanics starting at 8
10 0		My GB \$-21-38	3						Blocky volcanics starting at 8i cobble and boulders, hard digging
4915									
	Test pit terminated at 13ft, refusal on basalt								

CLIENT Lithium Nevada Corporation PROJECT NAME Thacker Pass Project PROJECT NUMBER 475.0385.000 PROJECT LOCATION Thacker Pass DATE STARTED 2/28/19 **COMPLETED** 2/28/19 GROUND ELEVATION 4887 ft TOTAL PIT DEPTH 17 ft **EXCAVATION CONTRACTOR** Hunewill Construction COORDINATES (): EQUIPMENT CAT 320E **NORTHING** <u>15151484</u> **EASTING** 1357823 LOGGED BY C.Coleman CHECKED BY M. Walden DEPTH TO WATER (FT BGS) No groundwater encountered

NOTES Backfilled with excavated material

				ATTER	RBERG				
ELEVATION (ft) DEPTH (ft) GRAPHIC LOG	MATERIAL DESCRIPTION	SAMPLE TYPE NUMBER	MOISTURE CONTENT (%)	LIQUID	PLASTICITY SINDEX	% GRAVEL	% SAND	% FINES	REMARKS
	Surface Conditions: Mud	S _A	20		PLA =				_
0 /////	lean CLAY (CL) with sand, fine grained, medium plasticity,								
4885	moist, brown (root zone)								
	GRAVEL (GW-GM) with sand and silt, fine to coarse grained sand and gravel, subangular, nonplastic, dry, light brown								
- + - + ? !		Wn GB \$-22-44							Cobble and boulders at 4ft u to 12in diameter
- 5		¥ 22 ·	1						
4880	SAND (SW) with gravel, fine to coarse grained gravel, coarse sand, subangular, nonplastic, dry, brown								Lake bed at 6ft
		one GB							
_ 10		wn GB \$-22-4	4.8	NP	NP	47	48.2	4.8	
- + -									
15	WEATHERED BASALT	-							
4870									
	Test pit terminated at 17ft, refusal on weathered basalt			•			•		
							O,		

NewFields

CLIENT Lithium Nevada Corporation PROJECT NAME Thacker Pass Project PROJECT NUMBER 475.0385.000 PROJECT LOCATION Thacker Pass DATE STARTED 2/28/19 _____ COMPLETED 2/28/19 GROUND ELEVATION 4869 ft TOTAL PIT DEPTH 15 ft **EXCAVATION CONTRACTOR** Hunewill Construction COORDINATES (): EQUIPMENT CAT 320E **NORTHING** <u>15151512</u> **EASTING** 1358920 LOGGED BY _C.Coleman CHECKED BY _M. Walden ____ DEPTH TO WATER (FT BGS) No groundwater encountered

NOTES Backfilled with excavated material

		Will Choavatou Material								
			Ш	<u>(</u>	ATTEF LIM	RBERG IITS				
ELEVATION (ft) DEPTH	(ft) GRAPHIC LOG		SAMPLE TYPE NUMBER	MOISTURE CONTENT (%)		1	VEL	Q.	FINES	R X S
LEVATIO (ft) DEPTH	RAP CO	MATERIAL DESCRIPTION	1PLE IUME	OIST	LIQUID	PLASTICITY INDEX	% GRAVEL	% SAND	% FIN	REMARKS
=		Surface Conditions: Mud	SAN	ΣÖ	= =	LAS IN	%	0	0	_
0		lean CLAY (CL) with sand, fine grained, medium plasticity,				ш.				
		─\ moist, brown, (root zone)								Very hard digging at 2ft on blocky volcanic rock, boulder up to 36in diameter
+	-	SAND (SP-SM) with gravel and silt, fine to coarse grained sand and gravel, subangular, nonplastic, dry, brown								up to 36in diameter
4865 5										
F										
- +	-		wn GB s-23-47	, 8.6	NP	NP	30.7	57.4	11.9	
4860										-
10										
t										
4055	-									
4855 15	5									
		Test pit terminated at 15ft, refusal on slightly weathered basalt								
			Dawy!							
							À.,			
		A A STATE OF THE S	1 1 H			1,34	LAS S			
						1				
					AL.					
		李宝						**		
					7					
				3						
		A COMPA	B-2-7							
4865 _ 5 - 5 - 4860 _ 10 - 4855 _ 15			The same of	12. 20		H. Sold	7.75			

NewFields

CLIENT Lithium Nevada Corporation PROJECT NAME Thacker Pass Project PROJECT NUMBER _475.0385.000 PROJECT LOCATION Thacker Pass DATE STARTED 3/1/19 _____ COMPLETED 3/1/19 GROUND ELEVATION 4819 ft TOTAL PIT DEPTH 19 ft **EXCAVATION CONTRACTOR** Hunewill Construction COORDINATES (): EQUIPMENT CAT 320E **NORTHING** <u>15151498</u> **EASTING** 1360066 LOGGED BY _C.Coleman CHECKED BY _M. Walden ____ DEPTH TO WATER (FT BGS) No groundwater encountered

NOTES Backfilled with excavated material

NOTES DACKING	du Willi excavateu material								
TTION TTH) PHIC		: TYPE BER	TURE NT (%)	LIM	RBERG		ND	FINES	RKS
ELEVATION (ft) O DEPTH (ft) GRAPHIC LOG	MATERIAL DESCRIPTION Surface Conditions: Frozen Ground	SAMPLE TYPE NUMBER	MOISTURE CONTENT (%)	LIQUID	PLASTICITY INDEX	% GRAVEL	% SAND	% FII	REMARKS
4815	lean CLAY (CL) with sand, fine grained, medium plasticity, moist, brown, (root zone) GRAVEL (GP-GM) with silt and sand, fine to coarse grained sand and gravel, subrounded, nonplastic, dry, light brown	nn GB \$-24-52	2						Hard digging, cobbles up to 8ii diameter
4810	clayey SAND (SC) trace gravel, fine to coarse grained sand and gravel, subangular, medium plasticity, dry, brown								Cobbles up to 5in diameter
4805 15		m GB \$-24-53	33.9	68	35	5.6	58.7	35.7	- Weathered basalt at 17ft
4815	Test pit terminated at 19ft (Excavator limits)								

NewFields

CLIENT Lithium Nevada Corporation PROJECT NAME Thacker Pass Project PROJECT NUMBER 475.0385.000 PROJECT LOCATION Thacker Pass **DATE STARTED** 2/26/19 **COMPLETED** 2/26/19 GROUND ELEVATION 5002 ft TOTAL PIT DEPTH 19 ft **EXCAVATION CONTRACTOR** Hunewill Construction COORDINATES (): EQUIPMENT CAT 320E **NORTHING** <u>15148304</u> **EASTING** 1349394 LOGGED BY _C.Coleman CHECKED BY _M. Walden ____ DEPTH TO WATER (FT BGS) No groundwater encountered

NOTES Backfilled with excavated material

	A WILLI CACAVALCA MALCHAI								
				ATTEF	RBERG IITS				
ELEVATION (ft) O DEPTH (ft) GRAPHIC LOG	MATERIAL DESCRIPTION Surface Conditions: Snowy-Mud	SAMPLE TYPE NUMBER	MOISTURE CONTENT (%)	LIQUID	PLASTICITY INDEX	% GRAVEL	% SAND	% FINES	REMARKS
5000	lean CLAY (CL) with sand, fine grained, medium plasticity, moist, brown, (root zone) SAND (SP-SM) with gravel and silt, poorly graded fine to coarse grained sand and gravel, angular, nonplastic, dry, light brown GRAVEL (GP) with sand, fine to coarse grained sand and gravel, subrounded to subangular, nonplastic, dry, brown	(M) GB \$-25-0!		NP	NP	52.9	35.7	2.9	Caliche layers from 1-4ft Weathered Basalt starting at 4 and extending to depth of pit % Cobble = 8.5
4985	Test pit terminated at 19ft (Excavator limits)								
						となる。			

NOTES Backfilled with excavated material

ELEVATION (ft)	O DEPTH (ft)	GRAPHIC LOG	MATERIAL DESCRIPTION Surface Conditions: Snowy-Mud	SAMPLE TYPE NUMBER	MOISTURE CONTENT (%)	LIQUID MIT ELIMIT		% GRAVEL	% SAND	% FINES	REMARKS
4985	5		lean CLAY (CL) with sand, fine grained, medium plasticity, moist, brown, (root zone) silty SAND (SM) with gravel, well graded, fine to coarse grained sand and gravel, subrounded, nonplastic, damp, light brown	(m) GB S-26-07							Test pit located in NDOT gravel borrow Potential backfill, gravel up to 2in diameter
4980	10		clayey SAND (SC) with gravel, fine to coarse grained sand and gravel, subrounded to subangular, medium plasticity, dry, light brown WEATHERED BASALT	₩ GB S-26-08	20.9	53	32	15.9	55.9	28.2	Cobbles up to 6in diameter

Test pit terminated at 11ft, refusal on basalt rock

NF-GEOTECH TEST PIT - GINT STD US LAB.GDT - 7/3/19 16:14 - S;PROJECTS\0385,000-THACKER PASS LITHIUM NEVADAIL-GEOTECH DATA\TEST PITS\THACKER PASS LOGS.GPJ

CLIENT Lithium Nevada Corporation PROJECT NAME Thacker Pass Project PROJECT NUMBER _475.0385.000 PROJECT LOCATION Thacker Pass DATE STARTED 2/26/19 _____ COMPLETED 2/26/19 GROUND ELEVATION 4990 ft TOTAL PIT DEPTH 16 ft **EXCAVATION CONTRACTOR** Hunewill Construction COORDINATES (): EQUIPMENT CAT 320E **NORTHING** <u>15148429</u> **EASTING** 1349841 LOGGED BY _C.Coleman CHECKED BY _M. Walden ____ DEPTH TO WATER (FT BGS) No groundwater encountered

NOTES Backfilled with excavated material

110120 _	Jackinic	u with excavated material								-
			ш		ATTEF	RBERG IITS				
0 DEPTH	GRAPHIC LOG	MATERIAL DESCRIPTION Surface Conditions: Snowy-Mud	SAMPLE TYPE NUMBER	MOISTURE CONTENT (%)	LIQUID	PLASTICITY INDEX	% GRAVEL	% SAND	% FINES	REMARKS
		lean CLAY (CL) with sand, fine grained, medium plasticity, moist, brown, (root zone) silty SAND (SM) with gravel, fine to coarse grained sand and gravel, subangular, nonplastic, light brown, dry								Hard digging, caliche layer from 2-4ft, cobbles up to 12in diameter
4985 5	-		m GB \$-27-0	22.5	NP	NP	21.0	60.8	15.8	Caliche layer from 2-4ft
4980 10		GRAVEL (GP-GM) with sand and silt, fine to coarse grained sand and gravel, subrounded, low plasticity to nonplastic, dry, light brown	m GB \$-27-02							Cobbles up to 12in diameter
			\$-27-02							
4975 15										
		Test pit terminated at 16ft, refusal on basalt rock								
71 71 72 74 74 74 74 74 74 74 74 74 74 74 74 74										% Cobble = 2.4
4985 5 4987 10 10 10 10 10 10 10 10 10 10 10 10 10										

NOTES Backfilled with excavated material

NF-GEOTECH TEST PIT - GINT STD US LAB.GDT - 7/3/19 16:15 - S.:PROJECTS/0385,000-THACKER PASS LITHIUM NEVADALL-GEOTECH DATA/TEST PITS/ITHACKER PASS LOGS.GPJ

-			dominic	Will bloatatod material								
GPJ	ELEVATION (ft)	O DEPTH (ft)	GRAPHIC LOG	MATERIAL DESCRIPTION Surface Conditions: Snowy-Mud	SAMPLE TYPE NUMBER	MOISTURE CONTENT (%)	ATTER LIMI LIMIT	PLASTICITY SINDEX	% GRAVEL	% SAND	% FINES	REMARKS
25				lean CLAY (CL) with sand, fine grained, poorly graded, low to medium plasticity, moist, brown, (root zone)								
PASS	4985			fat CLAY (CH) with sand, fine to coarse grained sand, highly plastic, moist, brown	wn GB s-28-03	30.7	63	37	4.4	16.1	79.5	Hard diaging
ACKER	_	 5		GRAVEL (GW-GM) with sand, trace silt, well graded, fine to coarse grained sand and gravel, subrounded to subangular,	·							Hard digging Caliche layer 3-3.5ft
NESI PIISNE	4980			nonplastic, dry, brown	√m GB S-28-04	6.6	NP	NP	50.1	43.0	5.5	% Cobble = 1.4
O LECH DATA	 	10 										Cobbles and boulders increase 8" up to 30in diameter
A/L-GE	4975											
/ NEVAU		15										
	4970											
ASS	7010		• 9 9									

Test pit terminated at 19ft (Excavator limits)

NewFields

CLIENT Lithium Nevada Corporation PROJECT NAME Thacker Pass Project PROJECT NUMBER 475.0385.000 PROJECT LOCATION Thacker Pass DATE STARTED 2/28/19 _____ COMPLETED 2/28/19 GROUND ELEVATION 4707 ft TOTAL PIT DEPTH 19 ft **EXCAVATION CONTRACTOR** Hunewill Construction COORDINATES (): EQUIPMENT CAT 320E **NORTHING** <u>15148153</u> **EASTING** 1360598 LOGGED BY C.Coleman CHECKED BY M. Walden DEPTH TO WATER (FT BGS) No groundwater encountered

NOTES Backfilled with excavated material

110120		JORTHIC	d with excavated material								
_				Й	(9)	ATTEF LIM	RBERG IITS				
ӹ		GRAPHIC LOG	MATERIAL DESCRIPTION Surface Conditions: Mud	SAMPLE TYPE NUMBER	MOISTURE CONTENT (%)	LIQUID	PLASTICITY INDEX	% GRAVEL	% SAND	% FINES	REMARKS
	0		lean CLAY (CL) with sand, fine grained, medium plasticity,				ш.				
4705			moist, brown, (root zone) silty SAND (SM) with gravel, fine to coarse grained sand and gravel, subrounded, nonplastic, dry, light brown								Hard digging at 3ft
4700	5			Mn GB s-29-3	8.1	NP	NP	37.7	42.9	14.6	% Cobble = 4.8
- ‡	10										
4695			GRAVEL (GW-GC) with sand and trace clay, fine to coarse grained sand and gravel, subangular, low plasticity, dry, brown	Wn GB \$-29-36	5						
	15										
4690											Basalt encountered at bottom test pit
			Test pit terminated at 19ft (Excavator limits)								
								14 CAN			

APPENDIX C Laboratory Test Results

APPENDIX C.1 Laboratory Testing Summary

Table C-1
Lithium Nevada Coproration
Geotechnical Investigation
Thacker Pass Project
Laboratory Test Summary

	Sample						PA	RTICLE	SIZE D	ISTRUE	BITION						MOISTURE	NATURAL	ATTE	RBERG LI	MITS	MOD. F	PROCTOR ¹
Borehole Number	Depth	Sample Number			GF	RAVEL					S	AND			CLAY/SILT	uscs	CONTENT	DRY DENSITY	LIQUID	PLASTIC	PLASTIC	MAX. DRY DENSITY	OPTIMUM MOISTURE
	(ft)		3.0"	2.0"	1.0"	0.75"	0.5"	0.375"	#4	#10	#16	#40	#50	#100	#200		(%)	(pcf)	LIMIT	LIMIT	INDEX	(pcf)	CONTENT (%)
BH19-01	7.5-9'	19-110-01	100.0	100.0	96.2	94.7	88.3	87.4	82.6	75.9	71.3	62.6	59.3	49.6	38.4	SM	32.1		71	44	27		
BH19-01	25-26.5'	19-110-02	100.0	100.0	100.0	100.0	100.0	100.0	86.4	65.3	56.4	44.3	40.7	31.1	20.1	SM	30.0		55	30	25		
BH19-02	25-26.5'	19-110-03	100.0	100.0	100.0	100.0	100.0	100.0	95.8	90.4	87.3	82.3	80.7	74.7	61.2	МН	58.8		105	55	50		
BH19-02	45-46.5'	19-110-04	100.0	100.0	100.0	100.0	100.0	99.5	91.9	86.3	84.5	78.8	74.3	59.2	44.1	SM	37.4		80	40	40		
BH19-08	2.5-4'	19-110-05	100.0	100.0	92.2	89.7	84.6	84.6	80.1	74.2	68.5	57.7	54.7	46.7	35.2	SM	19.4		46	28	18		
BH19-09	2.5-4'	19-110-06	100.0	100.0	95.6	78.0	66.5	61.4	50.9	38.7	33.0	24.6	22.4	17.3	11.4	GP-GM	10.3		NP	NP	NP		
BH19-11	2.5-4'	19-110-07	100.0	100.0	100.0	100.0	94.2	92.6	88.7	79.6	70.6	55.3	50.7	39.7	26.8	SM	23.6		NP	NP	NP		
BH19-12	15-16.5'	19-110-08	100.0	100.0	96.7	85.9	69.8	63.0	50.3	37.0	31.5	23.2	21.1	17.3	14.5	GC	10.5		48	21	27		
BH19-15	5.5-6'	19-110-09	100.0	100.0	100.0	100.0	98.8	98.5	92.8	69.2	53.9	33.4	28.9	20.8	14.8	SM	13.1	82.6	NP	NP	NP		
BH19-16	2.5-4'	19-110-10	100.0	100.0	100.0	100.0	97.7	96.9	95.6	93.5	92.4	89.2	87.8	82.5	63.3	CL	18.5		41	24	17		
BH19-17	10.5-11'	19-110-11	100.0	100.0	100.0	100.0	98.6	97.8	95.2	90.1	86.3	78.7	75.8	68.1	58.9	СН	31.8	71.0	50	27	23		
BH19-17	20-21'	19-110-12	100.0	100.0	94.5	90.4	80.8	78.0	64.9	47.5	38.1	25.1	21.8	15.6	11.2	SP-SM	10.0		32	25	7		
BH19-18	10.5-11'	19-110-13	100.0	100.0	100.0	100.0	100.0	100.0	100.0	99.8	99.6	98.3	97.5	93.5	82.5	МН	37.3	63.4	110	55	55		
BH19-18	20.5-21'	19-110-14	100.0	100.0	97.5	97.5	97.5	97.5	96.7	89.0	82.6	64.4	56.9	38.3	23.6	SM	35.3	72.1	NP	NP	NP		
BH19-20	5-6.5'	19-110-15	100.0	100.0	74.0	65.0	59.1	56.4	48.3	38.9	33.2	24.2	22.1	17.6	13.6	GM	10.9		NP	NP	NP		
BH19-20	30-30.5'	19-110-16	100.0	100.0	100.0	97.3	88.6	84.6	70.7	53.2	45.5	35.2	32.6	27.2	21.6	SM	17.3		46	30	16		
BH19-21	2.5-4'	19-110-17	100.0	100.0	100.0	100.0	93.8	91.1	77.6	63.2	55.2	42.3	38.4	28.7	17.4	SM	23.5		NP	NP	NP		
BH19-23	2.5-4'	19-110-18	100.0	100.0	100.0	87.6	76.8	73.1	63.1	49.8	43.6	34.3	31.4	24.9	17.5	SM	14.6		NP	NP	NP		
BH19-23	7.5-9'	19-110-19	100.0	100.0	100.0	81.4	76.8	73.1	59.8	47.0	41.0	30.0	26.6	19.4	13.2	SM	11.3		NP	NP	NP		
BH19-24	2.5-4'	19-110-20	100.0	100.0	100.0	100.0	96.1	92.7	83.4	71.6	65.3	54.3	50.5	40.9	26.7	SM	15.0		NP	NP	NP		
BH19-24	15-16.5'	19-110-21	100.0	100.0	92.3	90.4	82.6	79.0	65.3	50.5	43.4	30.3	26.3	18.7	12.9	SM	11.6		NP	NP	NP		
BH19-24	35-36.5'	19-110-22	100.0	100.0	100.0	100.0	100.0	100.0	98.6	93.3	88.8	76.4	70.6	52.3	32.5	SM	42.5		60	43	17		
BH19-25	2.5-4'	19-110-23	100.0	100.0	100.0	100.0	100.0	99.3	94.9	84.3	78.4	67.3	63.4	52.5	32.7	SM	18.4		NP	NP	NP		
BH19-25	7.5-9'	19-110-24	100.0	100.0	100.0	100.0	100.0	100.0	98.6	89.7	82.4	64.3	57.0	38.7	24.5	SM	22.3		NP	NP	NP		
BH19-25	15-16.5'	19-110-25	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	86.5	71.2	40.9	21.8	SM	35.3		NP	NP	NP		

Table C-1
Lithium Nevada Coproration
Geotechnical Investigation
Thacker Pass Project
Laboratory Test Summary

	Sample						P.A	RTICLE	SIZE D	ISTRUE	BITION						MOISTURE	NATURAL	ATTE	RBERG LI	MITS	MOD. P	PROCTOR ¹
Borehole Number	Depth	Sample Number			GF	RAVEL					S	AND			CLAY/SILT	uscs	CONTENT	DRY DENSITY	LIQUID	PLASTIC	PLASTIC	MAX. DRY DENSITY	OPTIMUM MOISTURE
	(ft)		3.0"	2.0"	1.0"	0.75"	0.5"	0.375"	#4	#10	#16	#40	#50	#100	#200		(%)	(pcf)	LIMIT	LIMIT	INDEX	(pcf)	CONTENT (%)
BH19-26	5-6'	19-110-26	100.0	100.0	86.6	83.2	81.2	78.6	71.7	57.3	49.0	35.6	31.7	23.7	17.1	SM	13.5	80.6	NP	NP	NP		
BH19-28	8.5-9'	19-110-27	100.0	100.0	100.0	97.9	94.0	93.0	83.9	73.7	68.8	58.1	52.1	46.8	40.9	SC	15.6		37	16	21		
BH19-29	2.5-4'	19-110-28	100.0	100.0	94.1	90.8	80.4	78.1	68.5	57.4	51.9	41.4	37.5	28.2	19.2	SM	12.7		NP	NP	NP		
BH19-29	7.5-9'	19-110-29	100.0	100.0	89.3	83.1	78.0	76.1	66.0	53.2	47.0	37.1	33.8	26.9	21.5	SC	7.5		31	21	10		
BH19-29	15-16.5'	19-110-30	100.0	100.0	100.0	97.1	94.1	93.1	81.6	65.3	58.6	50.7	48.5	43.5	38.8	SC	15.3		47	19	28		
BH19-29	25-26'	19-110-31	100.0	100.0	100.0	100.0	100.0	100.0	98.9	91.5	87.8	75.0	68.5	54.6	44.8	SC	23.4		62	25	37		
BH19-31	5.5-6'	19-110-32	100.0	100.0	100.0	97.1	97.1	97.1	89.9	79.1	72.3	58.4	53.9	44.9	37.3	SC	16.8		61	22	39		
BH19-32	15-16.5'	19-110-33	100.0	100.0	100.0	95.7	95.7	95.7	92.4	86.2	82.2	71.2	66.8	56.9	49.5	SC	20.3		55	21	34		
BH19-33	2.5-3'	20-020-01	100.0	100.0	62.8	62.8	56.9	53.1	45.6	34.2	28.5	21.6	19.5	15.0	9.2	GW-GM	10.2		NP	NP	NP		
BH19-33	7.5-8.5'	20-020-02	100.0	100.0	100.0	100.0	93.1	90.0	77.0	64.9	57.5	44.9	40.9	31.5	21.9	SM	21.1		NP	NP	NP		
BH19-33	25-25.5'	20-020-04	100.0	100.0	100.0	100.0	100.0	100.0	100.0	95.7	92.0	86.5	83.9	70.1	40.2	SM	52.4		NP	NP	NP		
BH19-34	2.5-3'	20-020-05	100.0	100.0	100.0	100.0	100.0	98.2	97.3	95.5	91.2	83.2	80.4	71.3	54.0	ML	9.7		NP	NP	NP		
BH19-34	10-11.5'	20-020-07	100.0	100.0	100.0	97.3	87.2	81.3	69.6	57.9	52.8	45.3	43.3	40.0	33.7	SC	14.2		48	24	24		
BH19-35	7.5-8.5'	20-020-09	100.0	100.0	91.9	80.2	73.6	68.6	55.7	46.2	43.0	38.9	37.6	34.0	26.3	GM	12.4		47	35	12		
BH19-35	15-16'	20-020-11	100.0	100.0	84.6	84.6	78.7	75.9	63.1	49.9	44.8	39.0	37.7	34.8	30.0	GM	13.5		59	34	25		
BH19-35	35-35.5'	20-020-12	100.0	100.0	100.0	100.0	99.7	95.5	77.1	64.1	51.6	32.8	28.0	19.8	14.0	SM	76.2		NP	NP	NP		
BH19-36	5-6.5'	20-020-14	100.0	100.0	100.0	100.0	100.0	99.4	90.9	81.5	74.9	57.9	51.3	37.6	25.6	SM	19.5		NP	NP	NP		
BH19-36	10-11.3'	20-020-16	100.0	100.0	100.0	89.8	79.8	72.4	57.2	45.5	40.2	32.0	29.7	25.6	22.1	GM	10.4		47	29	18		
BH19-36	35-36.5'	20-020-17	100.0	100.0	100.0	90.0	80.8	72.3	57.1	42.1	34.6	23.5	21.1	17.5	15.0	GC	13.1		48	21	27		
BH19-37	2.5-3'	20-020-18	100.0	100.0	100.0	100.0	97.3	96.4	91.6	81.8	68.6	44.6	38.4	26.8	17.2	SM	24.5		NP	NP	NP		
BH19-37	7.5-8'	20-020-19	100.0	100.0	62.3	50.7	40.7	36.8	27.8	20.5	17.8	12.6	10.4	6.6	4.0	GP	5.4		NP	NP	NP		
TP19-01	4-7'	19-060-01	95.3	95.3	89.5	88.5	87.2	86.7	83.8	77.8	73.2	64.1	60.9	51.9	36.2	SM	12.9		NP	NP	NP		
TP19-02	0-2'	19-060-02	100.0	100.0	96.6	96.1	95.1	94.3	93.5	91.7	90.6	89.1	88.4	84.8	71.5	CL	29.4		33	21	12	104.3	19.4
TP19-03	2-4'	19-106-02	100.0	97.9	90.7	87.3	82.9	80.2	74.6	68.2	61.8	53.0	50.1	43.0	33.2	SM	15.9		37	29	8		
TP19-03	6-9'	19-060-03	98.0	95.5	78.4	71.5	63.6	59.0	50.2	37.3	31.6	23.7	21.6	17.8	13.8	GM	10.8		NP	NP	NP		

Table C-1
Lithium Nevada Coproration
Geotechnical Investigation
Thacker Pass Project
Laboratory Test Summary

	Sample						P.A	ARTICLE	SIZE D	ISTRUE	BITION						MOISTURE	NATURAL	ATTE	RBERG LI	MITS	MOD. F	PROCTOR ¹
Borehole Number	Depth	Sample Number			GF	RAVEL					S	AND			CLAY/SILT	USCS	CONTENT	DRY DENSITY	LIQUID	PLASTIC	PLASTIC	MAX. DRY DENSITY	OPTIMUM MOISTURE
	(ft)		3.0"	2.0"	1.0"	0.75"	0.5"	0.375"	#4	#10	#16	#40	#50	#100	#200		(%)	(pcf)	LIMIT	LIMIT	INDEX	(pcf)	CONTENT (%)
TP19-04	2-4'	19-106-03	100.0	100.0	100.0	100.0	99.8	99.6	99.3	98.3	93.9	78.0	71.7	57.6	42.9	SM	31.2		47	46	1	78.4	33.8
TP19-04	5-7'	19-060-04	100.0	96.8	84.0	77.5	67.0	59.9	50.9	36.3	31.0	23.7	21.0	15.3	9.8	GW-GM	20.2		NP	NP	NP		
TP19-05	8-10'	19-060-05	100.0	100.0	100.0	100.0	99.7	99.4	98.6	94.3	91.5	87.5	85.6	81.2	66.8	ML	23.7		41	31	10		
TP19-06	11-13'	19-060-06	92.7	87.3	71.8	66.5	60.3	57.2	50.5	43.2	38.8	30.6	28.1	22.9	17.0	GM	11.2		NP	NP	NP		
TP19-07	2-4'	19-106-04	94.6	94.6	92.8	91.9	90.9	90.5	90.0	88.6	87.9	86.7	86.2	83.6	71.5	СН	24.0		55	22	33		
TP19-08	2-4'	19-106-05	100.0	96.8	86.4	81.5	74.1	68.7	59.5	46.2	40.4	33.3	31.3	26.3	19.1	GM	14.8		37	28	9		
TP19-08	6-9'	19-060-07	94.2	87.3	75.1	70.4	63.1	58.6	50.0	38.8	32.7	22.2	19.2	14.3	10.0	GP-GM	9.8		NP	NP	NP		
TP19-09	8-12'	19-060-08	92.9	81.1	65.1	59.9	53.5	49.5	43.6	35.2	31.0	24.8	23.1	20.0	16.5	GM	12.4		55	31	24		
TP19-10	3-6'	19-106-06	100.0	93.0	86.6	82.4	76.0	71.7	65.0	52.5	45.6	35.1	32.1	25.3	17.5	SM	17.1		NP	NP	NP		
TP19-11	7-11'	19-060-09	97.2	87.5	75.2	70.8	63.3	59.0	48.8	34.8	27.8	19.7	18.1	15.3	10.3	GP-GM	8.1		NP	NP	NP		
TP19-13	3-5'	19-106-07	100.0	85.3	71.7	64.8	56.4	50.9	44.4	35.0	29.5	21.4	19.7	15.6	10.8	GP-GM	15.4		52	30	22		
TP19-13	10-13'	19-060-10	100.0	99.0	91.7	89.5	86.8	85.2	79.7	74.3	71.5	66.7	64.6	57.4	47.4	SC	30.9		66	32	34		
TP19-14	8-11'	19-060-11	100.0	95.6	71.8	59.5	47.8	42.1	39.1	29.4	24.4	16.2	13.6	7.8	4.0	GW	25.7		NP	NP	NP		
TP19-15	8-11'	19-060-12	100.0	100.0	80.0	73.7	64.7	60.0	59.7	57.4	54.9	47.3	42.8	26.6	13.5	SM	22.7		NP	NP	NP		
TP19-16	7-10'	19-060-13	100.0	94.5	86.3	84.5	82.5	81.1	74.9	69.1	66.1	59.0	56.0	49.1	38.6	SM	28.9		58	37	21		
TP19-17	4-7'	19-060-14	100.0	100.0	98.2	96.6	93.9	92.4	91.4	87.9	84.8	75.6	69.2	47.2	25.7	SM	21.3		NP	NP	NP		
TP19-18	5-8'	19-060-15	100.0	100.0	100.0	100.0	99.9	99.9	99.8	99.8	97.8	90.1	87.7	81.7	62.6	CL-ML	10.9		28	21	7		
TP19-20	6-10'	19-060-16	100.0	98.4	97.5	96.7	96.0	95.6	88.3	74.0	64.1	48.2	43.8	34.3	23.8	SM	22.5		NP	NP	NP		
TP19-21	3-5'	19-060-17	100.0	100.0	99.8	99.8	99.5	99.3	98.9	97.9	95.3	86.3	83.7	74.8	43.8	SM	13.1		NP	NP	NP		
TP19-22	8-11'	19-060-18	100.0	99.3	92.1	87.4	78.2	71.4	53.0	31.8	22.4	13.4	11.4	7.8	4.8	SW	4.8		NP	NP	NP		
TP19-23	5-9'	19-060-19	100.0	98.0	91.8	88.2	82.7	79.0	69.3	55.5	46.3	32.6	29.0	20.5	11.9	SP-SM	8.6		NP	NP	NP		
TP19-24	14-17'	19-060-20	100.0	100.0	99.2	98.3	98.0	97.4	94.4	87.7	82.3	69.5	64.3	51.3	35.7	SC	33.9		68	33	35		
TP19-25	7-12'	19-060-21	91.5	84.5	70.0	62.7	52.6	47.2	38.6	23.9	17.0	9.3	7.5	4.6	2.9	GP	8.1		NP	NP	NP		
TP19-26	6-8'	19-060-22	100.0	100.0	99.8	99.6	97.6	95.4	84.1	60.9	52.1	42.5	39.8	33.8	28.2	SC	20.9		53	21	32		
TP19-27	3-5'	19-060-23	97.6	97.6	93.5	91.6	88.8	87.1	76.6	55.0	44.3	30.9	27.7	21.7	15.8	SM	22.5		NP	NP	NP		

Table C-1
Lithium Nevada Coproration
Geotechnical Investigation
Thacker Pass Project
Laboratory Test Summary

	Sample						P/	ARTICLE	SIZE D	STRUE	ITION						MOISTURE	NATURAL	ATTE	RBERG LI	MITS	MOD. F	PROCTOR ¹
Borehole Number	Depth	Sample Number			GF	RAVEL					S	AND			CLAY/SILT	USCS	CONTENT	DRY DENSITY	LIQUID	PLASTIC	PLASTIC	MAX. DRY DENSITY	OPTIMUM MOISTURE
	(ft)		3.0"	2.0"	1.0"	0.75"	0.5"	0.375"	#4	#10	#16	#40	#50	#100	#200		(%)	(pcf)	LIMIT	LIMIT	INDEX	(pcf)	CONTENT (%)
TP19-28	1-3'	19-106-08	100.0	100.0	97.1	96.8	96.4	96.0	95.6	94.2	93.4	92.1	91.7	89.2	79.5	СН	30.7		63	26	37		
TP19-28	5-9'	19-060-24	98.6	92.8	75.2	70.0	62.9	57.5	48.5	33.4	25.1	15.2	13.1	9.6	5.5	GW-GM	6.6		NP	NP	NP		
TP19-29	4-7'	19-060-25	95.2	90.6	77.5	73.7	67.6	63.9	57.5	47.1	41.0	30.8	27.7	21.5	14.6	SM	8.1		NP	NP	NP		
TP19-30	8"-9'	20-019-01	100.0	100.0	94.9	92.1	86.0	82.4	73.4	56.0	47.2	35.6	32.2	24.3	15.3	SM	21.5		NP	NP	NP		
TP19-31	8"-10'	20-019-02	100.0	100.0	100.0	100.0	99.8	99.7	95.9	89.3	86.6	83.4	82.0	73.8	44.8	SM	11.0		NP	NP	NP		
TP19-32	6"-5'	20-019-03	100.0	100.0	100.0	99.9	99.8	99.8	99.2	96.0	91.1	83.6	81.8	78.4	60.8	ML	12.6		NP	NP	NP	101.9	21.1
TP19-33	3-15'	20-019-04	100.0	89.7	72.0	69.4	63.7	61.3	53.0	44.0	40.5	36.0	35.1	32.5	24.2	GC	15.2		48	23	25		
TP19-34	5-11'	20-019-05	86.3	84.2	66.6	62.7	56.6	47.8	41.9	33.5	30.3	26.2	25.3	23.5	18.1	GC	6.4		46	19	27	1242	9
TP19-35	8"-8'	20-019-06	100.0	82.7	65.1	60.2	53.9	50.9	44.5	38.2	35.1	30.9	30.1	28.5	22.7	GC	6.9		30	20	10	134.8	8
TP19-36	6-9'	20-019-07	69.2	63.4	63.4	61.7	58.2	57.2	54.4	50.3	48.2	44.4	43.0	38.8	30.2	SM	15.6		NP	NP	NP		
TP19-37	5-14'	20-019-08	96.5	92.6	85.8	83.2	79.9	77.8	69.7	56.1	48.7	36.8	34.2	30.5	25.6	SC	10.2		56	26	30		
TP19-39	8"-5'	20-019-09	100.0	94.8	86.5	83.3	79.2	76.8	65.5	51.2	45.7	37.8	35.0	27.7	18.3	SM	15.5		NP	NP	NP		
TP19-40	1.5-4'	20-019-10	100.0	89.6	71.7	66.0	60.0	56.9	52.1	44.7	40.6	34.4	32.9	29.9	25.1	GC	17.7		45	21	24		
TP19-44	6"-11'	20-019-11	100.0	83.9	70.5	65.4	59.1	55.5	47.6	35.1	28.5	18.9	16.5	12.3	8.4	GW-GM	9.2		NP	NP	NP	112.6	11
TP19-46	4-8'	20-019-12	100.0	95.1	76.7	71.7	65.0	61.8	55.5	48.0	44.5	37.6	34.7	27.6	18.9	GM	14.6		38	29	9	109.9	14.5
TP19-47	8"-3'	20-019-13	100.0	80.3	71.8	68.1	58.7	55.2	45.8	36.7	33.7	29.1	27.1	21.5	14.9	GM	13.1		NP	NP	NP		
TP19-48	6"-5'	20-019-14	100.0	100.0	98.9	96.0	94.9	93.6	91.3	87.7	85.7	81.3	79.2	72.3	56.8	CL	20.5		34	21	13		
TP19-49	8"-4'	20-019-15	76.7	61.2	53.0	49.9	44.2	41.4	34.2	26.2	21.8	15.3	13.6	10.2	6.2	GW-GM	9.9		NP	NP	NP		
¹ Oversize	Correction A	pplied																					

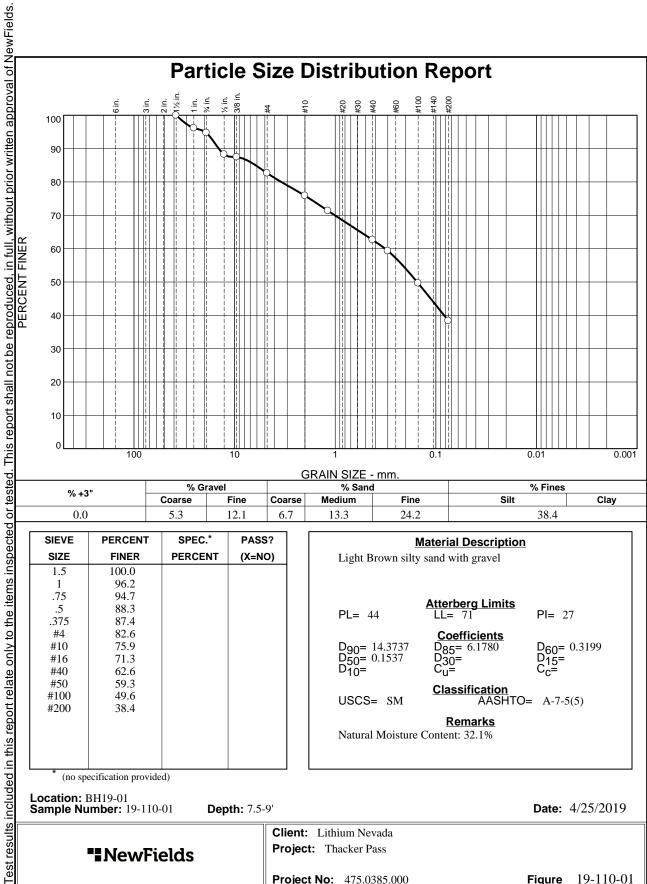


Table C-2 Lithium Nevada Coproration Geotechnical Investigation Thacker Pass Project Laboratory Test Summary

				ATTE	RBERG L	IMITS	MOD.	PROCTOR		STRENGTH			CU TRIAXIA	AL TESTING		UU TRIAXIAL		DIRECT SHE	AR TESTING	
	SAMPLE	AS-RECEVIED MOISTURE	AS-RECEVIED				MAX. DRY	OPTIMUM	APPARENT SPECIFIC	_	REMOLDING PROPERTIES EFFECTIVE STRESS		TOTAL STRESS		TESTING	TOTAL PEAK STRESS		TOTAL RESIDUAL STRESS		
MATERIAL	NUMBER	CONTENT (%)	DRY DENSITY (pcf)	LIQUID	PLASTIC LIMIT	PLASTIC INDEX	DENSITY (pcf)	MOISTURE CONTENT (%)	MOISTURE GRAVITY N	MOISTURE CONTENT (%)	DRY DENSITY (pcf)	FRICTION ANGLE (degrees)	COHESION (psf)	FRICTION ANGLE (degrees)	COHESION (psf)	UNDRAINED SHEAR STRENGTH (psf)	FRICTION ANGLE (degrees)	COHESION (psf)	FRICTION ANGLE (degrees)	COHESION (psf)
Pre-Blended Tailings	19-057-01	-	-	-	-	-	-	-	3.12	-	-	-	-	-	-	-	-	-	-	-
Pre-Blended Tailings (w/Salt)	19-263-05	1	-	-		-	-	-	3.28	-	-	-	-	i	-	-	-	-	-	-
Pre-Blended Tailings	19-344-02	-	-	71	59	12	-	-	-		-	-	-	-	-	-	-	-	-	-
LFilterCake	19-380-01	55.7	-	53	40	13	-	-	-	-	-	-	-	-	-	-	-	-	-	-
NFilterCake	19-380-02	68.5	-	65	47	18	-	-	-	-	-	-	-		-	-	-	-	-	-
MagSulf Salt	19-380-03	74.1	-	-			-	-	-	-	-	-	-		-	-	-	-	-	-
Blended Tailings	19-389-01	60.9	-	51	40	11	-	-	-	-	-	-	-		-	-	-	-	-	-
Blended Tailings	19-393-01	59.3	-	-	1	-	70.1	46.0	-	-	-	-	-		-	-	-	-	-	-
Blended Tailings (w/Salt)	19-393-02	-	-	-	-	-	72.4	45.3	-	-	-	-	-	-	-	-	-	-	-	-
Blended Tailings	19-421-01 and -02	-	-	-	-	-	-	-	-	45.1	66.4	39.5	63.1	19.0	411.4	-	39.5	63.1	-	-
Blended Tailings	19-421-03	-	-	-	-	-	-	-	-	45.1	67.0		-	-	-	6330.5	-	-	-	-
Blended Tailings (w/Salt)	19-421-04 and -05	-	-	-	-	-	-	-	-	54.0	66.5	41.9	0.0	22.2	0.0	-	41.9	0.0	-	-
Blended Tailings (w/Salt)	19-421-06	-	-	-	-	-	-	-	-	49.4	68.9	-	-	-	-	699.1	-	-	-	-
Blended Tailings (w/Salt)	19-421-07 and -08	-	-	-	-	-	-	-	-	49.4	69.2	39.5	183.0	20.5	388.0	-	39.5	183.0	-	-
Salt	N/A	74.1	49.4	-	-	-	-	-	-	84.1	42.1	-	-	-	-	-	37.9	0.3	-	-
Coarse Gangue	N/A (19-366-02)	-	-	-	-	-	-	-	-	0.0	88.8	-	-	-	-	-	42.4	0.3	31.3	0.5

APPENDIX C.2Particle Size Distribution

% +3"	% Gı	ravel		% Sand		% Fines	
% +3	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay
0.0	5.3	12.1	6.7	13.3	24.2	38.4	

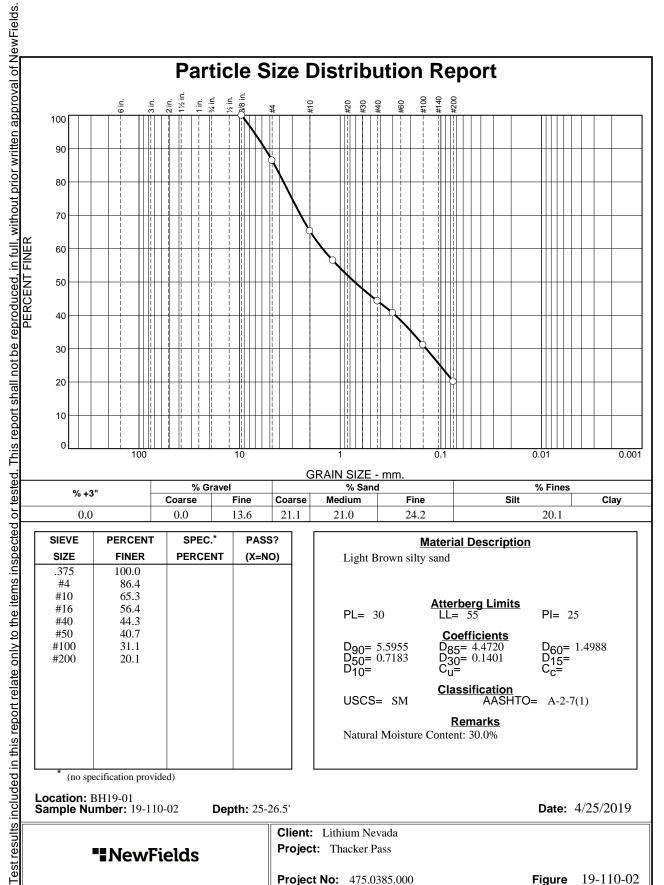
SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
1.5	100.0		
1	96.2		
.75	94.7		
.5	88.3		
.375	87.4		
#4	82.6		
#10	75.9		
#16	71.3		
#40	62.6		
#50	59.3		
#100	49.6		
#200	38.4		
	l .		

<u>N</u>	Material Description	<u>on</u>
Light Brown silty	sand with gravel	
	Atterberg Limits	
PL= 44	LL= 71	PI= 27
	Coefficients	
D ₉₀ = 14.3737 D ₅₀ = 0.1537	$D_{85} = 6.1780$	D ₆₀ = 0.3199 D ₁₅ =
D ₅₀ = 0.1337 D ₁₀ =	C ₁₁ =	C _C =
10	Classification	o l
USCS= SM		ΓO= A-7-5(5)
	Remarks	
Natural Moisture	Content: 32.1%	

* (no specification provided)

Location: BH19-01 Sample Number: 19-110-01

Depth: 7.5-9'


Date: 4/25/2019

NewFields

Client: Lithium Nevada **Project:** Thacker Pass

Figure 19-110-01 **Project No:** 475.0385.000

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
.375	100.0		
#4	86.4		
#10	65.3		
#16	56.4		
#40	44.3		
#50	40.7		
#100	31.1		
#200	20.1		
* (====	ecification provide	1)	

<u>l</u> Light Brown silty	Material Description sand	<u>on</u>
PL= 30	Atterberg Limits	PI= 25
D ₉₀ = 5.5955 D ₅₀ = 0.7183 D ₁₀ =	Coefficients D ₈₅ = 4.4720 D ₃₀ = 0.1401 C _u =	D ₆₀ = 1.4988 D ₁₅ = C _c =
USCS= SM	Classification AASHT	O= A-2-7(1)
Natural Moisture	Remarks Content: 30.0%	

20.1

(no specification provided)

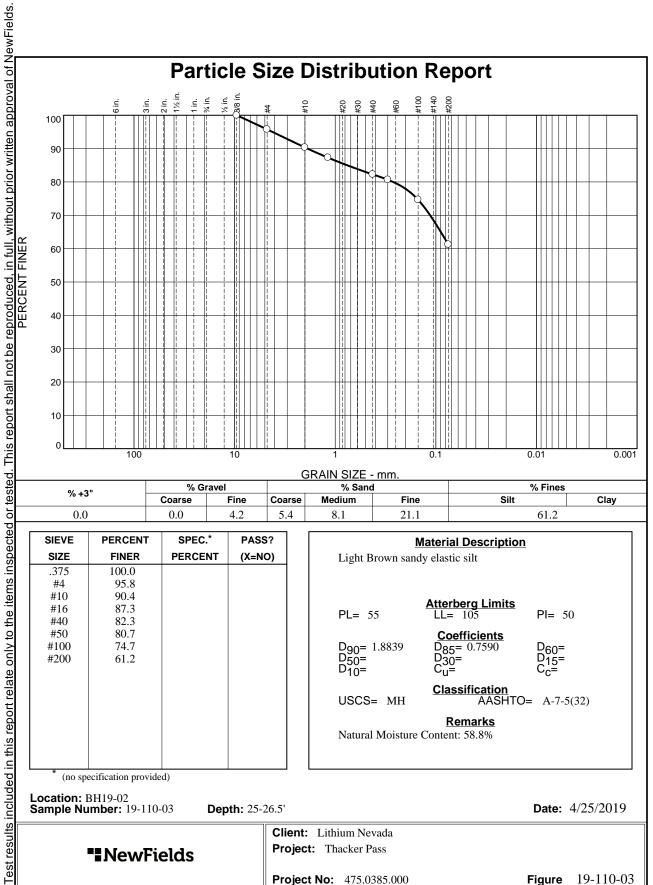
0.0

Location: BH19-01 Sample Number: 19-110-02 **Date:** 4/25/2019 **Depth: 25-26.5'**

21.1

13.6

21.0


24.2

NewFields

Client: Lithium Nevada **Project:** Thacker Pass

Figure 19-110-02 **Project No:** 475.0385.000

SIEVE	PERCENT	SPEC.*	PASS?					
SIZE	FINER	PERCENT	(X=NO)					
.375	100.0							
#4	95.8							
#10	90.4							
#16	87.3							
#40	82.3							
#50	80.7							
#100	74.7							
#200	61.2							
* (no spe	* (no specification provided)							

0.0

Fine

4.2

Coarse

5.4

Medium

8.1

Fine

21.1

Light Brown sand	Material Description dy elastic silt	<u>on</u>
PL= 55	Atterberg Limits LL= 105	PI= 50
D ₉₀ = 1.8839 D ₅₀ = D ₁₀ =	<u>Coefficients</u> D ₈₅ = 0.7590 D ₃₀ = C _u =	D ₆₀ = D ₁₅ = C _c =
USCS= MH	Classification AASHT	O= A-7-5(32)
Natural Moisture	Remarks Content: 58.8%	

Location: BH19-02 Sample Number: 19-110-03

0.0

Depth: 25-26.5'

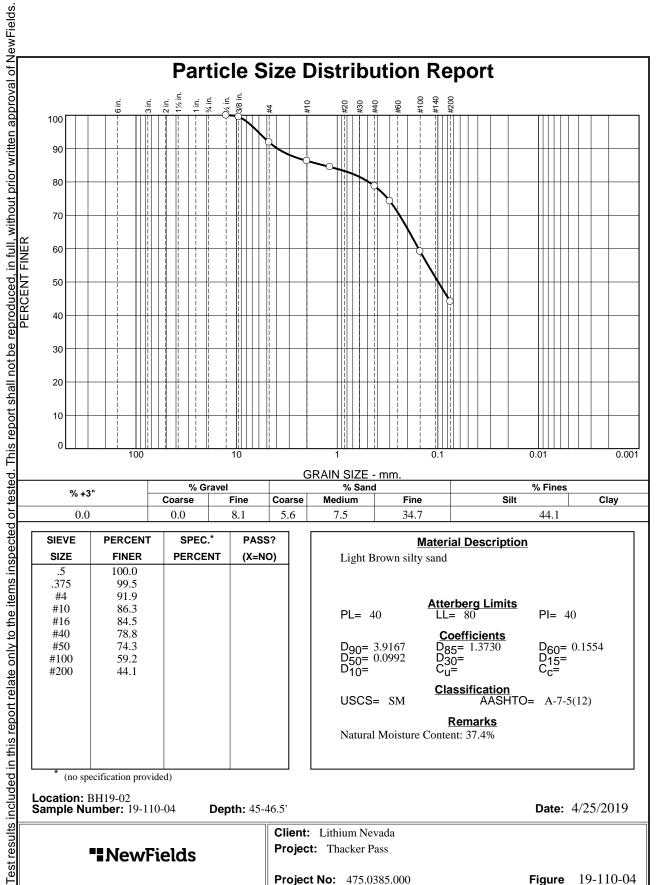
Date: 4/25/2019

NewFields

Client: Lithium Nevada **Project:** Thacker Pass

Project No: 475.0385.000

Figure 19-110-03


Clay

61.2

Tested By: JH

Checked By: JH

SIEVE	PERCENT	SPEC.*	PASS?			
SIZE	FINER	PERCENT	(X=NO)			
.5	100.0					
.375	99.5					
#4	91.9					
#10	86.3					
#16	84.5					
#40	78.8					
#50	74.3					
#100	59.2					
#200	44.1					
* (no specification provided)						

0.0

Fine

8.1

Coarse

5.6

Medium

7.5

Fine

34.7

Light Brown silt	Material Description y sand	<u>on</u>
PL= 40	Atterberg Limits	PI= 40
D ₉₀ = 3.9167 D ₅₀ = 0.0992 D ₁₀ =	Coefficients D ₈₅ = 1.3730 D ₃₀ = C _u =	D ₆₀ = 0.1554 D ₁₅ = C _c =
USCS= SM	Classification AASHT	O= A-7-5(12)
Natural Moisture	Remarks Content: 37.4%	

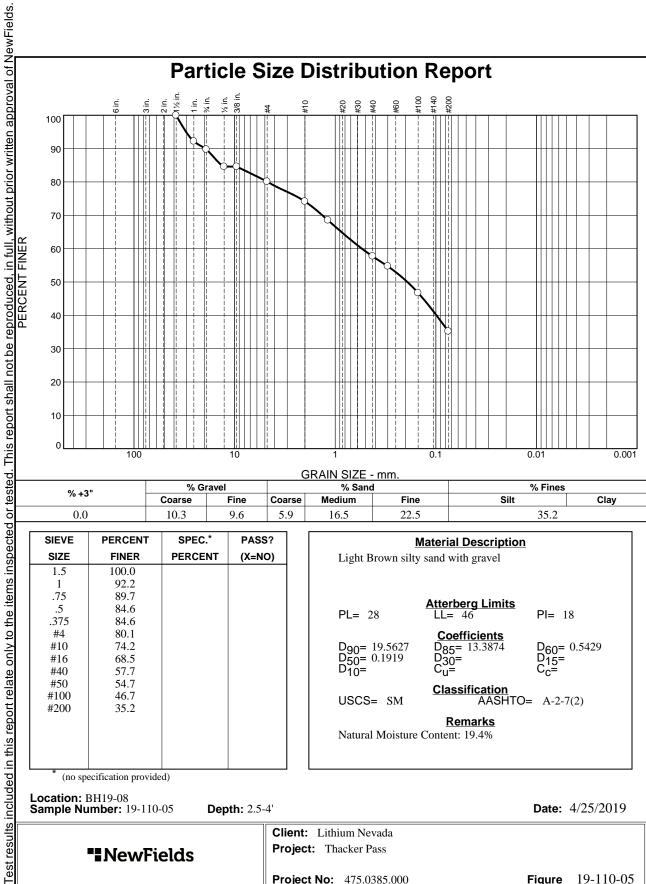
Clay

Date: 4/25/2019

44.1

Location: BH19-02 Sample Number: 19-110-04

0.0


Depth: 45-46.5'

NewFields

Client: Lithium Nevada **Project:** Thacker Pass

Figure 19-110-04 **Project No:** 475.0385.000

0/ .3"	% Gravel		% Sand		% Fines		
% +3"	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay
0.0	10.3	9.6	5.9	16.5	22.5	35.2	

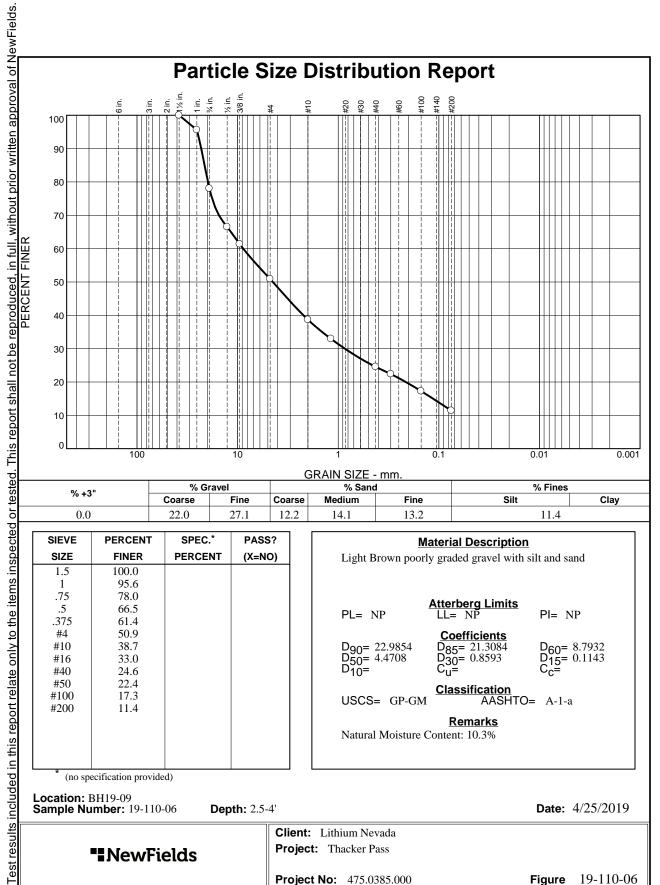
SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
1.5	100.0		
1	92.2		
.75	89.7		
.5	84.6		
.375	84.6		
#4	80.1		
#10	74.2		
#16	68.5		
#40	57.7		
#50	54.7		
#100	46.7		
#200	35.2		

Material Description Light Brown silty sand with gravel							
PL= 28	Atterberg Limits LL= 46	PI= 18					
D ₉₀ = 19.5627 D ₅₀ = 0.1919 D ₁₀ =	<u>Coefficients</u> D ₈₅ = 13.3874 D ₃₀ = C _u =	D ₆₀ = 0.5429 D ₁₅ = C _c =					
USCS= SM Classification AASHTO= A-2-7(2)							
Remarks Natural Moisture Content: 19.4%							

Date: 4/25/2019

(no specification provided)

Location: BH19-08 Sample Number: 19-110-05


NewFields

Depth: 2.5-4'

Client: Lithium Nevada **Project:** Thacker Pass

Figure 19-110-05 **Project No:** 475.0385.000

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
1.5	100.0		
1	95.6		
.75	78.0		
.5	66.5		
.375	61.4		
#4	50.9		
#10	38.7		
#16	33.0		
#40	24.6		
#50	22.4		
#100	17.3		
#200	11.4		
* (no sp	ecification provide	ed)	

22.0

Fine

27.1

Coarse

12.2

Medium

14.1

Fine

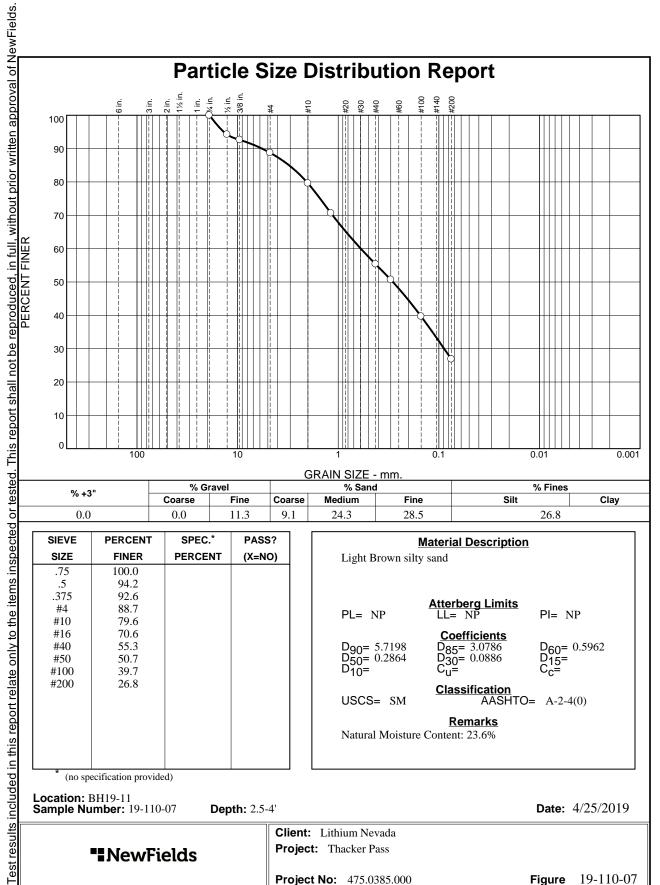
13.2

Clay

Date: 4/25/2019

Figure 19-110-06

11.4


0.0

Location: BH19-09 Sample Number: 19-110-06 **Depth:** 2.5-4'

NewFields

Client: Lithium Nevada **Project:** Thacker Pass

Project No: 475.0385.000

11.3

24.3

28.5

100.0 94.2 92.6 88.7 79.6 70.6 55.3	PERCENT	(X=NO)
94.2 92.6 88.7 79.6 70.6		
92.6 88.7 79.6 70.6		
88.7 79.6 70.6		
79.6 70.6		
70.6		
55.3		
50.7		
39.7		
26.8		
	1	

0.0

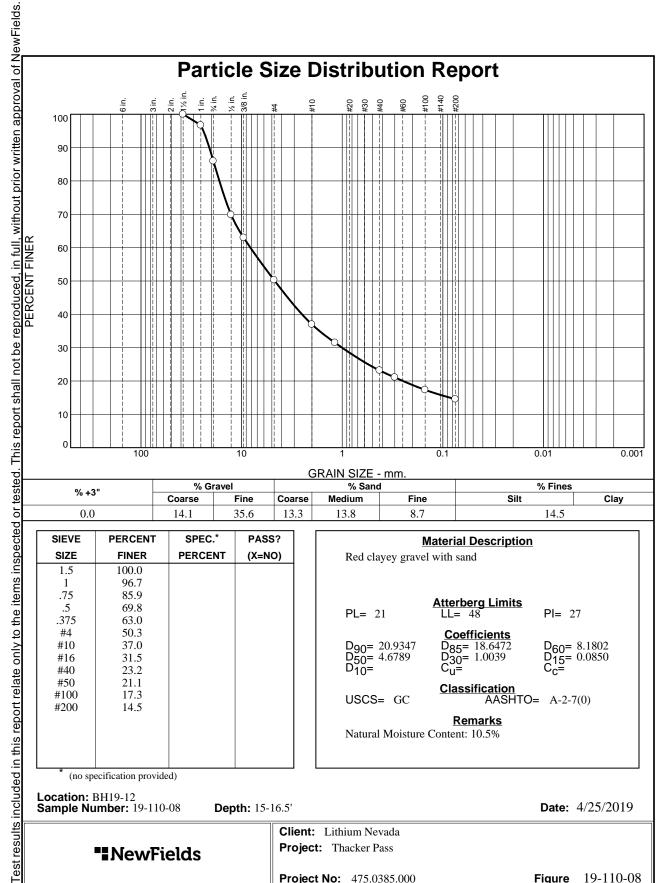
<u>Material Description</u> Light Brown silty sand							
PL= NP	Atterberg Limits	PI= NP					
D ₉₀ = 5.7198 D ₅₀ = 0.2864 D ₁₀ =	Coefficients D ₈₅ = 3.0786 D ₃₀ = 0.0886 C _u =	D ₆₀ = 0.5962 D ₁₅ = C _c =					
USCS= SM	USCS= SM Classification AASHTO= A-2-4(0)						
Remarks Natural Moisture Content: 23.6%							

26.8

Date: 4/25/2019

Figure 19-110-07

(no specification provided)


0.0

Location: BH19-11 Sample Number: 19-110-07 **Depth:** 2.5-4'

NewFields

Client: Lithium Nevada **Project:** Thacker Pass

Project No: 475.0385.000

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
1.5	100.0		
1	96.7		
.75	85.9		
.5	69.8		
.375	63.0		
#4	50.3		
#10	37.0		
#16	31.5		
#40	23.2		
#50	21.1		
#100	17.3		
#200	14.5		
* (no sp	ecification provide	ed)	1

14.1

Fine

35.6

Coarse

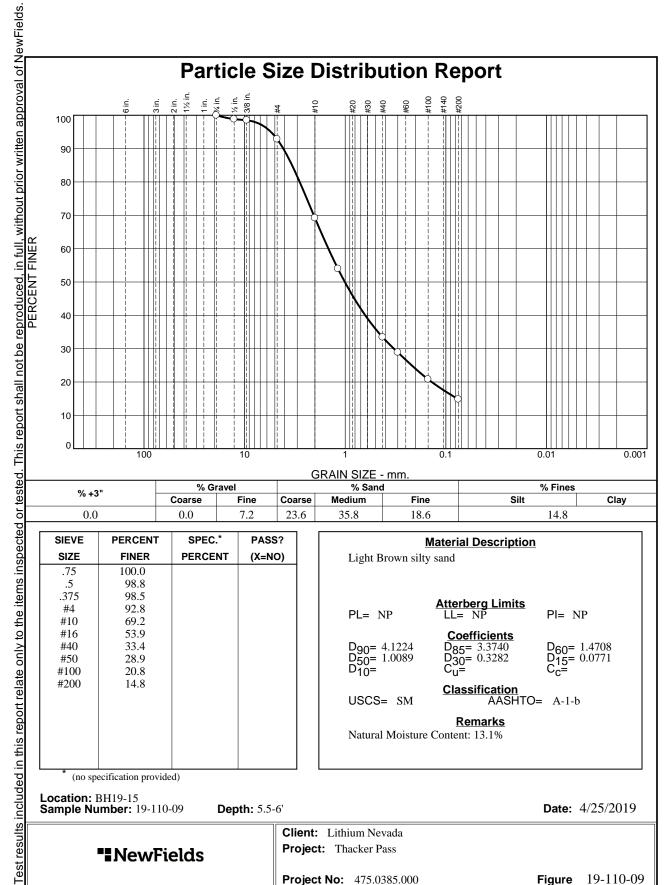
13.3

Medium

Fine

13.8	13.8 8.7 14.5							
Material Description Red clayey gravel with sand								
PL= 2	Atte	erberg Limits = 48	PI= 27					
D ₉₀ = D ₅₀ = D ₁₀ =		oefficients 85= 18.6472 80= 1.0039	D ₆₀ = 8.1802 D ₁₅ = 0.0850 C _c =					
USCS:	USCS= GC Classification AASHTO= A-2-7(0)							
Remarks Natural Moisture Content: 10.5%								

Clay


0.0

Location: BH19-12 Sample Number: 19-110-08 **Date:** 4/25/2019 **Depth:** 15-16.5'

NewFields

Client: Lithium Nevada **Project:** Thacker Pass

Figure 19-110-08 **Project No:** 475.0385.000

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
.75	100.0		
.5	98.8		
.375	98.5		
#4	92.8		
#10	69.2		
#16	53.9		
#40	33.4		
#50	28.9		
#100	20.8		
#200	14.8		
* (no sp	ecification provide	ed)	

7.2

23.6

35.8

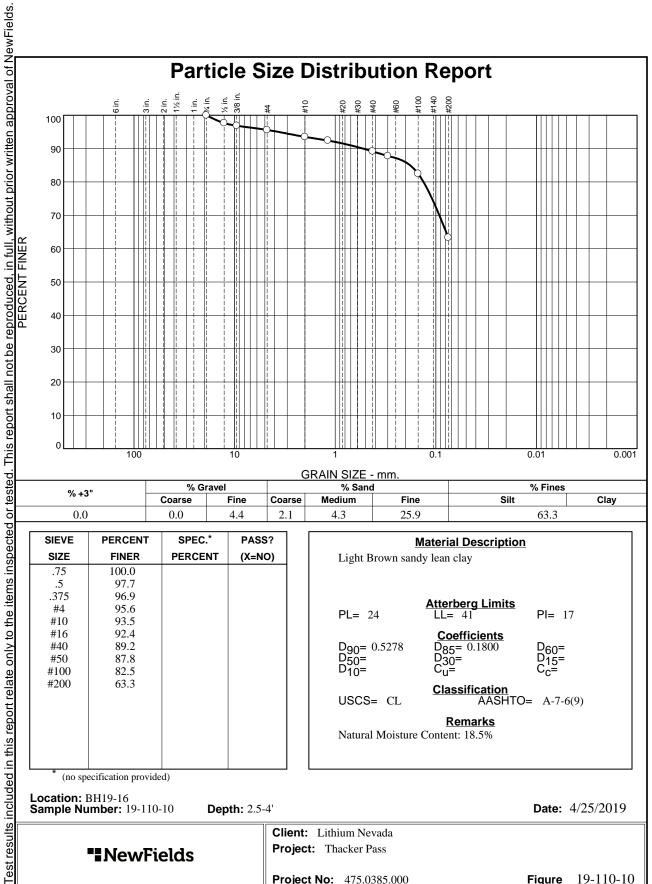
18.6

Material Description Light Brown silty sand							
PL= NP	Atterberg Limits LL= NP	PI= NP					
D ₉₀ = 4.1224 D ₅₀ = 1.0089 D ₁₀ =	Coefficients D ₈₅ = 3.3740 D ₃₀ = 0.3282 C _U =	D ₆₀ = 1.4708 D ₁₅ = 0.0771 C _c =					
USCS= SM	<u>Classification</u>						
Remarks Natural Moisture Content: 13.1%							

14.8

Date: 4/25/2019

0.0


Location: BH19-15 Sample Number: 19-110-09 **Depth:** 5.5-6'

NewFields

Client: Lithium Nevada **Project:** Thacker Pass

Figure 19-110-09 **Project No:** 475.0385.000

% +3"		% Gravel		% Sand		% Fines			
		Coarse	Fine	Coarse	Medium	Fine	Silt	Clay	
	0.0		0.0	4.4	2.1	4.3	25.9	63.3	
SIEVE PERCENT SPEC.* PASS?			3?		Materi	al Description			

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
.75	100.0		
.5	97.7		
.375	96.9		
#4	95.6		
#10	93.5		
#16	92.4		
#40	89.2		
#50	87.8		
#100	82.5		
#200	63.3		

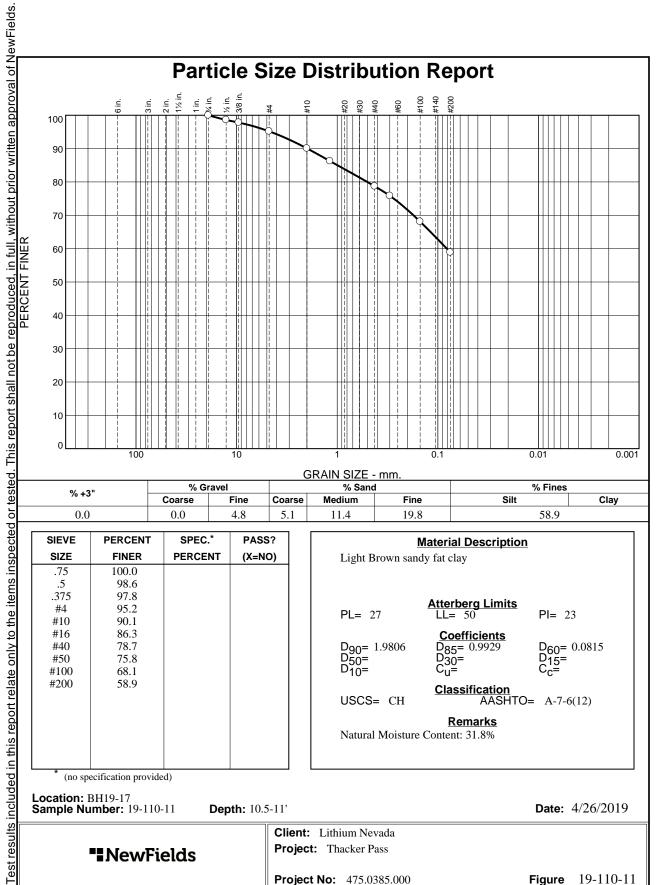
Material Description				
Light Brown sand	ly lean clay			
	Atterberg Limits	5		
PL= 24	LL= 41	PI= 17		
	Coefficients			
D ₉₀ = 0.5278 D ₅₀ =	$D_{85} = 0.1800$	D ₆₀ =		
D ₅₀ = D ₁₀ =	C ₁₁ =	C _C =		
10	Classification			
USCS= CL		TO= A-7-6(9)		
	Remarks			
Natural Moisture	Content: 18.5%			

Date: 4/25/2019

Figure 19-110-10

(no specification provided)

NewFields


Location: BH19-16 Sample Number: 19-110-10

Depth: 2.5-4'

Client: Lithium Nevada **Project:** Thacker Pass

Project No: 475.0385.000

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
.75	100.0		
.5	98.6		
.375	97.8		
#4	95.2		
#10	90.1		
#16	86.3		
#40	78.7		
#50	75.8		
#100	68.1		
#200	58.9		
* (no sp	ecification provide	ed)	

0.0

Fine

4.8

Coarse

5.1

Medium

11.4

Fine

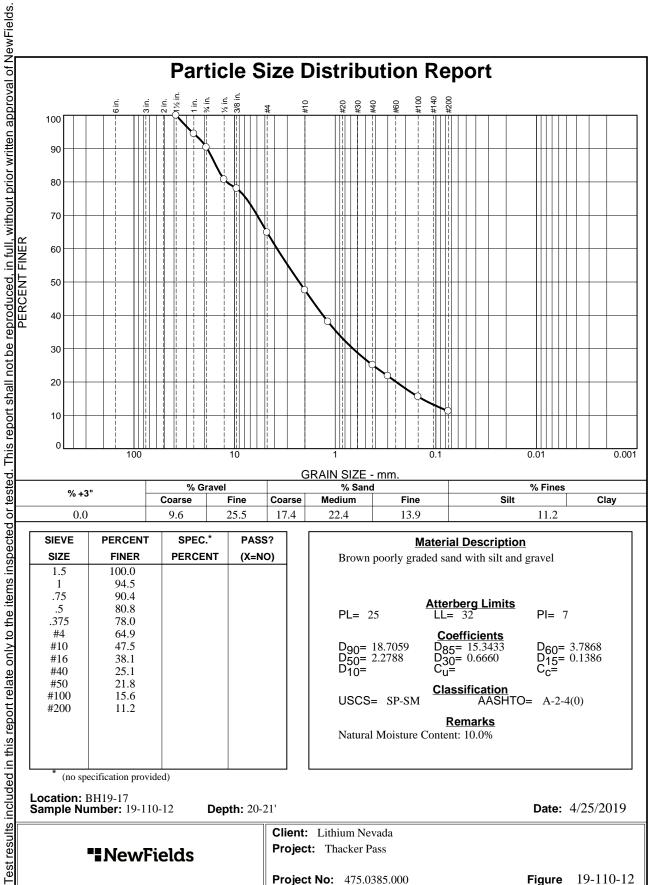
19.8

Material Description Light Brown sandy fat clay				
PL= 27	Atterberg Limits	PI= 23		
D ₉₀ = 1.9806 D ₅₀ = D ₁₀ =	Coefficients D ₈₅ = 0.9929 D ₃₀ = C _u =	D ₆₀ = 0.0815 D ₁₅ = C _c =		
USCS= CH	Classification AASH	ΓO= A-7-6(12)		
Natural Moisture	Remarks Content: 31.8%			

Clay

58.9

0.0


Location: BH19-17 Sample Number: 19-110-11 Date: 4/26/2019 **Depth:** 10.5-11'

NewFields

Client: Lithium Nevada **Project:** Thacker Pass

Figure 19-110-11 **Project No:** 475.0385.000

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
1.5	100.0		
1	94.5		
.75	90.4		
.5	80.8		
.375	78.0		
#4	64.9		
#10	47.5		
#16	38.1		
#40	25.1		
#50	21.8		
#100	15.6		
#200	11.2		

9.6

Fine

25.5

Coarse

17.4

Medium

22.4

Fine

13.9

Material Description Brown poorly graded sand with silt and gravel			
PL= 25	Atterberg Limits LL= 32	<u>s</u> Pl= 7	
D ₉₀ = 18.7059 D ₅₀ = 2.2788 D ₁₀ =	Coefficients D85= 15.3433 D30= 0.6660 Cu=	D ₆₀ = 3.7868 D ₁₅ = 0.1386 C _c =	
USCS= SP-SM	Classification AASH	ΓO= A-2-4(0)	
Natural Moisture C	Remarks Content: 10.0%		

Clay

Date: 4/25/2019

Figure 19-110-12

11.2

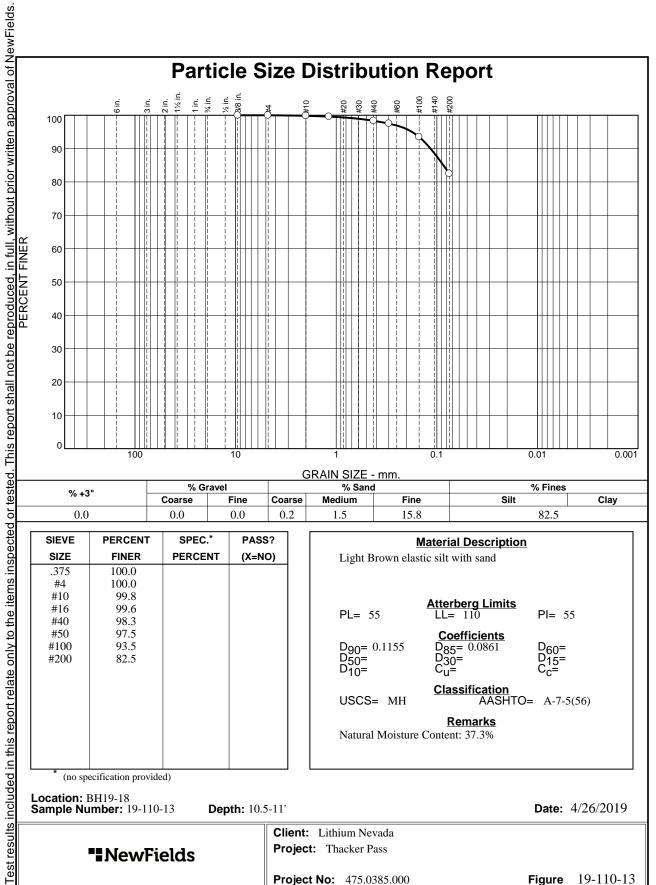
(no specification provided)

0.0

Location: BH19-17 Sample Number: 19-110-12

Tested By: JH/CB

Depth: 20-21'


NewFields

Client: Lithium Nevada **Project:** Thacker Pass

Project No: 475.0385.000

Checked By: JH

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
.375	100.0		
#4	100.0		
#10	99.8		
#16	99.6		
#40	98.3		
#50	97.5		
#100	93.5		
#200	82.5		

0.0

0.2

1.5

15.8

Material Description Light Brown elastic silt with sand				
PL= 55	Atterberg Limits	PI= 55		
D ₉₀ = 0.1155 D ₅₀ = D ₁₀ =	Coefficients D ₈₅ = 0.0861 D ₃₀ = C _u =	D ₆₀ = D ₁₅ = C _c =		
USCS= MH	Classification AASHT	O= A-7-5(56)		
Natural Moisture	Remarks Content: 37.3%			

82.5

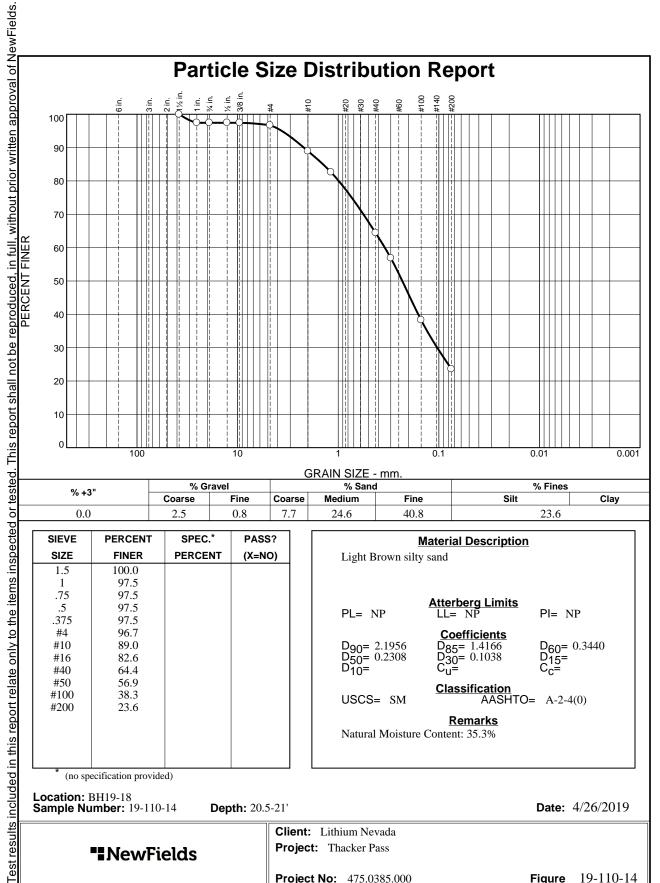
Date: 4/26/2019

Figure 19-110-13

(no specification provided)

0.0

Location: BH19-18 Sample Number: 19-110-13


NewFields

Depth: 10.5-11'

Client: Lithium Nevada **Project:** Thacker Pass

Project No: 475.0385.000

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
1.5	100.0		
1	97.5		
.75	97.5		
.5	97.5		
.375	97.5		
#4	96.7		
#10	89.0		
#16	82.6		
#40	64.4		
#50	56.9		
#100	38.3		
#200	23.6		
* (no spe	ecification provide	ed)	

2.5

Fine

8.0

Coarse

7.7

Medium

24.6

Fine

40.8

24.0	+0.6		23.0	
Material Description Light Brown silty sand				
PL= 1	NP LL	erberg Limits = NP	PI= NP	
D ₉₀ = D ₅₀ = D ₁₀ =	2.1956 Dg 0.2308 Dg Cu	oefficients 35= 1.4166 30= 0.1038	D ₆₀ = 0.3440 D ₁₅ = C _c =	
USCS		assification AASHTO=	A-2-4(0)	
Natural	l Moisture Conte	Remarks ent: 35.3%		

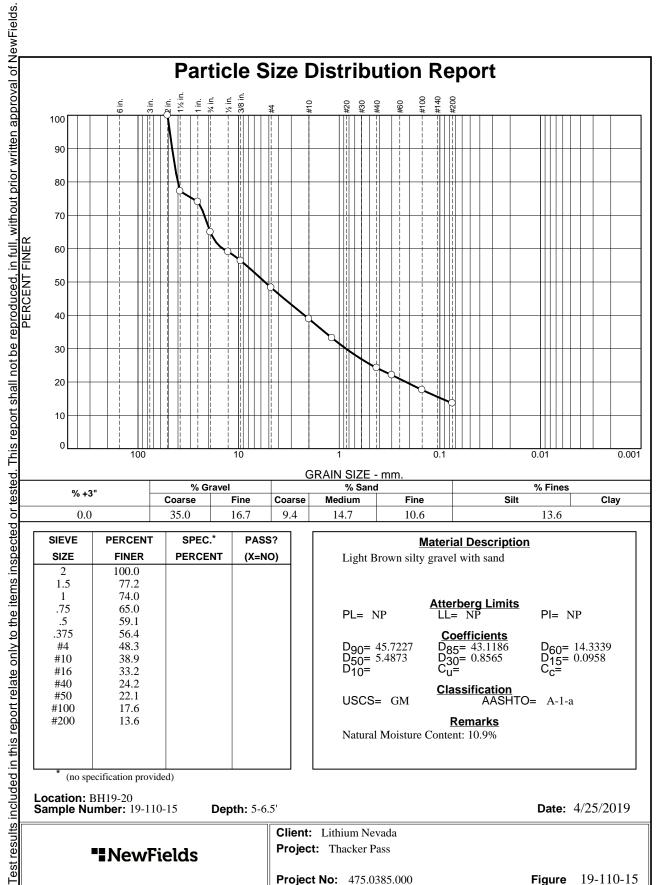
Clay

Date: 4/26/2019

Figure 19-110-14

23.6

Location: BH19-18 Sample Number: 19-110-14


NewFields

0.0

Depth: 20.5-21'

Client: Lithium Nevada **Project:** Thacker Pass

Project No: 475.0385.000

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
2	100.0		
1.5	77.2		
1	74.0		
.75	65.0		
.5	59.1		
.375	56.4		
#4	48.3		
#10	38.9		
#16	33.2		
#40	24.2		
#50	22.1		
#100	17.6		
#200	13.6		
* (no sp	ecification provide	ed)	

16.7

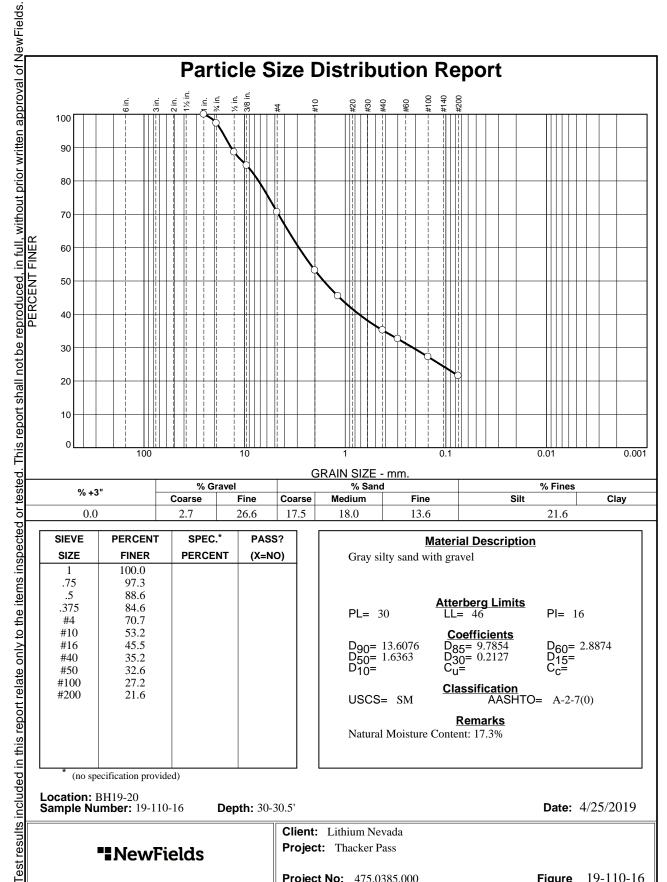
9.4

14.7

10.6

Material Description Light Brown silty gravel with sand				
PL= NP	Atterberg Limits LL= NP	PI= NP		
D ₉₀ = 45.7227 D ₅₀ = 5.4873 D ₁₀ =	Coefficients D ₈₅ = 43.1186 D ₃₀ = 0.8565 C _u =	D ₆₀ = 14.3339 D ₁₅ = 0.0958 C _c =		
USCS= GM	Classification AASHTO	O= A-1-a		
Remarks Natural Moisture Content: 10.9%				

13.6


0.0

Location: BH19-20 Sample Number: 19-110-15 **Date:** 4/25/2019 **Depth:** 5-6.5'

NewFields

Client: Lithium Nevada **Project:** Thacker Pass

Figure 19-110-15 **Project No:** 475.0385.000

26.6

18.0

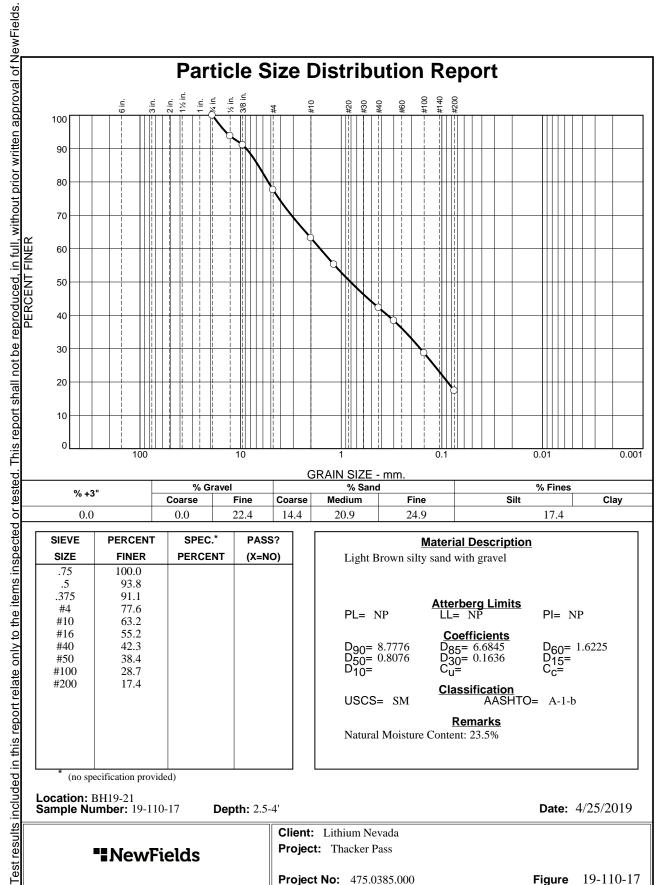
13.6

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
1	100.0		
.75	97.3		
.5	88.6		
.375	84.6		
#4	70.7		
#10	53.2		
#16	45.5		
#40	35.2		
#50	32.6		
#100	27.2		
#200	21.6		
* (no sp	ecification provide	ed)	•

2.7

Gray silty sand w	Material Description	<u>on</u>
PL= 30	Atterberg Limits	PI= 16
D ₉₀ = 13.6076 D ₅₀ = 1.6363 D ₁₀ =	Coefficients D ₈₅ = 9.7854 D ₃₀ = 0.2127 C _u =	D ₆₀ = 2.8874 D ₁₅ = C _c =
USCS= SM	Classification AASHT	O= A-2-7(0)
Natural Moisture	Remarks Content: 17.3%	

21.6


0.0

Location: BH19-20 Sample Number: 19-110-16 **Date:** 4/25/2019 **Depth:** 30-30.5'

NewFields

Client: Lithium Nevada **Project:** Thacker Pass

Figure 19-110-16 **Project No:** 475.0385.000

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
.75	100.0		
.5	93.8		
.375	91.1		
#4	77.6		
#10	63.2		
#16	55.2		
#40	42.3		
#50	38.4		
#100	28.7		
#200	17.4		

Material Description Light Brown silty sand with gravel		
PL= NP	Atterberg Limits LL= NP	PI= NP
D ₉₀ = 8.7776 D ₅₀ = 0.8076 D ₁₀ =	Coefficients D ₈₅ = 6.6845 D ₃₀ = 0.1636 C _U =	D ₆₀ = 1.6225 D ₁₅ = C _c =
USCS= SM	Classification AASHT	O= A-1-b
Remarks Natural Moisture Content: 23.5%		

17.4

Date: 4/25/2019

Figure 19-110-17

(no specification provided)

Tested By: JH/CB

0.0

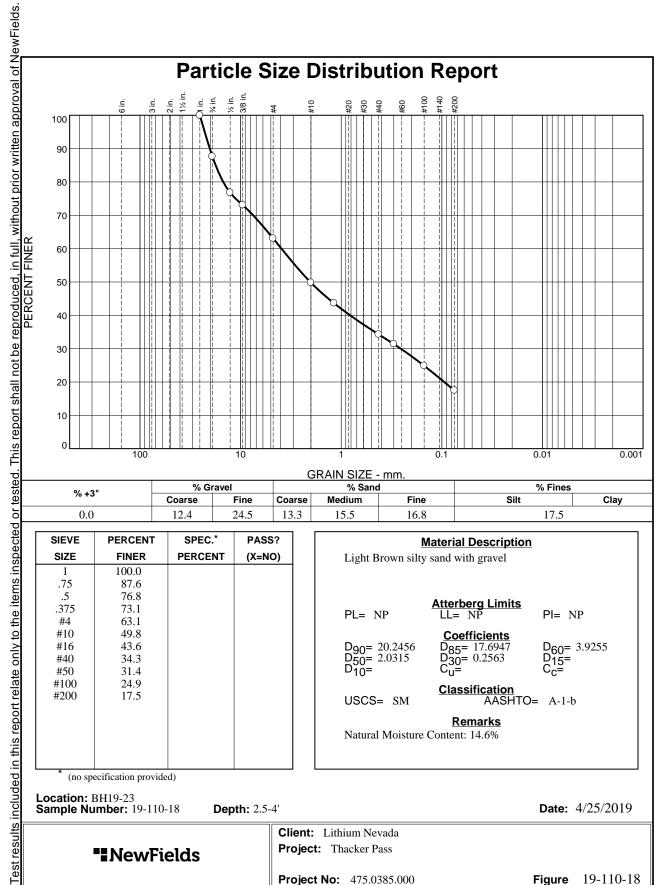
Location: BH19-21 Sample Number: 19-110-17

NewFields

Depth: 2.5-4'

22.4

14.4


20.9

24.9

Client: Lithium Nevada **Project:** Thacker Pass

Project No: 475.0385.000

Checked By: JH

PERCENT	SPEC.*	PASS?
FINER	PERCENT	(X=NO)
100.0		
87.6		
76.8		
73.1		
63.1		
49.8		
43.6		
34.3		
31.4		
24.9		
17.5		
	100.0 87.6 76.8 73.1 63.1 49.8 43.6 34.3 31.4 24.9	100.0 87.6 76.8 73.1 63.1 49.8 43.6 34.3 31.4 24.9 17.5

Material Description Light Brown silty sand with gravel		
PL= NP	Atterberg Limits LL= NP	PI= NP
D ₉₀ = 20.2456 D ₅₀ = 2.0315 D ₁₀ =	Coefficients D ₈₅ = 17.6947 D ₃₀ = 0.2563 C _u =	D ₆₀ = 3.9255 D ₁₅ = C _c =
USCS= SM	Classification AASHT	O= A-1-b
Remarks Natural Moisture Content: 14.6%		

17.5

Date: 4/25/2019

(no specification provided)

0.0

Location: BH19-23 Sample Number: 19-110-18

NewFields

Depth: 2.5-4'

24.5


13.3

15.5

16.8

Client: Lithium Nevada **Project:** Thacker Pass

Figure 19-110-18 **Project No:** 475.0385.000

21.6

17.0

16.8

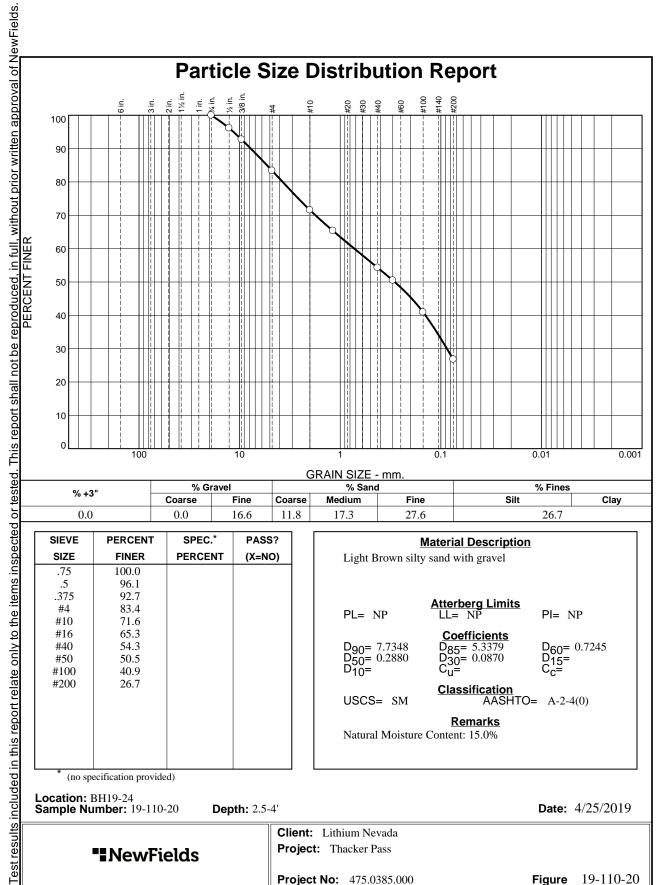
SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
1	100.0		
.75	81.4		
.5	76.8		
.375	73.1		
#4	59.8		
#10	47.0		
#16	41.0		
#40	30.0		
#50	26.6		
#100	19.4		
#200	13.2		

18.6

Material Description Brown silty sand with gravel						
PL= NP	Atterberg Limits LL= NP	PI= NP				
D ₉₀ = 22.1901 D ₅₀ = 2.5271 D ₁₀ =	Coefficients D ₈₅ = 20.4974 D ₃₀ = 0.4238 C _u =	D ₆₀ = 4.8152 D ₁₅ = 0.0923 C _c =				
USCS= SM	Classification AASHT	O= A-1-a				
Remarks Natural Moisture Content: 11.3%						

13.2

(no specification provided)


0.0

Location: BH19-23 Sample Number: 19-110-19 **Date:** 4/25/2019 **Depth:** 7.5-9'

NewFields

Client: Lithium Nevada **Project:** Thacker Pass

Figure 19-110-19 **Project No:** 475.0385.000

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
.75	100.0		
.5	96.1		
.375	92.7		
#4	83.4		
#10	71.6		
#16	65.3		
#40	54.3		
#50	50.5		
#100	40.9		
#200	26.7		
* (no sp	ecification provide	ed)	

Material Description Light Brown silty sand with gravel						
PL= NP	Atterberg Limits	PI= NP				
D ₉₀ = 7.7348 D ₅₀ = 0.2880 D ₁₀ =	Coefficients D ₈₅ = 5.3379 D ₃₀ = 0.0870 C _u =	D ₆₀ = 0.7245 D ₁₅ = C _c =				
USCS= SM	Classification AASHT	O= A-2-4(0)				
Remarks Natural Moisture Content: 15.0%						

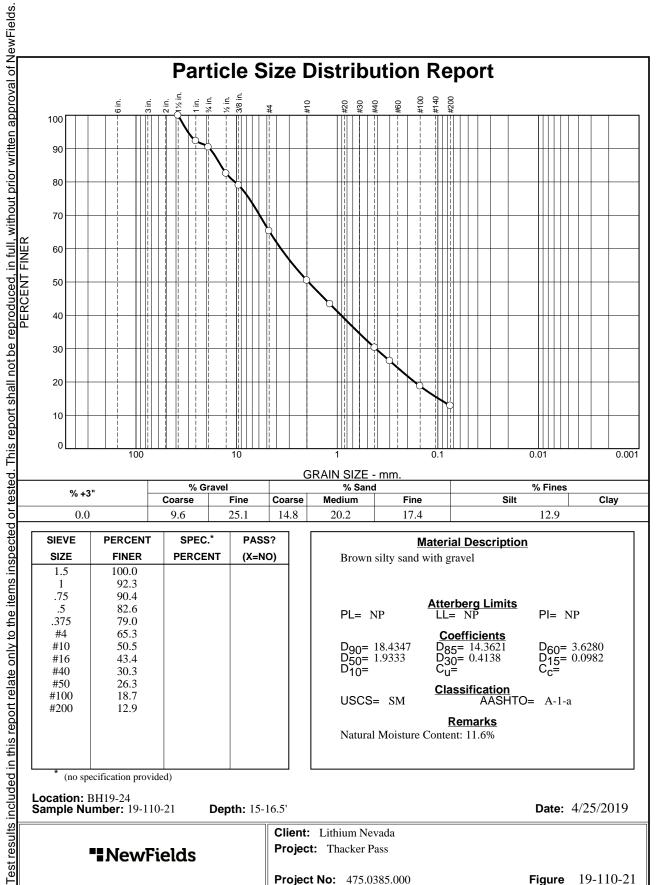
26.7

0.0

Location: BH19-24 Sample Number: 19-110-20 Date: 4/25/2019 **Depth:** 2.5-4'

11.8

16.6


17.3

27.6

NewFields

Client: Lithium Nevada **Project:** Thacker Pass

Figure 19-110-20 **Project No:** 475.0385.000

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
1.5	100.0		
1	92.3		
.75	90.4		
.5	82.6		
.375	79.0		
#4	65.3		
#10	50.5		
#16	43.4		
#40	30.3		
#50	26.3		
#100	18.7		
#200	12.9		
* (no sp	ecification provide	ed)	

Coarse

9.6

Fine

25.1

Coarse

14.8

Medium

20.2

Fine

17.4

<u>Material Description</u> Brown silty sand with gravel					
PL= NP	Atterberg Limits LL= NP	PI= NP			
D ₉₀ = 18.4347 D ₅₀ = 1.9333 D ₁₀ =	Coefficients D ₈₅ = 14.3621 D ₃₀ = 0.4138 C _u =	D ₆₀ = 3.6280 D ₁₅ = 0.0982 C _c =			
USCS= SM	Classification AASHT	O= A-1-a			
Remarks Natural Moisture Content: 11.6%					

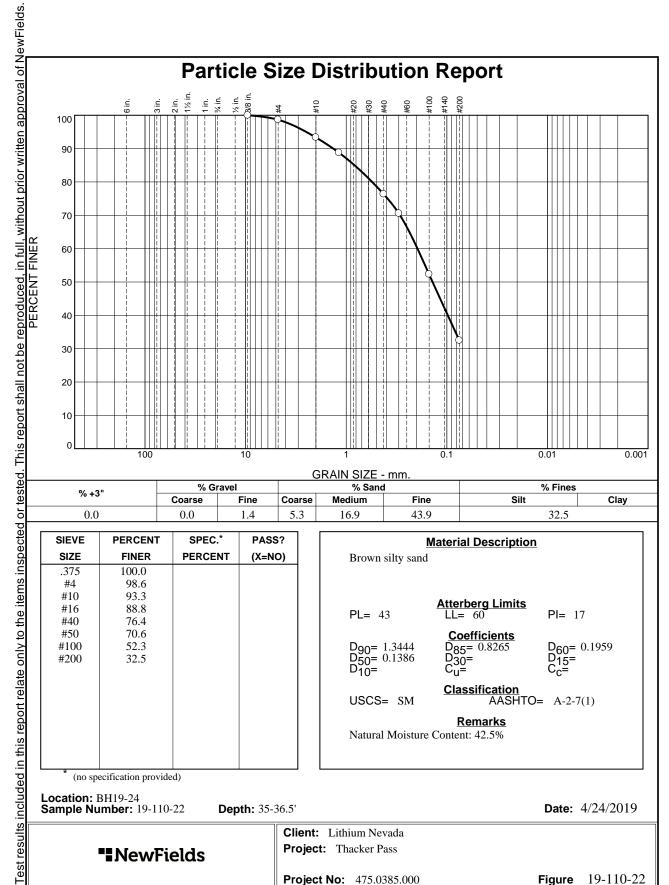
Clay

Date: 4/25/2019

Figure 19-110-21

12.9

Location: BH19-24 Sample Number: 19-110-21


NewFields

0.0

Depth: 15-16.5'

Client: Lithium Nevada **Project:** Thacker Pass

Project No: 475.0385.000

16.9

43.9

1.4

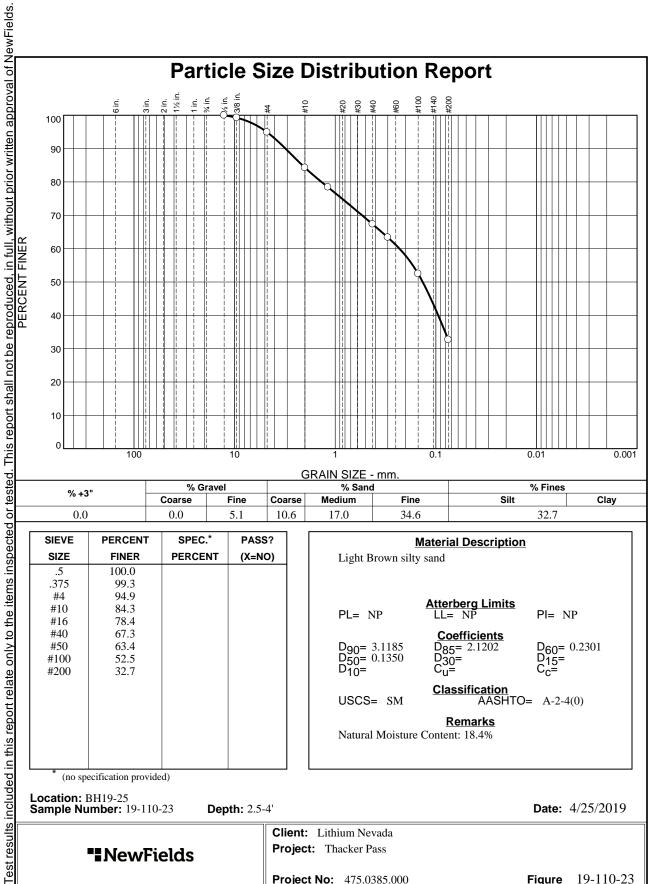
SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
.375	100.0		
#4	98.6		
#10	93.3		
#16	88.8		
#40	76.4		
#50	70.6		
#100	52.3		
#200	32.5		
* (no sp	ecification provide	ed)	

0.0

<u>!</u>	Material Description	<u>on</u>			
Brown silty sand					
PL= 43	Atterberg Limits LL= 60	PI= 17			
D ₉₀ = 1.3444 D ₅₀ = 0.1386 D ₁₀ =	<u>Coefficients</u> D ₈₅ = 0.8265 D ₃₀ = C _u =	D ₆₀ = 0.1959 D ₁₅ = C _c =			
USCS= SM	Classification AASHT	O= A-2-7(1)			
Remarks Natural Moisture Content: 42.5%					

32.5

0.0


Location: BH19-24 Sample Number: 19-110-22 **Date:** 4/24/2019 **Depth:** 35-36.5'

NewFields

Client: Lithium Nevada **Project:** Thacker Pass

Figure 19-110-22 **Project No:** 475.0385.000

% +3"		% Gravel			% Sand	i	% Fines		
	% +3		Coarse	Fine	Coarse	Medium	Fine	Silt	Clay
	0.0		0.0	5.1	10.6	17.0	34.6	32.7	
	015/15	DEDOENI		* 5400					

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
.5	100.0		
.375	99.3		
#4	94.9		
#10	84.3		
#16	78.4		
#40	67.3		
#50	63.4		
#100	52.5		
#200	32.7		
*		l	

Material Description Light Brown silty sand						
PL= NP	Atterberg Limits	PI= NP				
D ₉₀ = 3.1185 D ₅₀ = 0.1350 D ₁₀ =	Coefficients D ₈₅ = 2.1202 D ₃₀ = C _u =	D ₆₀ = 0.2301 D ₁₅ = C _c =				
USCS= SM	Classification AASHT	O= A-2-4(0)				
Remarks Natural Moisture Content: 18.4%						

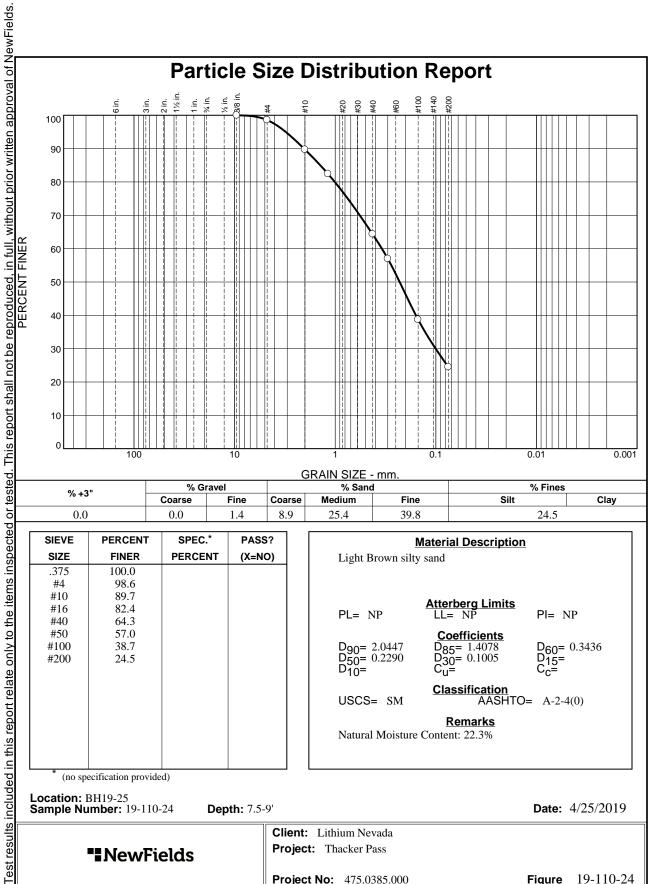
Date: 4/25/2019

* (no specification provided)

Location: BH19-25 Sample Number: 19-110-23

Depth: 2.5-4'

Client: Lithium Nevada **Project:** Thacker Pass


Figure 19-110-23 **Project No:** 475.0385.000

NewFields

Tested By: JH

Checked By: JH

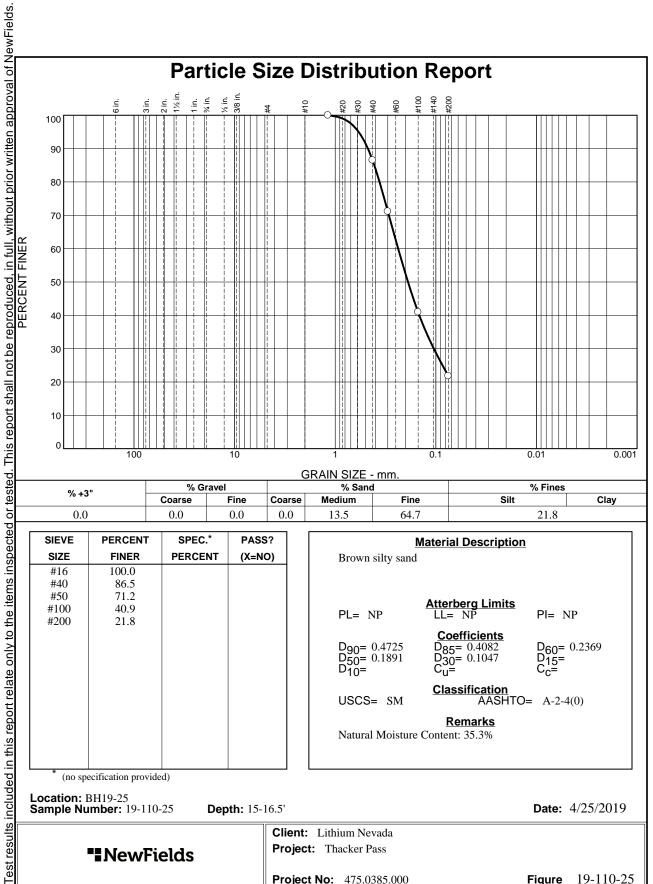
?	0/ .2"	% Gravel		% Sand		% Fines		
٤	% +3"	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay
5	0.0	0.0	1.4	8.9	25.4	39.8	24.5	
2								

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
.375	100.0		
#4	98.6		
#10	89.7		
#16	82.4		
#40	64.3		
#50	57.0		
#100	38.7		
#200	24.5		

Material Description Light Brown silty sand						
PL= NP	Atterberg Limits	PI= NP				
D ₉₀ = 2.0447 D ₅₀ = 0.2290 D ₁₀ =	Coefficients D ₈₅ = 1.4078 D ₃₀ = 0.1005 C _u =	D ₆₀ = 0.3436 D ₁₅ = C _c =				
USCS= SM	Classification AASHT	O= A-2-4(0)				
Remarks Natural Moisture Content: 22.3%						

Date: 4/25/2019

Figure 19-110-24


* (no specification provided)

Location: BH19-25 Sample Number: 19-110-24 **Depth:** 7.5-9'

> Client: Lithium Nevada **Project:** Thacker Pass

Project No: 475.0385.000

NewFields

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
#16	100.0		
#40	86.5		
#50	71.2		
#100	40.9		
#200	21.8		
*	cification provide		

0.0

0.0

13.5

64.7

	terial Description	<u>n</u>			
Brown silty sand					
PL= NP	Atterberg Limits LL= NP	PI= NP			
D ₉₀ = 0.4725 D ₅₀ = 0.1891 D ₁₀ =	Coefficients D ₈₅ = 0.4082 D ₃₀ = 0.1047 C _u =	D ₆₀ = 0.2369 D ₁₅ = C _c =			
USCS= SM	Classification AASHTO	O= A-2-4(0)			
Remarks Natural Moisture Content: 35.3%					

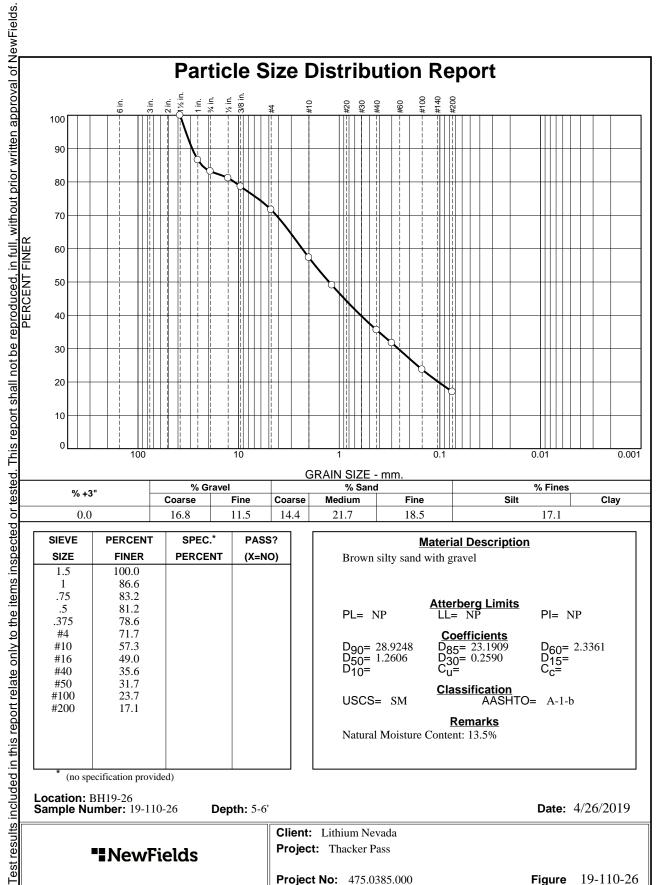
21.8

Date: 4/25/2019

Figure 19-110-25

Location: BH19-25 Sample Number: 19-110-25

NewFields


0.0

Depth: 15-16.5'

Client: Lithium Nevada **Project:** Thacker Pass

Project No: 475.0385.000

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
1.5	100.0		
1	86.6		
.75	83.2		
.5	81.2		
.375	78.6		
#4	71.7		
#10	57.3		
#16	49.0		
#40	35.6		
#50	31.7		
#100	23.7		
#200	17.1		
* (no sp	ecification provide	ed)	

NewFields

Coarse

16.8

Fine

11.5

Coarse

14.4

Medium

21.7

Fine

18.5

Material Description Brown silty sand with gravel						
PL= NP	Atterberg Limits LL= NP	PI= NP				
D ₉₀ = 28.9248 D ₅₀ = 1.2606 D ₁₀ =	Coefficients D ₈₅ = 23.1909 D ₃₀ = 0.2590 C _u =	D ₆₀ = 2.3361 D ₁₅ = C _c =				
USCS= SM	Classification AASHT	O= A-1-b				
Remarks Natural Moisture Content: 13.5%						

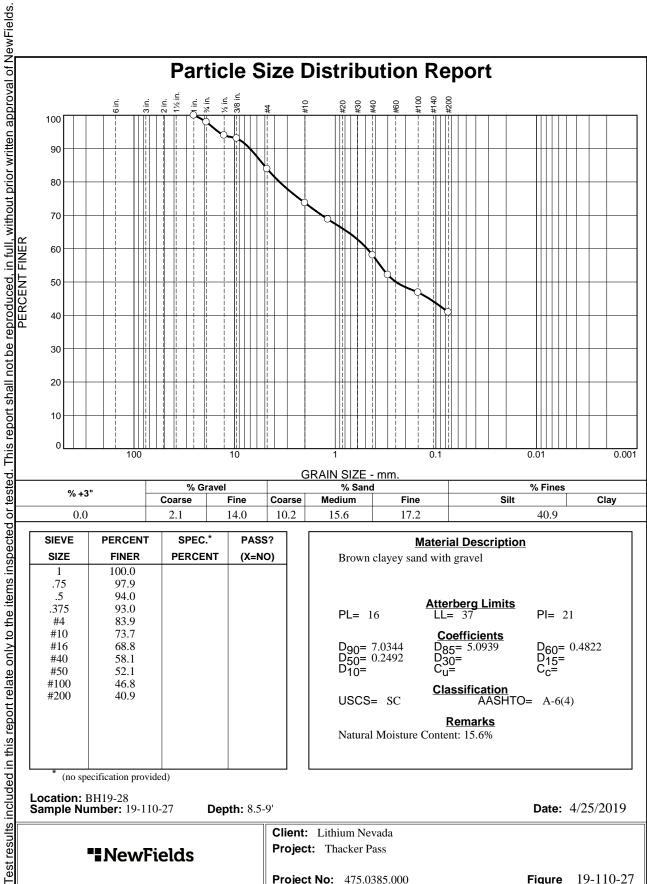
Clay

Date: 4/26/2019

Figure 19-110-26

17.1

Location: BH19-26 Sample Number: 19-110-26


0.0

Depth: 5-6'

Client: Lithium Nevada **Project:** Thacker Pass

Project No: 475.0385.000

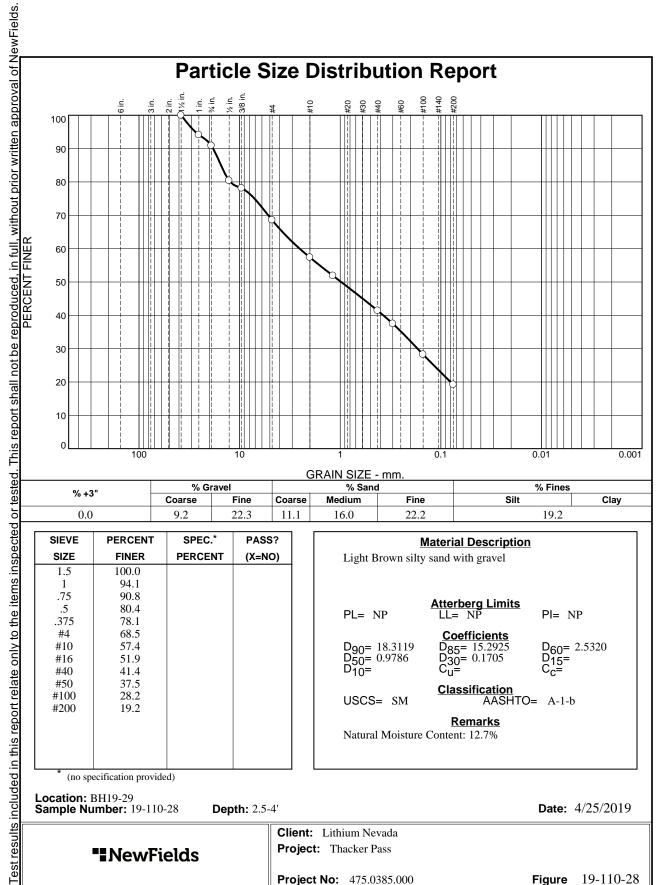
	0.						
% +3"	% Gı	ravel	% Sand		% Fines		
% +3	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay
0.0	2.1	14.0	10.2	15.6	17.2	40.9	

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
1	100.0		
.75	97.9		
.5	94.0		
.375	93.0		
#4	83.9		
#10	73.7		
#16	68.8		
#40	58.1		
#50	52.1		
#100	46.8		
#200	40.9		

Material Description Brown clayey sand with gravel						
PL= 16	Atterberg Limits LL= 37	PI= 21				
D ₉₀ = 7.0344 D ₅₀ = 0.2492 D ₁₀ =	Coefficients D ₈₅ = 5.0939 D ₃₀ = C _u =	D ₆₀ = 0.4822 D ₁₅ = C _c =				
USCS= SC	Classification AASHT	O= A-6(4)				
Remarks Natural Moisture Content: 15.6%						

* (no specification provided)

Location: BH19-28 Sample Number: 19-110-27


Depth: 8.5-9'

Date: 4/25/2019 Client: Lithium Nevada

NewFields

Project: Thacker Pass

Figure 19-110-27 **Project No:** 475.0385.000

22.2

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
1.5	100.0		
1	94.1		
.75	90.8		
.5	80.4		
.375	78.1		
#4	68.5		
#10	57.4		
#16	51.9		
#40	41.4		
#50	37.5		
#100	28.2		
#200	19.2		
* (no sp	ecification provide	ed)	

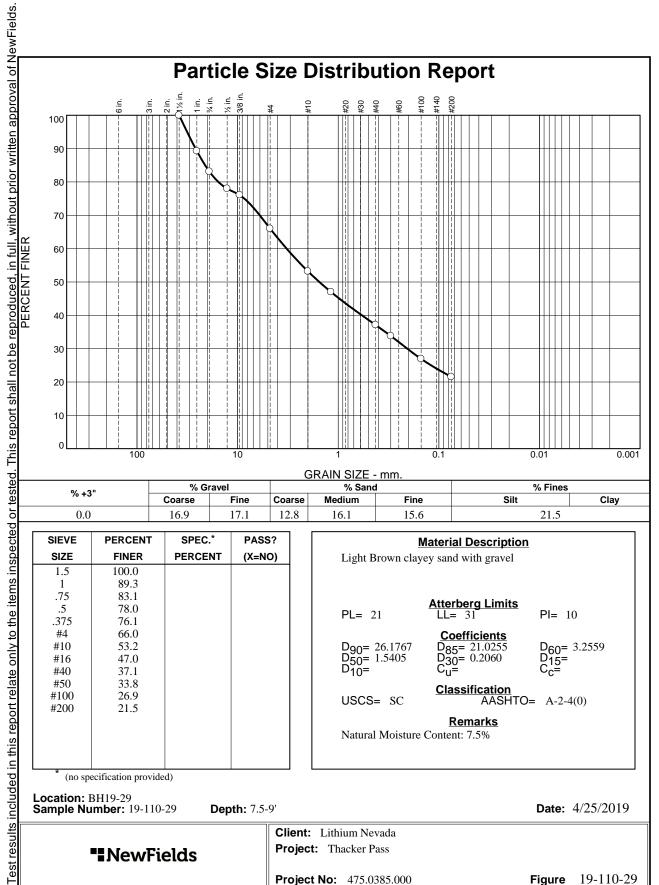
9.2

22.3

11.1

Material Description Light Brown silty sand with gravel						
PL= NP	Atterberg Limits LL= NP	PI= NP				
D ₉₀ = 18.3119 D ₅₀ = 0.9786 D ₁₀ =	Coefficients D ₈₅ = 15.2925 D ₃₀ = 0.1705 C _u =	D ₆₀ = 2.5320 D ₁₅ = C _c =				
USCS= SM	Classification AASHT	O= A-1-b				
Remarks Natural Moisture Content: 12.7%						

19.2


0.0

Location: BH19-29 Sample Number: 19-110-28 Date: 4/25/2019 **Depth:** 2.5-4'

NewFields

Client: Lithium Nevada **Project:** Thacker Pass

Figure 19-110-28 **Project No:** 475.0385.000

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
1.5	100.0		
1	89.3		
.75	83.1		
.5	78.0		
.375	76.1		
#4	66.0		
#10	53.2		
#16	47.0		
#40	37.1		
#50	33.8		
#100	26.9		
#200	21.5		
* (no sp	ecification provide	ed)	

17.1

12.8

16.1

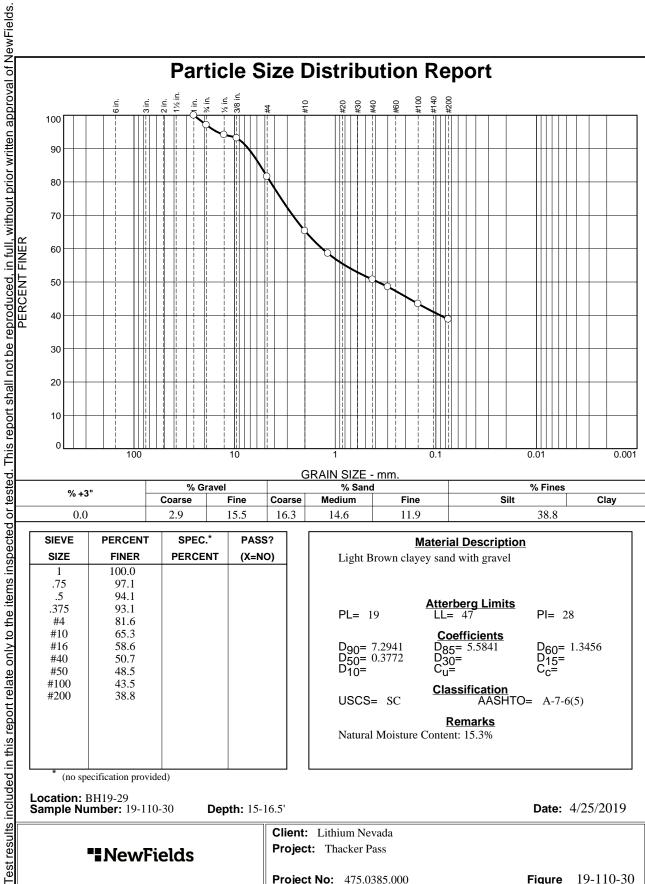
15.6

Material Description Light Brown clayey sand with gravel					
PL= 21	Atterberg Limits LL= 31	PI= 10			
D ₉₀ = 26.1767 D ₅₀ = 1.5405 D ₁₀ =	Coefficients D ₈₅ = 21.0255 D ₃₀ = 0.2060 C _u =	D ₆₀ = 3.2559 D ₁₅ = C _c =			
USCS= SC	Classification AASHT	O= A-2-4(0)			
Natural Moisture	Remarks Content: 7.5%				

21.5

Date: 4/25/2019

0.0


Location: BH19-29 Sample Number: 19-110-29 **Depth:** 7.5-9'

NewFields

Client: Lithium Nevada **Project:** Thacker Pass

Figure 19-110-29 **Project No:** 475.0385.000

	GRAIN SIZE - IIIII.						
% +3"	% Gravel		% Gravel % Sand		% Fines		
76 +3	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay
0.0	2.9	15.5	16.3	14.6	11.9	38.8	

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
1	100.0		
.75	97.1		
.5	94.1		
.375	93.1		
#4	81.6		
#10	65.3		
#16	58.6		
#40	50.7		
#50	48.5		
#100	43.5		
#200	38.8		
	23.0		

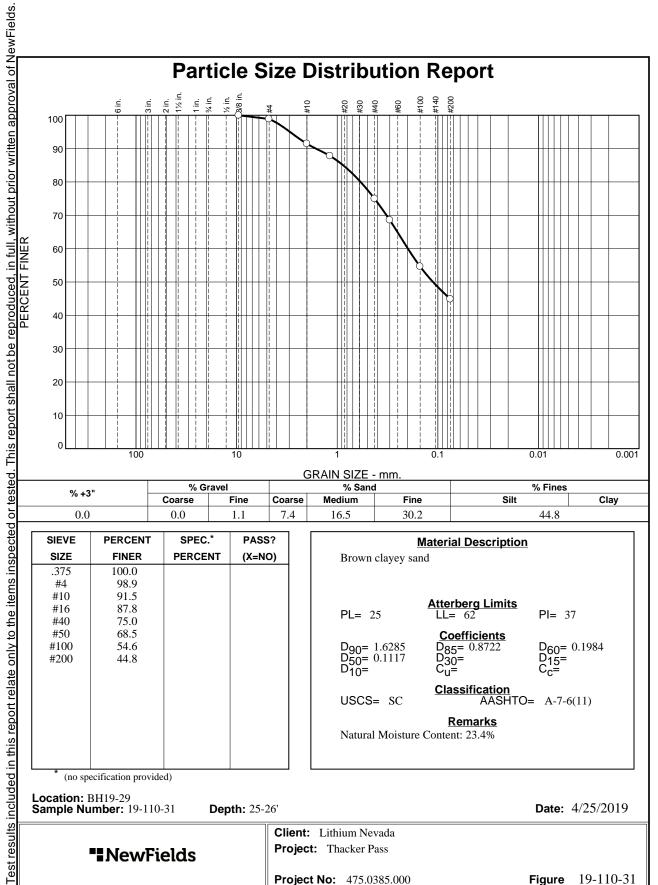
Material Description Light Brown clayey sand with gravel				
PL= 19	Atterberg Limits	PI= 28		
D ₉₀ = 7.2941 D ₅₀ = 0.3772 D ₁₀ =	Coefficients D ₈₅ = 5.5841 D ₃₀ = C _u =	D ₆₀ = 1.3456 D ₁₅ = C _c =		
USCS= SC	Classification AASHT	TO= A-7-6(5)		
Natural Moisture	Remarks Content: 15.3%			

* (no specification provided)

Location: BH19-29 Sample Number: 19-110-30

Depth: 15-16.5'

Date: 4/25/2019


NewFields

Client: Lithium Nevada **Project:** Thacker Pass

Project No: 475.0385.000

Figure 19-110-30

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
.375	100.0		
#4	98.9		
#10	91.5		
#16	87.8		
#40	75.0		
#50	68.5		
#100	54.6		
#200	44.8		
* /	.01		

Coarse

0.0

Fine

1.1

Coarse

7.4

Medium

16.5

Fine

30.2

Brown clayey san	Material Descriptiond	<u>on</u>
PL= 25	Atterberg Limits	PI= 37
D ₉₀ = 1.6285 D ₅₀ = 0.1117 D ₁₀ =	Coefficients D ₈₅ = 0.8722 D ₃₀ = C _u =	D ₆₀ = 0.1984 D ₁₅ = C _c =
USCS= SC	Classification AASHT	O= A-7-6(11)
Natural Moisture	Remarks Content: 23.4%	

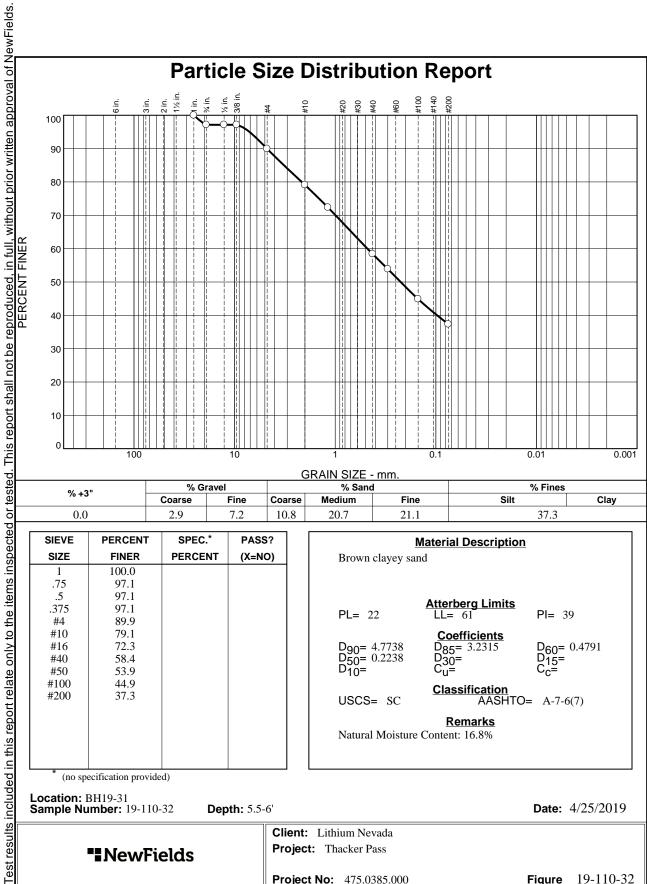
Clay

Date: 4/25/2019

44.8

(no specification provided)

0.0


Location: BH19-29 Sample Number: 19-110-31 **Depth: 25-26'**

> Client: Lithium Nevada **Project:** Thacker Pass

NewFields

Figure 19-110-31 **Project No:** 475.0385.000

% +3"	% Gravel			% Sand		% Fines	
% +3	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay
0.0	2.9	7.2	10.8	20.7	21.1	37.3	

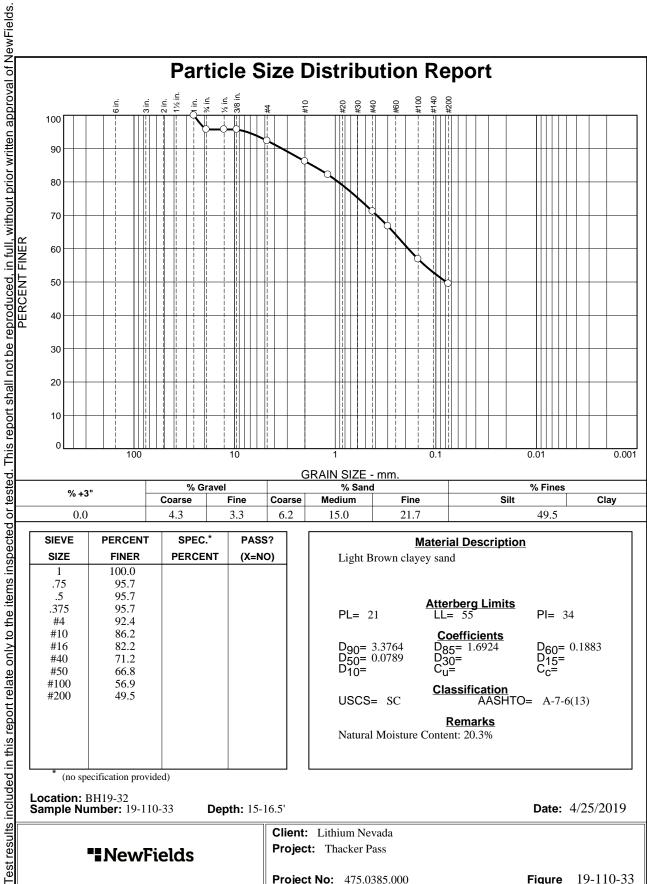
	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
1	100.0		
.75	97.1		
.5	97.1		
.375	97.1		
#4	89.9		
#10	79.1		
#16	72.3		
#40	58.4		
#50	53.9		
#100	44.9		
#200	37.3		
	1 .75 .5 .375 #4 #10 #16 #40 #50 #100 #200	1 100.0 .75 97.1 .5 97.1 .375 97.1 #4 89.9 #10 79.1 #16 72.3 #40 58.4 #50 53.9 #100 44.9	1 100.0 .75 97.1 .5 97.1 .375 97.1 #4 89.9 #10 79.1 #16 72.3 #40 58.4 #50 53.9 #100 44.9 #200 37.3

Brown clayey sa	Material Description	<u>on</u>
PL= 22	Atterberg Limits LL= 61	PI= 39
D ₉₀ = 4.7738 D ₅₀ = 0.2238 D ₁₀ =	Coefficients D ₈₅ = 3.2315 D ₃₀ = C _u =	D ₆₀ = 0.4791 D ₁₅ = C _c =
USCS= SC	Classification AASHT	O= A-7-6(7)
Natural Moisture	Remarks Content: 16.8%	

Date: 4/25/2019

* (no specification provided)

Location: BH19-31 Sample Number: 19-110-32


Depth: 5.5-6'

Client: Lithium Nevada **Project:** Thacker Pass

Figure 19-110-32 **Project No:** 475.0385.000

NewFields

3	9/ .3"	% Gravel		% +3"		% Fines		
٤	76 +3	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay
5	0.0	4.3	3.3	6.2	15.0	21.7	49.5	
-								

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
1	100.0		
.75	95.7		
.5	95.7		
.375	95.7		
#4	92.4		
#10	86.2		
#16	82.2		
#40	71.2		
#50	66.8		
#100	56.9		
#200	49.5		
	SIZE 1 .75 .5 .375 #4 #10 #16 #40 #50 #100	SIZE FINER 1 100.0 .75 95.7 .5 95.7 .375 95.7 #4 92.4 #10 86.2 #16 82.2 #40 71.2 #50 66.8 #100 56.9	SIZE FINER PERCENT 1 100.0 .75 95.7 .5 95.7 .375 95.7 #4 92.4 #10 86.2 #16 82.2 #40 71.2 #50 66.8 #100 56.9

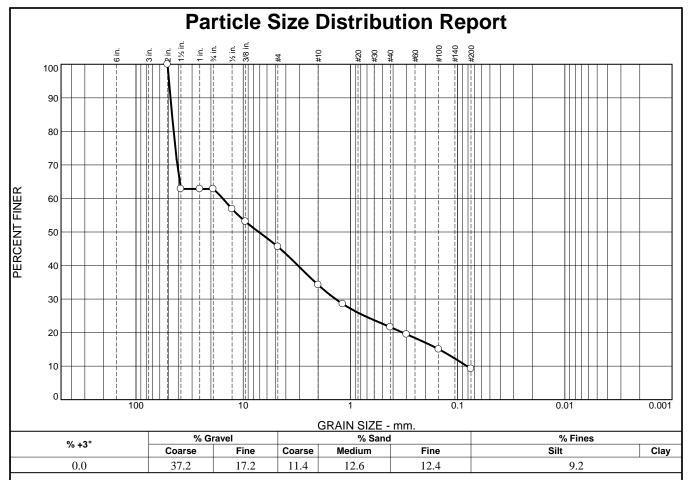
Material Description Light Brown clayey sand					
PL= 21	Atterberg Limits LL= 55	PI= 34			
D ₉₀ = 3.3764 D ₅₀ = 0.0789 D ₁₀ =	Coefficients D ₈₅ = 1.6924 D ₃₀ = C _u =	D ₆₀ = 0.1883 D ₁₅ = C _c =			
USCS= SC	Classification AASHT	O= A-7-6(13)			
Natural Moisture	Remarks Content: 20.3%				

Date: 4/25/2019

Figure 19-110-33

(no specification provided)

Location: BH19-32 Sample Number: 19-110-33 **Depth:** 15-16.5'


NewFields

Client: Lithium Nevada **Project:** Thacker Pass

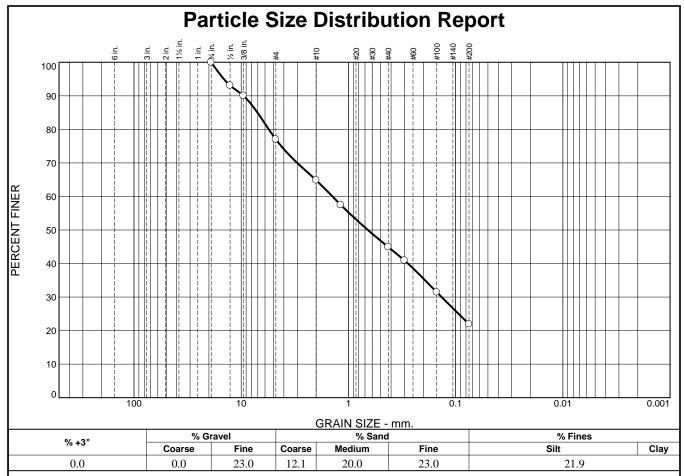
Project No: 475.0385.000

Tested By: JH/CB

Checked By: JH

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
2"	100.0		
1.5"	62.8		
1"	62.8		
.75"	62.8		
.5"	56.9		
.375"	53.1		
#4	45.6		
#10	34.2		
#16	28.5		
#40	21.6		
#50	19.5		
#100	15.0		
#200	9.2		
*	1	1	

Material Description Light Brown well-graded gravel with silt and sand				
Atterberg Limits PL= NP				
D ₉₀ = 47.6644 D ₅₀ = 7.1564 D ₁₀ = 0.0819	Coefficients D ₈₅ = 46.1168 D ₃₀ = 1.3749 C _U = 189.43	D ₆₀ = 15.5221 D ₁₅ = 0.1492 C _c = 1.49		
USCS= GW-GM	Classification AASHTO=	A-1-a		
<u>Remarks</u>				


* (no specification provided)

Location: BH19-33 Sample Number: 20-020-01 **Date:** 2/6/2020**Depth:** 2.5-3'

NewFields

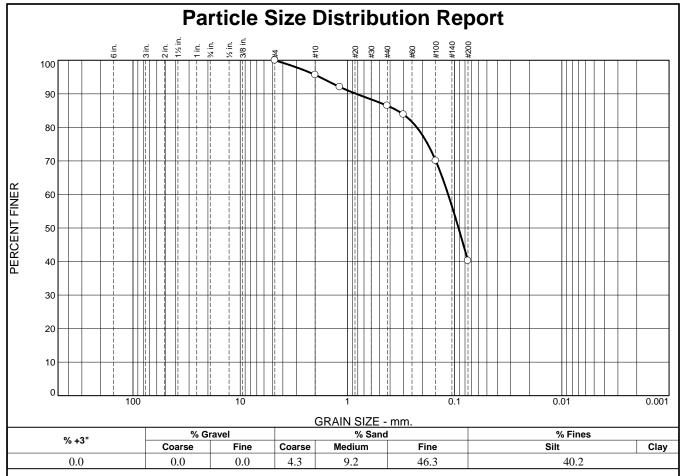
Client: Lithium Nevada Project: Thacker Pass

20-020-01 **Project No:** 475.0385.000 Figure

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
.75"	100.0		
.5"	93.1		
.375"	90.0		
#4	77.0		
#10	64.9		
#16	57.5		
#40	44.9		
#50	40.9		
#100	31.5		
#200	21.9		

Material Description Light Brown silty sand with gravel			
PL= NP	Atterberg Limits	PI= NP	
D ₉₀ = 9.4985 D ₅₀ = 0.6582 D ₁₀ =	Coefficients D ₈₅ = 7.0489 D ₃₀ = 0.1352 C _u =	D ₆₀ = 1.4093 D ₁₅ = C _c =	
USCS= SM	Classification AASHT	O= A-1-b	
	<u>Remarks</u>		

Figure


(no specification provided)

Location: BH19-33 Sample Number: 20-020-02 **Date:** 2/6/2020**Depth:** 7.5-8.5'

NewFields

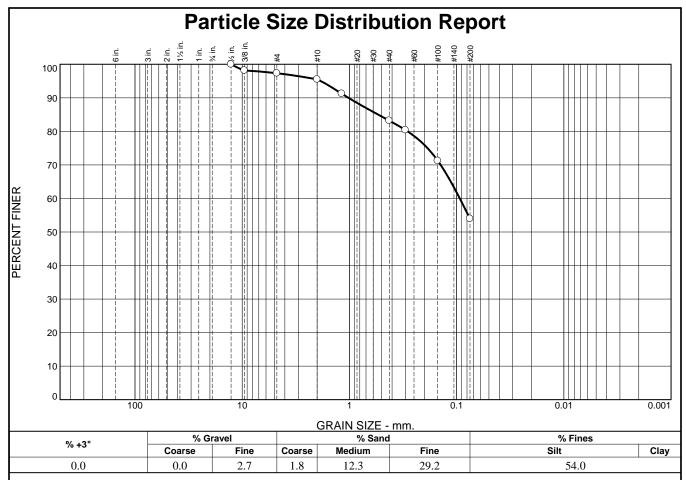
Client: Lithium Nevada Project: Thacker Pass

Project No: 475.0385.000

	SIEVE	PERCENT	SPEC.*	PASS?
	SIZE	FINER	PERCENT	(X=NO)
	#4	100.0		
	#10	95.7		
	#16	92.0		
	#40	86.5		
	#50	83.9		
	#100	70.1		
	#200	40.2		
L	*		L	

Material Description Light Brown silty sand		
PL= NP	Atterberg Limits LL= NP	PI= NP
D ₉₀ = 0.8280 D ₅₀ = 0.0920 D ₁₀ =	<u>Coefficients</u> D ₈₅ = 0.3415 D ₃₀ = C _u =	D ₆₀ = 0.1150 D ₁₅ = C _c =
USCS= SM	Classification AASHT	O= A-4(0)
	<u>Remarks</u>	

Figure


* (no specification provided)

Location: BH19-33 Sample Number: 20-020-04 **Date:** 2/6/2020**Depth:** 25-25.5'

NewFields

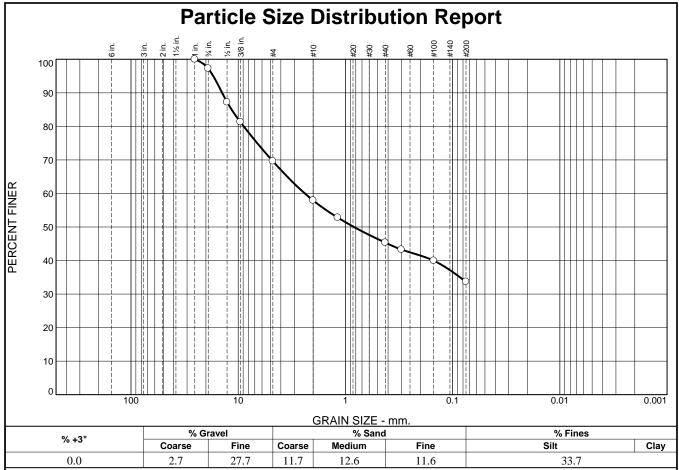
Client: Lithium Nevada Project: Thacker Pass

Project No: 475.0385.000

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
.5"	100.0		
.375"	98.2		
#4	97.3		
#10	95.5		
#16	91.2		
#40	83.2		
#50	80.4		
#100	71.3		
#200	54.0		
*	1	1	

	Material Description Light Brown sandy silt		
<i>6</i> · · · · · · · ·	y		
PL= NP	Atterberg Limits LL= NP	PI= NP	
D ₉₀ = 1.0205 D ₅₀ = D ₁₀ =	Coefficients D ₈₅ = 0.5395 D ₃₀ = C _u =	D ₆₀ = 0.0935 D ₁₅ = C _c =	
USCS= ML	Classification AASHTC	O= A-4(0)	
<u>Remarks</u>			

Figure


* (no specification provided)

Location: BH19-34 Sample Number: 20-020-05 **Date:** 2/6/2020**Depth:** 2.5-3'

NewFields

Client: Lithium Nevada Project: Thacker Pass

Project No: 475.0385.000

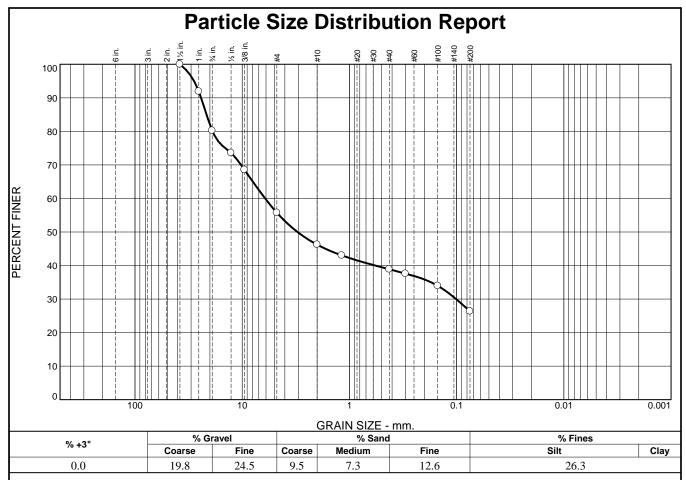
SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
1"	100.0		
.75"	97.3		
.5"	87.2		
.375"	81.3		
#4	69.6		
#10	57.9		
#16	52.8		
#40	45.3		
#50	43.3		
#100	40.0		
#200	33.7		
*			

Material Description Red clayey sand with gravel			
PL= 24	Atterberg Limits LL= 48	PI= 24	
D ₉₀ = 14.1140 D ₅₀ = 0.8324 D ₁₀ =	Coefficients D ₈₅ = 11.5235 D ₃₀ = C _u =	D ₆₀ = 2.3894 D ₁₅ = C _c =	
USCS= SC	Classification AASHT	O= A-2-7(3)	
	<u>Remarks</u>		

Date: 2/6/2020

Figure

20-020-07


* (no specification provided)

Location: BH19-34 Sample Number: 20-020-07 **Depth:** 10-11.5'

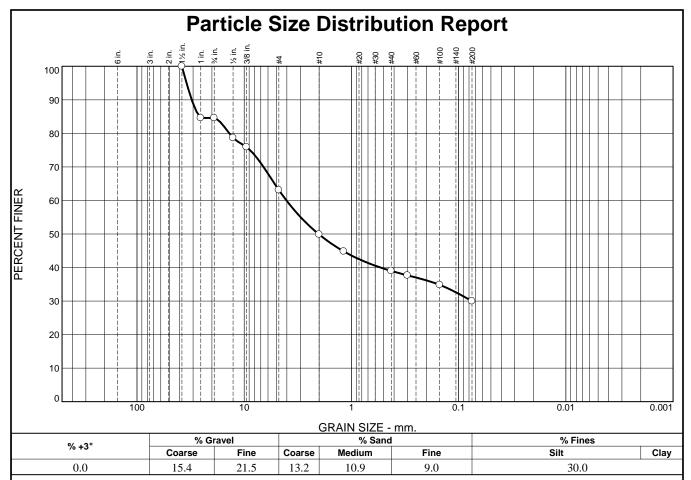
NewFields

Client: Lithium Nevada Project: Thacker Pass

Project No: 475.0385.000

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
1.5"	100.0		
1"	91.9		
.75"	80.2		
.5"	73.6		
.375"	68.6		
#4	55.7		
#10	46.2		
#16	43.0		
#40	38.9		
#50	37.6		
#100	34.0		
#200	26.3		
*			

Material Description Light Brown silty gravel with sand			
PL= 35	Atterberg Limits LL= 47	Pl= 12	
D ₉₀ = 24.1706 D ₅₀ = 3.0512 D ₁₀ =	Coefficients D85= 21.5216 D30= 0.1013 Cu=	D ₆₀ = 6.1084 D ₁₅ = C _c =	
USCS= GM	Classification AASHT	O= A-2-7(0)	
	<u>Remarks</u>		


* (no specification provided)

Location: BH19-35 Sample Number: 20-020-09 **Date:** 2/6/2020**Depth:** 7.5-8.5'

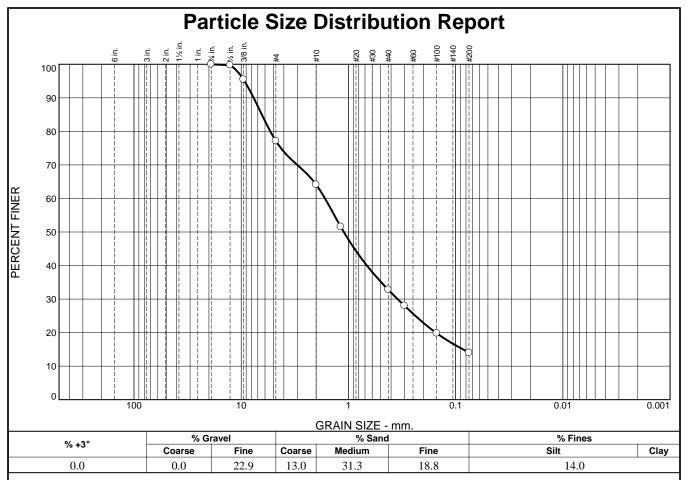
NewFields

Client: Lithium Nevada Project: Thacker Pass

20-020-09 **Project No:** 475.0385.000 Figure

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
1.5"	100.0		
1"	84.6		
.75"	84.6		
.5"	78.7		
.375"	75.9		
#4	63.1		
#10	49.9		
#16	44.8		
#40	39.0		
#50	37.7		
#100	34.8		
#200	30.0		
*	101 11 11 1		

Material Description Brown silty gravel with sand			
PL= 34	Atterberg Limits LL= 59	PI= 25	
D ₉₀ = 30.8416 D ₅₀ = 2.0240 D ₁₀ =	Coefficients D85= 26.0946 D30= 0.0752 Cu=	D ₆₀ = 4.0377 D ₁₅ = C _c =	
USCS= GM	Classification AASHTC)= A-2-7(2)	
	<u>Remarks</u>		


(no specification provided)

Location: BH19-35 Sample Number: 20-020-11 **Date:** 2/6/2020**Depth:** 15-16'

NewFields

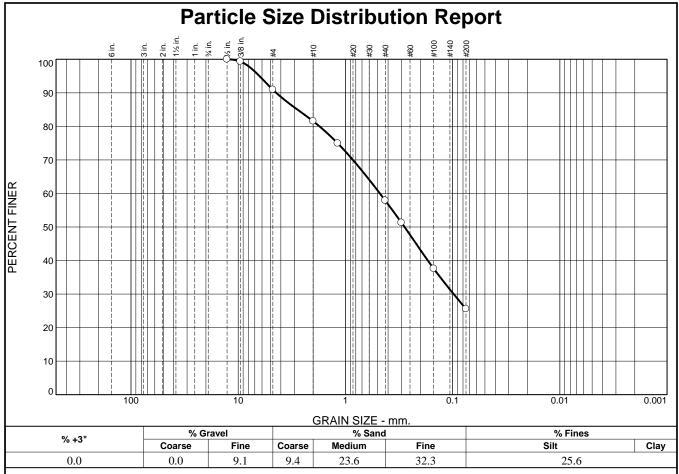
Client: Lithium Nevada Project: Thacker Pass

20-020-11 **Project No:** 475.0385.000 Figure

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
.75"	100.0		
.5"	99.7		
.375"	95.5		
#4	77.1		
#10	64.1		
#16	51.6		
#40	32.8		
#50	28.0		
#100	19.8		
#200	14.0		
* (oification provided	\	

Material Description Gray silty sand with gravel			
PL= NP	Atterberg Limits LL= NP	PI= NP	
D ₉₀ = 7.6504 D ₅₀ = 1.1048 D ₁₀ =	Coefficients D ₈₅ = 6.4191 D ₃₀ = 0.3479 C _U =	D ₆₀ = 1.6546 D ₁₅ = 0.0855 C _c =	
USCS= SM	Classification AASHT	O= A-1-b	
	<u>Remarks</u>		

Figure


(no specification provided)

Location: BH19-35 Sample Number: 20-020-12 **Date:** 2/6/2020**Depth:** 35-35.5'

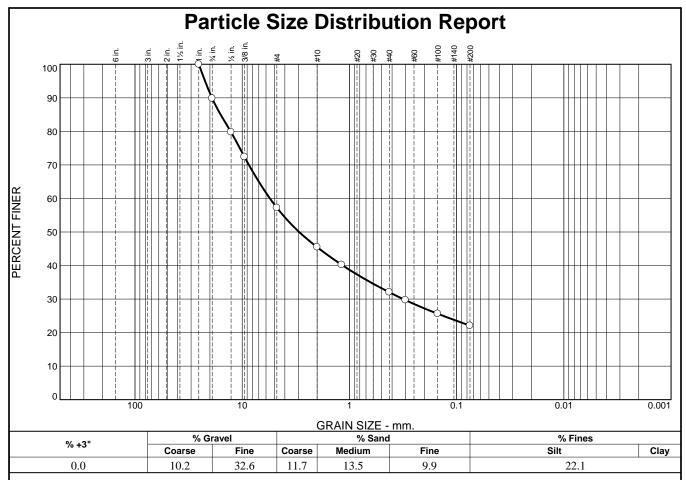
NewFields

Client: Lithium Nevada Project: Thacker Pass

Project No: 475.0385.000

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
.5"	100.0		
.375"	99.4		
#4	90.9		
#10	81.5		
#16	74.9		
#40	57.9		
#50	51.3		
#100	37.6		
#200	25.6		

Material Description Light Brown silty sand		
PL= NP	Atterberg Limits LL= NP	PI= NP
D ₉₀ = 4.4200 D ₅₀ = 0.2809 D ₁₀ =	Coefficients D ₈₅ = 2.8007 D ₃₀ = 0.0979 C _u =	D ₆₀ = 0.4770 D ₁₅ = C _c =
USCS= SM	Classification AASHT	O= A-2-4(0)
	<u>Remarks</u>	


* (no specification provided)

Location: BH19-36 Sample Number: 20-020-14 **Date:** 2/6/2020**Depth:** 5-6.5'

NewFields

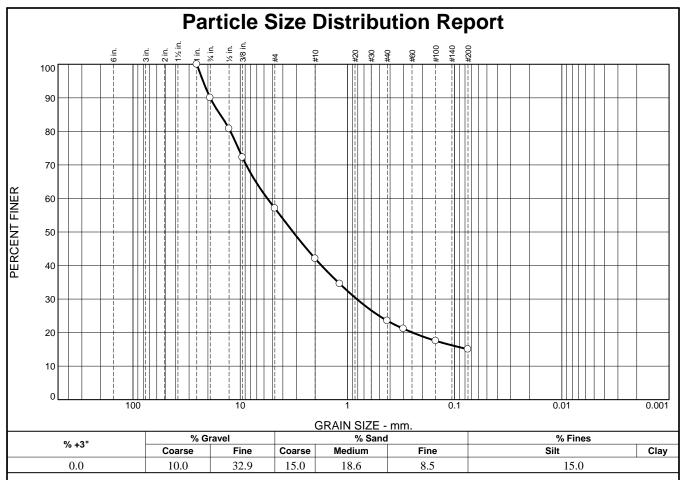
Client: Lithium Nevada Project: Thacker Pass

20-020-14 **Project No:** 475.0385.000 Figure

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
1"	100.0		
.75"	89.8		
.5"	79.8		
.375"	72.4		
#4	57.2		
#10	45.5		
#16	40.2		
#40	32.0		
#50	29.7		
#100	25.6		
#200	22.1		
*		<u> </u>	

Material Description Light Brown silty gravel with sand			
PL= 29	Atterberg Limits LL= 47	PI= 18	
D ₉₀ = 19.1567 D ₅₀ = 2.9428 D ₁₀ =	Coefficients D85= 15.8955 D30= 0.3151 Cu=	D ₆₀ = 5.5135 D ₁₅ = C _c =	
USCS= GM	Classification AASHTC)= A-2-7(1)	
	<u>Remarks</u>		

Figure


* (no specification provided)

Location: BH19-36 Sample Number: 20-020-16 **Date:** 2/6/2020**Depth:** 10-11.3'

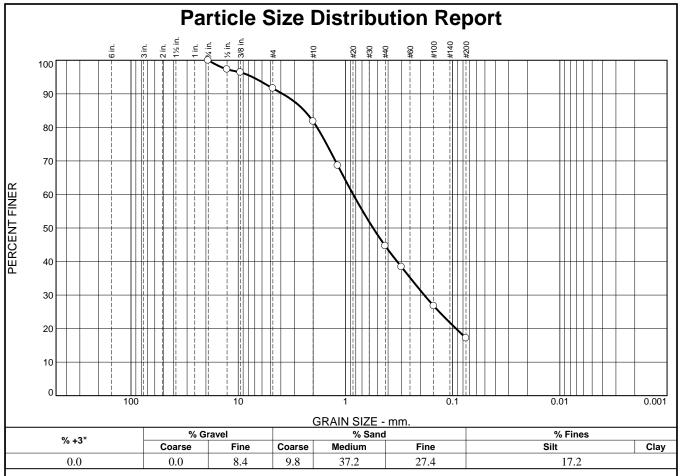
NewFields

Client: Lithium Nevada Project: Thacker Pass

Project No: 475.0385.000

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
1"	100.0		
.75"	90.0		
.5"	80.8		
.375"	72.3		
#4	57.1		
#10	42.1		
#16	34.6		
#40	23.5		
#50	21.1		
#100	17.5		
#200	15.0		
L *			

Material Description Red clayey gravel with sand		
PL= 21	Atterberg Limits LL= 48	PI= 27
D ₉₀ = 19.0455 D ₅₀ = 3.2097 D ₁₀ =	Coefficients D ₈₅ = 15.3401 D ₃₀ = 0.8177 C _u =	D ₆₀ = 5.5793 D ₁₅ = C _c =
USCS= GC	Classification AASHT	O= A-2-7(0)
	<u>Remarks</u>	


* (no specification provided)

Location: BH19-36 Sample Number: 20-020-17 **Date:** 2/6/2020**Depth:** 35-36.5'

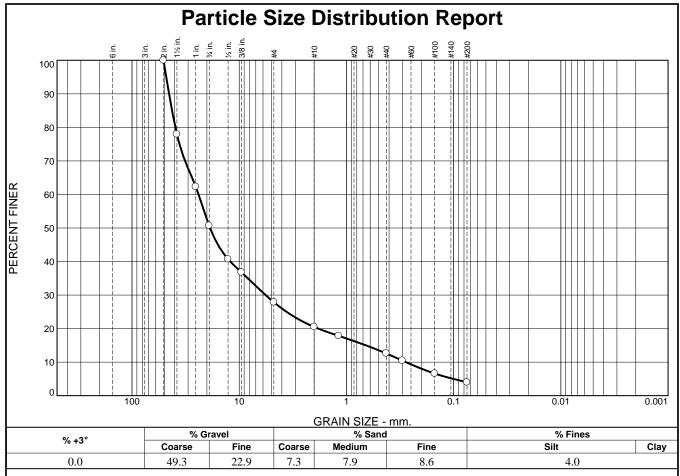
NewFields

Client: Lithium Nevada Project: Thacker Pass

20-020-17 **Project No:** 475.0385.000 Figure

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
.75"	100.0		
.5"	97.3		
.375"	96.4		
#4	91.6		
#10	81.8		
#16	68.6		
#40	44.6		
#50	38.4		
#100	26.8		
#200	17.2		
*	l .	l .	

Material Description Light Brown silty sand			
PL= NP	Atterberg Limits LL= NP	PI= NP	
D ₉₀ = 3.8586 D ₅₀ = 0.5520 D ₁₀ =	Coefficients D ₈₅ = 2.4147 D ₃₀ = 0.1839 C _u =	D ₆₀ = 0.8459 D ₁₅ = C _c =	
USCS= SM	Classification AASHT	O= A-1-b	
	<u>Remarks</u>		


* (no specification provided)

Location: BH19-37 Sample Number: 20-020-18 **Date:** 2/6/2020**Depth:** 2.5-3'

NewFields

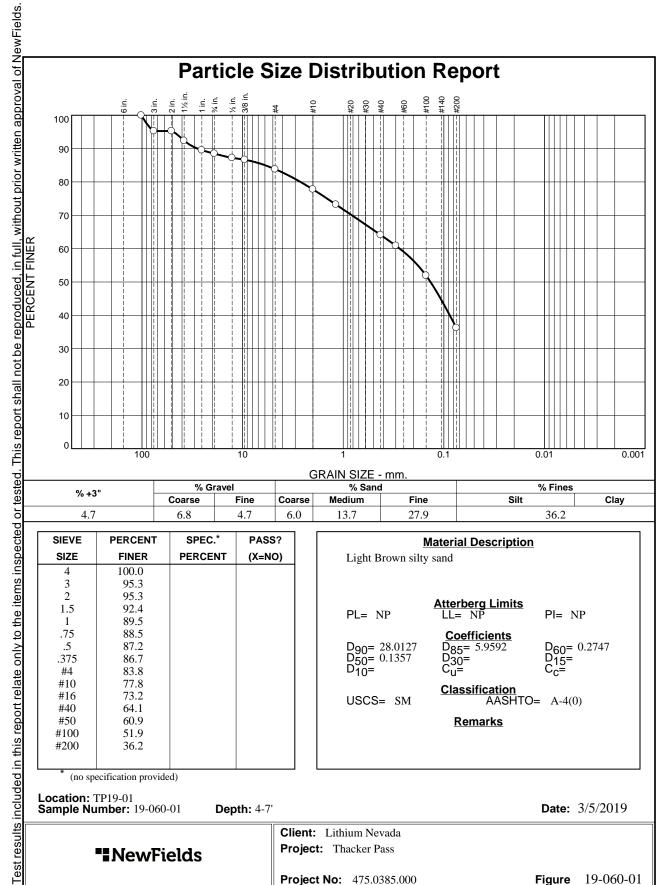
Client: Lithium Nevada Project: Thacker Pass

20-020-18 **Project No:** 475.0385.000 Figure

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
2"	100.0		
1.5"	77.9		
1"	62.3		
.75"	50.7		
.5"	40.7		
.375"	36.8		
#4	27.8		
#10	20.5		
#16	17.8		
#40	12.6		
#50	10.4		
#100	6.6		
#200	4.0		

Material Description Light Brown poorly graded gravel with sand			
PL= NP	Atterberg Limits	PI= NP	
D ₉₀ = 45.1070 D ₅₀ = 18.6919 D ₁₀ = 0.2789	Coefficients D ₈₅ = 42.3108 D ₃₀ = 5.6749 C _u = 85.79	D ₆₀ = 23.9302 D ₁₅ = 0.6582 C _c = 4.82	
USCS= GP	Classification AASHTO:	= A-1-a	
	<u>Remarks</u>		

Figure


* (no specification provided)

Location: BH19-37 Sample Number: 20-020-19 **Date:** 2/6/2020**Depth:** 7.5-8'

NewFields

Client: Lithium Nevada Project: Thacker Pass

Project No: 475.0385.000

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
4	100.0		
3	95.3		
2	95.3		
1.5	92.4		
1	89.5		
.75	88.5		
.5	87.2		
.375	86.7		
#4	83.8		
#10	77.8		
#16	73.2		
#40	64.1		
#50	60.9		
#100	51.9		
#200	36.2		

<u>N</u> Light Brown silty	Material Description sand	<u>on</u>
PL= NP	Atterberg Limits	PI= NP
D ₉₀ = 28.0127 D ₅₀ = 0.1357 D ₁₀ =	Coefficients D ₈₅ = 5.9592 D ₃₀ = C _u =	D ₆₀ = 0.2747 D ₁₅ = C _c =
USCS= SM	Classification AASHT	ΓO= A-4(0)
	<u>Remarks</u>	

36.2

(no specification provided)

4.7

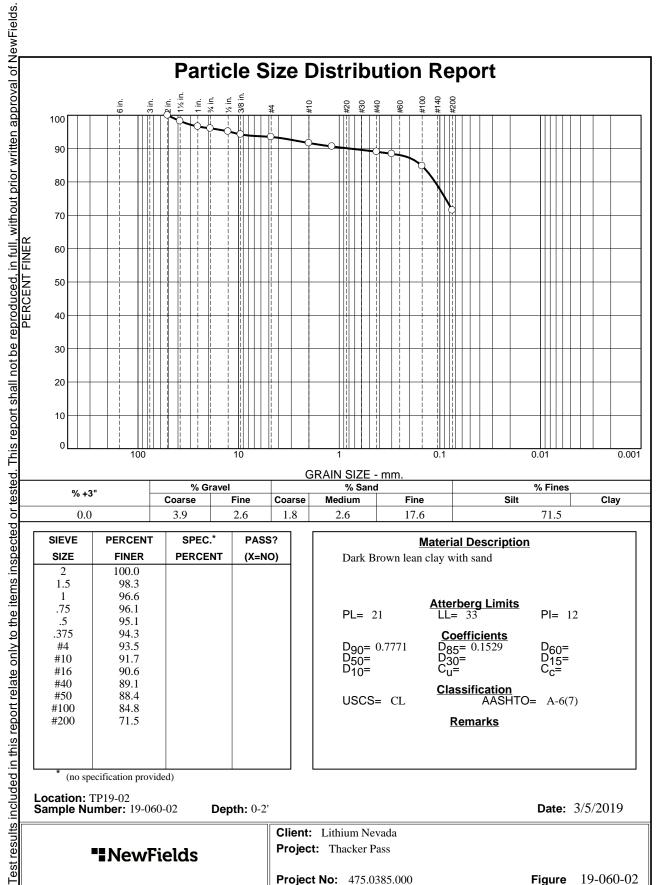
Location: TP19-01 Sample Number: 19-060-01 **Date:** 3/5/2019 **Depth: 4-7'**

NewFields

Client: Lithium Nevada **Project:** Thacker Pass

Figure 19-060-01 **Project No:** 475.0385.000

Tested By: KS/JB Checked By: JH


4.7

6.0

13.7

27.9

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
2	100.0		
1.5	98.3		
1	96.6		
.75	96.1		
.5	95.1		
.375	94.3		
#4	93.5		
#10	91.7		
#16	90.6		
#40	89.1		
#50	88.4		
#100	84.8		
#200	71.5		

Coarse

3.9

Fine

2.6

Coarse

1.8

Medium

2.6

Fine

17.6

Dark Brown lean	Material Description clay with sand	<u>on</u>			
PL= 21	Atterberg Limits LL= 33	PI= 12			
D ₉₀ = 0.7771 D ₅₀ = D ₁₀ =	Coefficients D ₈₅ = 0.1529 D ₃₀ = C _u =	D ₆₀ = D ₁₅ = C _c =			
USCS= CL	USCS= CL Classification AASHTO= A-6(7)				
	<u>Remarks</u>				

Clay

71.5

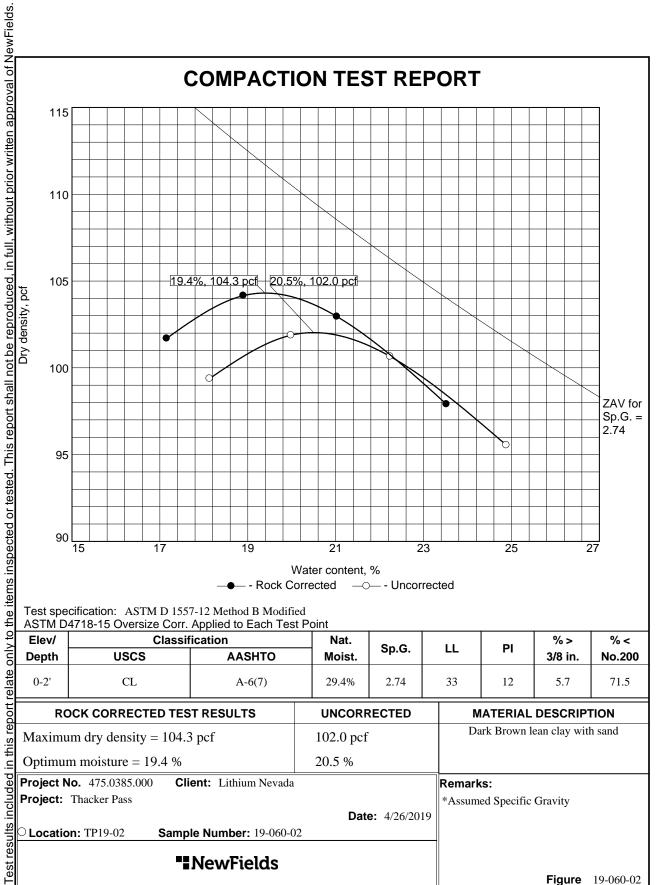
Date: 3/5/2019

Figure 19-060-02

(no specification provided)

Location: TP19-02 Sample Number: 19-060-02

0.0


Depth: 0-2'

NewFields

Client: Lithium Nevada **Project:** Thacker Pass

Project No: 475.0385.000

-- Rock Corrected -- -- Uncorrected Test specification: ASTM D 1557-12 Method B Modified

Sample Number: 19-060-02

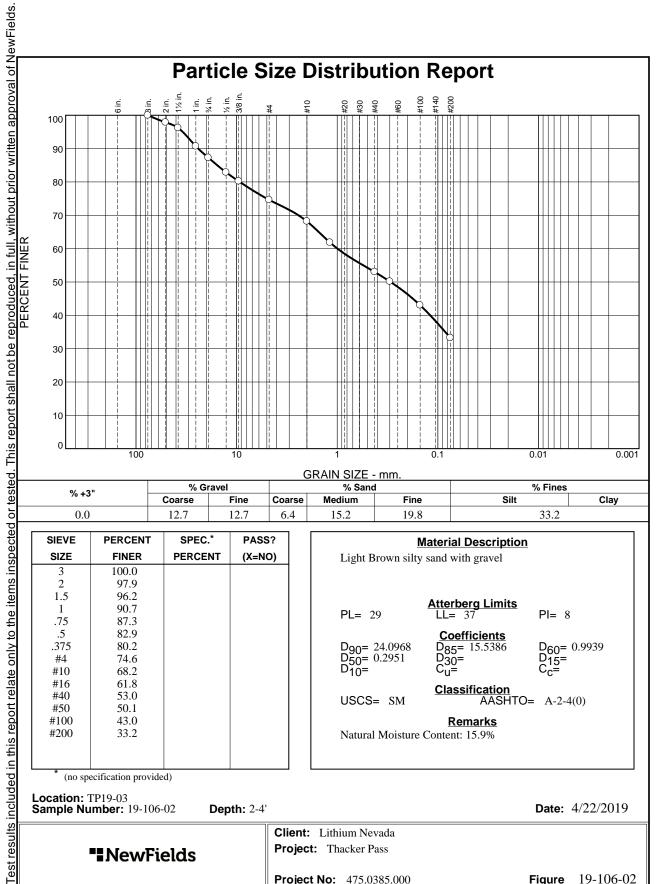
ASTM D4718-15 Oversize Corr. Applied to Each Test Point

Elev/	Classif	fication	Nat.	Sp.G.		PI	% >	% <
Depth	USCS	AASHTO	Moist.		.G. LL	PI	3/8 in.	No.200
0-2'	CL	A-6(7)	29.4%	2.74	33	12	5.7	71.5

Water content, %

23

Figure 19-060-02


2	ROCK CORRECTED TEST RESULTS	UNCORRECTED	MATERIAL DESCRIPTION
	Maximum dry density = 104.3 pcf	102.0 pcf	Dark Brown lean clay with sand
5	Optimum moisture = 19.4 %	20.5 %	
כ כ	Project No. 475.0385.000 Client: Lithium Nevada		Remarks:
Ś	Project: Thacker Pass		*Assumed Specific Gravity
		Date: 4/26/2019	

NewFields

CLocation: TP19-02

Tested By: CB

Checked By: JH

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
3	100.0		
2	97.9		
1.5	96.2		
1	90.7		
.75	87.3		
.5	82.9		
.375	80.2		
#4	74.6		
#10	68.2		
#16	61.8		
#40	53.0		
#50	50.1		
#100	43.0		
#200	33.2		

Coarse

12.7

Fine

12.7

Coarse

6.4

Medium

15.2

Fine

19.8

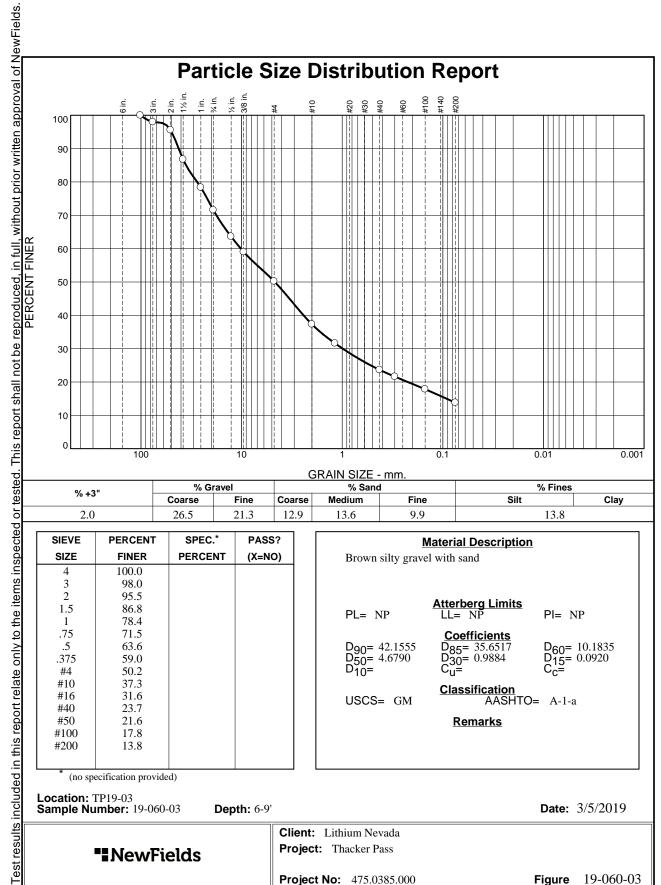
<u>N</u> Light Brown silty	Material Description sand with gravel	<u>on</u>			
PL= 29	Atterberg Limits LL= 37	PI= 8			
D ₉₀ = 24.0968 D ₅₀ = 0.2951 D ₁₀ =	Coefficients D ₈₅ = 15.5386 D ₃₀ = C _u =	D ₆₀ = 0.9939 D ₁₅ = C _c =			
USCS= SM	USCS= SM Classification AASHTO= A-2-4(0)				
Remarks Natural Moisture Content: 15.9%					

Clay

Date: 4/22/2019

33.2

(no specification provided)


0.0

Location: TP19-03 Sample Number: 19-106-02 **Depth: 2-4'**

NewFields

Client: Lithium Nevada **Project:** Thacker Pass

Figure 19-106-02 **Project No:** 475.0385.000

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
4	100.0		
3	98.0		
2	95.5		
1.5	86.8		
1	78.4		
.75	71.5		
.5	63.6		
.375	59.0		
#4	50.2		
#10	37.3		
#16	31.6		
#40	23.7		
#50	21.6		
#100	17.8		
#200	13.8		

Coarse

26.5

Fine

21.3

Coarse

12.9

Medium

13.6

Fine

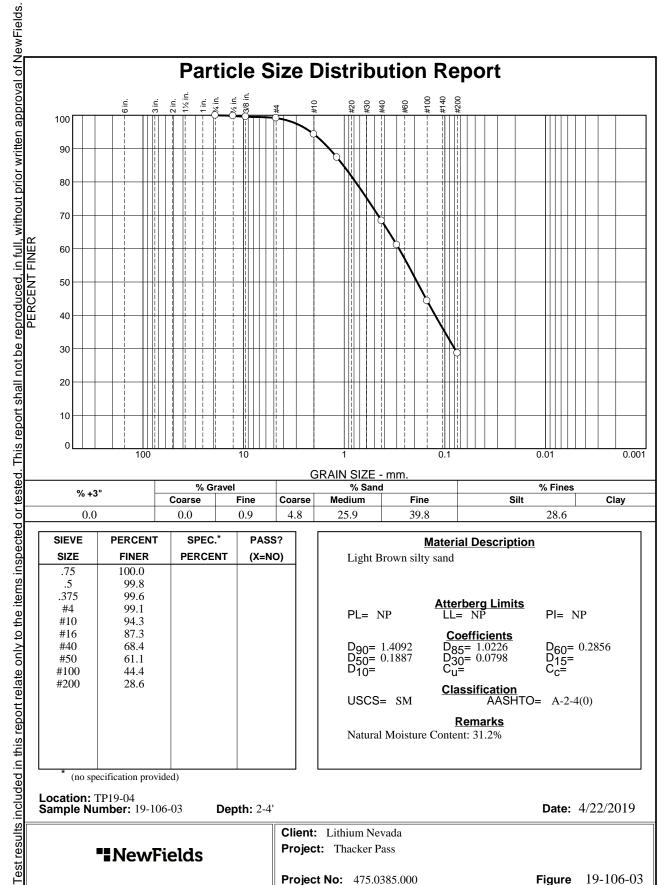
9.9

<u>N</u> Brown silty grave	Material Description el with sand	<u>on</u>
PL= NP	Atterberg Limits	PI= NP
D ₉₀ = 42.1555 D ₅₀ = 4.6790 D ₁₀ =	Coefficients D ₈₅ = 35.6517 D ₃₀ = 0.9884 C _u =	D ₆₀ = 10.1835 D ₁₅ = 0.0920 C _c =
USCS= GM	Classification AASHT	O= A-1-a
	<u>Remarks</u>	

Clay

13.8

(no specification provided)


2.0

Location: TP19-03 Sample Number: 19-060-03 **Date:** 3/5/2019 **Depth:** 6-9'

NewFields

Client: Lithium Nevada **Project:** Thacker Pass

Figure 19-060-03 **Project No:** 475.0385.000

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
.75	100.0		
.5	99.8		
.375	99.6		
#4	99.1		
#10	94.3		
#16	87.3		
#40	68.4		
#50	61.1		
#100	44.4		
#200	28.6		
* (no an	ecification provide	٦/,	

0.9

4.8

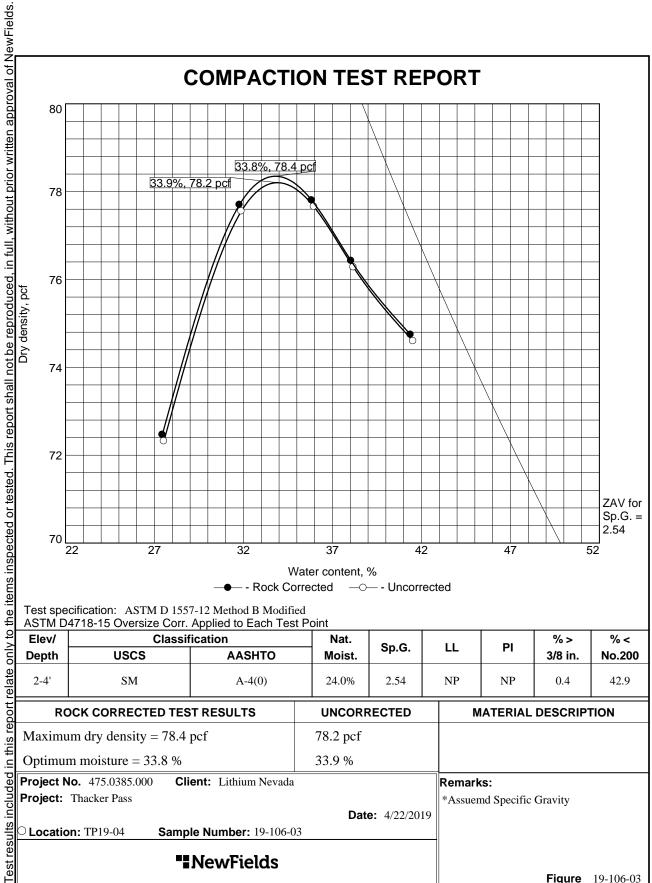
25.9	39.8		28.6		
Light B	Material Description Light Brown silty sand				
PL= N	Atte NP LL:	rberg Limits = NP	PI= NP		
D ₉₀ = D ₅₀ = D ₁₀ =		oefficients 5= 1.0226 0= 0.0798 =	D ₆₀ = 0.2856 D ₁₅ = C _c =		
USCS:	USCS= SM Classification AASHTO= A-2-4(0)				
Natural	Remarks Natural Moisture Content: 31.2%				

Date: 4/22/2019

Figure 19-106-03

(no specification provided)

0.0


Location: TP19-04 Sample Number: 19-106-03

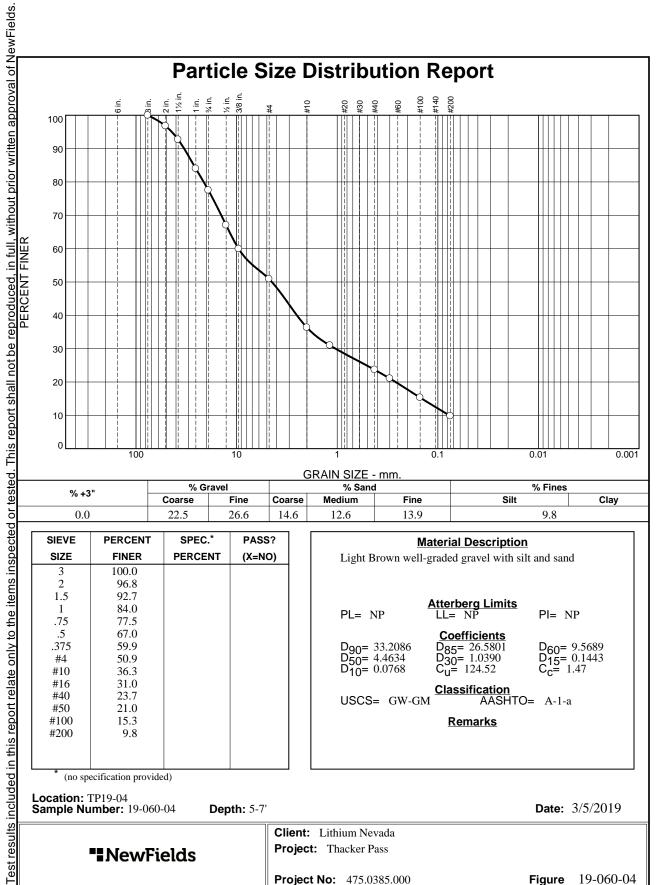
NewFields

Depth: 2-4'

Client: Lithium Nevada **Project:** Thacker Pass

Project No: 475.0385.000

Test specification: ASTM D 1557-12 Method B Modified ASTM D4718-15 Oversize Corr. Applied to Each Test Point


Elev/	Classification		Nat.		- 11	PI	% >	% <
Depth	USCS	AASHTO	Moist.	Sp.G.	LL	PI	3/8 in.	No.200
2-4'	SM	A-4(0)	24.0%	2.54	NP	NP	0.4	42.9

ROCK CORRECTED TEST RESULTS	UNCORRECTED	MATERIAL DESCRIPTION
Maximum dry density = 78.4 pcf	78.2 pcf	
Optimum moisture = 33.8 %	33.9 %	
Due to at No. 175 0005 000 Office 4 1111 N. 1		
Project No. 475.0385.000 Client: Lithium Nevada		Remarks:
Project No. 475.0385.000 Client: Lithium Nevada Project: Thacker Pass		*Assuemd Specific Gravity

Figure 19-106-03

Tested By: CB Checked By: JH

NewFields

Coarse

14.6

26.6

Medium

12.6

Fine

13.9

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
3	100.0		
2	96.8		
1.5	92.7		
1	84.0		
.75	77.5		
.5	67.0		
.375	59.9		
#4	50.9		
#10	36.3		
#16	31.0		
#40	23.7		
#50	21.0		
#100	15.3		
#200	9.8		

Coarse

22.5

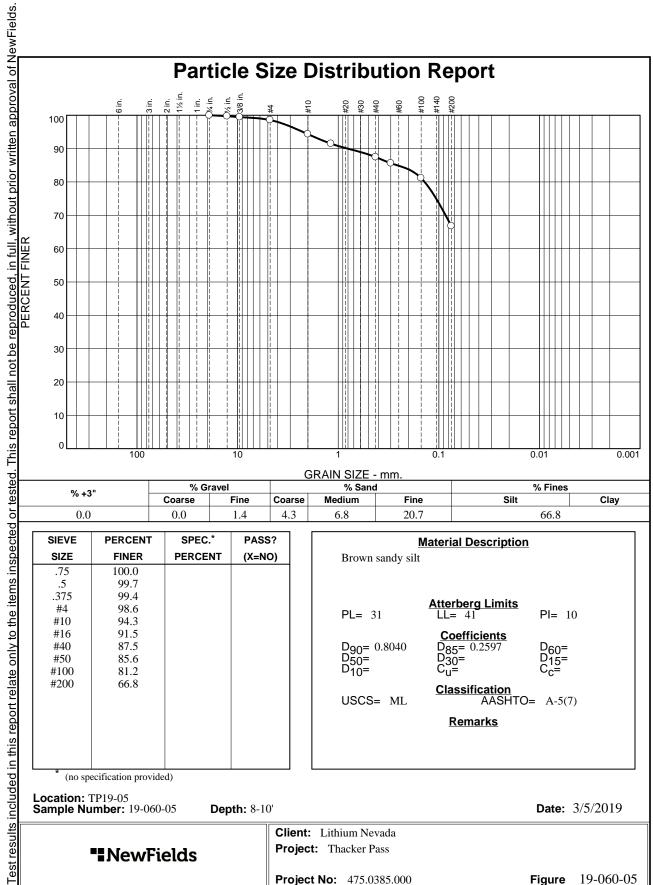
Material Description				
Light Brown wen	Light Brown well-graded gravel with silt and sand			
PL= NP	Atterberg Limits LL= NP	PI= NP		
D ₉₀ = 33.2086 D ₅₀ = 4.4634 D ₁₀ = 0.0768	Coefficients D ₈₅ = 26.5801 D ₃₀ = 1.0390 C _U = 124.52	D ₆₀ = 9.5689 D ₁₅ = 0.1443 C _c = 1.47		
USCS= GW-GM AASHTO= A-1-a				
<u>Remarks</u>				

Clay

9.8

Date: 3/5/2019

(no specification provided)


0.0

Location: TP19-04 Sample Number: 19-060-04 **Depth:** 5-7'

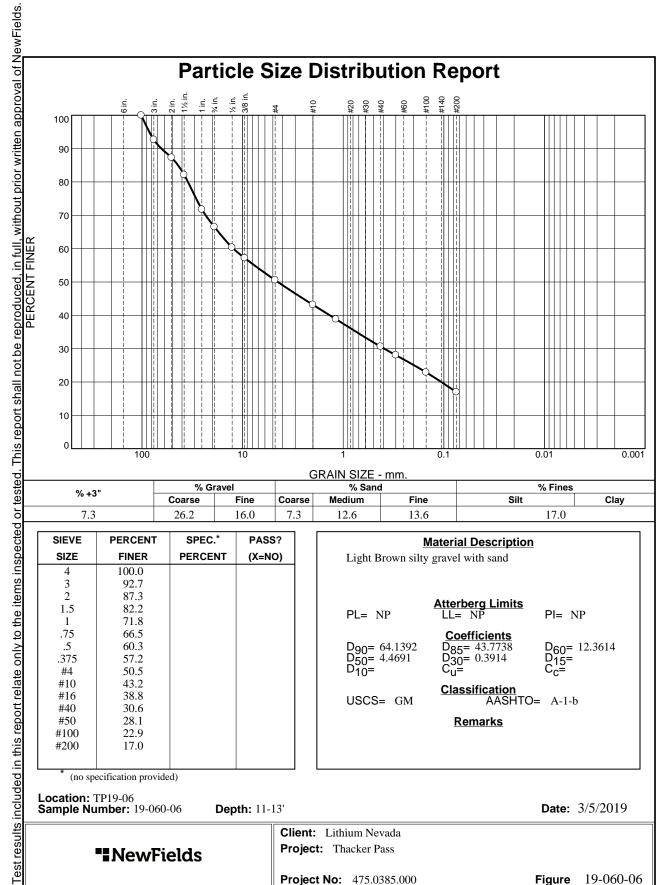
NewFields

Client: Lithium Nevada **Project:** Thacker Pass

Figure 19-060-04 **Project No:** 475.0385.000

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
.75	100.0		
.5	99.7		
.375	99.4		
#4	98.6		
#10	94.3		
#16	91.5		
#40	87.5		
#50	85.6		
#100	81.2		
#200	66.8		

_	Material Description			
Brown sandy silt	Brown sandy silt			
PL= 31	Atterberg Limits	PI= 10		
D ₉₀ = 0.8040 D ₅₀ = D ₁₀ =	Coefficients D ₈₅ = 0.2597 D ₃₀ = C _u =	D ₆₀ = D ₁₅ = C _c =		
USCS= ML	Classification AASHT	O= A-5(7)		
	<u>Remarks</u>			


(no specification provided)

Location: TP19-05 Sample Number: 19-060-05 **Date:** 3/5/2019 **Depth:** 8-10'

NewFields

Client: Lithium Nevada **Project:** Thacker Pass

Figure 19-060-05 **Project No:** 475.0385.000

7.3

16.0

Medium

12.6

Fine

13.6

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
4	100.0		
3	92.7		
2	87.3		
1.5	82.2		
1	71.8		
.75	66.5		
.5	60.3		
.375	57.2		
#4	50.5		
#10	43.2		
#16	38.8		
#40	30.6		
#50	28.1		
#100	22.9		
#200	17.0		
*			

Coarse

26.2

Light Brown silty	Material Description gravel with sand	<u>on</u>		
PL= NP	Atterberg Limits LL= NP	PI= NP		
D ₉₀ = 64.1392 D ₅₀ = 4.4691 D ₁₀ =	Coefficients D ₈₅ = 43.7738 D ₃₀ = 0.3914 C _u =	D ₆₀ = 12.3614 D ₁₅ = C _c =		
USCS= GM	USCS= GM Classification AASHTO= A-1-b			
	<u>Remarks</u>			

Clay

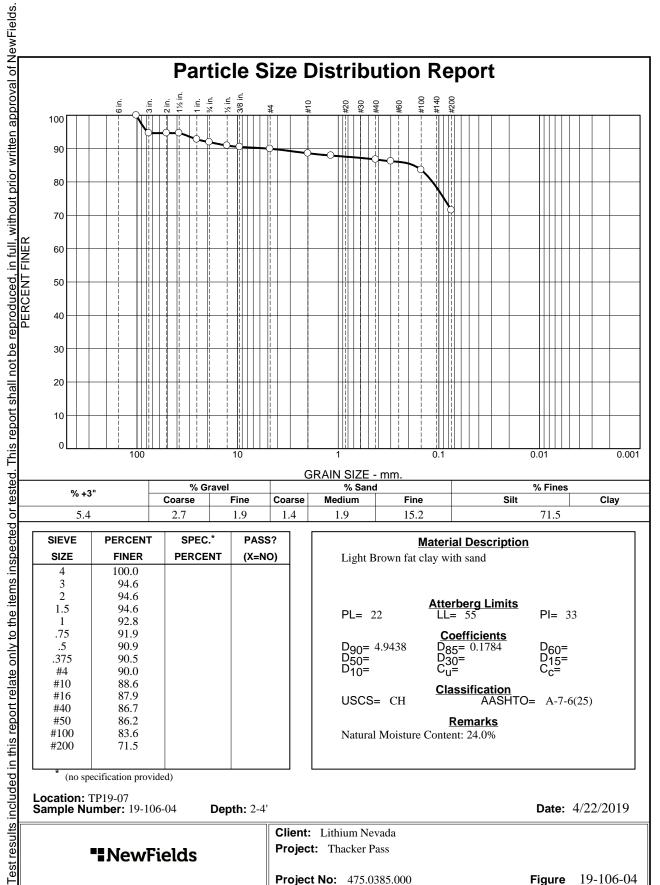
17.0

Date: 3/5/2019

Figure 19-060-06

* (no specification provided)

7.3


Location: TP19-06 Sample Number: 19-060-06 **Depth:** 11-13'

NewFields

Client: Lithium Nevada **Project:** Thacker Pass

Project No: 475.0385.000

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
4	100.0		
3	94.6		
2	94.6		
1.5	94.6		
1	92.8		
.75	91.9		
.5	90.9		
.375	90.5		
#4	90.0		
#10	88.6		
#16	87.9		
#40	86.7		
#50	86.2		
#100	83.6		
#200	71.5		

2.7

Fine

1.9

Coarse

1.4

Medium

1.9

Fine

15.2

_	Material Description Light Brown fat clay with sand			
PL= 22	Atterberg Limits LL= 55	PI= 33		
D ₉₀ = 4.9438 D ₅₀ = D ₁₀ =	<u>Coefficients</u> D ₈₅ = 0.1784 D ₃₀ = C _u =	D ₆₀ = D ₁₅ = C _c =		
USCS= CH	Classification AASHT	O= A-7-6(25)		
Remarks Natural Moisture Content: 24.0%				

(no specification provided)

5.4

Location: TP19-07 Sample Number: 19-106-04 **Depth: 2-4'**

NewFields

Client: Lithium Nevada **Project:** Thacker Pass

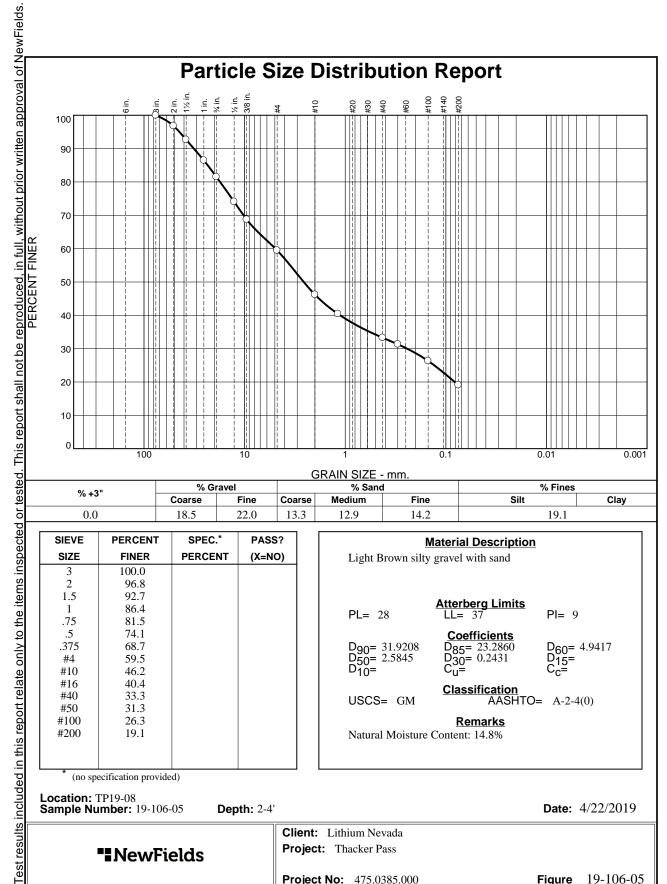

Project No: 475.0385.000

Figure 19-106-04

Date: 4/22/2019

Clay

71.5

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
3	100.0		
2	96.8		
1.5	92.7		
1	86.4		
.75	81.5		
.5	74.1		
.375	68.7		
#4	59.5		
#10	46.2		
#16	40.4		
#40	33.3		
#50	31.3		
#100	26.3		
#200	19.1		

Material Description Light Brown silty gravel with sand			
PL= 28	Atterberg Limits LL= 37	PI= 9	
D ₉₀ = 31.9208 D ₅₀ = 2.5845 D ₁₀ =	Coefficients D ₈₅ = 23.2860 D ₃₀ = 0.2431 C _u =	D ₆₀ = 4.9417 D ₁₅ = C _c =	
USCS= GM	Classification AASHT	O= A-2-4(0)	
Remarks Natural Moisture Content: 14.8%			

19.1

(no specification provided)

0.0

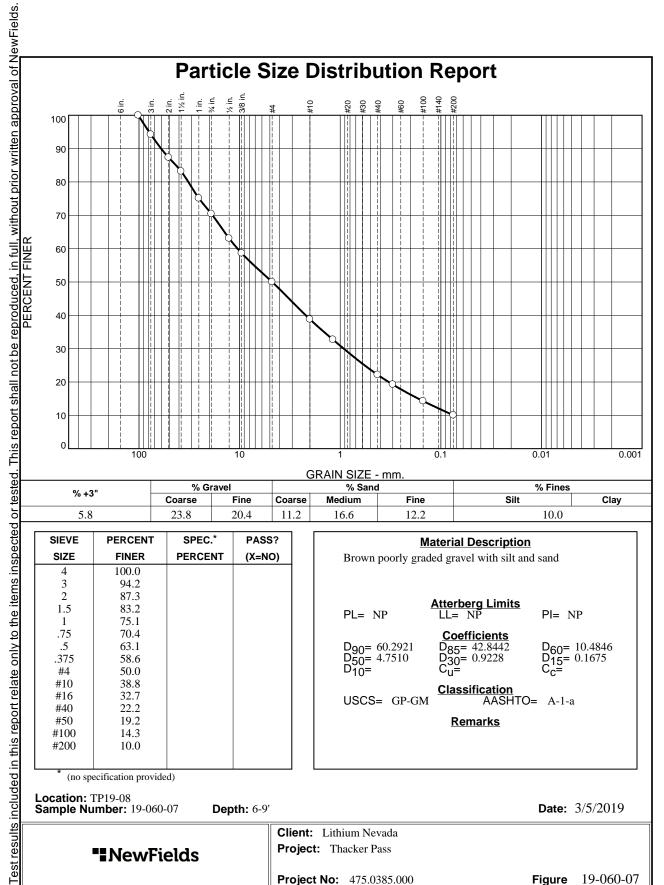
Location: TP19-08 Sample Number: 19-106-05

Depth: 2-4'

22.0

13.3

12.9


14.2

Date: 4/22/2019

NewFields

Client: Lithium Nevada **Project:** Thacker Pass

Figure 19-106-05 **Project No:** 475.0385.000

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
4	100.0		
3	94.2		
2	87.3		
1.5	83.2		
1	75.1		
.75	70.4		
.5	63.1		
.375	58.6		
#4	50.0		
#10	38.8		
#16	32.7		
#40	22.2		
#50	19.2		
#100	14.3		
#200	10.0		
*			

23.8

Fine

20.4

Coarse

11.2

Medium

16.6

Fine

12.2

Material Description Brown poorly graded gravel with silt and sand				
PL= NP	Atterberg Limits	PI= NP		
D ₉₀ = 60.2921 D ₅₀ = 4.7510 D ₁₀ =	Coefficients D ₈₅ = 42.8442 D ₃₀ = 0.9228 C _u =	D ₆₀ = 10.4846 D ₁₅ = 0.1675 C _c =		
USCS= GP-GM	USCS= GP-GM			
	Remarks			

Clay

10.0

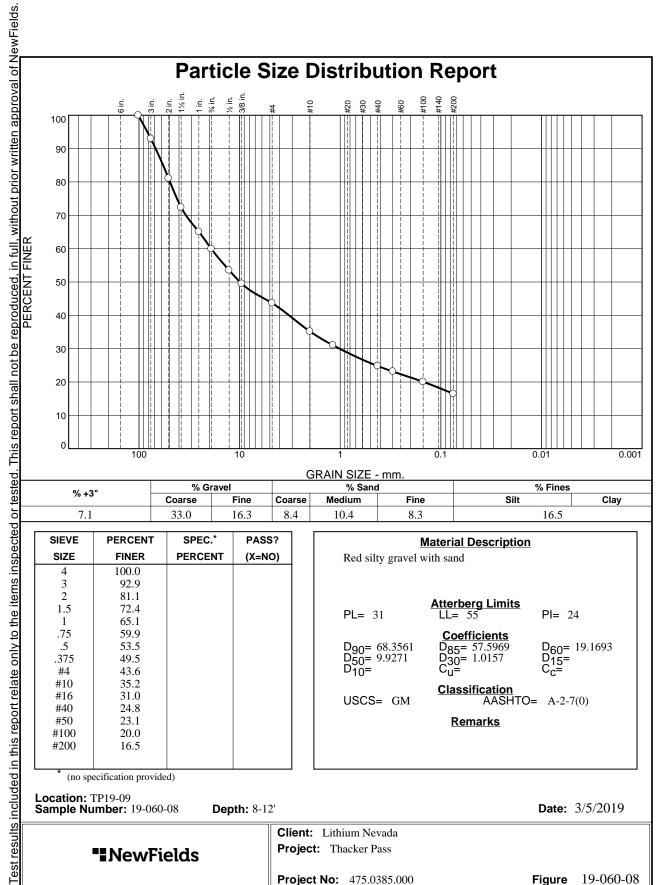
Date: 3/5/2019

Figure 19-060-07

* (no specification provided)

5.8

Location: TP19-08 Sample Number: 19-060-07 **Depth:** 6-9'


> Client: Lithium Nevada **Project:** Thacker Pass

Project No: 475.0385.000

Checked By: JH

NewFields

Tested By: KS/JB

16.3

10.4

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
4	100.0		
3	92.9		
2	81.1		
1.5	72.4		
1	65.1		
.75	59.9		
.5	53.5		
.375	49.5		
#4	43.6		
#10	35.2		
#16	31.0		
#40	24.8		
#50	23.1		
#100	20.0		
#200	16.5		
*			

33.0

_	Material Description Red silty gravel with sand			
PL= 31	Atterberg Limits LL= 55	PI= 24		
D ₉₀ = 68.3561 D ₅₀ = 9.9271 D ₁₀ =	Coefficients D ₈₅ = 57.5969 D ₃₀ = 1.0157 C _u =	D ₆₀ = 19.1693 D ₁₅ = C _c =		
USCS= GM	Classification AASHT	O= A-2-7(0)		
	<u>Remarks</u>			

16.5

Date: 3/5/2019

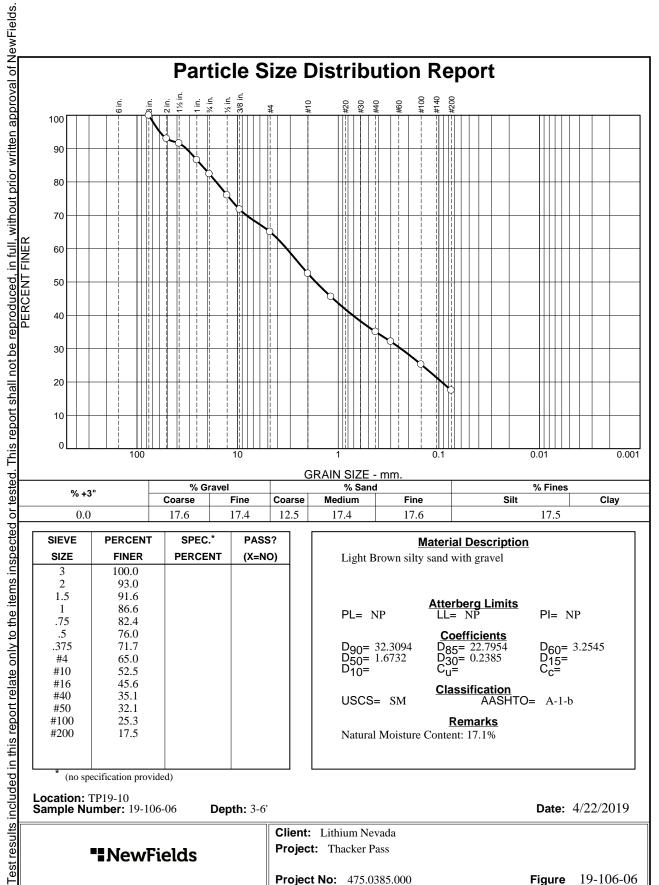
Figure 19-060-08

8.3

* (no specification provided)

7.1

Location: TP19-09 Sample Number: 19-060-08 **Depth:** 8-12'


NewFields

Client: Lithium Nevada **Project:** Thacker Pass

Project No: 475.0385.000

Checked By: JH

Tested By: JH/JB

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
3	100.0		
2	93.0		
1.5	91.6		
1	86.6		
.75	82.4		
.5	76.0		
.375	71.7		
#4	65.0		
#10	52.5		
#16	45.6		
#40	35.1		
#50	32.1		
#100	25.3		
#200	17.5		

17.6

Fine

17.4

Coarse

12.5

Medium

17.4

Fine

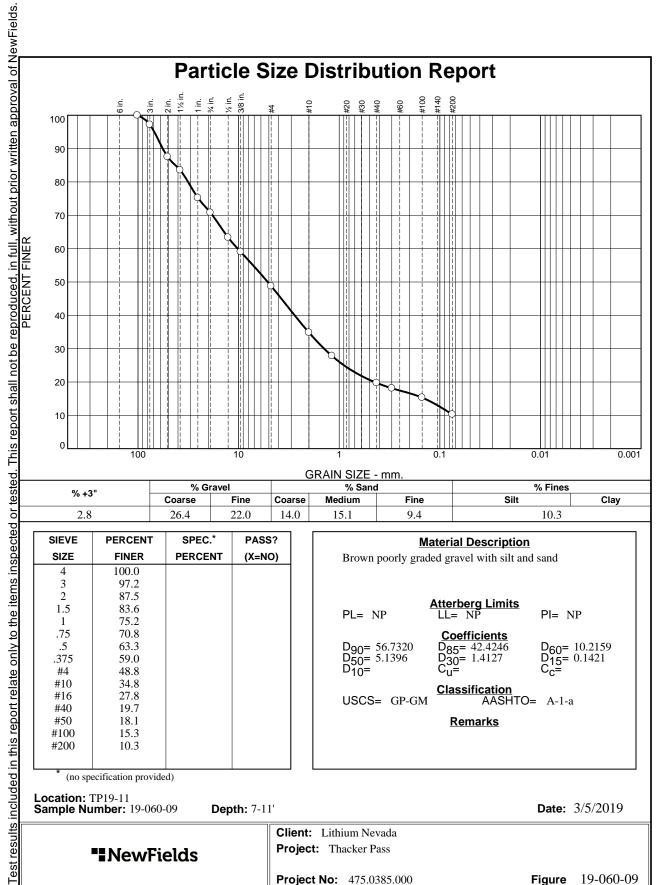
17.6

<u>Material Description</u> Light Brown silty sand with gravel			
PL= NP	Atterberg Limits	PI= NP	
D ₉₀ = 32.3094 D ₅₀ = 1.6732 D ₁₀ =	Coefficients D ₈₅ = 22.7954 D ₃₀ = 0.2385 C _u =	D ₆₀ = 3.2545 D ₁₅ = C _c =	
USCS= SM	Classification AASHT	O= A-1-b	
Natural Moisture	Remarks Natural Moisture Content: 17.1%		

Clay

17.5

(no specification provided)


0.0

Location: TP19-10 Sample Number: 19-106-06 **Date:** 4/22/2019 **Depth: 3-6'**

NewFields

Client: Lithium Nevada **Project:** Thacker Pass

Figure 19-106-06 **Project No:** 475.0385.000

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
4	100.0		
3	97.2		
2	87.5		
1.5	83.6		
1	75.2		
.75	70.8		
.5	63.3		
.375	59.0		
#4	48.8		
#10	34.8		
#16	27.8		
#40	19.7		
#50	18.1		
#100	15.3		
#200	10.3		

26.4

Fine

22.0

Coarse

14.0

Medium

15.1

Fine

9.4

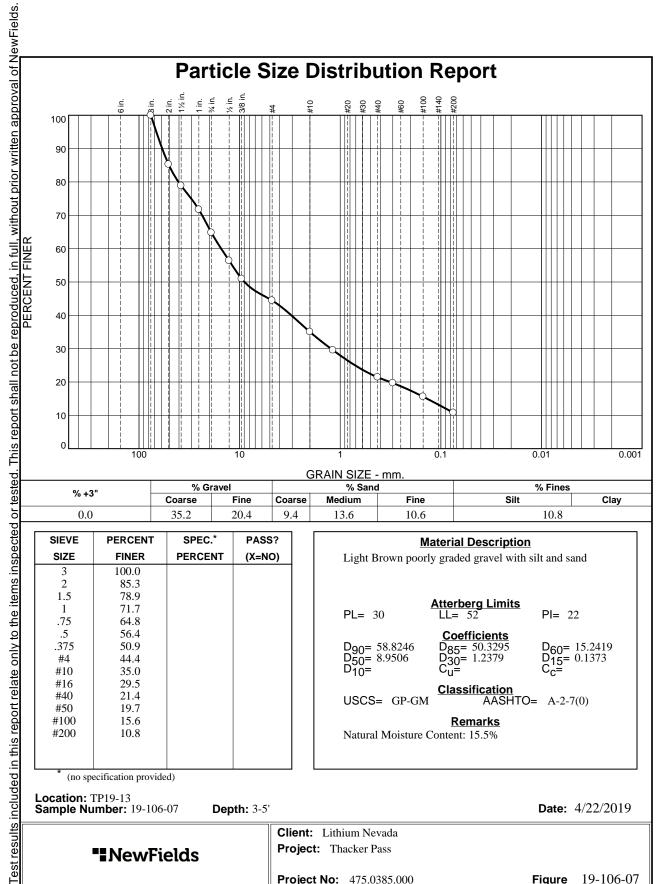
Material Description Brown poorly graded gravel with silt and sand			
PL= NP	Atterberg Limits LL= NP	PI= NP	
D ₉₀ = 56.7320 D ₅₀ = 5.1396 D ₁₀ =	Coefficients D ₈₅ = 42.4246 D ₃₀ = 1.4127 C _u =	D ₆₀ = 10.2159 D ₁₅ = 0.1421 C _c =	
USCS= GP-GM	Classification AASHT	O= A-1-a	
	<u>Remarks</u>		

Clay

10.3

(no specification provided)

2.8


Location: TP19-11 Sample Number: 19-060-09 **Date:** 3/5/2019 **Depth:** 7-11'

NewFields

Client: Lithium Nevada **Project:** Thacker Pass

Figure 19-060-09 **Project No:** 475.0385.000

Tested By: JH/JB Checked By: JH

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
	1 111=11	PERCENT	(V=NO)
3	100.0		
2	85.3		
1.5	78.9		
1	71.7		
.75	64.8		
.5	56.4		
.375	50.9		
#4	44.4		
#10	35.0		
#16	29.5		
#40	21.4		
#50	19.7		
#100	15.6		
#200	10.8		
l			

35.2

Fine

20.4

Coarse

9.4

Medium

13.6

Fine

10.6

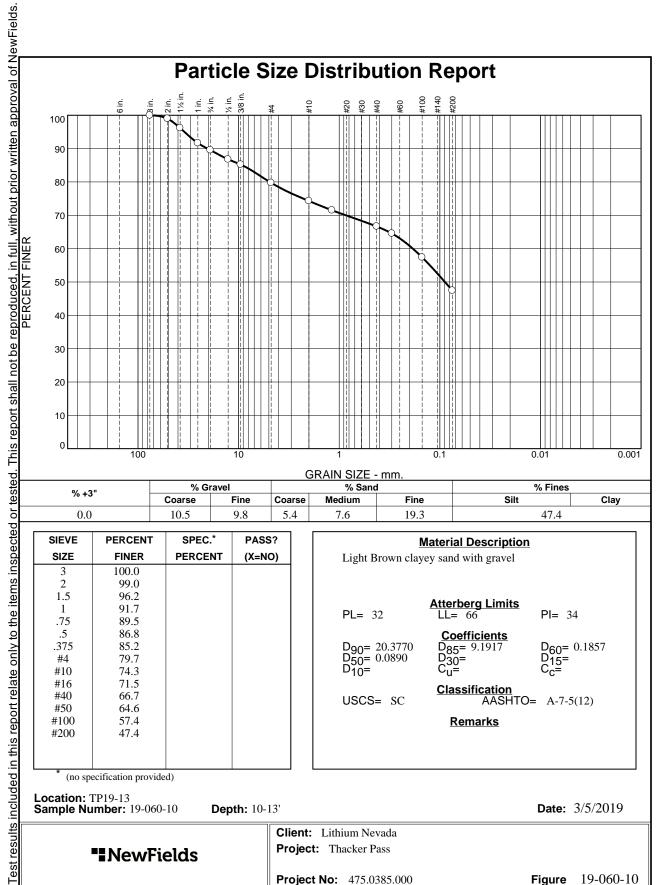
<u>M</u>	Material Description		
Light Brown poor	Light Brown poorly graded gravel with silt and sand		
PL= 30	Atterberg Limits LL= 52	PI= 22	
	Coefficients		
D ₉₀ = 58.8246	D ₈₅ = 50.3295 D ₃₀ = 1.2379	D ₆₀ = 15.2419	
D ₉₀ = 58.8246 D ₅₀ = 8.9506	$D_{30}^{30} = 1.2379$	D ₆₀ = 15.2419 D ₁₅ = 0.1373 C ₀ =	
D ₁₀ -	o _u −	O _C -	
HOOO OD OM	Classification	O 4 2 7(0)	
USCS= GP-GM	AASHI	O = A-2-7(0)	
	Remarks		
Natural Moisture	Content: 15.5%		

Clay

Date: 4/22/2019

10.8

(no specification provided)


0.0

Location: TP19-13 Sample Number: 19-106-07 **Depth: 3-5'**

NewFields

Client: Lithium Nevada **Project:** Thacker Pass

Figure 19-106-07 **Project No:** 475.0385.000

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
3	100.0		
2	99.0		
1.5	96.2		
1	91.7		
.75	89.5		
.5	86.8		
.375	85.2		
#4	79.7		
#10	74.3		
#16	71.5		
#40	66.7		
#50	64.6		
#100	57.4		
#200	47.4		

9.8

5.4

7.6

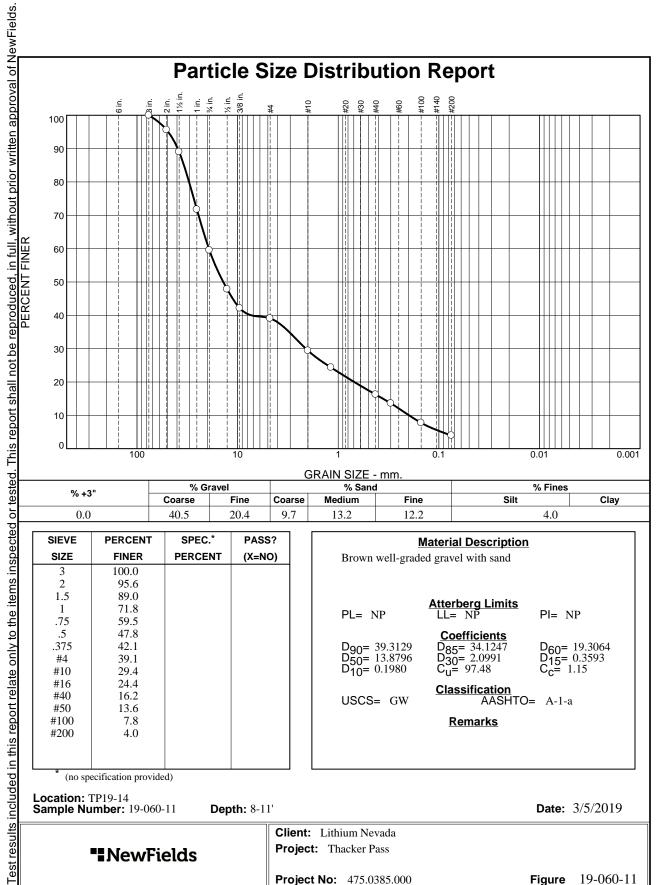
19.3

Material Description Light Brown clayey sand with gravel			
PL= 32	Atterberg Limits	PI= 34	
D ₉₀ = 20.3770 D ₅₀ = 0.0890 D ₁₀ =	Coefficients D ₈₅ = 9.1917 D ₃₀ = C _u =	D ₆₀ = 0.1857 D ₁₅ = C _c =	
USCS= SC	Classification AASHT	O= A-7-5(12)	
	<u>Remarks</u>		

47.4

(no specification provided)

0.0


Location: TP19-13 Sample Number: 19-060-10 **Date:** 3/5/2019 **Depth:** 10-13'

NewFields

Client: Lithium Nevada **Project:** Thacker Pass

Figure 19-060-10 **Project No:** 475.0385.000

Tested By: JH/JB Checked By: JH

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
3	100.0		
2	95.6		
1.5	89.0		
1	71.8		
.75	59.5		
.5	47.8		
.375	42.1		
#4	39.1		
#10	29.4		
#16	24.4		
#40	16.2		
#50	13.6		
#100	7.8		
#200	4.0		

20.4

9.7

13.2

12.2

Material Description Brown well-graded gravel with sand			
PL= NP	Atterberg Limits LL= NP	PI= NP	
D ₉₀ = 39.3129 D ₅₀ = 13.8796 D ₁₀ = 0.1980	Coefficients D ₈₅ = 34.1247 D ₃₀ = 2.0991 C _u = 97.48	D ₆₀ = 19.3064 D ₁₅ = 0.3593 C _c = 1.15	
USCS= GW	Classification AASHT	O= A-1-a	
	<u>Remarks</u>		

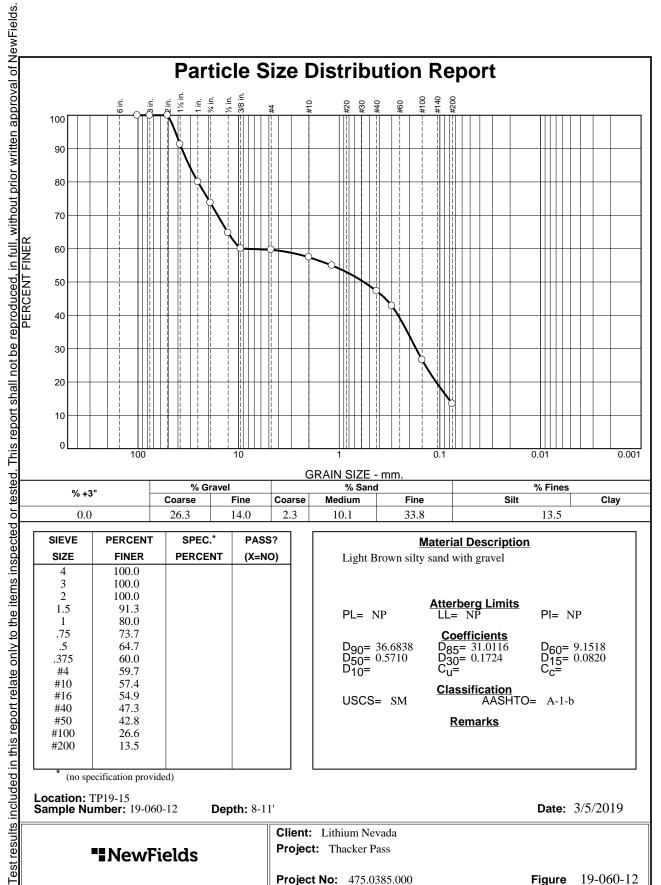
4.0

Date: 3/5/2019

Figure 19-060-11

(no specification provided)

0.0


Location: TP19-14 Sample Number: 19-060-11 Depth: 8-11'

NewFields

Client: Lithium Nevada **Project:** Thacker Pass

Project No: 475.0385.000

Tested By: JH/JB Checked By: JH

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
4	100.0		
3	100.0		
2	100.0		
1.5	91.3		
1	80.0		
.75	73.7		
.5	64.7		
.375	60.0		
#4	59.7		
#10	57.4		
#16	54.9		
#40	47.3		
#50	42.8		
#100	26.6		
#200	13.5		

26.3

Fine

14.0

Coarse

2.3

Medium

10.1

Fine

33.8

_	Material Description Light Brown silty sand with gravel			
PL= NP	Atterberg Limits LL= NP	PI= NP		
D ₉₀ = 36.6838 D ₅₀ = 0.5710 D ₁₀ =	Coefficients D ₈₅ = 31.0116 D ₃₀ = 0.1724 C _u =	D ₆₀ = 9.1518 D ₁₅ = 0.0820 C _c =		
USCS= SM	Classification AASHT	O= A-1-b		
	<u>Remarks</u>			

Clay

13.5

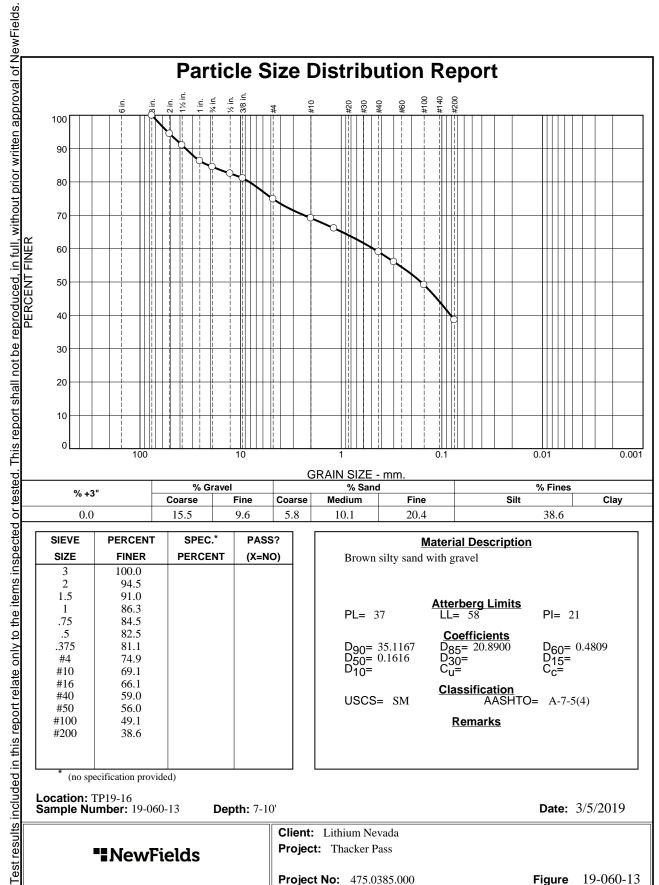
Date: 3/5/2019

Figure 19-060-12

(no specification provided)

0.0

Location: TP19-15 Sample Number: 19-060-12 Depth: 8-11'


NewFields

Client: Lithium Nevada **Project:** Thacker Pass

Project No: 475.0385.000

Checked By: JH

Tested By: JH/JB

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
3	100.0		
2	94.5		
1.5	91.0		
1	86.3		
.75	84.5		
.5	82.5		
.375	81.1		
#4	74.9		
#10	69.1		
#16	66.1		
#40	59.0		
#50	56.0		
#100	49.1		
#200	38.6		

Material Description Brown silty sand with gravel			
PL= 37	Atterberg Limits LL= 58	PI= 21	
D ₉₀ = 35.1167 D ₅₀ = 0.1616 D ₁₀ =	Coefficients D ₈₅ = 20.8900 D ₃₀ = C _u =	D ₆₀ = 0.4809 D ₁₅ = C _c =	
USCS= SM	Classification AASHT	O= A-7-5(4)	
	<u>Remarks</u>		

38.6

Date: 3/5/2019

Figure 19-060-13

(no specification provided)

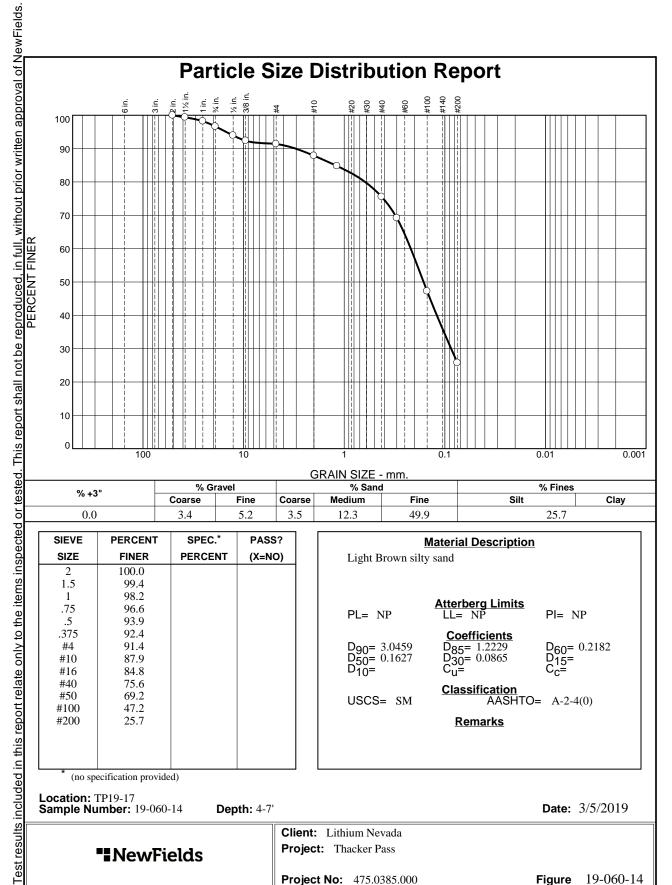
0.0

Location: TP19-16 Sample Number: 19-060-13 **Depth:** 7-10'

NewFields

Client: Lithium Nevada **Project:** Thacker Pass

Project No: 475.0385.000


Tested By: JH/JB Checked By: JH

9.6

5.8

10.1

20.4

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
2	100.0		
1.5	99.4		
1	98.2		
.75	96.6		
.5	93.9		
.375	92.4		
#4	91.4		
#10	87.9		
#16	84.8		
#40	75.6		
#50	69.2		
#100	47.2		
#200	25.7		

	Material Description Light Brown silty sand				
PL= NP	Atterberg Limits LL= NP	PI= NP			
D ₉₀ = 3.0459 D ₅₀ = 0.1627 D ₁₀ =	Coefficients D ₈₅ = 1.2229 D ₃₀ = 0.0865 C _u =	D ₆₀ = 0.2182 D ₁₅ = C _c =			
USCS= SM	Classification AASHT	O= A-2-4(0)			
	<u>Remarks</u>				

25.7

Date: 3/5/2019

(no specification provided)

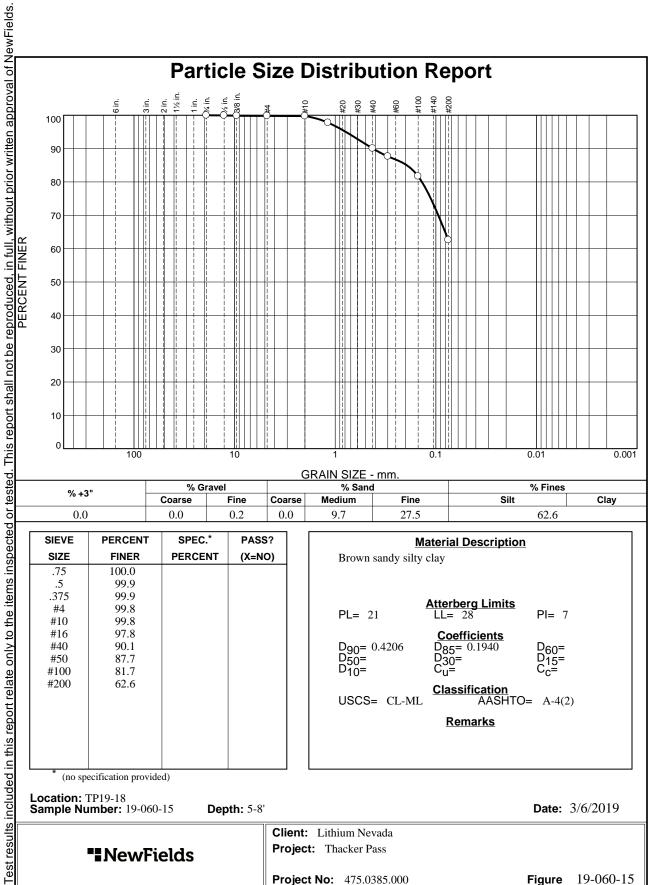
0.0

Location: TP19-17 Sample Number: 19-060-14 **Depth: 4-7'**

> Client: Lithium Nevada **Project:** Thacker Pass NewFields

5.2

3.5


12.3

49.9

Figure 19-060-14 **Project No:** 475.0385.000

Tested By: JH/JB Checked By: JH

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
.75	100.0		
.5	99.9		
.375	99.9		
#4	99.8		
#10	99.8		
#16	97.8		
#40	90.1		
#50	87.7		
#100	81.7		
#200	62.6		
* (nc.an	ecification provide	.1\	

0.0

Fine

0.2

Coarse

0.0

Medium

9.7

Fine

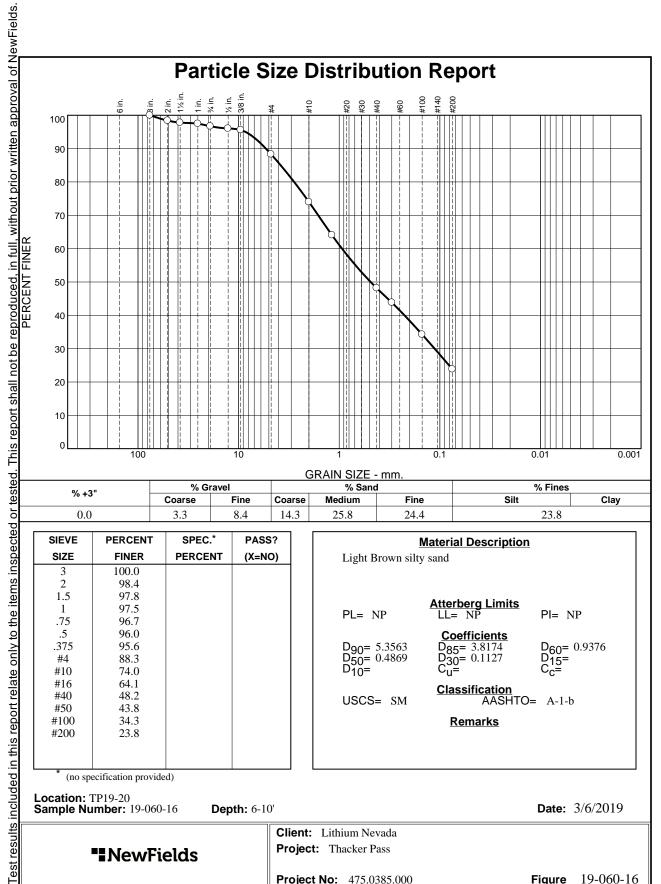
27.5

Brown sandy silty	Material Description y clay	on
PL= 21	Atterberg Limits	PI= 7
D ₉₀ = 0.4206 D ₅₀ = D ₁₀ =	Coefficients D ₈₅ = 0.1940 D ₃₀ = C _u =	D ₆₀ = D ₁₅ = C _c =
USCS= CL-MI		O= A-4(2)
	<u>Remarks</u>	

Clay

62.6

(no specification provided)


0.0

Location: TP19-18 Sample Number: 19-060-15 **Date:** 3/6/2019 **Depth: 5-8'**

NewFields

Client: Lithium Nevada **Project:** Thacker Pass

Figure 19-060-15 **Project No:** 475.0385.000

8.4

25.8

24.4

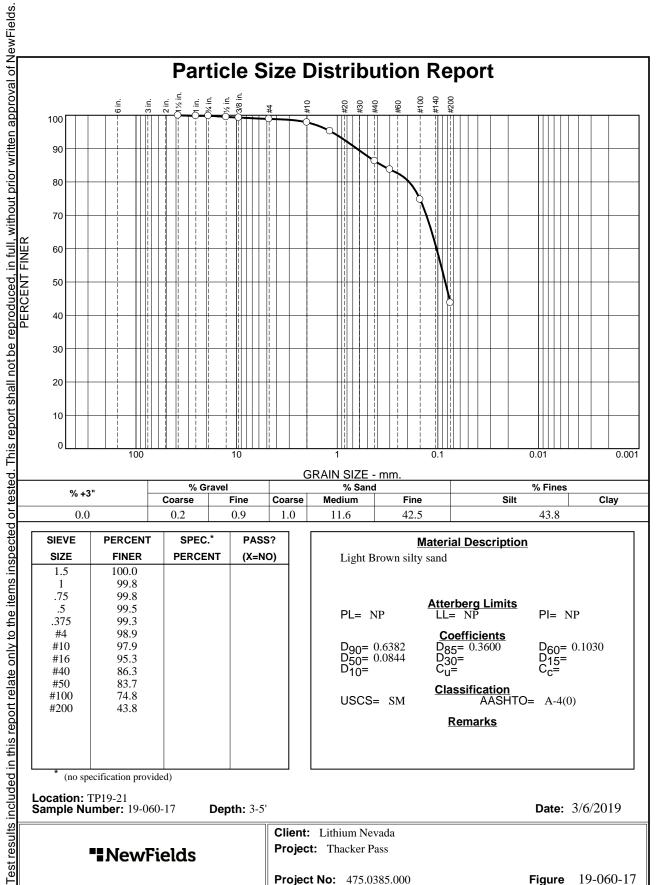
SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
3	100.0		
2	98.4		
1.5	97.8		
1	97.5		
.75	96.7		
.5	96.0		
.375	95.6		
#4	88.3		
#10	74.0		
#16	64.1		
#40	48.2		
#50	43.8		
#100	34.3		
#200	23.8		

3.3

Material Description Light Brown silty sand			
PL= NP	Atterberg Limits	PI= NP	
D ₉₀ = 5.3563 D ₅₀ = 0.4869 D ₁₀ =	Coefficients D ₈₅ = 3.8174 D ₃₀ = 0.1127 C _u =	D ₆₀ = 0.9376 D ₁₅ = C _c =	
USCS= SM	Classification AASHT	O= A-1-b	
	<u>Remarks</u>		

23.8

(no specification provided)


0.0

Location: TP19-20 Sample Number: 19-060-16 **Date:** 3/6/2019Depth: 6-10'

NewFields

Client: Lithium Nevada **Project:** Thacker Pass

Figure 19-060-16 **Project No:** 475.0385.000

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
1.5	100.0		
1	99.8		
.75	99.8		
.5	99.5		
.375	99.3		
#4	98.9		
#10	97.9		
#16	95.3		
#40	86.3		
#50	83.7		
#100	74.8		
#200	43.8		
* (no sp	ecification provide	ed)	

0.9

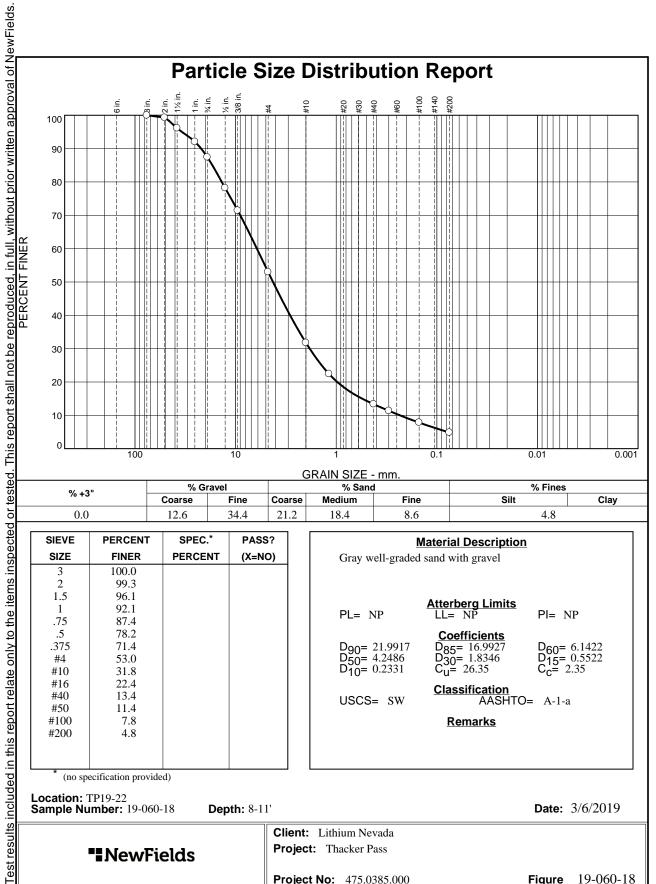
1.0

11.6

	Material Description Light Brown silty sand			
PL= NP	Atterberg Limits LL= NP	PI= NP		
D ₉₀ = 0.6382 D ₅₀ = 0.0844 D ₁₀ =	Coefficients D ₈₅ = 0.3600 D ₃₀ = C _u =	D ₆₀ = 0.1030 D ₁₅ = C _c =		
USCS= SM	Classification AASHT	O= A-4(0)		
	<u>Remarks</u>			

43.8

42.5


0.0

Location: TP19-21 Sample Number: 19-060-17 **Date:** 3/6/2019**Depth:** 3-5'

NewFields

Client: Lithium Nevada **Project:** Thacker Pass

Figure 19-060-17 **Project No:** 475.0385.000

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
3	100.0		
2	99.3		
1.5	96.1		
1	92.1		
.75	87.4		
.5	78.2		
.375	71.4		
#4	53.0		
#10	31.8		
#16	22.4		
#40	13.4		
#50	11.4		
#100	7.8		
#200	4.8		

12.6

Fine

34.4

Coarse

21.2

Medium

18.4

Fine

8.6

N Gray well-graded	Material Description sand with gravel	<u>n</u>		
PL= NP	Atterberg Limits LL= NP	PI= NP		
D ₉₀ = 21.9917 D ₅₀ = 4.2486 D ₁₀ = 0.2331	Coefficients D ₈₅ = 16.9927 D ₃₀ = 1.8346 C _u = 26.35	D ₆₀ = 6.1422 D ₁₅ = 0.5522 C _c = 2.35		
USCS= SW	Classification AASHT	O= A-1-a		
	<u>Remarks</u>			

Silt

4.8

Date: 3/6/2019

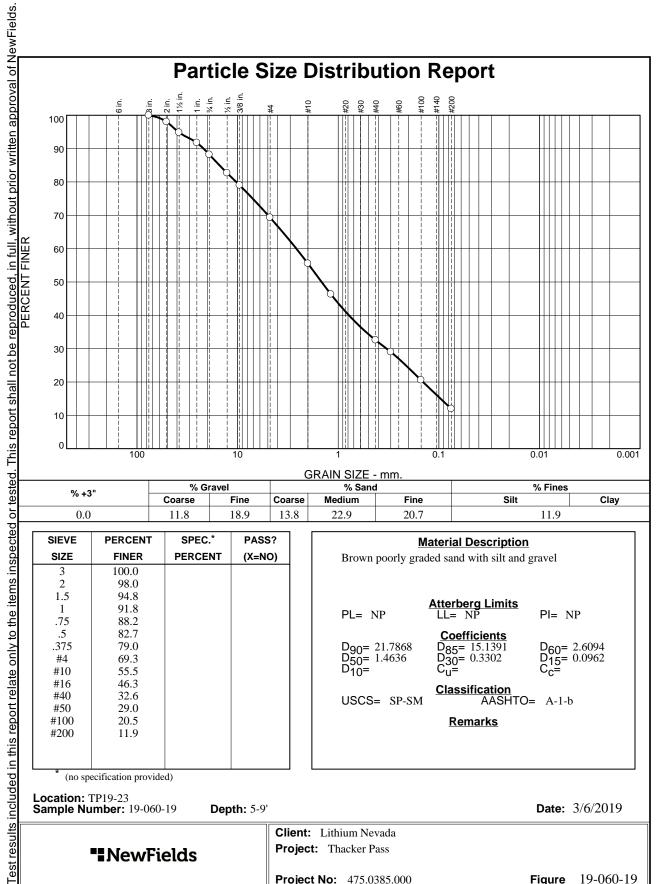
Figure 19-060-18

Clay

(no specification provided)

Tested By: KS

0.0


Location: TP19-22 Sample Number: 19-060-18 Depth: 8-11'

NewFields

Client: Lithium Nevada **Project:** Thacker Pass

Project No: 475.0385.000

Checked By: JH

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
3	100.0		
2	98.0		
1.5	94.8		
1	91.8		
.75	88.2		
.5	82.7		
.375	79.0		
#4	69.3		
#10	55.5		
#16	46.3		
#40	32.6		
#50	29.0		
#100	20.5		
#200	11.9		

11.8

Fine

18.9

Coarse

13.8

Medium

22.9

Fine

20.7

	Material Description Brown poorly graded sand with silt and gravel			
PL= NP	Atterberg Limits LL= NP	PI= NP		
D ₉₀ = 21.7868 D ₅₀ = 1.4636 D ₁₀ =	Coefficients D ₈₅ = 15.1391 D ₃₀ = 0.3302 C _u =	D ₆₀ = 2.6094 D ₁₅ = 0.0962 C _c =		
USCS= SP-SM	Classification AASHTO	O= A-1-b		
	<u>Remarks</u>			

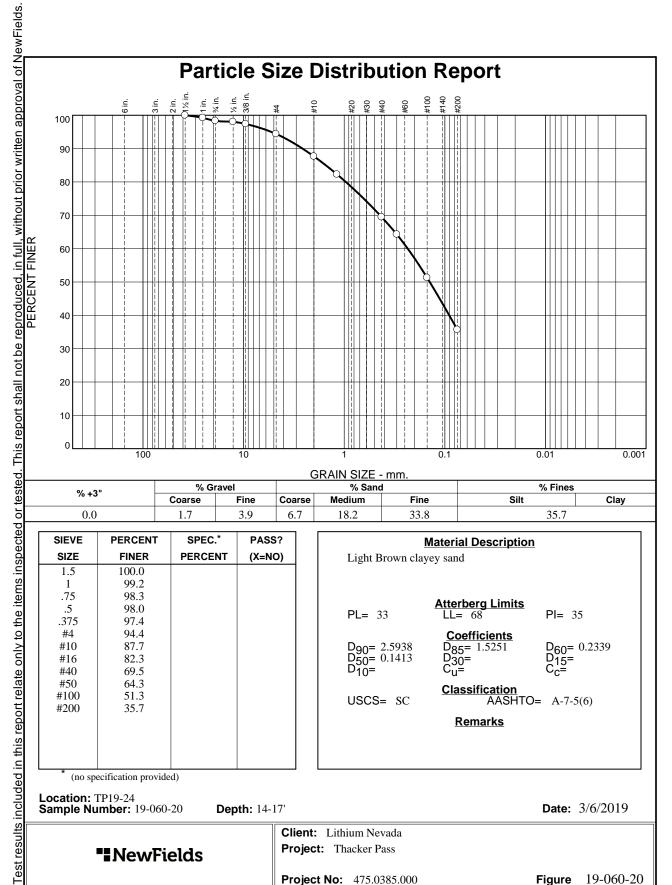
Clay

11.9

Date: 3/6/2019

Figure 19-060-19

(no specification provided)


0.0

Location: TP19-23 Sample Number: 19-060-19 **Depth:** 5-9'

NewFields

Client: Lithium Nevada **Project:** Thacker Pass

Project No: 475.0385.000

18.2

33.8

3.9

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
1.5	100.0		
1	99.2		
.75	98.3		
.5	98.0		
.375	97.4		
#4	94.4		
#10	87.7		
#16	82.3		
#40	69.5		
#50	64.3		
#100	51.3		
#200	35.7		
*	l	<u> </u>	

1.7

Material Description Light Brown clayey sand		
PL= 33	Atterberg Limits	PI= 35
D ₉₀ = 2.5938 D ₅₀ = 0.1413 D ₁₀ =	Coefficients D ₈₅ = 1.5251 D ₃₀ = C _u =	D ₆₀ = 0.2339 D ₁₅ = C _c =
USCS= SC	Classification AASHT	O= A-7-5(6)
	<u>Remarks</u>	

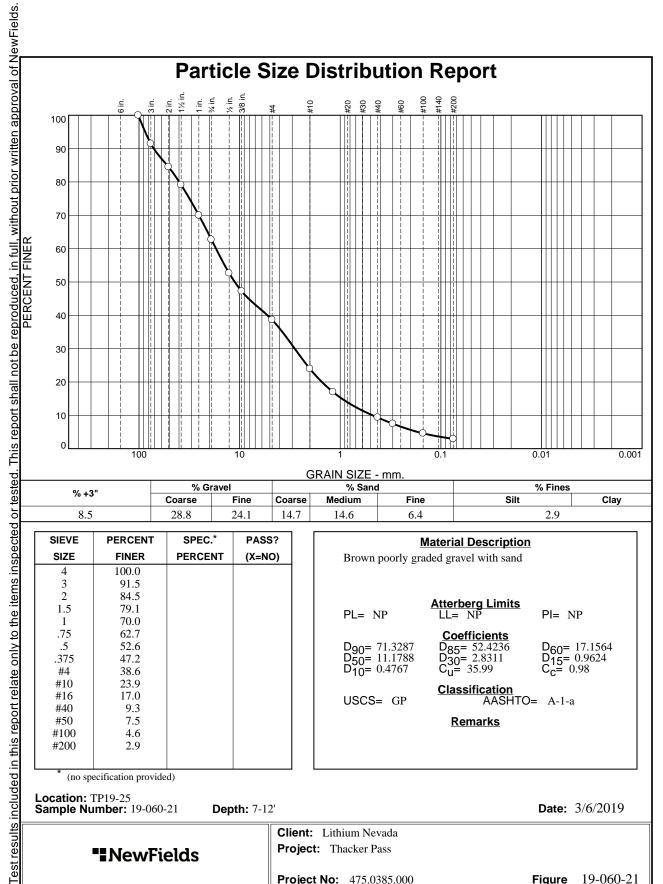
35.7

Date: 3/6/2019

Figure 19-060-20

* (no specification provided)

0.0


Location: TP19-24 Sample Number: 19-060-20

NewFields

Depth: 14-17'

Client: Lithium Nevada **Project:** Thacker Pass

Project No: 475.0385.000

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
4	100.0		
3	91.5		
2	84.5		
1.5	79.1		
1	70.0		
.75	62.7		
.5	52.6		
.375	47.2		
#4	38.6		
#10	23.9		
#16	17.0		
#40	9.3		
#50	7.5		
#100	4.6		
#200	2.9		
*			

24.1

14.7

14.6

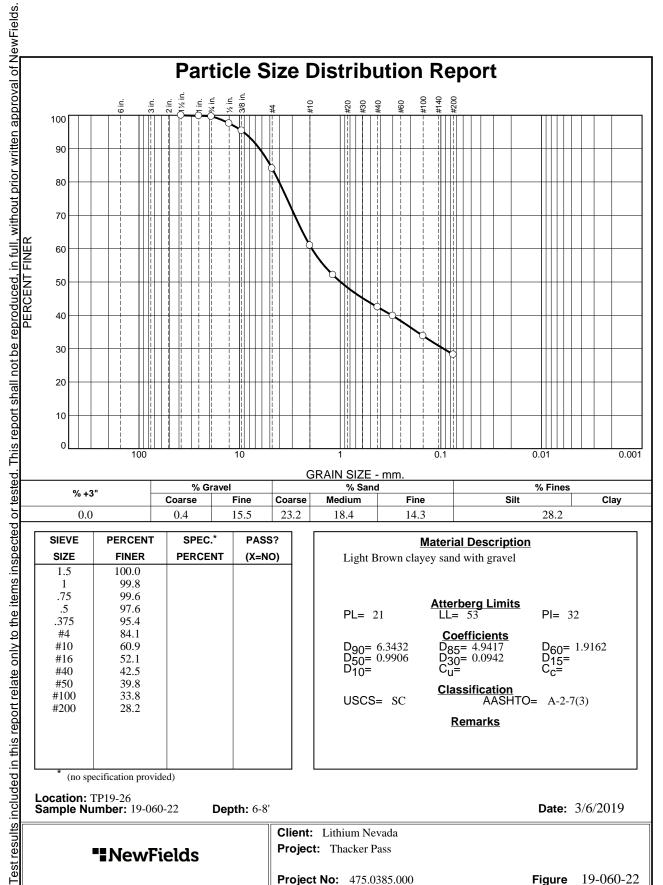
6.4

	Material Description ded gravel with sand	
PL= NP	Atterberg Limits LL= NP	PI= NP
D ₉₀ = 71.3287 D ₅₀ = 11.1788 D ₁₀ = 0.4767	Coefficients D ₈₅ = 52.4236 D ₃₀ = 2.8311 C _u = 35.99	D ₆₀ = 17.1564 D ₁₅ = 0.9624 C _c = 0.98
USCS= GP	Classification AASHT	O= A-1-a
	<u>Remarks</u>	

2.9

Figure 19-060-21

* (no specification provided)


8.5

Location: TP19-25 Sample Number: 19-060-21 **Date:** 3/6/2019**Depth:** 7-12'

NewFields

Client: Lithium Nevada **Project:** Thacker Pass

Project No: 475.0385.000

15.5

18.4

14.3

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
1.5	100.0		
1	99.8		
.75	99.6		
.5	97.6		
.375	95.4		
#4	84.1		
#10	60.9		
#16	52.1		
#40	42.5		
#50	39.8		
#100	33.8		
#200	28.2		

0.4

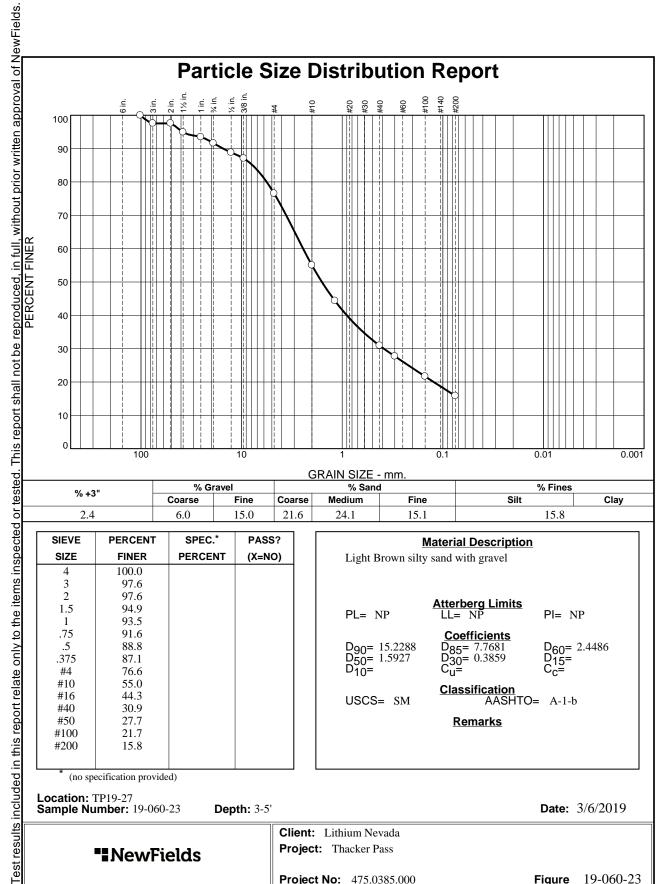
Material Description Light Brown clayey sand with gravel		
PL= 21	Atterberg Limits LL= 53	PI= 32
D ₉₀ = 6.3432 D ₅₀ = 0.9906 D ₁₀ =	Coefficients D ₈₅ = 4.9417 D ₃₀ = 0.0942 C _u =	D ₆₀ = 1.9162 D ₁₅ = C _c =
USCS= SC	Classification AASHT	O= A-2-7(3)
	<u>Remarks</u>	

(no specification provided)

0.0

Location: TP19-26 Sample Number: 19-060-22

Depth: 6-8'


Date: 3/6/2019

28.2

NewFields

Client: Lithium Nevada **Project:** Thacker Pass

Figure 19-060-22 **Project No:** 475.0385.000

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
4	100.0		
3	97.6		
2	97.6		
1.5	94.9		
1	93.5		
.75	91.6		
.5	88.8		
.375	87.1		
#4	76.6		
#10	55.0		
#16	44.3		
#40	30.9		
#50	27.7		
#100	21.7		
#200	15.8		

6.0

Fine

15.0

Coarse

21.6

Medium

24.1

Fine

15.1

_	Material Description Light Brown silty sand with gravel			
PL= NP	Atterberg Limits	PI= NP		
D ₉₀ = 15.2288 D ₅₀ = 1.5927 D ₁₀ =	Coefficients D ₈₅ = 7.7681 D ₃₀ = 0.3859 C _u =	D ₆₀ = 2.4486 D ₁₅ = C _c =		
USCS= SM	Classification AASHT	ГО= A-1-b		
	<u>Remarks</u>			

Clay

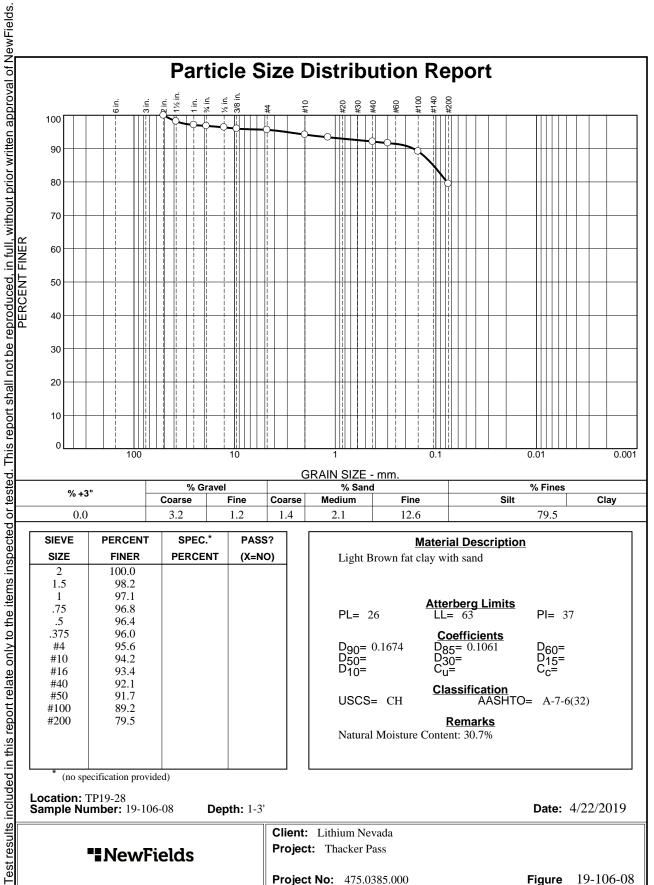
15.8

Date: 3/6/2019

Figure 19-060-23

(no specification provided)

2.4


Location: TP19-27 Sample Number: 19-060-23 **Depth: 3-5'**

NewFields

Client: Lithium Nevada **Project:** Thacker Pass

Project No: 475.0385.000

PERCENT	SPEC.*	PASS?
FINER	PERCENT	(X=NO)
100.0		
98.2		
97.1		
96.8		
96.4		
96.0		
95.6		
94.2		
93.4		
92.1		
91.7		
89.2		
79.5		
	FINER 100.0 98.2 97.1 96.8 96.4 96.0 95.6 94.2 93.4 92.1 91.7 89.2	FINER PERCENT 100.0 98.2 97.1 96.8 96.4 96.0 95.6 94.2 93.4 92.1 91.7 89.2

3.2

Fine

1.2

Coarse

1.4

Medium

2.1

Fine

12.6

Light Brown fat o	Material Description clay with sand	<u>on</u>
PL= 26	Atterberg Limits	PI= 37
D ₉₀ = 0.1674 D ₅₀ = D ₁₀ =	Coefficients D ₈₅ = 0.1061 D ₃₀ = C _u =	D ₆₀ = D ₁₅ = C _c =
USCS= CH	Classification AASHT	TO= A-7-6(32)
Remarks Natural Moisture Content: 30.7%		

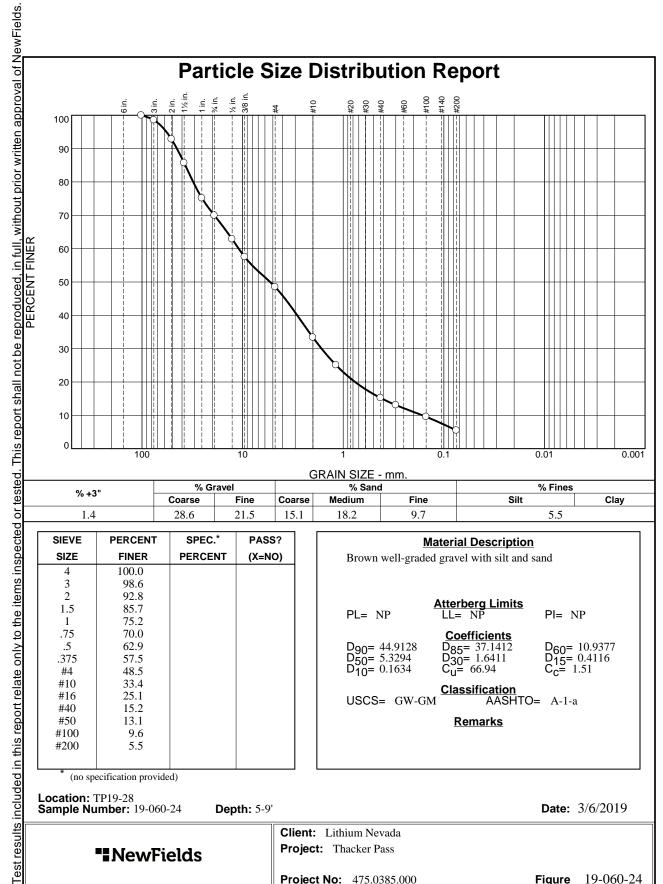
Clay

Date: 4/22/2019

Figure 19-106-08

79.5

(no specification provided)


0.0

Location: TP19-28 Sample Number: 19-106-08 **Depth:** 1-3'

> Client: Lithium Nevada **Project:** Thacker Pass

Project No: 475.0385.000

NewFields

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
4	100.0		
3	98.6		
2	92.8		
1.5	85.7		
1	75.2		
.75	70.0		
.5	62.9		
.375	57.5		
#4	48.5		
#10	33.4		
#16	25.1		
#40	15.2		
#50	13.1		
#100	9.6		
#200	5.5		
L			

28.6

Fine

21.5

Coarse

15.1

Medium

18.2

Fine

9.7

Material Description					
Brown well-grade	d gravel with silt and	sand			
DI ND	Atterberg Limits LL= NP	DI ND			
PL= NP	LL= NP	PI= NP			
	Coefficients				
$D_{90} = 44.9128$	D ₈₅ = 37.1412 D ₃₀ = 1.6411	$D_{60} = 10.9377$			
D ₉₀ = 44.9128 D ₅₀ = 5.3294 D ₁₀ = 0.1634	$C_{11} = 66.94$	D ₆₀ = 10.9377 D ₁₅ = 0.4116 C _c = 1.51			
D ₁₀ = 0.1034	O _u = 00.94	O _C - 1.31			
	Classification				
USCS= GW-GN	И AASHTO	= A-1-a			
	Remarks				
	<u></u>				

Clay

5.5

* (no specification provided)


1.4

Location: TP19-28 Sample Number: 19-060-24 **Date:** 3/6/2019**Depth:** 5-9'

NewFields

Client: Lithium Nevada **Project:** Thacker Pass

Figure 19-060-24 **Project No:** 475.0385.000

16.2

16.3

16.2

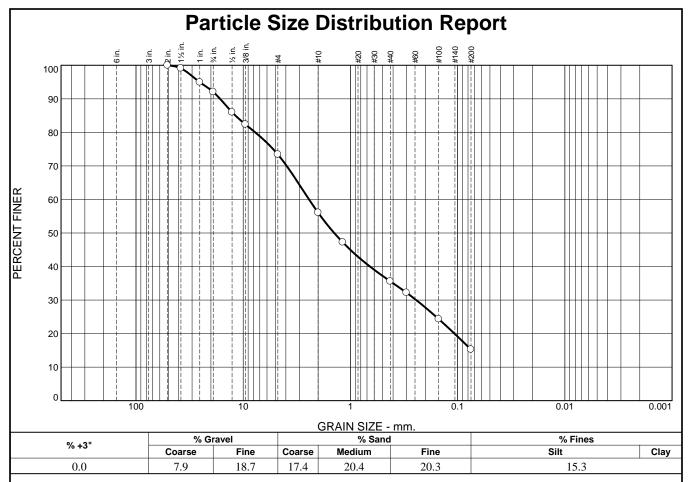
SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
4	100.0		
3	95.2		
2	90.6		
1.5	84.3		
1	77.5		
.75	73.7		
.5	67.6		
.375	63.9		
#4	57.5		
#10	47.1		
#16	41.0		
#40	30.8		
#50	27.7		
#100	21.5		
#200	14.6		

21.5

Material Description Light Brown silty sand with gravel			
PL= NP	Atterberg Limits	PI= NP	
D ₉₀ = 49.1622 D ₅₀ = 2.5052 D ₁₀ =	Coefficients D ₈₅ = 39.3227 D ₃₀ = 0.3872 C _u =	D ₆₀ = 6.2806 D ₁₅ = 0.0778 C _c =	
USCS= SM	Classification AASHT	「O= A-1-b	
	<u>Remarks</u>		

14.6

(no specification provided)


4.8

Location: TP19-29 Sample Number: 19-060-25 **Date:** 3/6/2019**Depth: 4-7'**

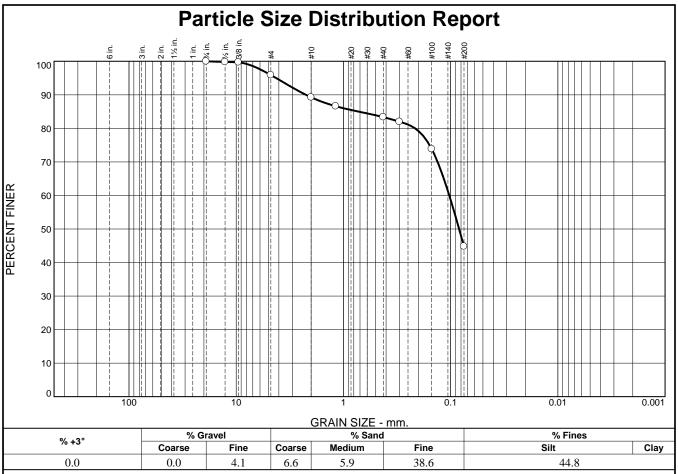
NewFields

Client: Lithium Nevada **Project:** Thacker Pass

Figure 19-060-25 **Project No:** 475.0385.000

100.0	PERCENT	(X=NO)
00.1		
99.1		
94.9		
92.1		
86.0		
82.4		
73.4		
56.0		
47.2		
35.6		
32.2		
24.3		
15.3		
	92.1 86.0 82.4 73.4 56.0 47.2 35.6 32.2 24.3	94.9 92.1 86.0 82.4 73.4 56.0 47.2 35.6 32.2 24.3

Material Description Light Brown silty sand with gravel		
PL= NP	Atterberg Limits LL= NP	PI= NP
D ₉₀ = 16.4121 D ₅₀ = 1.4179 D ₁₀ =	Coefficients D ₈₅ = 11.8087 D ₃₀ = 0.2436 C _u =	D ₆₀ = 2.4309 D ₁₅ = C _c =
USCS= SM	Classification AASHTO	= A-1-b
	<u>Remarks</u>	


* (no specification provided)

Location: TP19-30 Sample Number: 20-019-01 **Date:** 2/6/2020**Depth:** 8"-9'

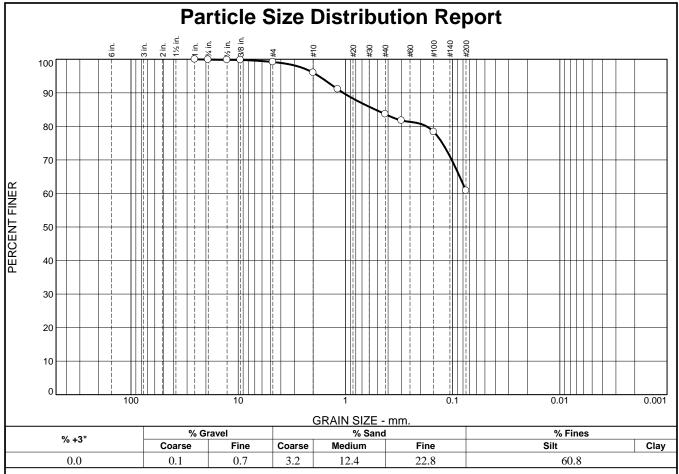
NewFields

Client: Lithium Nevada Project: Thacker Pass

20-019-01 **Project No:** 475.0385.000 Figure

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
.75"	100.0		
.5"	99.8		
.375"	99.7		
#4	95.9		
#10	89.3		
#16	86.6		
#40	83.4		
#50	82.0		
#100	73.8		
#200	44.8		
* (cification provided	\	

Brown silty sand	Material Description	
PL= NP	Atterberg Limits LL= NP	PI= NP
D ₉₀ = 2.2353 D ₅₀ = 0.0833 D ₁₀ =	Coefficients D85= 0.7216 D30= Cu=	D ₆₀ = 0.1030 D ₁₅ = C _c =
USCS= SM	Classification AASHTO=	A-4(0)
	<u>Remarks</u>	


(no specification provided)

Location: TP19-31 Sample Number: 20-019-02 **Date:** 2/6/2020**Depth:** 8"-10'

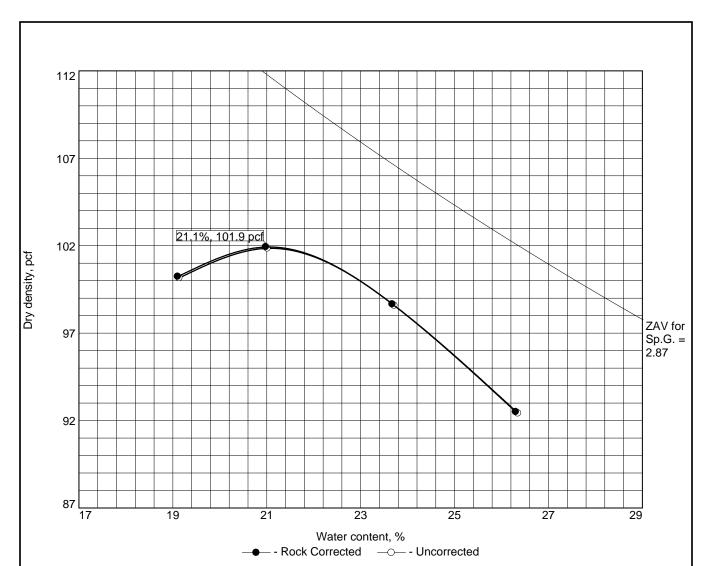
NewFields

Client: Lithium Nevada Project: Thacker Pass

20-019-02 **Project No:** 475.0385.000 Figure

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
1"	100.0		
.75"	99.9		
.5"	99.8		
.375"	99.8		
#4	99.2		
#10	96.0		
#16	91.1		
#40	83.6		
#50	81.8		
#100	78.4		
#200	60.8		
*	<u> </u>		

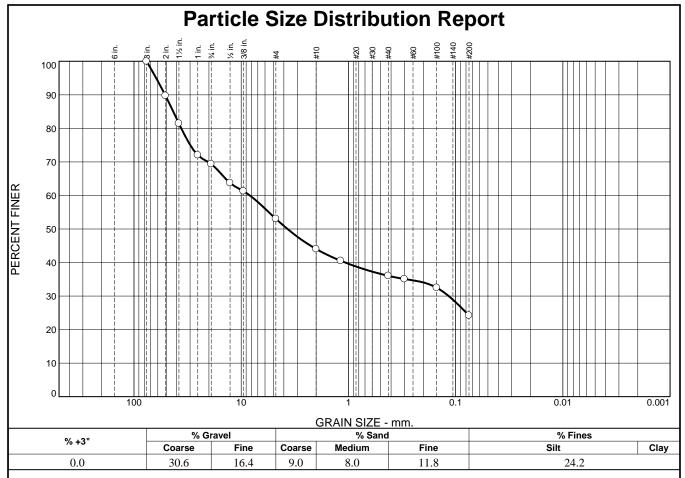
Material Description Light Brown sandy silt		
PL= NP	Atterberg Limits LL= NP	PI= NP
D ₉₀ = 1.0477 D ₅₀ = D ₁₀ =	<u>Coefficients</u> D ₈₅ = 0.5260 D ₃₀ = C _u =	D ₆₀ = D ₁₅ = C _c =
USCS= ML	Classification AASHT0	O= A-4(0)
	<u>Remarks</u>	


* (no specification provided)

Location: TP19-32 Sample Number: 20-019-03 **Date:** 2/6/2020**Depth:** 6"-5'

NewFields

Client: Lithium Nevada Project: Thacker Pass


20-019-03 **Project No:** 475.0385.000 Figure

Test specification: ASTM D 1557-12 Method B Modified ASTM D4718-15 Oversize Corr. Applied to Each Test Point

Elev/	Classif	ication	Nat.	Nat.		PI	% >	% <
Depth	USCS	AASHTO	Moist.	Sp.G.	LL	PI	3/8 in.	No.200
6"-5'	ML	A-4(0)		2.87	NP	NP	0.2	60.8

ROCK CORRECTED TEST RESULTS	UNCORRECTED	MATERIAL DESCRIPTION
Maximum dry density = 101.9 pcf	101.9 pcf	Light Brown sandy silt
Optimum moisture = 21.1 %	21.1 %	
Project No. 475.0385.000 Client: Lithium Nevada		Remarks:
Project: Thacker Pass		*Assumed Specific Gravity
	Date: 2/12/2020	
C Location: TP19-32 Sample Number: 20-019-03		
***NewFields		Figure 20.010.02
- Interviteras		Figure 20-019

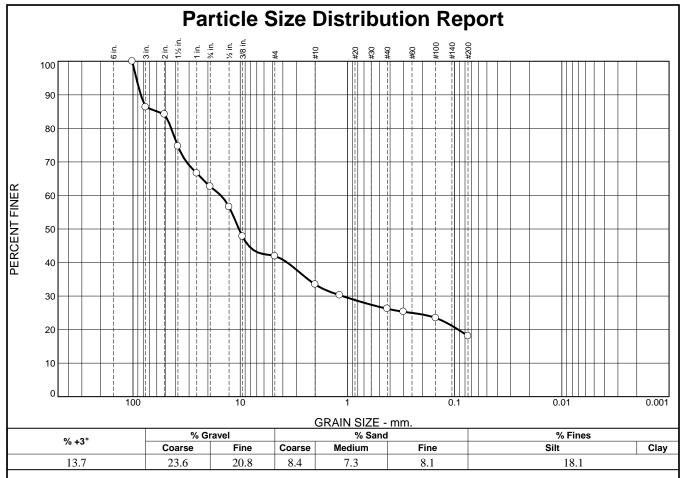
SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
3"	100.0		
2"	89.7		
1.5"	81.5		
1"	72.0		
.75"	69.4		
.5"	63.7		
.375"	61.3		
#4	53.0		
#10	44.0		
#16	40.5		
#40	36.0		
#50	35.1		
#100	32.5		
#200	24.2		

Material Description Brown clayey gravel with sand							
PL= 23	Atterberg Limits LL= 48	PI= 25					
D ₉₀ = 51.3025 D ₅₀ = 3.7008 D ₁₀ =	Coefficients D85= 43.0310 D30= 0.1161 Cu=	D ₆₀ = 8.3039 D ₁₅ = C _c =					
USCS= GC	Classification AASHTO	O= A-2-7(1)					
<u>Remarks</u>							

20-019-04

Figure

(no specification provided)


Location: TP19-33 Sample Number: 20-019-04 **Date:** 2/6/2020**Depth:** 3-15'

NewFields

Client: Lithium Nevada Project: Thacker Pass

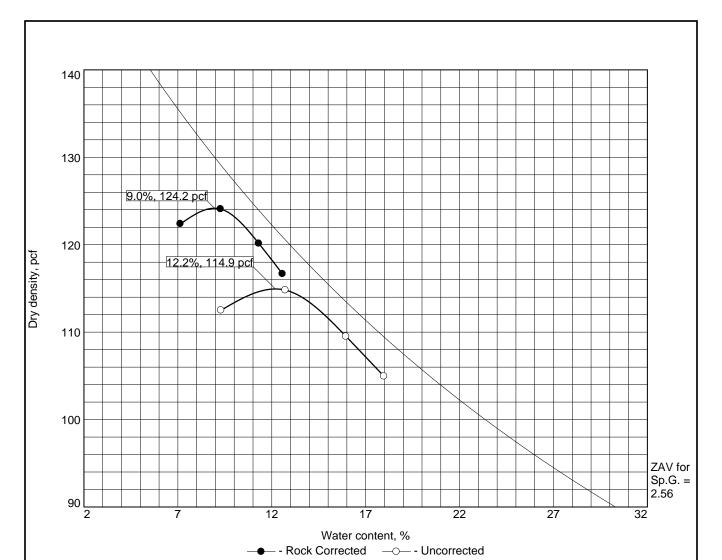
Project No: 475.0385.000

Tested By: JH/CM Checked By: JH

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
4"	100.0		
3"	86.3		
2"	84.2		
1.5"	74.7		
1"	66.6		
.75"	62.7		
.5"	56.6		
.375"	47.8		
#4	41.9		
#10	33.5		
#16	30.3		
#40	26.2		
#50	25.3		
#100	23.5		
#200	18.1		

Material Description Brown clayey gravel with sand						
PL= 19	Atterberg Limits LL= 46	PI= 27				
D ₉₀ = 84.5631 D ₅₀ = 10.2774 D ₁₀ =	Coefficients D ₈₅ = 59.1319 D ₃₀ = 1.1138 C _u =	D ₆₀ = 15.1589 D ₁₅ = C _c =				
USCS= GC	Classification AASHT	O= A-2-7(1)				
<u>Remarks</u>						

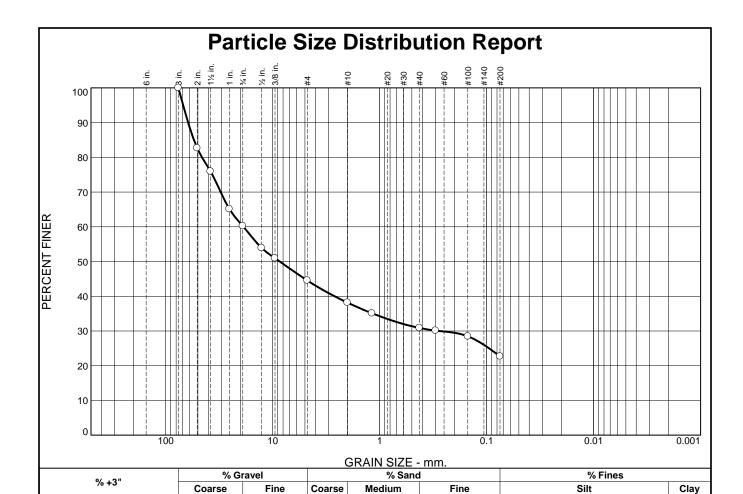
* (no specification provided)


Location: TP19-34 Sample Number: 20-019-05 **Date:** 2/6/2020Depth: 5-11'

NewFields

Client: Lithium Nevada Project: Thacker Pass

20-019-05 **Project No:** 475.0385.000 Figure


Tested By: JH/CM Checked By: JH

Test specification: ASTM D 1557-12 Method C Modified ASTM D4718-15 Oversize Corr. Applied to Each Test Point

Elev/	Classification		Nat.	C:: 0		-	% >	% <
Depth	USCS	AASHTO	Moist.	Sp.G.	LL	PI	3/4 in.	No.200
5-11'	GC	A-2-7(1)		2.56	46	27	37.3	18.1

ROCK CORRECTED TEST RESULTS	UNCORRECTED	MATERIAL DESCRIPTION		
Maximum dry density = 124.2 pcf	114.9 pcf	Brown clayey gravel with sand		
Optimum moisture = 9.0 %	12.2 %			
Project No. 475.0385.000 Client: Lithium Nevada		Remarks:		
Project: Thacker Pass		*Assumed Specific Gravity		
	Date: 2/12/2020			
C Location: TP19-34 Sample Number: 20-019-05				
■ NewFields		5		
		Figure 20-019-05		

PERCENT	SPEC.*	PASS?
FINER	PERCENT	(X=NO)
100.0		
82.7		
75.9		
65.1		
60.2		
53.9		
50.9		
44.5		
38.2		
35.1		
30.9		
30.1		
28.5		
22.7		
	FINER 100.0 82.7 75.9 65.1 60.2 53.9 50.9 44.5 38.2 35.1 30.9 30.1 28.5	FINER PERCENT 100.0 82.7 75.9 65.1 60.2 53.9 50.9 44.5 38.2 35.1 30.9 30.1 28.5

15.7

6.3

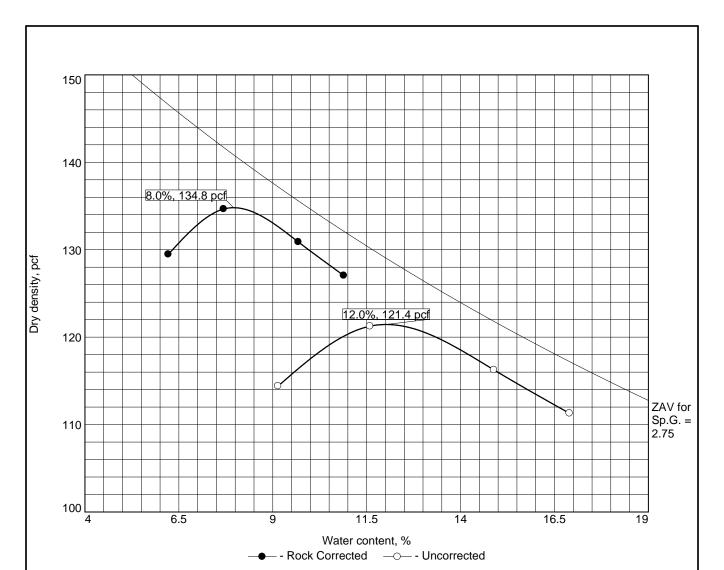
7.3

Material Description Brown clayey gravel with sand						
PL= 20 Atterberg Limits LL= 30 Pl= 10						
D ₉₀ = 61.7253 D ₅₀ = 8.5953 D ₁₀ =	Coefficients D ₈₅ = 54.5324 D ₃₀ = 0.2796 C _u =	D ₆₀ = 18.7814 D ₁₅ = C _c =				
USCS= GC	Classification AASHT	O= A-2-4(0)				
<u>Remarks</u>						

22.7

8.2

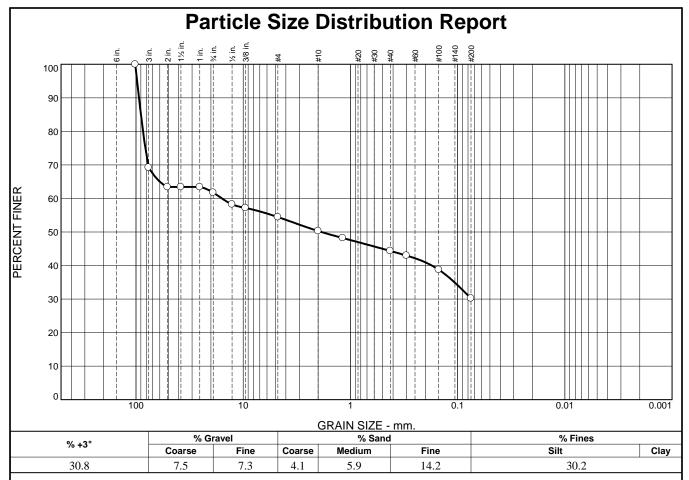
* (no specification provided)


0.0

Location: TP19-35 Sample Number: 20-019-06 **Date:** 2/6/2020 **Depth:** 8"-8'

NewFields

Client: Lithium Nevada **Project:** Thacker Pass


Figure 20-019-06 **Project No:** 475.0385.000

Test specification: ASTM D 1557-12 Method C Modified ASTM D4718-15 Oversize Corr. Applied to Each Test Point

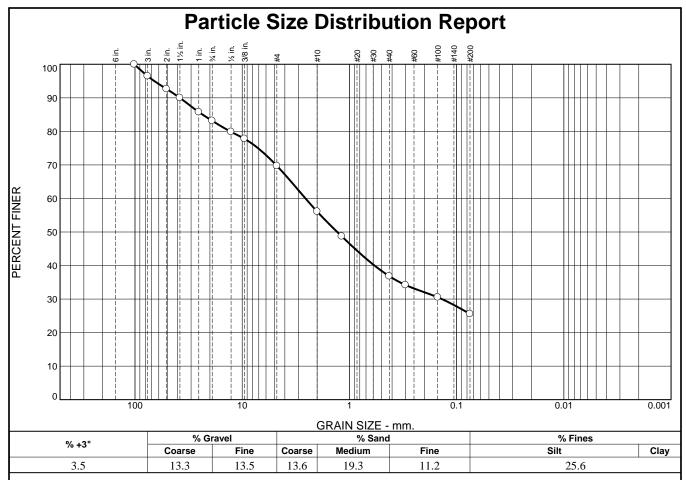
Elev/	Classification		Nat.	C C		ī	% >	% <
Depth	USCS	AASHTO	Moist.	Sp.G.	LL	PI	3/4 in.	No.200
8"-8'	GC	A-2-4(0)		2.75	30	10	39.8	22.7

ROCK CORRECTED TEST RESULTS	UNCORRECTED	MATERIAL DESCRIPTION
Maximum dry density = 134.8 pcf	121.4 pcf	Brown clayey gravel with sand
Optimum moisture = 8.0 %	12.0 %	
Project No. 475.0385.000 Client: Lithium Nevada		Remarks:
Project: Thacker Pass		*Assumed Specific Gravity
	Date: 2/13/2020	
C Location: TP19-35 Sample Number: 20-019-06		
■ NewFields	Figure 20-019-06	

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
4"	100.0		
3"	69.2		
2"	63.4		
1.5"	63.4		
1"	63.4		
.75"	61.7		
.5"	58.2		
.375"	57.2		
#4	54.4		
#10	50.3		
#16	48.2		
#40	44.4		
#50	43.0		
#100	38.8		
#200	30.2		
*	1	1	

Material Description Light Brown silty sand with gravel						
PL= NP	Atterberg Limits LL= NP	PI= NP				
D ₉₀ = 93.8211 D ₅₀ = 1.8694 D ₁₀ =	Coefficients D ₈₅ = 89.9797 D ₃₀ = C _u =	D ₆₀ = 15.7817 D ₁₅ = C _c =				
USCS= SM	Classification AASHT	O= A-4(0)				
	<u>Remarks</u>					

* (no specification provided)


Location: TP19-36 Sample Number: 20-019-07 **Date:** 2/6/2020**Depth:** 6-9'

NewFields

Client: Lithium Nevada Project: Thacker Pass

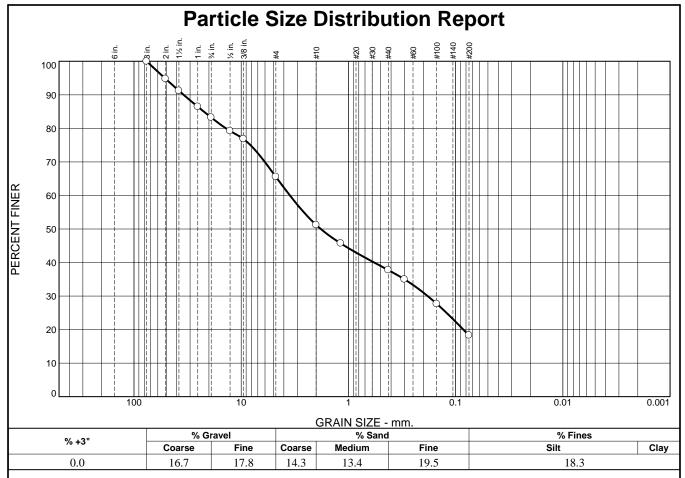
20-019-07 **Project No:** 475.0385.000 Figure

Tested By: AR/CM/KS/JH Checked By: JH

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
4"	100.0		
3"	96.5		
2"	92.6		
1.5"	90.0		
1"	85.8		
.75"	83.2		
.5"	79.9		
.375"	77.8		
#4	69.7		
#10	56.1		
#16	48.7		
#40	36.8		
#50	34.2		
#100	30.5		
#200	25.6		
L	l		

Material Description Brown clayey sand with gravel					
PL= 26	Atterberg Limits LL= 56	PI= 30			
D ₉₀ = 38.1277 D ₅₀ = 1.3000 D ₁₀ =	Coefficients D ₈₅ = 23.4246 D ₃₀ = 0.1374 C _u =	D ₆₀ = 2.5675 D ₁₅ = C _c =			
USCS= SC	Classification AASHT	O= A-2-7(2)			
<u>Remarks</u>					

* (no specification provided)


Location: TP19-37 Sample Number: 20-019-08 **Date:** 2/6/2020**Depth:** 5-14'

NewFields

Client: Lithium Nevada Project: Thacker Pass

20-019-08 **Project No:** 475.0385.000 Figure

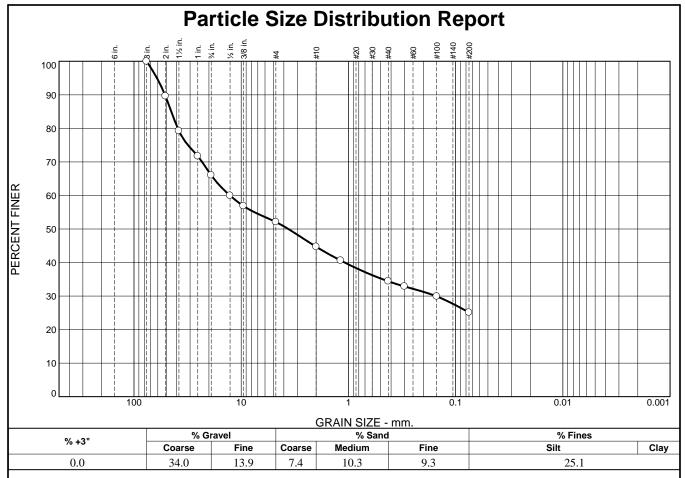
Tested By: KS/AR/CM/JH Checked By: JH

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
3"	100.0		
2"	94.8		
1.5"	91.2		
1"	86.5		
.75"	83.3		
.5"	79.2		
.375"	76.8		
#4	65.5		
#10	51.2		
#16	45.7		
#40	37.8		
#50	35.0		
#100	27.7		
#200	18.3		

Material Description Light Brown silty sand with gravel				
Light Blown sitty	sand with graver			
PL= NP	Atterberg Limits LL= NP	PI= NP		
D ₉₀ = 34.3963 D ₅₀ = 1.8110 D ₁₀ =	Coefficients D ₈₅ = 22.3022 D ₃₀ = 0.1823 C _u =	D ₆₀ = 3.5138 D ₁₅ = C _c =		
USCS= SM	Classification AASHTO	= A-1-b		
<u>Remarks</u>				

20-019-09

* (no specification provided)


Location: TP19-39 Sample Number: 20-019-09 **Date:** 2/6/2020**Depth:** 8"-5'

NewFields

Client: Lithium Nevada Project: Thacker Pass

Project No: 475.0385.000 Figure

Tested By: AR/CM/KS/JH Checked By: JH

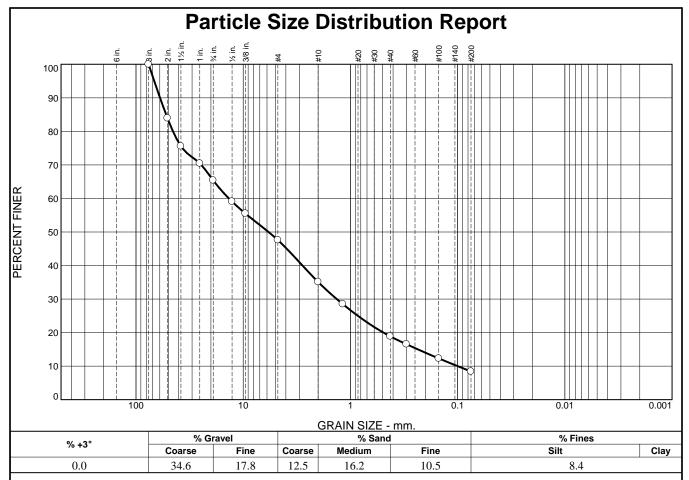
	SIEVE	PERCENT	SPEC.*	PASS?
	SIZE	FINER	PERCENT	(X=NO)
	3"	100.0		
	2"	89.6		
	1.5"	79.3		
	1"	71.7		
	.75"	66.0		
	.5"	60.0		
	.375"	56.9		
	#4	52.1		
	#10	44.7		
	#16	40.6		
	#40	34.4		
	#50	32.9		
	#100	29.9		
	#200	25.1		
ı				

Material Description Brown clayey gravel with sand					
PL= 21	Atterberg Limits LL= 45	PI= 24			
D ₉₀ = 51.4007 D ₅₀ = 3.6381 D ₁₀ =	Coefficients D85= 44.8748 D30= 0.1530 Cu=	D ₆₀ = 12.7305 D ₁₅ = C _c =			
USCS= GC	USCS= GC Classification AASHTO= A-2-7(1)				
<u>Remarks</u>					

Date: 2/7/2020

20-019-10

* (no specification provided)


Location: TP19-40 Sample Number: 20-019-10 **Depth:** 1.5-4'

NewFields

Client: Lithium Nevada Project: Thacker Pass

Project No: 475.0385.000 Figure

Tested By: KS/AR/CM Checked By: JH

	SIEVE	PERCENT	SPEC.*	PASS?
	SIZE	FINER	PERCENT	(X=NO)
	3"	100.0		
	2"	83.9		
	1.5"	75.6		
	1"	70.5		
	.75"	65.4		
	.5"	59.1		
	.375"	55.5		
	#4	47.6		
	#10	35.1		
	#16	28.5		
	#40	18.9		
	#50	16.5		
	#100	12.3		
	#200	8.4		
┖	*			

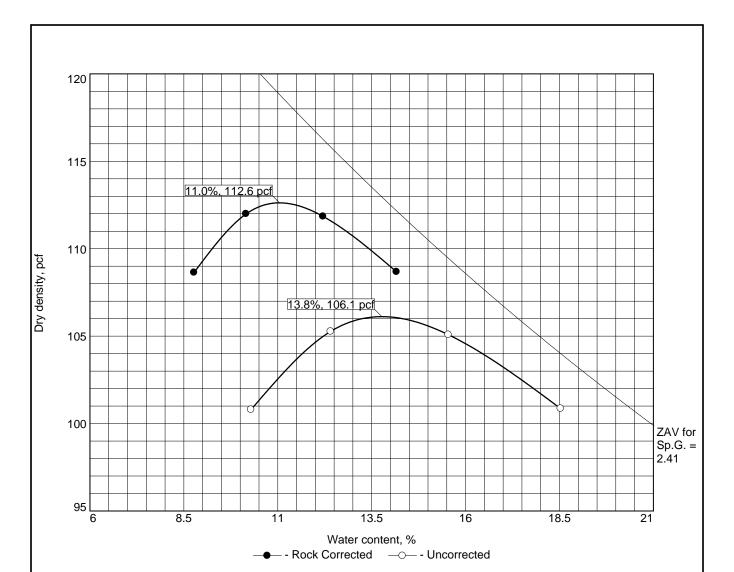
Material Description Brown well-graded gravel with silt and sand				
PL= NP	Atterberg Limits LL= NP	PI= NP		
D ₉₀ = 59.6810 D ₅₀ = 5.8062 D ₁₀ = 0.1000	Coefficients D ₈₅ = 52.3361 D ₃₀ = 1.3425 C _u = 135.84	D ₆₀ = 13.5891 D ₁₅ = 0.2353 C _c = 1.33		
USCS= GW-GM	Classification AASHTO=	A-1-a		
<u>Remarks</u>				

Date: 2/7/2020

Figure

20-019-11

* (no specification provided)

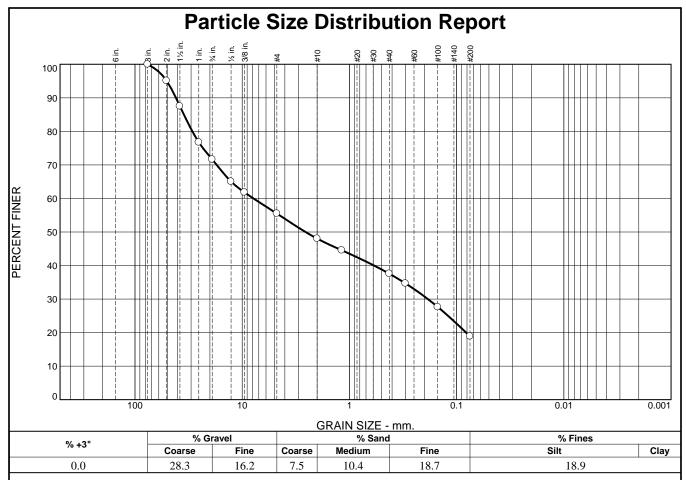

Location: TP19-44 Sample Number: 20-019-11 Depth: 6"-11'

NewFields

Client: Lithium Nevada Project: Thacker Pass

Project No: 475.0385.000

Tested By: KS/CM/AR Checked By: JH



Test specification: ASTM D 1557-12 Method C Modified ASTM D4718-15 Oversize Corr. Applied to Each Test Point

Elev/	Classif	ication	Nat.	Sn.G.	1.1	c	% >	% <
Depth	USCS	AASHTO	Moist.		LL	PI	3/4 in.	No.200
6"-11'	GW-GM	A-1-a		2.41	NP	NP	34.6	8.4

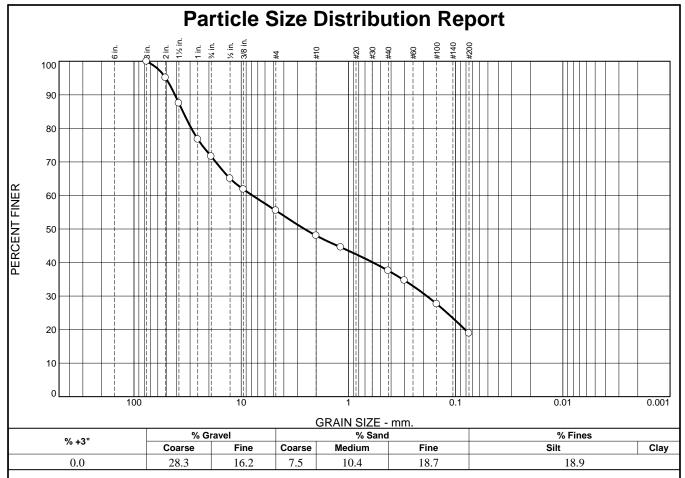
ROCK CORRECTED TEST RESULTS	UNCORRECTED	MATERIAL DESCRIPTION	
Maximum dry density = 112.6 pcf	106.1 pcf	Brown well-graded gravel with silt and sand	
Optimum moisture = 11.0 %	13.8 %		
Project No. 475.0385.000 Client: Lithium Nevada		Remarks:	
Project: Thacker Pass		*Assumed Specific Gravity	
	Date: 2/13/2020		
C Location: TP19-44 Sample Number: 20-019-11			
■NewFields			
		Figure 20-019-11	

Tested By: <u>CM</u> Checked By: <u>JH</u>

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
3"	100.0		
2"	95.1		
1.5"	87.5		
1"	76.7		
.75"	71.7		
.5"	65.0		
.375"	61.8		
#4	55.5		
#10	48.0		
#16	44.5		
#40	37.6		
#50	34.7		
#100	27.6		
#200	18.9		
L			

Material Description Brown silty gravel with sand					
PL= 29	Atterberg Limits LL= 38	PI= 9			
D ₉₀ = 41.5184 D ₅₀ = 2.5657 D ₁₀ =	Coefficients D ₈₅ = 34.9761 D ₃₀ = 0.1856 C _u =	D ₆₀ = 7.8455 D ₁₅ = C _c =			
USCS= GM	Classification AASHT	O= A-2-4(0)			
<u>Remarks</u>					

* (no specification provided)


Location: TP19-44 Sample Number: 20-019-12 **Date:** 2/7/2020**Depth:** 4-8'

NewFields

Client: Lithium Nevada Project: Thacker Pass

20-019-12 **Project No:** 475.0385.000 Figure

Tested By: KS/CM/AR Checked By: JH

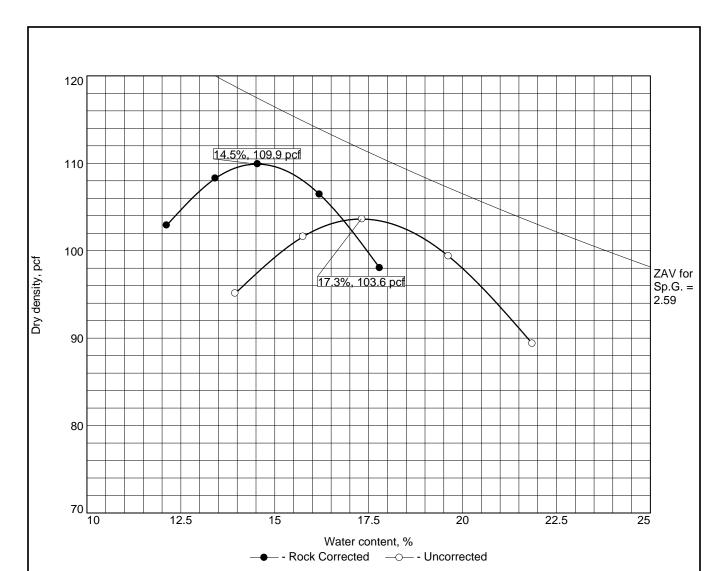
SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
3"	100.0		
2"	95.1		
1.5"	87.5		
1"	76.7		
.75"	71.7		
.5"	65.0		
.375"	61.8		
#4	55.5		
#10	48.0		
#16	44.5		
#40	37.6		
#50	34.7		
#100	27.6		
#200	18.9		
	1		

Material Description Brown silty gravel with sand						
PL= 29	Atterberg Limits LL= 38	PI= 9				
D ₉₀ = 41.5184 D ₅₀ = 2.5657 D ₁₀ =	Coefficients D ₈₅ = 34.9761 D ₃₀ = 0.1856 C _u =	D ₆₀ = 7.8455 D ₁₅ = C _c =				
USCS= GM	Classification AASHT	O= A-2-4(0)				
	<u>Remarks</u>					

* (no specification provided)

Location: TP19-46 Sample Number: 20-019-12 **Depth:** 4-8'

> Client: Lithium Nevada Project: Thacker Pass

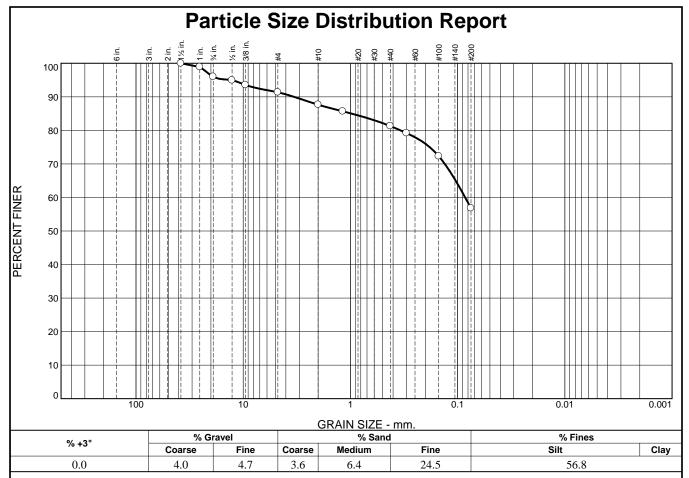

Project No: 475.0385.000

NewFields

20-019-12 Figure

Date: 2/7/2020

Tested By: KS/CM/AR Checked By: JH



Test specification: ASTM D 1557-12 Method C Modified ASTM D4718-15 Oversize Corr. Applied to Each Test Point

Elev/	Classification		Nat.	Sn C	1.1	DI	% >	% <
Depth	USCS	AASHTO	Moist.	Sp.G.	LL	PI	3/4 in.	No.200
4-8'	GM	A-2-4(0)		2.59	38	9	28.3	18.9

UNCORRECTED	MATERIAL DESCRIPTION		
103.6 pcf	Brown silty gravel with sand		
17.3 %			
	Remarks:		
	*Assumed Specific Gravity		
Date: 2/13/2020			
""NewFields			
	103.6 pcf 17.3 %		

Tested By: KS Checked By: JH

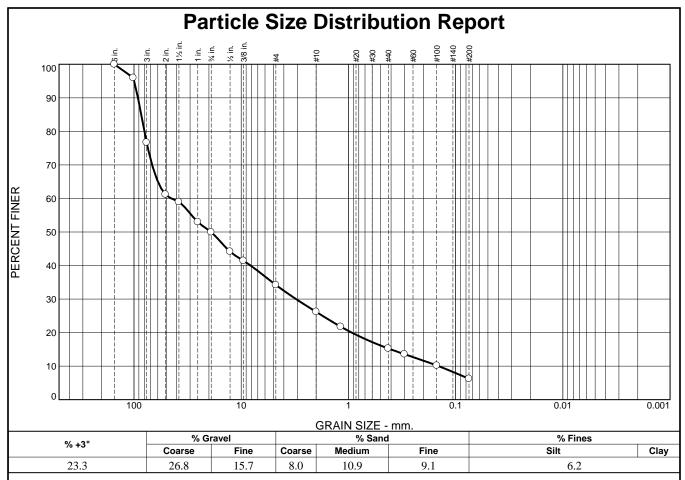
PERCENT	SPEC.*	PASS?
FINER	PERCENT	(X=NO)
100.0		
98.9		
96.0		
94.9		
93.6		
91.3		
87.7		
85.7		
81.3		
79.2		
72.3		
56.8		
	FINER 100.0 98.9 96.0 94.9 93.6 91.3 87.7 85.7 81.3 79.2 72.3	FINER PERCENT 100.0 98.9 96.0 94.9 93.6 91.3 87.7 85.7 81.3 79.2 72.3

Material Description Light Brown sandy lean clay					
PL= 21	Atterberg Limits LL= 34	PI= 13			
D ₉₀ = 3.3558 D ₅₀ = D ₁₀ =	<u>Coefficients</u> D ₈₅ = 0.9773 D ₃₀ = C _u =	D ₆₀ = 0.0850 D ₁₅ = C _c =			
USCS= CL	Classification AASHTO	D= A-6(5)			
	<u>Remarks</u>				

20-019-14

Figure

* (no specification provided)


Location: TP19-48 Sample Number: 20-019-14 **Date:** 2/7/2020**Depth:** 6"-5'

NewFields

Client: Lithium Nevada Project: Thacker Pass

Project No: 475.0385.000

Tested By: KS/CM/AR Checked By: JH

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
6"	100.0		
4"	96.0		
3"	76.7		
2"	61.2		
1.5"	58.9		
1"	53.0		
.75"	49.9		
.5"	44.2		
.375"	41.4		
#4	34.2		
#10	26.2		
#16	21.8		
#40	15.3		
#50	13.6		
#100	10.2		
#200	6.2		

Material Description Brown well-graded gravel with silt and sand				
PL= NP	Atterberg Limits LL= NP	PI= NP		
D ₉₀ = 91.8308 D ₅₀ = 19.1401 D ₁₀ = 0.1446	Coefficients D ₈₅ = 85.6139 D ₃₀ = 3.0808 C _u = 310.40	D ₆₀ = 44.8977 D ₁₅ = 0.4031 C _c = 1.46		
USCS= GW-GM	Classification AASHTO=	: A-1-a		
	<u>Remarks</u>			

* (no specification provided)

Location: TP19-49 Sample Number: 20-019-15 **Date:** 2/7/2020**Depth:** 8"-4'

NewFields

Client: Lithium Nevada Project: Thacker Pass

20-019-15 **Project No:** 475.0385.000 Figure

Tested By: KS/CM/AR Checked By: JH

APPENDIX C.3 Moisture Contents

LABORATORY WORKSHEET

Client:	Lithium Nevada	Location:	See Below
Project Title:	Thacker Pass	Elevation:	See Below
Project Number:	475.0385.000	Test Date:	4/24/2019
Project Engineer:	Eric Niebler	Tested By:	JH
Field Sample ID:	ВН	Checked By:	JH

Drying Conditions: 60 deg C / 110 deg C Method: Oven (O) / Microwave (M) / Hot Plate (H)

Sample No.		19-110-01	19-110-02	19-110-03	19-110-04	19-110-05
Location		BH19-01	BH19-01	BH19-02	BH19-02	BH19-08
Depth		7.5-9'	25-26.5'	25-26.5'	45-46.5'	2.5-4'
Soil Description						
(USCS)						
Trial No.		1	2	3	4	5
Tare No.						
Tare + Wet Soil	Α	674.9	1000.5	599	869.5	509.3
Tare + Dry Soil	В	516.2	774.8	385.5	638.9	430.3
Tare	С	22.3	22.1	22.2	22.1	22.3
Wt. of Water	D= A-B	158.7	225.7	213.5	230.6	79
Dry Soil, Ws	E= B-C	493.9	752.7	363.3	616.8	408
Moisture Content, (%)	(D/E) x100	32.1%	30.0%	58.8%	37.4%	19.4%

Sample No.		19-110-06	19-110-07	19-110-08	19-110-09	19-110-10
Location		BH19-09	BH19-11	BH19-12	BH19-15	BH19-16
Depth		2.5-4'	2.5-4'	15-16.5'	5.5-6'	2.5-4'
Soil Description						
(USCS)						
Trial No.		6	7	8	9	10
Tare No.						
Tare + Wet Soil	Α	748.6	489.4	760.8	702.2	474.2
Tare + Dry Soil	В	681	400.1	690.5	623.5	403.7
Tare	С	22.2	22.2	22.4	22.3	22.1
Wt. of Water	D= A-B	67.6	89.3	70.3	78.7	70.5
Dry Soil, Ws	E= B-C	658.8	377.9	668.1	601.2	381.6
Moisture Content, (%)	(D/E) x100	10.3%	23.6%	10.5%	13.1%	18.5%

Remarks:

LABORATORY WORKSHEET

Client:	Lithium Nevada	Location:	See Below
Project Title:	Thacker Pass	Elevation:	See Below
Project Number:	475.0385.000	Test Date:	4/24/2019
Project Engineer:	Eric Niebler	Tested By:	JH
Field Sample ID:	ВН	Checked By:	JH

Drying Conditions: 60 deg C / 110 deg C Method: Oven (O) / Microwave (M) / Hot Plate (H)

Sample No.		19-110-11	19-110-12	19-110-13	19-110-14	19-110-15
Location		BH19-17	BH19-17	BH19-18	BH19-18	BH19-20
Depth		10.5-11'	20-21'	10.5-11'	20.5-21'	5-6.5'
Soil Description						
(USCS)						
Trial No.		11	12	13	14	15
Tare No.						
Tare + Wet Soil	Α	685.3	1746.3	645.2	711.7	1912.4
Tare + Dry Soil	В	525.4	1590.1	475.8	531.9	1726.9
Tare	С	22	21.8	22.1	22.1	21.9
Wt. of Water	D= A-B	159.9	156.2	169.4	179.8	185.5
Dry Soil, Ws	E= B-C	503.4	1568.3	453.7	509.8	1705
Moisture Content, (%)	(D/E) x100	31.8%	10.0%	37.3%	35.3%	10.9%

Sample No.		19-110-16	19-110-17	19-110-18	19-110-19	19-110-20
Location		BH19-20	BH19-21	BH19-23	BH19-23	BH19-24
Depth		30-30.5'	2.5-4'	2.5-4'	7.5-9	2.5-4'
Soil Description						
(USCS)						
Trial No.		16	17	18	19	20
Tare No.						
Tare + Wet Soil	Α	1638.1	614.4	759.7	672.9	554.5
Tare + Dry Soil	В	1399.6	501.7	665.5	606.7	485.2
Tare	С	22.2	22	22.4	22.3	22.3
Wt. of Water	D= A-B	238.5	112.7	94.2	66.2	69.3
Dry Soil, Ws	E= B-C	1377.4	479.7	643.1	584.4	462.9
Moisture Content, (%)	(D/E) x100	17.3%	23.5%	14.6%	11.3%	15.0%

Re	em	ıar	ks:
----	----	-----	-----

LABORATORY WORKSHEET

Client:	Lithium Nevada	Location:	See Below
Project Title:	Thacker Pass	Elevation:	See Below
Project Number:	475.0385.000	Test Date:	4/24/2019
Project Engineer:	Eric Niebler	Tested By:	JH
Field Sample ID:	ВН	Checked By:	JH

Drying Conditions: 60 deg C / 110 deg C Method: Oven (O) / Microwave (M) / Hot Plate (H)

Sample No.		19-110-21	19-110-22	19-110-23	19-110-24	19-110-25
Location		BH19-24	BH19-24	BH19-25	BH19-25	BH19-25
Depth		15-16.5'	35-36.5'	2.5-4'	7.5-9'	15-16.5'
Soil Description						
(USCS)						
Trial No.		21	22	23	24	25
Tare No.						
Tare + Wet Soil	Α	671.9	882.8	501.5	523.1	622.6
Tare + Dry Soil	В	604.4	626.1	427	431.8	466
Tare	С	22	22	22.1	22.4	22.4
Wt. of Water	D= A-B	67.5	256.7	74.5	91.3	156.6
Dry Soil, Ws	E= B-C	582.4	604.1	404.9	409.4	443.6
Moisture Content, (%)	(D/E) x100	11.6%	42.5%	18.4%	22.3%	35.3%

Sample No.		19-110-26	19-110-27	19-110-28	19-110-29	19-110-30
Location		BH19-26	BH19-28	BH19-29	BH19-29	BH19-29
Depth		5-6'	8.5-9'	2.5-4'	7.5-9'	15-16.5'
Soil Description						
(USCS)						
Trial No.		26	27	28	29	30
Tare No.						
Tare + Wet Soil	Α	691	751.3	708.9	631.2	924.8
Tare + Dry Soil	В	611.2	652.7	631.5	588.6	805.2
Tare	С	22.1	22.4	22.2	22.2	22
Wt. of Water	D= A-B	79.8	98.6	77.4	42.6	119.6
Dry Soil, Ws	E= B-C	589.1	630.3	609.3	566.4	783.2
Moisture Content, (%)	(D/E) x100	13.5%	15.6%	12.7%	7.5%	15.3%

Remarks:

Moisture Content, (%) (D/E) x100

MOISTURE CONTENT (ASTM D 2216 / ASTM D 4643)

Client:	Lithium N	levada	Location:	See Below
Project Title:	Thacker	Thacker Pass		See Below
Project Number:	475.038	475.0385.000		4/24/2019
Project Engineer:	Eric Nie	ebler	Tested By:	JH
Field Sample ID:	ВН	BH		JH

, 8	0 - 7	0 -		(-//	- \ //	,
Sample No.		19-110-31	19-110-32	19-110-33		
Location		BH19-29	BH19-31	BH19-32		
Depth		25-26'	5.5-6'	15-16.5'		
Soil Description						
(USCS)						
Trial No.		31	32	33	4	5
Tare No.						
Tare + Wet Soil	Α	427.1	754.7	892.2		
Tare + Dry Soil	В	350.3	649.4	745.6		
Tare	С	22	21.8	22.4		
Wt. of Water	D= A-B	76.8	105.3	146.6		
Dry Soil, Ws	E= B-C	328.3	627.6	723.2		
Moisture Content, (%)	(D/E) x100	23.4%	16.8%	20.3%		
Sample No.						
Location						
Depth						
Soil Description						
(USCS)						
Trial No.		6	7	8	9	10
Tare No.						
Tare + Wet Soil	Α					
Tare + Dry Soil	В					
Tare	С					
Wt. of Water	D= A-B					
Dry Soil, Ws	E= B-C					
		i	· · · · · · · · · · · · · · · · · · ·	1	1	1

LABORATORY WORKSHEET

Client:	Lithium Nevada	Location:	BH19
Project Title:	Thacker Pass	Elevation:	See Below
Project Number:	475.0385.000	Test Date:	2/5/2020
Project Engineer:	Eric Niebler	Tested By:	JH
Field Sample ID:	ВН	Checked By:	JH

Drying Conditions: 60 deg C / 110 deg C Method: Oven (O) / Microwave (M) / Hot Plate (H)

Sample No.		20-020-01	20-020-02	20-020-04	20-020-05	20-020-07
Location		BH19-33	BH19-33	BH19-33	BH19-34	BH19-34
Depth		2.5-3'	7.5-8.5'	25-25.5'	2.5-3'	10-11.5'
Soil Description						
(USCS)						
Trial No.		1	2	3	4	5
Tare No.						
Tare + Wet Soil	Α	314.3	1452.1	566.3	324.1	865.7
Tare + Dry Soil	В	289.4	1245.6	414.4	299.4	781.9
Tare	С	44.9	268	124.5	45.2	192.5
Wt. of Water	D= A-B	24.9	206.5	151.9	24.7	83.8
Dry Soil, Ws	E= B-C	244.5	977.6	289.9	254.2	589.4
Moisture Content, (%)	(D/E) x100	10.2%	21.1%	52.4%	9.7%	14.2%

Sample No.		20-020-09	20-020-11	20-020-12	20-020-14	20-020-016
Location		BH19-35	BH19-35	BH19-35	BH19-36	BH19-36
Depth		7.5-8.5'	15-16'	35-35.5'	5-6.5'	10-11.3'
Soil Description						
(USCS)						
Trial No.		6	7	8	9	10
Tare No.						
Tare + Wet Soil	Α	1628.6	778	722.5	524.6	682.9
Tare + Dry Soil	В	1478.1	708.1	523.5	458.9	629.7
Tare	С	267.7	189.6	262.2	121.6	120.3
Wt. of Water	D= A-B	150.5	69.9	199	65.7	53.2
Dry Soil, Ws	E= B-C	1210.4	518.5	261.3	337.3	509.4
Moisture Content, (%)	(D/E) x100	12.4%	13.5%	76.2%	19.5%	10.4%

Remarks:

Client:	Lithium Ne	vada Location:	BH19
Project Title:	Thacker P	ass Elevation:	See Below
Project Number:	475.0385.	000 Test Date:	2/5/2020
Project Engineer:	Eric Nieb	ler Tested By:	JH
Field Sample ID:	ВН	Checked By:	JH
		,	<u> </u>
Drying Conditions:	60 deg C / 110 deg C	Method: Oven (O) / Microwav	e (M) / Hot Plate (H

Drying Conditions: 60 deg C / 110 deg C Method: Oven (O) / Microwave (M) / Hot Plate (H)					iate (n)	
Sample No.		20-020-17	20-020-18	20-020-19		
Location		BH19-36	BH19-37	BH19-37		
Depth		35-36.5'	2.5-3'	7.5-8'		
Soil Description						
(USCS)						
Trial No.		11	12	13	14	15
Tare No.						
Tare + Wet Soil	Α	808.7	810.3	959.5		
Tare + Dry Soil	В	728.9	675.2	919.7		
Tare	С	121.4	124.5	188.8		
Wt. of Water	D= A-B	79.8	135.1	39.8		
Dry Soil, Ws	E= B-C	607.5	550.7	730.9		
Moisture Content, (%)	(D/E) x100	13.1%	24.5%	5.4%		
Sample No.						
Location						
Depth						
Soil Description						
(USCS)						
Trial No.		16	17	18	19	20
·						

Location						
Depth						
Soil Description						
(USCS)						
Trial No.		16	17	18	19	20
Tare No.						
Tare + Wet Soil	Α					
Tare + Dry Soil	В					
Tare	С					
Wt. of Water	D= A-B					
Dry Soil, Ws	E= B-C				_	
Moisture Content, (%)	(D/E) x100					

Remarks:			

LABORATORY WORKSHEET

		LABORAT	ORY WORKSH	IEE I		
Client:		Lithium Neva	da	Location:	T	Ъ
Project Title:		Thacker Pas	S	Elevation:	See E	Below
Project Number:		475.0385.00	0	Test Date:	3/5/	2019
Project Engineer:		Eric Niebler	•	Tested By:		/JB
Field Sample ID:		TP		Checked By:	J	<u>H</u>
Drying Conditions: 60	deg C / 110	deg C	Method: Over	<mark>ı (O)</mark> / Microwa	ave (M) / Hot P	late (H)
Sample No.		19-060-01	19-060-02	19-060-03	19-060-04	19-060-05
Location		TP19-01	TP19-02	TP19-03	TP19-04	TP19-05
Depth		4-7'	0-2'	6-9'	5-7'	8-10'
Soil Description						
(USCS)						
Trial No.		1	2	3	4	5
Tare No.						
Tare + Wet Soil	Α	603.3	580	895	602.1	664.7
Tare + Dry Soil	В	539.7	506.7	819.3	521.8	564.4
Tare	С	44.9	257.5	120.6	125.1	141.2
Wt. of Water	D= A-B	63.6	73.3	75.7	80.3	100.3
Dry Soil, Ws	E= B-C	494.8	249.2	698.7	396.7	423.2
Moisture Content, (%)	(D/E) x100	12.9%	29.4%	10.8%	20.2%	23.7%
Sample No.		19-060-06	19-060-07	19-060-08	19-060-09	19-060-10
Location		TP19-06	TP19-08	TP19-09	TP19-11	TP19-13
Depth		11-13'	6-9'	8-12'	7-11'	10-13'
Soil Description						
(USCS)						
Trial No.		6	7	8	9	10
Tare No.						
Tare + Wet Soil	Α	642.9	926.2	789.7	658.1	605.1
Tare + Dry Soil	В	597.1	854.8	732.5	618.3	514.9
Tare	С	189.5	124.9	270.1	125.3	223.4

45.8

407.6

11.2%

D= A-B

E= B-C

71.4

729.9

9.8%

57.2

462.4

12.4%

39.8

493

8.1%

90.2

291.5

30.9%

_							
R	ρ	m	а	r	k	c	٠

Wt. of Water

Dry Soil, Ws

Moisture Content, (%) (D/E) x100

LABORATORY WORKSHEET

Client:	Lithium Nevada	Location:	TP
Project Title:	Thacker Pass	Elevation:	See Below
Project Number:	475.0385.000	Test Date:	3/5/2019
Project Engineer:	Eric Niebler	Tested By:	KS/JB
Field Sample ID:	TP	Checked By:	JH

Drying Conditions: 60 deg C / 110 deg C Method: Oven (O) / Microwave (M) / Hot Plate (H)					late (H)	
Sample No.		19-060-11	19-060-12	19-060-13	19-060-14	19-060-15
Location		TP19-14	TP19-15	TP19-16	TP19-17	TP19-18
Depth		8-11'	8-11'	7-10'	4-7'	5-8'
Soil Description						
(USCS)						
Trial No.		11	12	13	14	15
Tare No.						
Tare + Wet Soil	Α	632.6	934.6	859.5	654.3	460.1
Tare + Dry Soil	В	527.9	783.8	709.7	572.4	419.2
Tare	С	121	120.8	190.6	188.6	45
Wt. of Water	D= A-B	104.7	150.8	149.8	81.9	40.9
Dry Soil, Ws	E= B-C	406.9	663	519.1	383.8	374.2
Moisture Content, (%)	(D/E) x100	25.7%	22.7%	28.9%	21.3%	10.9%
Sample No.		19-060-16	19-060-17	19-060-18	19-060-19	19-060-20
Location		TP19-20	TP19-21	TP19-22	TP19-23	TP19-24
Depth		6-10'	3-5'	8-11'	5-9'	14-17'
Soil Description						
(USCS)						
Trial No.		16	17	18	19	20
Tare No.						
Tare + Wet Soil	Α	352.8	347.2	614.6	837.6	649.7
Tare + Dry Soil	В	296.3	312.3	592	786.2	542.3
Tare	С	44.9	45.1	121.1	189.3	225.5
Wt. of Water	D= A-B	56.5	34.9	22.6	51.4	107.4
Dry Soil, Ws	E= B-C	251.4	267.2	470.9	596.9	316.8
Moisture Content, (%)	(D/E) x100	22.5%	13.1%	4.8%	8.6%	33.9%

Remarks:

Client:	Lithium Nevada	Location:	TP
Project Title:	Thacker Pass	Elevation:	See Below
Project Number:	475.0385.000	Test Date:	3/5/2019
Project Engineer:	Eric Niebler	Tested By:	KS/JB
Field Sample ID:	TP	Checked By:	JH

Drying Conditions: 60 deg C / 110 deg C Method: Oven (O) / Microwave (M) / Hot F				late (H)		
Sample No.		19-060-21	19-060-22	19-060-23	19-060-24	19-060-25
Location		TP19-25	TP19-26	TP19-27	TP19-28	TP19-29
Depth		7-12'	6-8'	3-5'	5-9'	4-7'
Soil Description						
(USCS)						
Trial No.		21	22	23	24	25
Tare No.						
Tare + Wet Soil	Α	746.1	852.9	644	704.4	871.1
Tare + Dry Soil	В	699.3	738.3	533.9	668.6	814.8
Tare	С	123.9	190.9	45.2	124.6	123.5
Wt. of Water	D= A-B	46.8	114.6	110.1	35.8	56.3
Dry Soil, Ws	E= B-C	575.4	547.4	488.7	544	691.3
Moisture Content, (%)	(D/E) x100	8.1%	20.9%	22.5%	6.6%	8.1%
Sample No.						
Location						
Depth						
Soil Description						
(USCS)						
Trial No.		26	27	28	29	30
Tare No.						
Tare + Wet Soil	Α					
Tare + Dry Soil	В					
Tare	С					
Wt. of Water	D= A-B					
Dry Soil, Ws	E= B-C					
Moisture Content, (%)	(D/E) x100					

Remarks:			

LABORATORY WORKSHEET

Client:	Lithium Nevada	Location:	TP
Project Title:	Thacker Pass	Elevation:	See Below
Project Number:	475.0385.000	Test Date:	4/22/2019
Project Engineer:	Eric Niebler	Tested By:	KS
Field Sample ID:	TP	Checked By:	JH

Drying Conditions: 60 deg C / 110 deg C Method: Oven (O) / Microwave (M) / Hot Plate (H)

Sample No.		19-106-02	19-106-03	19-106-04	19-106-05	19-106-06
Location		TP19-03	TP19-04	TP19-07	TP19-08	TP19-10
Depth		2-4'	2-4'	2-4'	2-4'	3-6'
Soil Description						
(USCS)						
Trial No.		1	2	3	4	5
Tare No.						
Tare + Wet Soil	Α	401.7	432.9	650.3	618.1	555.5
Tare + Dry Soil	В	363.7	358.6	574.2	563.2	492.6
Tare	С	124.7	120.8	257.4	191.2	125.3
Wt. of Water	D= A-B	38	74.3	76.1	54.9	62.9
Dry Soil, Ws	E= B-C	239	237.8	316.8	372	367.3
Moisture Content, (%)	(D/E) x100	15.9%	31.2%	24.0%	14.8%	17.1%

Sample No.		19-106-07	19-106-08			
Location		TP19-13	TP19-28			
Depth		3-5'	1-3'			
Soil Description						
(USCS)						
Trial No.		6	7	8	9	10
Tare No.						
Tare + Wet Soil	Α	433.6	440			
Tare + Dry Soil	В	381.7	347.3			
Tare	С	44.9	45			
Wt. of Water	D= A-B	51.9	92.7			
Dry Soil, Ws	E= B-C	336.8	302.3			
Moisture Content, (%)	(D/E) x100	15.4%	30.7%			

Remark	S
--------	---

LABORATORY WORKSHEET

Client:	Lithium Nevada	Location:	TP
Project Title:	Thacker Pass	Elevation:	See Below
Project Number:	475.0385.000	Test Date:	2/6/2020
Project Engineer:	Eric Niebler	Tested By:	KS
Field Sample ID:	TP	Checked By:	JH

Drying Conditions: 60 deg C / 110 deg C Method: Oven (O) / Microwave (M) / Hot Plate (H)

Sample No.		20-019-01	20-019-02	20-019-03	20-019-04	20-019-05
Location		TP19-30	TP19-31	TP19-32	TP19-33	TP19-34
Depth		8"-9'	8"-10'	6"-5'	3-15'	5-11'
Soil Description						
(USCS)						
Trial No.		1	2	3	4	5
Tare No.						
Tare + Wet Soil	Α	294.2	606.9	456.1	497.5	490.8
Tare + Dry Soil	В	263.6	572.3	418.6	461.2	463.8
Tare	С	121.2	258.7	121.1	222.7	44.9
Wt. of Water	D= A-B	30.6	34.6	37.5	36.3	27
Dry Soil, Ws	E= B-C	142.4	313.6	297.5	238.5	418.9
Moisture Content, (%)	(D/E) x100	21.5%	11.0%	12.6%	15.2%	6.4%

Sample No.		20-019-06	20-019-07	20-019-08	20-019-09	20-019-10
Location		TP19-35	TP19-36	TP19-37	TP19-39	TP19-40
Depth		8"-8'	6-9'	5-14'	8"-5'	1.5-4'
Soil Description						
(USCS)						
Trial No.		6	7	8	9	10
Tare No.						
Tare + Wet Soil	Α	470.7	569.7	821.1	549.5	529.4
Tare + Dry Soil	В	448.1	522.7	768.7	491.9	468.5
Tare	С	120.7	222.2	254.2	120.1	124.2
Wt. of Water	D= A-B	22.6	47	52.4	57.6	60.9
Dry Soil, Ws	E= B-C	327.4	300.5	514.5	371.8	344.3
Moisture Content, (%)	(D/E) x100	6.9%	15.6%	10.2%	15.5%	17.7%

Remarks:

LABORATORY WORKSHEET

Client:	Lithium Nevada	Location:	TP
Project Title:	Thacker Pass	Elevation:	See Below
Project Number:	475.0385.000	Test Date:	2/6/2020
Project Engineer:	Eric Niebler	Tested By:	KS
Field Sample ID:	TP	Checked By:	JH

Drying Conditions: 60 deg C / 110 deg C Method: Oven (O) / Microwave (M) / Hot Plate (H)

Sample No.	·	20-019-11	20-019-12	20-019-13	20-019-14	20-019-15
Location		TP19-44	TP19-46	TP19-47	TP19-48	TP19-49
Depth		6"-11'	4-8'	8"-3'	6"-5'	8"-4'
Soil Description					*	
(USCS)						
Trial No.		11	12	13	14	15
Tare No.						
Tare + Wet Soil	Α	790.2	575.2	606.7	486.6	788.1
Tare + Dry Soil	В	733.8	517.2	551	435.7	737.3
Tare	С	120.3	120.9	124.9	187.7	223
Wt. of Water	D= A-B	56.4	58	55.7	50.9	50.8
Dry Soil, Ws	E= B-C	613.5	396.3	426.1	248	514.3
Moisture Content, (%)	(D/E) x100	9.2%	14.6%	13.1%	20.5%	9.9%
Sample No.						
Location						

Sample No.						
Location						
Depth						
Soil Description						
(USCS)						
Trial No.		16	17	18	19	20
Tare No.						
Tare + Wet Soil	Α					
Tare + Dry Soil	В					
Tare	С					
Wt. of Water	D= A-B					
Dry Soil, Ws	E= B-C					
Moisture Content, (%)	(D/E) x100					

Remarks: * Sample 20-019-14: hole in the bag that may have changed moisture content

APPENDIX C.4 Natural Density and Specific Gravity

Dry Soil, Ws

Moisture Content, (%)

LABORATORY WORKSHEET

Client:	Li	thium Nevada		Location:	See B	elow
Project Title:		Thacker Pass		Elevation:	See B	
Project Number:		175.0385.000		Test Date:	4/26/	
Project Engineer:		Eric Niebler		Tested By:	JI	
Field Sample ID: Laboratory Sample ID:		BH 19-110		Checked By:	JI	H
Laboratory Sample ID.		19-110				
Drying Condition	ons: 60 deg C / 1	10 deg C	Met	hod: <mark>Oven (O)</mark>	/ Microwave (N	/ 1)
Trail No.		1	2	3	4	5
Sample No.		19-110-09	19-110-11	19-110-13	19-110-14	19-110-26
Location		BH19-15	BH19-17	BH19-18	BH19-18	BH19-26
Depth		5.5-6'	10.5-11'	10.5-11'	20.5-21'	5-6'
Soil Description						
(USCS)						
Soil + Liner Wt., g.	Α	914.8	912.4	855.4	930.1	898.8
Liner Wt., g.	В	233.9	240.6	232.0	237.6	230.0
Soil Wt., g.	C= A-B	680.9	671.8	623.4	692.5	668.8
Liner Length, in.	D_1	5.995	5.959	5.965	5.973	5.942
Sample Length, in.	D ₂	5.995	5.959	5.965	5.973	5.942
Liner Diameter, in.	E	2.429	2.417	2.413	2.402	2.443
Liner Area, in ²	F= (D ₂ ² /4)*pi	4.63	4.59	4.57	4.53	4.69
Sample Volume, in ³	G= D ₂ *F	27.78	27.34	27.28	27.07	27.85
Sample Wet Density, pcf	H= (C/G)*3.81	93.4	93.6	87.1	97.5	91.5
Sample Dry Density, pcf	H/(1+(N/100))	82.6	71.0	63.4	72.1	80.6
Tare No.						
Tare + Wet Soil	1	702.2	685.3	645.2	711.7	691
Tare + Dry Soil	J	623.5	525.4	475.8	531.9	611.2
Tare	К	22.3	22	22.1	22.1	22.1
Wt. of Water	L= I-J	78.7	159.9	169.4	179.8	79.8
					_	

Remarks:

601.2

13.1%

503.4

31.8%

453.7

37.3%

509.8

35.3%

589.1

13.5%

M=-J-K

N= (L/M) x100

Client:	Li	thium Nevada		Location:	ВН	19
Project Title:		Thacker Pass		Elevation:	See B	selow
Project Number:		175.0385.000		Test Date:	2/5/2	2020
Project Engineer:		Eric Niebler		Tested By:	JH/	
Field Sample ID:		BH		Checked By:	Ji	<u> </u>
Laboratory Sample ID:		20-020				
Drying Condition	ons: 60 deg C / 1	10 deg C	Met	hod: <mark>Oven (O)</mark> ,	/ Microwave (N	/ 1)
Trail No.		1	2	3	4	5
Sample No.		20-020-03	20-020-06	20-020-08	20-020-10	20-020-13
Location		BH19-33	BH19-34	BH19-34	BH19-35	VH19-36
Depth		15.5-16'	2.9-3.4'	15.5-16'	8.5-9'	3.5-4'
Soil Description						
(USCS)						
Soil + Liner Wt., g.	Α	890.7	931.0	876.7	940.5	719.
Liner Wt., g.	В	231.1	231.9	233.2	231.0	230.
Soil Wt., g.	C= A-B	659.6	699.1	643.5	709.5	489.
Liner Length, in.	D_1	5.956	6	6.005	5.992	5.97
Sample Length, in.	D_2	5.956	4.756	5.308	5.649	4.6
Liner Diameter, in.	E	2.401	2.429	2.398	2.390	2.39
Liner Area, in ²	F= (E ² /4)*pi	4.53	4.63	4.52	4.49	4.5
Sample Volume, in ³	G= D ₂ *F	26.97	22.04	23.97	25.34	20.8
Sample Wet Density, pcf	H= (C/G)*3.81	93.2	120.9	102.3	106.7	89.
Sample Dry Density, pcf	H/(1+(N/100))	68.1	114.6	89.7	87.9	77.
Tare No.						
Tare + Wet Soil	1	782.8	889.7	793.5	900.5	711.
Tare + Dry Soil	J	605.5	853.3	714.3	775.4	648.
Tare	К	123.3	191.2	150.4	191.1	223.
Wt. of Water	L= I-J	177.3	36.4	79.2	125.1	63.
Dry Soil, Ws	M=-J-K	482.2	662.1	563.9	584.3	425.
Moisture Content, (%)	N= (L/M) x100	36.8%	5.5%	14.0%	21.4%	14.99

Client:	Lit	thium Nevada		Location:	B⊦	119	
Project Title:	7	Thacker Pass		Elevation:	See Below		
Project Number:		75.0385.000		Test Date:	2/5/	2/5/2020	
Project Engineer:		Eric Niebler		Tested By:		/KS	
Field Sample ID: Laboratory Sample ID:		BH 20-020		Checked By:	J	Н	
	ons: 60 deg C / 11		M	 lethod: Oven (O) /	Microwave (N	Л)	
Trail No.		6	7	8	9		
				8	9	10	
Sample No.		20-020-15		+			
Location		BH19-36		+			
Depth		8-8.5'		+			
Soil Description				+			
(USCS)				+			
Soil + Liner Wt., g.	A	789.5					
Liner Wt., g.	В	231.2					
Soil Wt., g.	C= A-B	558.3					
Liner Length, in.	D ₁	5.998					
Sample Length, in.	D ₂	4.544					
Liner Diameter, in.	E (D 2/4)*:	2.456					
Liner Area, in ²	$F = (D_2^2/4)*pi$ $G = D_2*F$	4.74					
Sample Volume, in ³		21.53					
Sample Wet Density, pcf	H= (C/G)*3.81	98.8		+			
Sample Dry Density, pcf	H/(1+(N/100))	90.9		+ +			
Tare No.		670.0		+			
Tare + Wet Soil	<u> </u>	678.9		+			
Tare + Dry Soil	J	634.2					
Tare Wt. of Water	K	120.8		+			
Wt. of Water Dry Soil, Ws	L= I-J M=-J-K	44.7 512.4					
אוט א אוויס א אויס א אויס א אויס א איז א	N= (L/M) x100	513.4		+			
Moisture Content, (%)	IA= (F\IAI) XTOO	8.7%					

NewFields

SPECIFIC GRAVITY SOILS (ASTM D854)

Client:	Lithium Nevada	Field Sample ID:	TP19-04	Test Start Date:	4/30/2019
Project Title:	Thacker Pass	Laboratory Sample ID:	19-106-03	Tested By:	KE
Project Number:	475.0385.000	Location:	TP19-04	Checked By:	JH
Project Engineer:	Eric Niebler	Elevation:	2-4'	Sample Description:	

Sample Number	19-10	19-106-03				
Sample Location	TP19-04 (2'-4')					
Prep Dish						
Flask No.	3	15				
1) Wt. of Flask + Soil	115.90	116.63				
2) Wt. of Flask	86.05	86.66				
3) Wt. of Soil = 1-2	29.85	29.97				
4) Calibrated Wt. of Flask + Water	335.19	335.73				
5) (3+4)	365.04	365.70				
6) Wt. of Flask + Water +Soil	353.34	353.98				
7) Volume of Soil = (5-6)	11.70	11.72				
8) Test Temperature, deg.C (Ta)	19.1	19.2				
9) Temperature Correction, k	1.00018	1.00016				
10) Specific Gravity	2.538	2.546				
11) Average Specific Gravity, Gs	2.5	42				

General Notes:			

APPENDIX C.5 Chemical Testing

11419 Sunrise Gold Circle, #10 Rancho Cordova, CA 95742 (916) 852-8557

> Date Reported 08/23/2019 Date Submitted 08/20/2019

To: Kerry Magner

Newfields MDTS 2227 N. 5th St.

Elko, NV

89801

From: Gene Oliphant, Ph.D. \ Randy Horney General Manager \ Lab Manager \

The reported analysis was requested for the following location: Location : BH19-12 Site ID : 2.5-6.5 FT. Your purchase order number is 4750385. Thank you for your business.

* For future reference to this analysis please use SUN # 80416-168076.

EVALUATION FOR SOIL CORROSION

Soil pH 7.65

Minimum Resistivity 0.15 ohm-cm (x1000)

Chloride

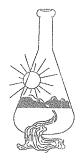
1246.9 ppm 00.12469 %

Sulfate

691.9ppm 00.06919 %

Redox Potential

No Test


Sulfides

No Test

METHODS

pH AASHTO T289, Min.Resistivity AASHTO T288 Mod.(Sm.Cell) Sulfate AASHTO T290, Chloride AASHTO T291 Redox Potential ASTM G-200, Sulfides AWWA C105/A25.5

Rancho Cordova, CA 95742 (916) 852-8557

> Date Reported 08/23/2019 Date Submitted 08/20/2019

To: Kerry Magner

Newfields MDTS 2227 N. 5th St.

Elko, NV

89801

From: Gene Oliphant, Ph.D. \ Randy Horney General Manager \ Lab Manager \

The reported analysis was requested for the following location: Location: BH19-13 Site ID: 7.5-10.5 FT.

Your purchase order number is 4750385.

Thank you for your business.

* For future reference to this analysis please use SUN # 80416-168077.

EVALUATION FOR SOIL CORROSION

Soil pH

7.88

Minimum Resistivity 0.78 ohm-cm (x1000)

Chloride

103.2 ppm 00.01032 %

Sulfate

45.5ppm

00.00455 %

Redox Potential

No Test

Sulfides

No Test

METHODS

pH AASHTO T289, Min.Resistivity AASHTO T288 Mod.(Sm.Cell) Sulfate AASHTO T290, Chloride AASHTO T291 Redox Potential ASTM G-200, Sulfides AWWA C105/A25.5

Sunland Analytical

11419 Sunrise Gold Circle, #10 Rancho Cordova, CA 95742 (916) 852-8557

> 08/23/2019 Date Reported Date Submitted 08/20/2019

To: Kerry Magner Newfields MDTS 2227 N. 5th St.

Elko, NV

89801

7.85

From: Gene Oliphant, Ph.D. \ Randy Horney General Manager \ Lab Manager

The reported analysis was requested for the following location: Location: BH19-26 Site ID : 10-11.5 FT. Your purchase order number is 4750385. Thank you for your business.

* For future reference to this analysis please use SUN # 80416-168078.

EVALUATION FOR SOIL CORROSION

Soil pH

Minimum Resistivity 0.75 ohm-cm (x1000)

Chloride

97.2 ppm

00.00972 %

Sulfate

295.2ppm

00.02952 %

Redox Potential

No Test

Sulfides

No Test

METHODS

pH AASHTO T289, Min.Resistivity AASHTO T288 Mod.(Sm.Cell) Sulfate AASHTO T290, Chloride AASHTO T291 Redox Potential ASTM G-200, Sulfides AWWA C105/A25.5

SUNLAND ANALYTICAL LAB 11419 Sunrise Gold Cr., Ste.10 Rancho Cordova, CA 95742 (916)852-8557

INVOICE

22 22 22 22 22 22 22

Inv.No. 100416

Newfields MDTS 2227 N. 5th St.

Elko, NV

89801

ATTENTION ACCOUNTS PAYABLE

Date 08/23/2019

Terms: NET 30, 30+ 15%

Customer P.O.# 4750385

Requestor: Magner

* Please indicate Invo.# on remittance

SUN NOS.	SAMPLE LOCATION	N	ANALYSIS	PRICE
*** *** *** *** *** ***	are also asks with disk away over sive sive role man core man are	ودع ورود المروح المرود المرود المرود المرود المرود المرود المرود المرود المرود ورود المرود ال	Sales Aries when seems noon was now	enth atter acce wide adap each ayou
168076	BH19-12	2.5-6.5 FT	CTP.1-AASHTO	137.00
168077	BH19-13	7.5-10.5 FT	CTP.1-AASHTO	137.00
168078	BH19-26	10-11.5 FT	CTP.1-AASHTO	137.00
		******** Total *****		411 00
		VANAGAGE TOCAL SANANAKA	•	411.00

APPENDIX C.6 Tailings Assessment Technical Memorandum (385-TM-07-CTFS)

TECHNICAL MEMORANDUM (385-TM-07-Tailings Assessment)

9400 Station Street, Suite 300 Lone Tree, CO 80124

T: 720.508.3300 F: 720.508.3339

To: Lithium Nevada Corporation

From: Kerry Magner, P.E.

Reviewed By: Nick Rocco, PhD., P.E.

Project: Thacker Pass Project

Project No: 475.385.000

Subject: Tailings Assessment

Date: December 20, 2019

1. INTRODUCTION

NewFields is engaged in a laboratory testing program assessing the geomechanical properties of the waste products (filtercakes and sulfate salts) expected to be generated at Lithium Nevada Corporation's (LNC) proposed Thacker Pass Project. This memo provides a summary of laboratory testing performed on these waste products, our interpretation of the testing results and recommendations for material handling.

2. LABORATORY PROGRAM

Samples of leached solids (LFilterCake), neutralization solids (NFilterCake), and sulfate salts (Salt) were provided by LNC and transported to the NewFields AMRL/AASHTO accredited laboratory in Elko, Nevada where the material testing is being conducted. Select laboratory tests were performed on individual components (LFilterCake, NFilterCake, and Salt) along with testing performed on composite filtercake samples both with and without salt. The composite filtercake samples are identified as the "tailings" that will be stored in a geomembrane lined facility at the project site.

The tailings with salt samples were reconstituted at a ratio of 64.1 percent LFilterCake, 17.3 percent NFilterCake, and 18.6 percent Salt, as measured by dry weight. The salts were hydrated with 11.1 percent tap water prior to reconstitution with the tailings. The tailings without salt samples were reconstituted at a ratio of 78.7 percent LFilterCake and 21.3 percent NFilterCake, as measured by dry weight.

It should be noted that all moisture contents presented in this memorandum were completed as per ASTM D2216 and are reported on a dry basis (Weight of water/Weight of dry solids) as this is the common reporting practice for geotechnical reporting.

Technical Memorandum (385-TM-07-CTFS) Thacker Pass Project Tailings Assessment NewFields Job No. 475.0385.000 December 20, 2019

Index testing included moisture content and Atterberg limits testing, which were used to assess the relationship between as-received moisture and the materials plasticity. Moisture content — unit weight relationships were developed from bulk samples of tailings, both with and without salt. Strength properties of tailings are estimated based upon Unconsolidated Undrained (UU) and Consolidated Undrained (CU) triaxial testing. This laboratory testing program included:

- Atterberg Limits (ASTM D4318)
- Natural Moisture Content (ASTM D2216)
- Modified Proctor Moisture Unit Weight Relationship (ASTM D1557)
- Unconsolidated Undrained Triaxial Compression (ASTM D2850)
- Consolidated Undrained Triaxial Compression (ASTM D4767)

Individual laboratory testing results are summarized in **Tables 1, 2** and **3.**

2.1 Index Property Testing

The index properties of the materials were evaluated by particle size analysis, moisture content and Atterberg limits testing. The Atterberg limits test was used to measure the moisture content of the upper and lower limits of the range in which the soil is in the plastic state, and are only performed on the soil fraction passing the No. 40 sieve (0.42 mm). The moisture content at the upper limit is known as the liquid limit (LL) and the moisture content at the lower limit is designated as the plastic limit (PL). The numerical difference between the LL and the PL, termed the plasticity index (PI), is a measure of the soil plasticity. Generally, soils that exhibit a PI between 5 and 10 are low plasticity, between 10 and 20 correlate to medium plasticity and between 20 and 40 correlate to high plasticity. Particle size analysis and Atterberg limits results indicate that the materials classify as an elastic silt (MH) with varying amounts of fine sand and medium plasticity.

Samples of the individual components were preserved at their as-received moisture content by double sealing bulk samples in airtight plastic bags and storing in sealed buckets. Gravimetric moisture contents for all samples tested ranged between 55 and 75-percent. Most materials had a moisture content above their LL, with the exception of the tailings material without salt.

TABLE 1 - RESULTS OF MOISTURE CONTENT AND INDEX TESTING

Material	Liquid Limit	Plastic Limit	Plasticity Index	As-Received Moisture Content
LFilterCake	53	40	13	55.7
NFilterCake	64	47	18	68.5
Salt	-	-	-	74.1
Tailings w/Salt	51	40	11	60.9
Tailings w/out Salt	71	59	12	59.3

2.2 Laboratory Compaction Testing

Two moisture-unit weight relationship tests using the modified Proctor method (ASTM D1557) were completed on bulk samples of tailings, one without salt and one with salt. The samples yielded maximum dry unit weights ranging from 70 to 72 pounds per cubic foot (pcf) and optimum moisture contents (OMCs) ranging from 45 to 46 percent. In general, the sample with salt yielded a higher dry unit weight and lower moisture content.

TABLE 2 - RESULTS OF LABORATORY COMPACTION TESTING

	Laboratory Compaction			
Material	Maximum	Optimum		
	Dry Unit Weight	Moisture Content		
	(pcf)	(%)		
Tailings w/out Salt	70.1	46.0		
Tailings with Salt	72.4	45.3		

2.3 Shear Strength

The shear strength of remolded tailings samples were measured by the triaxial compression test under isotropic Unconsolidated Undrained (UU) and Consolidated Undrained (CU) conditions. A bulk sample of tailings without salt was air dried to the OMC and six individual specimens were selected. Three of the tailings specimens were mixed with the salt and three were kept without salt. A second bulk sample of tailings was air dried to three percent over OMC and two tailings specimens were reconstituted with salt. All eight of these tailings specimens were then remolded at 95 percent of the maximum dry unit weight into 2.8-inch diameter by 5.6-inch tall test specimens.

The UU samples were confined at 25 pounds per square inch (psi) during testing while the CU samples were backpressure saturated and consolidated at 25 and 50 psi, respectively. Mohr-Coulomb strength parameters were developed from the test measurements as shown in **Table**3. Consolidated, drained parameters (effective stress) were calculated by subtracting the measured internal pore pressure from the chamber and axial applied stresses.

UU Triaxial CU Triaxial Testing Testing **Dry Unit** Moisture **Effective Stress Total Stress** Weight Material **Undrained** Content (%) **Friction Friction** (pcf) **Shear Strength** Cohesion Cohesion **Angle** Angle (psf) (psf) (psf) (degrees) (degrees) 66.6 45 40 65 19 400 6300 **Tailings** Tailings + 700 68.8 45 40 180 20 390 Salt Tailings+ 66.6 54 42 0 22 0 Salt

TABLE 3 - SHEAR STRENGTH PROPERTIES

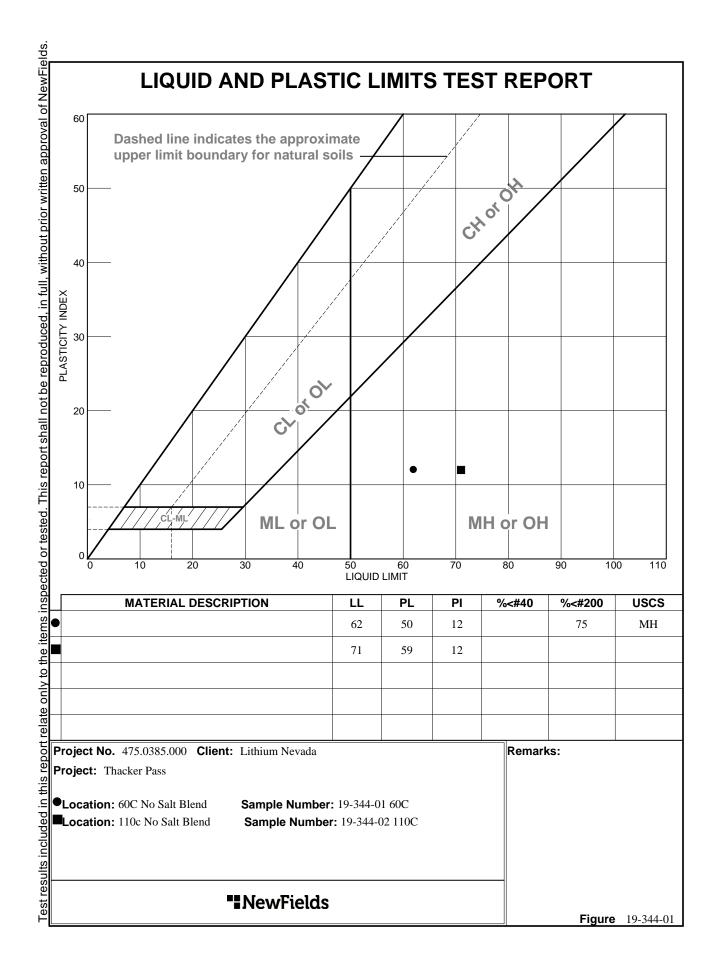
3. RECOMMENDATIONS

Currently, tailings without salt are produced at a moisture content that is in excess of the liquid limit and approximately 15 percent above optimum moisture content. Materials produced at this moisture content are difficult to handle and result in very low material strengths. The addition of salt to the tailings decreases the LL of the material, further reducing the workability at as produced moisture contents. The testing completed to date indicates that significant shear strength is achieved if the tailings are compacted to 95 percent of the maximum dry unit weight, near OMC and the salts are not mixed with the tailings. Therefore, the recommendation is that the salts be handled separately from the tailings and placed in nonstructural zones within the CTFS facility.

Design parameters utilized in the slope stability evaluation for the Clay Tailings Fitter Stack (CTFS) should be conservatively selected based upon the results of the laboratory testing completed.

Based upon the laboratory data generated and observations of the materials both pre- and post-testing, it is believed that there will be an increase in material strength over time; although the exact magnitude of this strength increase is unknown. Long-term, there is an opportunity to optimize the facility design if it can be demonstated that the tailings can achieve

Technical Memorandum (385-TM-07-CTFS) Thacker Pass Project Tailings Assessment NewFields Job No. 475.0385.000 December 20, 2019



strength gain after deposition. With that in mind, a robust field investigation program should be completed during early operations to assess assumed improvements.

P:\Projects\0385.000 Lithium Nevada Thacker Pass Project\J-REPORTS\Technical Memos\TM-07 Tailings Assessment\TM-07 - Thacker Pass Tailings Assessment.docx

APPENDIX C.7 Tailings Laboratory Testing Results

Tested By: JH Checked By: JH

Moisture Content, (%) (D/E) x100

MOISTURE CONTENT (ASTM D 2216 / ASTM D 4643)

LABORATORY WORKSHEET

		2, (501) (1	OITT WOITHSIT			
Client:		Lithium Neva	da	Location:	See E	Below
Project Title:	oject Title:		SS	Elevation:		-
Project Number: 475.0385		475.0385.00		Test Date:	10/31/2019	
Project Engineer:	Eric Nieble		Tested By:		H	
Field Sample ID:		See Below		Checked By:	J	H
Drying Conditions: 60	deg C / 110	deg C	Method: Over	<mark>ı (O)</mark> / Microwa	ive (M) / Hot P	late (H)
Sample No.		19-380-01	19-380-02	19-380-03		
Location		LFILTCAKE	NFILTCAKE	MAGSULF		
Depth						
Soil Description						
(USCS)						
Trial No.		1	2	3	4	5
Tare No.						
Tare + Wet Soil	Α	229.8	360.7	323.6		
Tare + Dry Soil	В	163.6	291.1	237.9		
Tare	С	44.7	189.5	122.3		
Wt. of Water	D= A-B	66.2	69.6	85.7		
Dry Soil, Ws	E= B-C	118.9	101.6	115.6		
Moisture Content, (%)	(D/E) x100	55.7%	68.5%	74.1%		
Sample No.						
Location						
Depth						
Soil Description						
(USCS)						
Trial No.		6	7	8	9	10
Tare No.						
Tare + Wet Soil	Α					
Tare + Dry Soil	В					
Tare	С					
Wt. of Water	D= A-B					
Dry Soil, Ws	E= B-C					

Remarks:			

MOISTURE CONTENT (ASTM D 2216 / ASTM D 4643)

LABORATORY WORKSHEET

Client:		Lithium Neva	ada	Location:	See E	Below
Project Title:		Thacker Pa		Elevation:		-
Project Number:		475.0385.0	00 Test Date:		11/7/2019	
Project Engineer:		Eric Nieble	er	Tested By:	J	Н
Field Sample ID:		See Below	V	Checked By:	J	H
Drying Conditions: 60 c	deg C / 110	deg C	Method: Ove	n (O) / Microwa	ave (M) / Hot P	late (H)
Sample No.		19-389-01				
Location		Blend 11/6/1	9			
Depth						
Soil Description						
(USCS)						
Trial No.		1	2	3	4	5
Tare No.						
Tare + Wet Soil	Α	243.1				
Tare + Dry Soil	В	198.3				
Tare	С	124.7				
Wt. of Water	D= A-B	44.8				
Dry Soil, Ws	E= B-C	73.6				
Moisture Content, (%)	(D/E) x100	60.9%				
Sample No.						
Location						
Depth						
Soil Description						
(USCS)						
Trial No.		6	7	8	9	10
Tare No.						
Tare + Wet Soil	Α					
Tare + Dry Soil	В					
Tare	С					
Wt. of Water	D= A-B					
Dry Soil, Ws	E= B-C					
Moisture Content, (%)	(D/E) x100		<u> </u>			

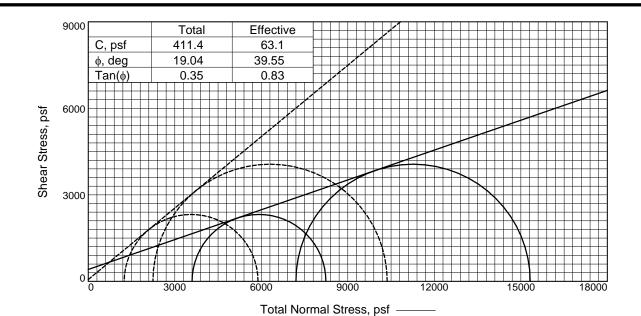
Terrario	

MOISTURE CONTENT (ASTM D 2216 / ASTM D 4643)

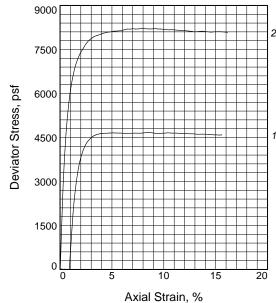
LABORATORY WORKSHEET

		L/ (BOTO (IONI WORKSI			
Client:		Lithium Neva	ada	Location:	Blend v	v/o Salt
Project Title:		Thacker Pa		Elevation:		-
Project Number:		475.0385.0		Test Date:		/2019
Project Engineer:		Eric Nieble		Tested By:		H
Field Sample ID:		See Below	<i>I</i>	Checked By:	J	H
Drying Conditions: 60	dea C / 110	dea C	Method: Ove	n (O) / Microwa	ave (M) / Hot D	lato (H)
Drying Conditions. 00	ueg C / 110	ueg C	Wethou. Ove	ii (O) / Wherowa	ave (IVI) / FIOCE	iate (II)
Sample No.		19-393-01				
Location		Blend w/o sal	t			
Depth						
Soil Description						
(USCS)						
Trial No.		1	2	3	4	5
Tare No.						
Tare + Wet Soil	А	337.4				
Tare + Dry Soil	В	258				
Tare	С	124.2				
Wt. of Water	D= A-B	79.4				
Dry Soil, Ws	E= B-C	133.8				
Moisture Content, (%)	(D/E) x100	59.3%				
c				I	l	
Sample No.						
Location						
Depth						
Soil Description						
(USCS)						
Trial No.		6	7	8	9	10
Tare No.						
Tare + Wet Soil	Α					
Tare + Dry Soil	В					
Tare	С					
Wt. of Water	D= A-B					
Dry Soil, Ws	E= B-C					
Moisture Content, (%)	(D/E) x100					

Remarks:


Elev/	Classification		Nat.			PI	% >	% <
Depth	USCS	AASHTO	Moist.	Sp.G.	LL	FI	3/8 in.	No.200
				3.119			0	

port	TEST RESULTS	MATERIAL DESCRIPTION			
this rep	Maximum dry density = 70.1 pcf	Blend without salt			
┙	Optimum moisture = 46.0 %				
ded	Project No. 475.0385.000 Client: Lithium Nevada	Remarks:			
cluc	Project: Thacker Pass	*Measured Specific Gravity (19-057-01)			
ij	Date: 11/12/				
ults	○ Location: Tailings Blend w/o Salt Sample Number: 19-393-01				
estres	Project No. 475.0385.000 Client: Lithium Nevada Project: Thacker Pass Date: 11/12/ Location: Tailings Blend w/o Salt Sample Number: 19-393-01 NewFields	Figure 10 202 01			
\vdash		Figure 19-393-01			


Tested By: JH ___ Checked By: JH

port	TEST RESULTS	MATERIAL DESCRIPTION
this re	Maximum dry density = 72.4 pcf	
ij	Optimum moisture = 45.3 %	
ded	Project No. 475.0385.000 Client: Lithium Nevada	Remarks:
Sluc	Project: Thacker Pass	*Measured Specific Gravity (19-263-05)
i	Date: 11/13/	
ults	○ Location: Tailings Blend w/ Salt Sample Number: 19-393-02	
Test res	■■ NewFields	Figure 19-393-02

Tested By: JH Checked By: JH

Effective Normal Stress, psf -----

	Sa	mple No.	1	2	
2	Initial	Water Content, % Dry Density, pcf Saturation, % Void Ratio Diameter, in. Height, in.	45.1 66.4 71.9 2.0077 2.801 5.629	71.9 2.0063 2.801	
1	At Test	Water Content, % Dry Density, pcf Saturation, % Void Ratio Diameter, in. Height, in.	52.4 74.6 100.0 1.6764 2.693 5.417	83.4 100.0 1.3956 2.594	
	Eff Fai	ain rate, %/min. Cell Pressure, psi Stress, psf Fotal Pore Pr., psf Strain, % Stress, psf Fotal Pore Pr., psf Strain, %	0.02 25.000 4639.2 9599.0 6.2	50.000	
	$\overline{\sigma}_{1}$	Failure, psf	5886.3	10365.4	

Type of Test:

CU with Pore Pressures **Sample Type:** Remolded

Description: Filter Cake w/o Salt at OMC - CU

Test

LL= 71 **PL=** 12 **PI=** 59

Specific Gravity= 3.2

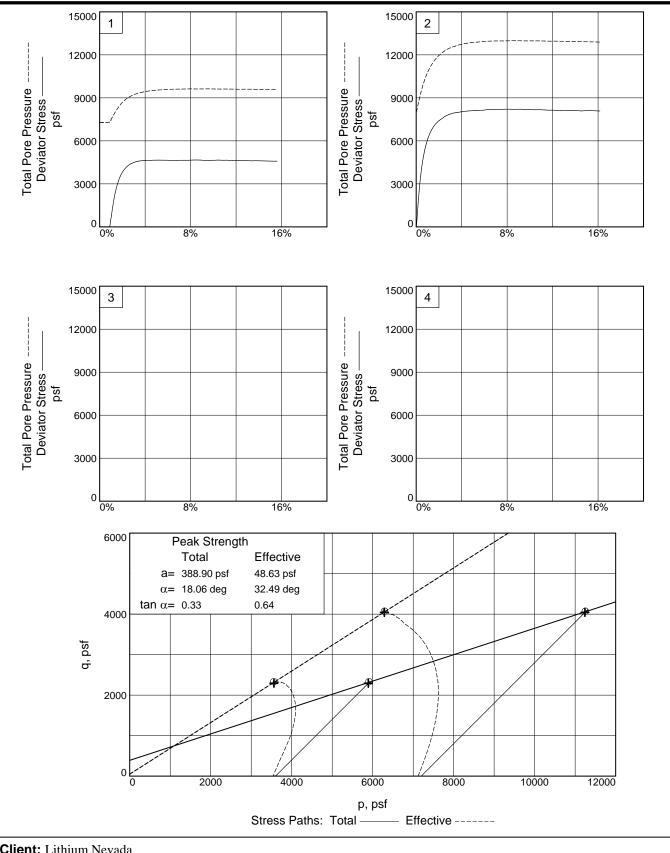
Remarks: Failure chosen at 5% strain

Client: Lithium Nevada

 $\overline{\sigma}_3$ Failure, psf

Project: Thacker Pass

Source of Sample: Reconstituted Tailings


Sample Number: 19-421-01,-02

Proj. No.: 475.0385.000 **Date Sampled:** 12/9/19

■NewFields

1247.1 2241.2

Figure ____

Client: Lithium Nevada Project: Thacker Pass

Source of Sample: Reconstituted Tailings **Sample Number:** 19-421-01,-02

Project No.: 475.0385.000 Figure _____ Newfields Mining Design and Technical Services

TRIAXIAL COMPRESSION TEST

CU with Pore Pressures

12/17/2019 5:01 PM

Date: 12/9/19

Client: Lithium Nevada
Project: Thacker Pass
Project No.: 475.0385.000

Location: Reconstituted Tailings

Sample Number: 19-421-01,-02

Description: Filter Cake w/o Salt at OMC - CU Test

Remarks: Failure chosen at 5% strain

Type of Sample: Remolded

Specific Gravity=3.2 LL=71 PL=12 Pl=59

Test Method: COE uniform strain

P	Parameters f	for Specimen No.	.1	
Specimen Parameter	Initial	Saturated	Consolidated	Final
Moisture content: Moist soil+tare, gms.	417.620			1101.010
Moisture content: Dry soil+tare, gms.	326.920			746.590
Moisture content: Tare, gms.	125.760			150.160
Moisture, %	45.1	62.7	52.4	59.4
Moist specimen weight, gms.	877.40			
Diameter, in.	2.801	2.801	2.693	
Area, in. ²	6.162	6.162	5.698	
Height, in.	5.629	5.629	5.417	
Net decrease in height, in.		0.000	0.212	
Wet density, pcf	96.4	108.1	113.7	
Dry density, pcf	66.4	66.4	74.6	
Void ratio	2.0077	2.0077	1.6764	
Saturation, %	71.9	100.0	100.0	

Test Readings for Specimen No. 1

Membrane modulus = 0.124105 kN/cm^2

Membrane thickness = 0.02 cm

Consolidation cell pressure = 75.320 psi (10846.1 psf)

Consolidation back pressure = 50.320 psi (7246.1 psf)

Consolidation effective confining stress = 3600.0 psf

Strain rate, %min. = 0.02

Fail. Stress = 4639.2 psf at reading no. 84

					Test Re	adings fo	or Specim	en No	. 1		
No.	Def. Dial in.	Load Dial	Load lbs.	Strain %	Deviator Stress psf	Minor Eff. Stress psf	Major Eff. Stress psf	1:3 Ratio	Pore Press. psi	P psf	Q psf
0	-0.5917	2.954	0.0	0.0	0.0	3570.1	3570.1	1.00	50.527	3570.1	0.0
1	-0.5903	3.474	0.5	0.0	13.2	3570.3	3583.5	1.00	50.526	3576.9	6.6
2	-0.5889	3.504	0.6	0.1	13.9	3569.9	3583.8	1.00	50.529	3576.9	7.0
3	-0.5875	3.472	0.5	0.1	13.1	3570.6	3583.7	1.00	50.524	3577.2	6.5
4	-0.5861	3.430	0.5	0.1	12.0	3570.8	3582.8	1.00	50.523	3576.8	6.0
5	-0.5846	3.406	0.5	0.1	11.4	3570.8	3582.2	1.00	50.523	3576.5	5.7
6	-0.5832	3.361	0.4	0.2	10.3	3570.4	3580.7	1.00	50.525	3575.6	5.1
7	-0.5818	3.291	0.3	0.2	8.0	3570.4	3578.3	1.00	50.526	3574.3	4.0
8	-0.5804	3.390	0.4	0.2	10.4	3570.1	3580.5	1.00	50.527	3575.3	5.2
	-0.5790	3.380	0.4	0.2	10.0	3569.0	3579.1	1.00	50.535	3574.1	5.0
	-0.5776	3.346	0.4	0.3	9.1	3567.5	3576.6	1.00	50.545	3572.1	4.5
	-0.5762	3.288	0.3	0.3	7.6	3567.0	3574.6	1.00	50.549	3570.8	3.8
	-0.5748	3.309	0.4	0.3	8.0	3566.0	3574.0	1.00	50.556	3570.0	4.0
	-0.5734	3.303	0.3	0.3	7.8	3564.9	3572.7	1.00	50.563	3568.8	3.9
	-0.5720	3.331	0.4	0.4	8.4	3563.4	3571.8	1.00	50.574	3567.6	4.2
	-0.5726	3.387	0.4	0.4	9.7	3562.4	3572.1	1.00	50.574	3567.2	4.9
	-0.5692	3.405	0.4	0.4	10.1	3560.8	3570.9	1.00	50.592	3565.9	5.1
	-0.5677	3.331	0.3	0.4	8.1	3559.8	3567.9	1.00	50.592	3563.8	4.1
	-0.5663	3.307	0.4	0.4	7.5	3559.0	3566.4	1.00	50.605	3562.7	3.7
	-0.5649	3.312	0.4	0.5	7.5	3558.3	3565.9	1.00	50.609	3562.1	3.8
	-0.5635	3.316	0.4	0.5	7.5	3556.7	3564.2	1.00	50.621	3560.5	3.8
	-0.5621	3.315	0.4	0.5	7.4	3555.3	3562.7	1.00	50.631	3559.0	3.7
	-0.5607	3.270	0.3	0.6	6.2	3554.5	3560.8	1.00	50.636	3557.7	3.1
	-0.5593	3.246	0.3	0.6	5.5	3554.0	3559.5	1.00	50.640	3556.7	2.8
	-0.5579	3.174	0.2	0.6	3.6	3552.9	3556.5	1.00	50.647	3554.7	1.8
	-0.5565	3.203	0.2	0.7	4.3	3551.7	3556.0	1.00	50.656	3553.8	2.2
26	-0.5551	3.228	0.3	0.7	4.8	3550.6	3555.4	1.00	50.663	3553.0	2.4
	-0.5537	3.273	0.3	0.7	5.9	3549.1	3555.0	1.00	50.673	3552.1	2.9
28	-0.5522	3.243	0.3	0.7	5.0	3547.6	3552.7	1.00	50.684	3550.1	2.5
29	-0.5508	3.239	0.3	0.8	4.9	3547.1	3551.9	1.00	50.687	3549.5	2.4
30	-0.5494	3.212	0.3	0.8	4.1	3546.9	3551.0	1.00	50.689	3549.0	2.1
31	-0.5480	3.183	0.2	0.8	3.3	3545.4	3548.7	1.00	50.699	3547.0	1.7
32	-0.5466	3.291	0.3	0.8	5.9	3544.5	3550.4	1.00	50.706	3547.4	3.0
33	-0.5452	3.361	0.4	0.9	7.6	3542.4	3550.0	1.00	50.720	3546.2	3.8
34	-0.5438	4.160	1.2	0.9	27.5	3534.3	3561.8	1.01	50.776	3548.0	13.8
35	-0.5424	7.191	4.2	0.9	106.1	3509.8	3615.9	1.03	50.946	3562.9	53.1
	-0.5410	13.222	10.3	0.9	257.1	3464.6	3721.7	1.07	51.260	3593.2	128.5
	-0.5396	19.852	16.9	1.0	423.0	3417.2	3840.2	1.12	51.589	3628.7	211.5
	-0.5382	25.420	22.5	1.0	562.2	3378.5	3940.7	1.17	51.858	3659.6	281.1
	-0.5367	29.681	26.7	1.0	668.6	3349.7	4018.3	1.20	52.058	3684.0	334.3
	-0.5353	35.727	32.8	1.0	819.7	3307.1	4126.7	1.25	52.354	3716.9	409.8
	-0.5333	58.211	55.3	1.1	1380.6	3154.2	4534.7	1.44	53.416	3844.5	690.3
	-0.5241	78.988	76.0	1.1	1897.6	3002.2	4899.9	1.63	54.471	3951.0	948.8
	-0.5184	95.752	92.8	1.4	2313.6	2863.3	5176.9	1.81	55.436	4020.1	1156.8
		110.393	107.4	1.5	2675.8	2725.3	5401.1	1.98	56.394		1337.9
		122.768	119.8	1.6	2980.8	2597.1	5578.0	2.15	57.284		1490.4
	0.5016	132.890	129.9	1.7	3229.2	2479.6	5708.9	2.30	58.100	4094.3	1614.6

					Test Re	adings fo	r Specim	en No	. 1		
No.	Def. Dial in.	Load Dial	Load lbs.	Strain %	Deviator Stress psf	Minor Eff. Stress psf	Major Eff. Stress psf	1:3 Ratio	Pore Press. psi	P psf	Q psf
47	-0.4959	141.857	138.9	1.8	3448.4	2370.6	5819.1	2.45	58.857	4094.9	1724.2
48	-0.4903	149.377	146.4	1.9	3631.3	2270.4	5901.7	2.60	59.553	4086.1	1815.6
49		155.667	152.7	2.0	3783.3	2180.6	5963.9	2.73	60.177	4072.2	1891.6
50	-0.4790	160.966	158.0	2.1	3910.4	2098.1	6008.5	2.86	60.750	4053.3	1955.2
51		165.692	162.7	2.2	4023.1	2023.3	6046.3	2.99	61.270	4034.8	2011.5
52	-0.4678	169.703	166.7	2.3	4117.9	1954.7	6072.6	3.11	61.746	4013.6	2058.9
53		173.218	170.3	2.4	4200.2	1893.3	6093.5	3.22	62.172	3993.4	2100.1
54		176.305	173.4	2.5	4271.8	1837.6	6109.4	3.32	62.559	3973.5	2135.9
55		179.021	176.1	2.6	4334.1	1785.8	6119.9	3.43	62.919	3952.8	2167.0
56		181.200	178.2	2.7	4383.0	1739.8	6122.8	3.52	63.238	3931.3	2191.5
57		182.924	180.0	2.8	4420.7	1698.1	6118.8	3.60	63.528	3908.4	2210.4
58	-0.4340		181.6	2.9	4456.9	1661.1	6118.0	3.68	63.784	3889.6	2228.4
59		186.379	183.4	3.0	4495.9	1625.9	6121.8	3.77	64.029	3873.8	2248.0
60		187.826	184.9	3.1	4526.5	1593.3	6119.8	3.84	64.256	3856.5	2263.3
61		189.042	186.1	3.2	4551.4	1563.8	6115.3	3.91	64.460	3839.5	2275.7
62		189.795	186.8	3.3	4564.9	1537.0	6101.9	3.97	64.647	3819.4	2282.5
63		190.860	187.9	3.4	4586.0	1512.3	6098.4	4.03	64.818	3805.3	2293.0
64		191.656	188.7	3.5	4600.5	1490.3	6090.8	4.09	64.970	3790.6	2300.3
65	-0.3946		189.3	3.6	4611.2	1468.8	6080.0	4.14	65.120	3774.4	2305.6
66		192.720	189.8	3.7	4616.5	1449.8	6066.3	4.18	65.252	3758.0	2308.2
67		193.445	190.5	3.8	4629.1	1432.4	6061.5	4.23	65.373	3746.9	2314.6
68		194.025	191.1	4.0	4638.2	1416.8	6055.0	4.27	65.481	3735.9	2319.1
69		194.164	191.2	4.1	4636.5	1402.2	6038.8	4.31	65.582	3720.5	2318.3
70		194.603	191.6	4.2	4642.1	1387.2	6029.3	4.35	65.687	3708.2	2321.1
71		194.941	192.0	4.3	4645.3	1374.4	6019.7	4.38	65.775	3697.1	2322.6
72	-0.3552		192.1	4.4	4642.9	1362.2	6005.1	4.41	65.860	3683.6	2321.5
73		195.364	192.4	4.5	4645.4	1350.5	5996.0	4.44	65.941	3673.2	2322.7
74 75		195.549	192.6	4.6	4644.8	1340.4	5985.2	4.47	66.012	3662.8	2322.4
75		195.999	193.0	4.7	4650.6	1331.6	5982.2	4.49	66.073	3656.9	2325.3
	-0.3326		193.4	4.8	4653.4	1322.5	5975.9	4.52	66.136	3649.2	2326.7
	-0.3270		193.5	4.9	4650.8	1313.8	5964.6	4.54	66.197	3639.2	2325.4
	-0.3214		193.8	5.0	4654.3	1306.5	5960.8	4.56	66.247 66.280	3633.6	2327.1
	-0.3158 -0.3101		194.2 194.3	5.1 5.2	4657.0 4654.6	1301.8 1299.4	5958.8	4.58 4.58	66.296	3630.3	2328.5 2327.3
	-0.2960		194.5	5.5	4650.1	1299.4	5954.0 5934.2	4.62	66.402	3626.7 3609.2	2325.0
	-0.2820		195.2	5.7	4650.1	1264.2	5920.0	4.66	66.502	3594.9	2325.1
	-0.2679		195.6	6.0	4647.5	1256.7	5904.1	4.70	66.593	3580.4	2323.7
	-0.2538		195.8	6.2	4639.2	1230.7	5886.3	4.70	66.660	3566.7	2319.6
	-0.2397		196.5	6.5	4643.5	1239.7	5883.2	4.75	66.711	3561.5	2321.7
	-0.2357		190.5	6.8	4643.1	1239.7	5882.1	4.75	66.716	3560.6	2321.7
	-0.2237		197.0	7.0	4646.6	1236.3	5882.9	4.75	66.734	3559.6	2323.3
	-0.2110		198.3	7.3	4647.3	1230.3	5877.2	4.78	66.779	3553.6	2323.7
	-0.1973		198.8	7.5	4646.0	1225.6	5871.5	4.79	66.809	3548.5	2323.7
	-0.1694		199.4	7.8	4645.9	1223.0	5867.5	4.80	66.836	3544.6	2322.9
	-0.1094		200.3	8.1	4654.4	1221.7	5874.6	4.81	66.847	3547.4	2327.2
	-0.1333		200.3	8.3	4664.5	1223.6	5888.2	4.81	66.823	3555.9	2332.3
	-0.1412		201.9	8.6	4665.4	1227.7	5893.1	4.80	66.794	3560.4	2332.7
75	0.12/1	201.007					n and Tec				2332.1

					Test Re	adings fo	or Specim	en No	. 1		
No.	Def. Dial in.	Load Dial	Load lbs.	Strain %	Deviator Stress psf	Minor Eff. Stress psf	Major Eff. Stress psf	1:3 Ratio	Pore Press. psi	P psf	Q psf
94	-0.1130	205.266	202.3	8.8	4661.3	1223.5	5884.7	4.81	66.824	3554.1	2330.6
95	-0.0990	205.212	202.3	9.1	4646.7	1220.9	5867.7	4.81	66.841	3544.3	2323.4
96	-0.0849	205.573	202.6	9.4	4641.7	1219.4	5861.1	4.81	66.852	3540.3	2320.9
97	-0.0708	205.934	203.0	9.6	4636.7	1219.5	5856.2	4.80	66.851	3537.8	2318.3
98	-0.0567	206.913	204.0	9.9	4645.6	1224.5	5870.1	4.79	66.817	3547.3	2322.8
99	-0.0427	207.605	204.7	10.1	4647.9	1229.8	5877.7	4.78	66.780	3553.8	2324.0
100	-0.0286	208.718	205.8	10.4	4659.7	1233.3	5893.0	4.78	66.755	3563.2	2329.9
101	-0.0145	208.934	206.0	10.7	4651.1	1231.2	5882.3	4.78	66.770	3556.8	2325.5
102	-0.0004	209.370	206.4	10.9	4647.3	1229.5	5876.9	4.78	66.782	3553.2	2323.7
103	0.0137	210.087	207.1	11.2	4649.9	1229.8	5879.7	4.78	66.779	3554.8	2324.9
104	0.0277	210.337	207.4	11.4	4641.9	1230.5	5872.3	4.77	66.775	3551.4	2320.9
105	0.0418	210.487	207.5	11.7	4631.6	1236.6	5868.2	4.75	66.733	3552.4	2315.8
106	0.0559	211.459	208.5	12.0	4639.6	1243.2	5882.8	4.73	66.687	3563.0	2319.8
107		211.956	209.0	12.2	4636.9	1244.9	5881.8	4.72	66.675	3563.4	2318.5
108		212.109	209.2	12.5	4626.6	1242.4	5869.0	4.72	66.692	3555.7	2313.3
109		212.717	209.8	12.7	4626.3	1242.6	5868.9	4.72	66.691	3555.8	2313.1
110		213.034	210.1	13.0	4619.4	1242.0	5861.4	4.72	66.695	3551.7	2309.7
111		213.184	210.2	13.3	4608.9	1242.6	5851.5	4.71	66.691	3547.1	2304.5
112	0.1404	213.933	211.0	13.5	4611.5	1249.6	5861.1	4.69	66.642	3555.4	2305.7
113	0.1545	214.698	211.7	13.8	4614.3	1255.1	5869.4	4.68	66.604	3562.2	2307.2
114	0.1685	215.240	212.3	14.0	4612.2	1256.7	5868.9	4.67	66.593	3562.8	2306.1
115	0.1826	215.550	212.6	14.3	4604.9	1254.0	5859.0	4.67	66.612	3556.5	2302.5
116		215.907	213.0	14.6	4598.7	1253.2	5851.9	4.67	66.617	3552.5	2299.3
117		216.138	213.2	14.8	4589.7	1253.9	5843.6	4.66	66.612	3548.8	2294.8
118	0.2249	216.717	213.8	15.1	4588.1	1254.6	5842.7	4.66	66.607	3548.7	2294.0
119	0.2389	217.063	214.1	15.3	4581.5	1263.0	5844.4	4.63	66.549	3553.7	2290.7
120		217.987	215.0	15.6	4587.1	1268.2	5855.4	4.62	66.513	3561.8	2293.6
121	0.2533	217.875	214.9	15.6	4584.5	1268.7	5853.2	4.61	66.510	3560.9	2292.2

F	arameters	for Specimen No. 2	2	
Specimen Parameter	Initial	Saturated	Consolidated	Final
Moisture content: Moist soil+tare, gms.	417.620			1200.790
Moisture content: Dry soil+tare, gms.	326.920			861.440
Moisture content: Tare, gms.	125.760			267.220
Moisture, %	45.1	62.7	43.6	57.1
Moist specimen weight, gms.	877.50			
Diameter, in.	2.801	2.801	2.594	
Area, in. ²	6.162	6.162	5.286	
Height, in.	5.627	5.627	5.227	
Net decrease in height, in.		0.000	0.400	
Wet density, pcf	96.4	108.1	119.8	
Dry density, pcf	66.5	66.5	83.4	
Void ratio	2.0063	2.0063	1.3956	
Saturation, %	71.9	100.0	100.0	

Test Readings for Specimen No. 2

Membrane modulus = 0.124105 kN/cm^2

Membrane thickness = 0.02 cm

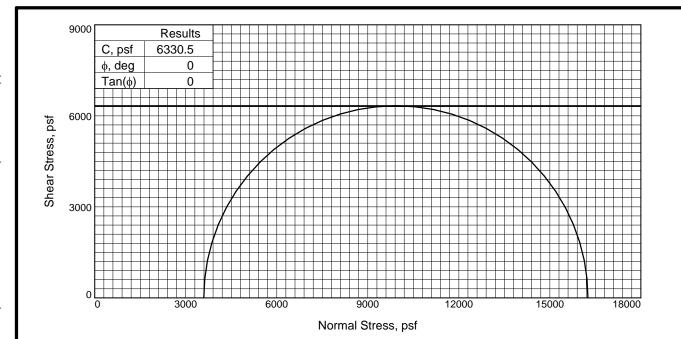
Consolidation cell pressure = 105.110 psi (15135.8 psf)

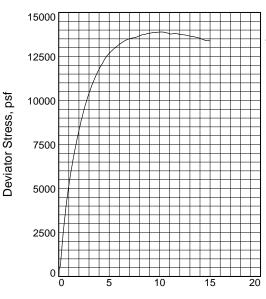
Consolidation back pressure = 55.110 psi (7935.8 psf)

Consolidation effective confining stress = $7200.0 \ psf$

Strain rate, %/min. = 0.02

Fail. Stress = 8124.2 psf at reading no. 80


No.	Def. Dial in.	Load Dial	Load lbs.	Strain %	Deviator Stress psf	Minor Eff. Stress psf	Major Eff. Stress psf	1:3 Ratio	Pore Press. psi	P psf	Q psf
0	-0.5393	4.428	0.0	0.0	0.0	7121.8	7121.8	1.00	55.653	7121.8	0.0
1	-0.5374	12.688	8.3	0.0	224.9	7055.2	7280.1	1.03	56.115	7167.7	112.5
2	-0.5360	22.457	18.0	0.1	490.8	6973.0	7463.8	1.07	56.686	7218.4	245.4
3	-0.5346	33.121	28.7	0.1	780.9	6881.0	7661.9	1.11	57.325	7271.5	390.5
4	-0.5332	43.913	39.5	0.1	1074.4	6785.5	7859.9	1.16	57.988	7322.7	537.2
5	-0.5317	55.078	50.6	0.1	1377.8	6685.7	8063.6	1.21	58.681	7374.7	688.9
6	-0.5303	65.486	61.1	0.2	1660.5	6587.9	8248.5	1.25	59.360	7418.2	830.3
7	-0.5289	75.618	71.2	0.2	1935.6	6490.0	8425.6	1.30	60.040	7457.8	967.8
8	-0.5275	85.456	81.0	0.2	2202.4	6392.0	8594.5	1.34	60.721	7493.2	1101.2
9	-0.5261	94.750	90.3	0.3	2454.4	6295.8	8750.2	1.39	61.389	7523.0	1227.2
10	-0.5247	103.513	99.1	0.3	2691.8	6201.8	8893.6	1.43	62.042	7547.7	1345.9
11	-0.5233	111.721	107.3	0.3	2914.0	6110.5	9024.5	1.48	62.676	7567.5	1457.0
12	-0.5219	119.719	115.3	0.3	3130.4	6020.5	9150.9	1.52	63.301	7585.7	1565.2
13	-0.5205	127.544	123.1	0.4	3341.9	5929.0	9270.9	1.56	63.937	7599.9	1671.0
14	-0.5191	134.621	130.2	0.4	3533.1	5842.8	9375.9	1.60	64.535	7609.4	1766.5
15	-0.5177	141.210	136.8	0.4	3710.9	5759.4	9470.2	1.64	65.114	7614.8	1855.4
16	-0.5162	147.584	143.2	0.4	3882.8	5678.4	9561.2	1.68	65.676	7619.8	1941.4
17	-0.5148	153.609	149.2	0.5	4045.1	5598.6	9643.7	1.72	66.231	7621.1	2022.5
18	-0.5134	159.427	155.0	0.5	4201.7	5520.6	9722.3	1.76	66.773	7621.4	2100.8
19	-0.5120	164.997	160.6	0.5	4351.5	5444.6	9796.1	1.80	67.300	7620.3	2175.7
20	-0.5106	170.345	165.9	0.5	4495.2	5369.9	9865.1	1.84	67.819	7617.5	2247.6
21	-0.5092	175.530	171.1	0.6	4634.4	5295.4	9929.8	1.88	68.337	7612.6	2317.2
22	-0.5078	180.267	175.8	0.6	4761.4	5225.0	9986.4	1.91	68.826	7605.7	2380.7
23	-0.5064	184.679	180.3	0.6	4879.6	5156.0	10035.5	1.95	69.305	7595.7	2439.8
24	-0.5050	188.814	184.4	0.7	4990.2	5089.1	10079.3	1.98	69.769	7584.2	2495.1
				N1	- - - B#::	D	T	l! I	C	_	


Newfields Mining Design and Technical Services

					Test Re	adings fo	or Specim	en No	. 2		
No.	Def. Dial in.	Load Dial	Load lbs.	Strain %	Deviator Stress psf	Minor Eff. Stress psf	Major Eff. Stress psf	1:3 Ratio	Pore Press. psi	P psf	Q psf
25	-0.5036	192.978	188.5	0.7	5101.5	5023.4	10124.9	2.02	70.225	7574.2	2550.7
26	-0.5022	197.083	192.7	0.7	5211.1	4959.2	10170.3	2.05	70.671	7564.7	2605.6
27	-0.5007	201.011	196.6	0.7	5315.9	4896.4	10212.3	2.09	71.107	7554.3	2658.0
28	-0.4993	204.455	200.0	0.8	5407.6	4835.0	10242.6	2.12	71.533	7538.8	2703.8
29	-0.4979	207.900	203.5	0.8	5499.3	4776.1	10275.4	2.15	71.942	7525.8	2749.6
30	-0.4965	211.250	206.8	0.8	5588.3	4718.4	10306.6	2.18	72.343	7512.5	2794.1
31	-0.4951	214.461	210.0	0.8	5673.5	4662.4	10335.9	2.22	72.732	7499.2	2836.7
32	-0.4937	217.509	213.1	0.9	5754.3	4607.9	10362.2	2.25	73.110	7485.1	2877.1
33	-0.4923	220.548	216.1	0.9	5834.8	4553.9	10388.7	2.28	73.485	7471.3	2917.4
34	-0.4909	223.342	218.9	0.9	5908.6	4501.8	10410.4	2.31	73.847	7456.1	2954.3
35	-0.4895	226.090	221.7	1.0	5981.1	4450.3	10431.4	2.34	74.205	7440.9	2990.5
36	-0.4881	228.840	224.4	1.0	6053.7	4399.8	10453.4	2.38	74.556	7426.6	3026.8
37	-0.4867	231.260	226.8	1.0	6117.3	4351.3	10468.6	2.41	74.892	7410.0	3058.6
38	-0.4853	233.683	229.3	1.0	6180.9	4303.7	10484.6	2.44	75.223	7394.1	3090.5
39	-0.4838	235.831	231.4	1.1	6237.1	4258.5	10495.7	2.46	75.537	7377.1	3118.6
40	-0.4824	238.043	233.6	1.1	6295.0	4213.4	10508.4	2.49	75.850	7360.9	3147.5
41	-0.4768	246.371	241.9	1.2	6512.4	4042.6	10554.9	2.61	77.036	7298.8	3256.2
42	-0.4712	253.283	248.9	1.3	6691.1	3889.8	10581.0	2.72	78.097	7235.4	3345.6
43	-0.4655	259.512	255.1	1.4	6851.1	3750.7	10601.8	2.83	79.064	7176.2	3425.6
44	-0.4599	264.819	260.4	1.5	6986.0	3621.2	10607.2	2.93	79.963	7114.2	3493.0
45	-0.4543	269.398	265.0	1.6	7101.1	3504.7	10605.8	3.03	80.772	7055.3	3550.5
46	-0.4487	273.537	269.1	1.7	7204.1	3399.5	10603.6	3.12	81.503	7001.5	3602.1
47	-0.4430	277.025	272.6	1.8	7289.5	3302.8	10592.3	3.21	82.174	6947.6	3644.7
48	-0.4374	280.536	276.1	1.9	7375.3	3214.6	10589.9	3.29	82.786	6902.2	3687.6
49	-0.4318	283.179	278.8	2.1	7437.7	3134.0	10571.7	3.37	83.346	6852.9	3718.8
50	-0.4261	285.873	281.4	2.2	7501.3	3057.5	10558.8	3.45	83.877	6808.1	3750.7
51	-0.4205	288.216	283.8	2.3	7555.4	2989.3	10544.7	3.53	84.351	6767.0	3777.7
52	-0.4149	291.148	286.7	2.4	7625.1	2927.7	10552.7	3.60	84.779	6740.2	3812.5
53	-0.4092	293.809	289.4	2.5	7687.3	2867.6	10554.9	3.68	85.196	6711.2	3843.7
54	-0.4036	295.740	291.3	2.6	7730.1	2813.6	10543.7	3.75	85.571	6678.6	3865.0
55	-0.3980	298.016	293.6	2.7	7781.9	2763.3	10545.2	3.82	85.920	6654.3	3890.9
56	-0.3923	299.635	295.2	2.8	7816.1	2718.2	10534.3	3.88	86.234	6626.3	3908.1
57	-0.3867	301.218	296.8	2.9	7849.3	2673.2	10522.5	3.94	86.546	6597.8	3924.7
58	-0.3811	302.650	298.2	3.0	7878.4	2639.4	10517.8	3.98	86.781	6578.6	3939.2
59	-0.3755	303.809	299.4	3.1	7900.3	2608.4	10508.7	4.03	86.996	6558.6	3950.1
60	-0.3698	305.245	300.8	3.2	7929.3	2575.7	10505.0	4.08	87.223	6540.3	3964.7
61	-0.3642	306.361	301.9	3.3	7949.9	2546.4	10496.3	4.12	87.427	6521.4	3975.0
62	-0.3586	307.350	302.9	3.5	7967.1	2519.6	10486.6	4.16	87.613	6503.1	3983.5
63	-0.3529	308.002	303.6	3.6	7975.3	2491.2	10466.4	4.20	87.810	6478.8	3987.6
64	-0.3473	308.826	304.4	3.7	7988.0	2465.0	10453.0	4.24	87.992	6459.0	3994.0
65	-0.3417	309.678	305.2	3.8	8001.4	2440.6	10442.0	4.28	88.161	6441.3	4000.7
	-0.3360		306.3	3.9	8020.9	2415.9	10436.7	4.32	88.333	6426.3	4010.4
	-0.3304		307.0	4.0	8030.1	2396.6	10426.7	4.35	88.467	6411.6	4015.1
	-0.3248		307.8	4.1	8040.8	2376.7	10417.4	4.38	88.605	6397.0	4020.4
	-0.3191		308.8	4.2	8058.9	2358.7	10417.6	4.42	88.730	6388.1	4029.5
	-0.3135		309.5	4.3	8067.3	2343.9	10411.2	4.44	88.833	6377.5	4033.7
	-0.3079		310.1	4.4	8075.0	2327.4	10402.4	4.47	88.947	6364.9	4037.5
							n and Tec				

					Test Re	adings fo	or Specim	en No	. 2		
No.	Def. Dial in.	Load Dial	Load Ibs.	Strain %	Deviator Stress psf	Minor Eff. Stress psf	Major Eff. Stress psf	1:3 Ratio	Pore Press. psi	P psf	Q psf
72	-0.3023	315.309	310.9	4.5	8085.1	2312.7	10397.9	4.50	89.049	6355.3	4042.6
73	-0.2966	315.835	311.4	4.6	8089.7	2300.2	10389.9	4.52	89.137	6345.0	4044.8
74	-0.2910	316.479	312.1	4.7	8097.3	2288.5	10385.7	4.54	89.218	6337.1	4048.6
75	-0.2854	316.934	312.5	4.9	8099.9	2277.0	10376.9	4.56	89.298	6326.9	4049.9
76	-0.2797	317.676	313.2	5.0	8109.9	2266.4	10376.3	4.58	89.371	6321.4	4055.0
77	-0.2741	318.067	313.6	5.1	8110.9	2259.9	10370.8	4.59	89.416	6315.4	4055.4
78	-0.2685	319.028	314.6	5.2	8126.5	2253.3	10379.7	4.61	89.462	6316.5	4063.2
79	-0.2628	319.233	314.8	5.3	8122.5	2246.1	10368.6	4.62	89.512	6307.4	4061.3
80	-0.2572	319.657	315.2	5.4	8124.2	2241.2	10365.4	4.62	89.546	6303.3	4062.1
81	-0.2431	320.929	316.5	5.7	8133.8	2223.5	10357.3	4.66	89.669	6290.4	4066.9
	-0.2291		317.7	5.9	8140.0	2204.1	10344.1	4.69	89.804	6274.1	4070.0
83		324.378	320.0	6.2	8175.5	2189.7	10365.2	4.73	89.904	6277.4	4087.7
	-0.2009		321.6	6.5	8195.0	2176.5	10371.6	4.77	89.995	6274.0	4097.5
		326.916	322.5	6.7	8193.0	2168.7	10361.7	4.78	90.050	6265.2	4096.5
	-0.1727		324.0	7.0	8206.5	2164.5	10371.0	4.79	90.079	6267.8	4103.3
87		328.917	324.5	7.3	8196.2	2165.0	10371.0	4.79	90.075	6263.1	4098.1
	-0.1387		325.6	7.5 7.6	8190.2	2164.4	10364.2	4.79	90.073	6264.3	4099.9
	-0.1440		326.9	7.8	8208.3	2161.3	10364.2	4.79	90.101	6265.5	4104.1
		332.288	327.9	8.1	8209.2	2155.0	10364.2	4.81	90.101	6259.6	4104.1
91		333.052	328.6	8.4	8204.2	2153.0	10357.2	4.81	90.159	6255.1	4102.1
	-0.0883		329.4	8.6	8198.9	2148.2	10347.1	4.82	90.192	6247.7	4099.5
93	-0.0742		330.5	8.9	8203.2	2148.6	10351.8	4.82	90.189	6250.2	4101.6
94		336.245	331.8	9.2	8210.9	2154.3	10365.1	4.81	90.150	6259.7	4105.4
	-0.0460		332.2	9.4	8197.2	2159.5	10356.7	4.80	90.114	6258.1	4098.6
	-0.0320		333.3	9.7	8198.4	2163.4	10361.8	4.79	90.086	6262.6	4099.2
97	-0.0179		333.7	10.0	8184.6	2161.9	10346.6	4.79	90.096	6254.3	4092.3
98	-0.0038		334.3	10.2	8175.0	2160.3	10335.3	4.78	90.108	6247.8	4087.5
99		339.528	335.1	10.5	8169.2	2160.5	10329.7	4.78	90.106	6245.1	4084.6
100	0.0244	340.783	336.4	10.8	8175.1	2160.1	10335.2	4.78	90.109	6247.7	4087.5
101	0.0384	341.428	337.0	11.1	8166.0	2163.0	10329.0	4.78	90.089	6246.0	4083.0
102		342.122	337.7	11.3	8158.1	2173.4	10331.5	4.75	90.017	6252.5	4079.0
103	0.0666	342.450	338.0	11.6	8141.2	2178.0	10319.2	4.74	89.985	6248.6	4070.6
104	0.0807	343.444	339.0	11.9	8140.3	2182.4	10322.6	4.73	89.955	6252.5	4070.1
105	0.0948	344.415	340.0	12.1	8138.6	2180.4	10319.0	4.73	89.969	6249.7	4069.3
106	0.1088	344.997	340.6	12.4	8127.6	2182.1	10309.6	4.72	89.957	6245.9	4063.8
107	0.1229	345.806	341.4	12.7	8121.8	2185.9	10307.7	4.72	89.930	6246.8	4060.9
108	0.1370	346.086	341.7	12.9	8103.4	2189.4	10292.8	4.70	89.906	6241.1	4051.7
109	0.1511	347.280	342.9	13.2	8106.6	2195.6	10302.2	4.69	89.862	6248.9	4053.3
110	0.1652	348.858	344.4	13.5	8118.6	2202.5	10321.1	4.69	89.815	6261.8	4059.3
111	0.1792	350.098	345.7	13.7	8122.5	2207.7	10330.1	4.68	89.779	6268.9	4061.2
112	0.1933	350.627	346.2	14.0	8109.5	2208.6	10318.1	4.67	89.773	6263.4	4054.8
113		351.398	347.0	14.3	8102.1	2212.1	10314.3	4.66	89.748	6263.2	4051.1
114		351.882	347.5	14.6	8087.9	2214.2	10302.2	4.65	89.733	6258.2	4044.0
115		353.636	349.2	14.8	8103.1	2221.2	10324.4	4.65	89.685	6272.8	4051.6
116		354.832	350.4	15.1	8105.2	2223.7	10328.9	4.64	89.668	6276.3	4052.6
117		356.032	351.6	15.4	8107.1	2229.4	10326.5	4.64	89.628	6283.0	4053.6
118		356.923	352.5	15.4	8101.8	2233.6	10335.4	4.63	89.599	6284.5	4050.9
110	0.2770	550.743									7020.7
				Newtie	elds Min	ing Desig	n and Tec	hnical	Service	s	

					Test Re	adings fo	r Specim	en No	. 2		
No.	Def. Dial in.	Load Dial	Load lbs.	Strain %	Deviator Stress psf	Minor Eff. Stress psf	Major Eff. Stress psf	1:3 Ratio	Pore Press. psi	P psf	Q psf
119	0.2919	357.721	353.3	15.9	8094.2	2239.3	10333.5	4.61	89.559	6286.4	4047.1
120	0.3056	358.409	354.0	16.2	8084.6	2245.8	10330.4	4.60	89.514	6288.1	4042.3

Deviator Stres		F																			
S J	7500				E																
atc																					
, š		L																			
De	5000	\vdash	\vdash					Н	Н				H	Н	Н	Н		H	Н	Н	
		Н																			
		H		\vdash		Н		H	H				H	H	Н	Н	Н	H	Н	Н	
	2500	\parallel																			
		Н		Н		Н		H	Н					Н	Н	Н	H		Н	Н	
	0	Н						H							Н	Н				Н	
		0				5	5				1	0				1	5			- 2	20
								A	xia	al	St	tra	in	۱, ۱	%						

Type of Test:

Unconsolidated Undrained Sample Type: Remolded

Description: Filtercake w/o Salt - UU Test

LL= 71 **PL=** 59 **PI=** 12

Specific Gravity= 3.2

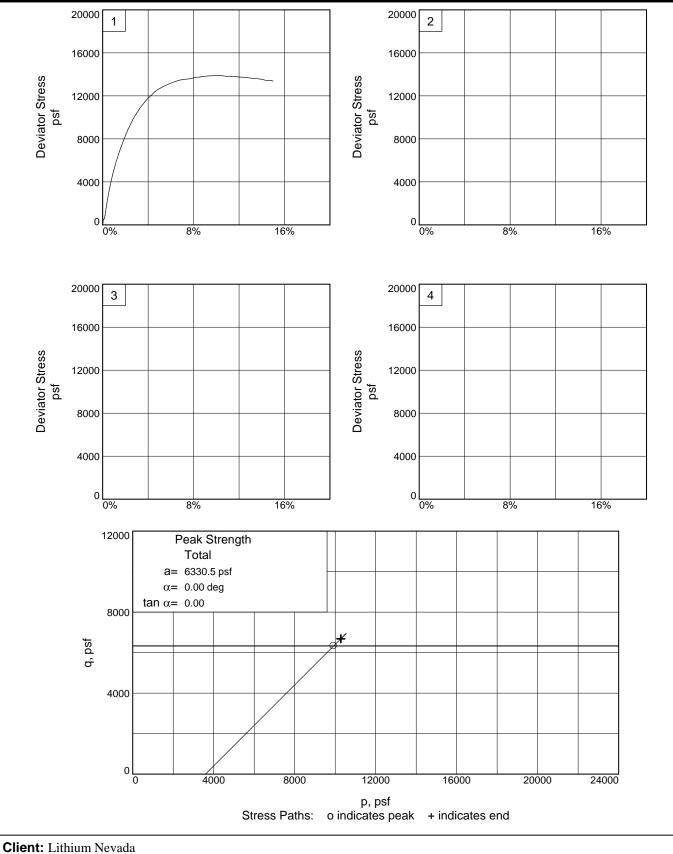
Remarks: Failure chosen at 5% strain

	Sa	mple No.	1	
1	Initial	Water Content, % Dry Density, pcf Saturation, % Void Ratio Diameter, in. Height, in.	45.1 67.0 72.8 1.9818 2.801 5.604	
	At Test	Water Content, % Dry Density, pcf Saturation, % Void Ratio Diameter, in. Height, in.	46.4 67.0 74.9 1.9818 2.801 5.604	
	Bad Ce Fai Ult	ain rate, %/min. ck Pressure, psi Il Pressure, psi il. Stress, psf Strain, % . Stress, psf Strain, %	1.00 0.000 24.960 12661.0 5.0	
	σ_1 σ_3	Failure, psf Failure, psf	16255.2 3594.2	

Client: Lithium Nevada

Project: Thacker Pass

Source of Sample: Reconstituted Tailings


Sample Number: 19-421-03

Date Sampled: 12/9/19 **Proj. No.:** 475.0385.000

■NewFields

Figure

Checked By: K.Magner Tested By: K.Magner

Client: Lithium Nevada
Project: Thacker Pass

Source of Sample: Reconstituted Tailings **Sample Number:** 19-421-03

Project No.: 475.0385.000 Figure _____ Newfields Mining Design and Technical Services

Tested By: K.Magner Checked By: K.Magner

TRIAXIAL COMPRESSION TEST

12/17/2019 4:33 PM

Unconsolidated Undrained

Date: 12/9/19

Client: Lithium Nevada
Project: Thacker Pass
Project No.: 475.0385.000

Location: Reconstituted Tailings

Sample Number: 19-421-03

Description: Filtercake w/o Salt - UU Test **Remarks:** Failure chosen at 5% strain

Type of Sample: Remolded

Specific Gravity=3.2 LL=71 PL=59 Pl=12

Test Method: ASTM D 2850

F	arameters	for Specimen No. 1
Specimen Parameter	Initial	Final
Moisture content: Moist soil+tare, gms.	417.620	1034.400
Moisture content: Dry soil+tare, gms.	326.920	754.140
Moisture content: Tare, gms.	125.760	150.250
Moisture, %	45.1	46.4
Moist specimen weight, gms.	881.10	
Diameter, in.	2.801	
Area, in. ²	6.162	
Height, in.	5.604	
Wet density, pcf	97.2	
Dry density, pcf	67.0	
Void ratio	1.9818	
Saturation, %	72.8	

Test Readings for Specimen No. 1

Membrane modulus = 0.124105 kN/cm^2

Membrane thickness = 0.02 cm

Cell pressure = 24.960 psi (3594.2 psf)

Back pressure = 0.000 psi (0.0 psf)

Strain rate, %min. = 1.00

Fail. Stress = 12661.0 psf at reading no. 79

					Test Re	adings for	Specimen N	lo. 1		
No.	Def. Dial in.	Load Dial	Load lbs.	Strain %	Deviator Stress psf	Minor Princ. Stress psf	Major Princ. Stress psf	1:3 Ratio	P psf	Q psf
0	0.4272	3.621	0.0	0.0	0.0	3594.2	3594.2	1.00	3594.2	0.0
1	0.4289	13.982	10.4	0.0	242.1	3594.2	3836.3	1.07	3715.3	121.0
2	0.4303	22.352	18.7	0.1	437.5	3594.2	4031.8	1.12	3813.0	218.8
3	0.4316	24.389	20.8	0.1	485.0	3594.2	4079.2	1.13	3836.7	242.5
4	0.4329	25.672	22.1	0.1	514.8	3594.2	4109.0	1.14	3851.6	257.4
5	0.4343	27.182	23.6	0.1	549.9	3594.2	4144.2	1.15	3869.2	275.0
6	0.4357	29.372	25.8	0.2	600.9	3594.2	4195.1	1.17	3894.7	300.4
7	0.4371	33.575	30.0	0.2	698.8	3594.2	4293.0	1.19	3943.6	349.4
8	0.4385	40.381	36.8	0.2	857.3	3594.2	4451.6	1.24	4022.9	428.7
9	0.4399	47.592	44.0	0.2	1025.3	3594.2	4619.5	1.29	4106.9	512.6
10	0.4413	54.981	51.4	0.3	1197.2	3594.2	4791.5	1.33	4192.9	598.6
11	0.4427	62.448	58.8	0.3	1370.9	3594.2	4965.2	1.38	4279.7	685.5
12	0.4441	69.965	66.3	0.3	1545.8	3594.2	5140.0	1.43	4367.1	772.9
13	0.4455	77.181	73.6	0.3	1713.4	3594.2	5307.7	1.48	4451.0	856.7
14	0.4469	84.455	80.8	0.4	1882.4	3594.2	5476.6	1.52	4535.4	941.2
15	0.4483	91.649	88.0	0.4	2049.4	3594.2	5643.7	1.57	4618.9	1024.7
16	0.4497	98.549	94.9	0.4	2209.5	3594.2	5803.8	1.61	4699.0	1104.8
17		105.160	101.5	0.4	2362.8	3594.2	5957.0	1.66	4775.6	1181.4
18		111.712	101.3	0.5	2514.6	3594.2	6108.9	1.70	4851.5	1257.3
19	0.4525		114.6	0.5	2664.2	3594.2	6258.5	1.74	4926.3	1332.1
20	0.4553		120.8	0.5	2809.3	3594.2	6403.5	1.74	4920.3	1404.7
20 21	0.4555		120.8	0.5	2945.8	3594.2	6540.0	1.78	5067.1	1472.9
22		136.074	132.5	0.6	3078.3	3594.2	6672.5	1.86	5133.4	1539.1
23	0.4595		138.3	0.6	3214.0	3594.2	6808.2	1.89	5201.2	1607.0
24		147.565	143.9	0.6	3343.6	3594.2	6937.9	1.93	5266.1	1671.8
25		153.023	149.4	0.6	3469.6	3594.2	7063.8	1.97	5329.0	1734.8
26		158.946	155.3	0.7	3606.2	3594.2	7200.4	2.00	5397.3	1803.1
27	0.4651		161.1	0.7	3739.2	3594.2	7333.4	2.04	5463.8	1869.6
28	0.4665		166.8	0.7	3870.1	3594.2	7464.4	2.08	5529.3	1935.1
29		175.705	172.1	0.7	3992.3	3594.2	7586.5	2.11	5590.4	1996.1
30		180.797	177.2	0.8	4109.4	3594.2	7703.6	2.14	5648.9	2054.7
31	0.4707		182.2	0.8	4224.1	3594.2	7818.3	2.18	5706.3	2112.0
32	0.4721		187.0	0.8	4333.9	3594.2	7928.1	2.21	5761.2	2167.0
33	0.4735		191.9	0.8	4446.6	3594.2	8040.8	2.24	5817.5	2223.3
34	0.4749		196.7	0.9	4557.4	3594.2	8151.6	2.27	5872.9	2278.7
35	0.4764		201.6	0.9	4669.6	3594.2	8263.8	2.30	5929.0	2334.8
36	0.4778	209.572	206.0	0.9	4769.5	3594.2	8363.7	2.33	5979.0	2384.7
37	0.4792	214.038	210.4	0.9	4871.7	3594.2	8465.9	2.36	6030.1	2435.8
38	0.4806	218.621	215.0	1.0	4976.5	3594.2	8570.8	2.38	6082.5	2488.3
39	0.4820	223.020	219.4	1.0	5077.1	3594.2	8671.3	2.41	6132.8	2538.5
40	0.4835	227.550	223.9	1.0	5180.6	3594.2	8774.8	2.44	6184.5	2590.3
41	0.4894	244.929	241.3	1.1	5576.6	3594.2	9170.9	2.55	6382.6	2788.3
42	0.4947	260.826	257.2	1.2	5938.4	3594.2	9532.6	2.65	6563.4	2969.2
43	0.5009	276.087	272.5	1.3	6283.7	3594.2	9877.9	2.75	6736.1	3141.8
44	0.5061	290.939	287.3	1.4	6619.9	3594.2	10214.2	2.84	6904.2	3310.0
	0.5102	305.360	301.7	1.5	6944.4	3594.2	10538.6	2.93	7066.4	3472.2
45	0.3123	505.500								

Test Readings for Specimen No. 1											
No.	Def. Dial in.	Load Dial	Load lbs.	Strain %	Deviator Stress psf	Minor Princ. Stress psf	Major Princ. Stress psf	1:3 Ratio	P psf	Q psf	
47	0.5236	331.116	327.5	1.7	7521.6	3594.2	11115.9	3.09	7355.1	3760.8	
48	0.5289	343.697	340.1	1.8	7803.2	3594.2	11397.4	3.17	7495.8	3901.6	
49	0.5350	355.928	352.3	1.9	8074.8	3594.2	11669.1	3.25	7631.7	4037.4	
50	0.5403	367.866	364.2	2.0	8340.4	3594.2	11934.7	3.32	7764.5	4170.2	
51	0.5464	379.571	376.0	2.1	8598.8	3594.2	12193.1	3.39	7893.7	4299.4	
52	0.5517	391.215	387.6	2.2	8856.7	3594.2	12450.9	3.46	8022.6	4428.3	
53	0.5579	401.335	397.7	2.3	9077.6	3594.2	12671.9	3.53	8133.1	4538.8	
54	0.5631	411.630	408.0	2.4	9303.7	3594.2	12898.0	3.59	8246.1	4651.9	
55	0.5693	422.399	418.8	2.5	9538.5	3594.2	13132.7	3.65	8363.5	4769.2	
56	0.5745	431.980	428.4	2.6	9747.4	3594.2	13341.6	3.71	8467.9	4873.7	
57	0.5807	440.768	437.1	2.7	9936.0	3594.2	13530.3	3.76	8562.3	4968.0	
58	0.5860	449.730	446.1	2.8	10129.9	3594.2	13724.1	3.82	8659.2	5064.9	
59	0.5921	458.136	454.5	2.9	10309.3	3594.2	13903.5	3.87	8748.9	5154.6	
60	0.5973	465.711	462.1	3.0	10470.9	3594.2	14065.2	3.91	8829.7	5235.5	
61	0.6035	473.318	469.7	3.1	10631.3	3594.2	14225.5	3.96	8909.9	5315.6	
62	0.6087	481.273	477.7	3.2	10800.9	3594.2	14395.1	4.01	8994.7	5400.4	
63	0.6149	488.802	485.2	3.3	10958.6	3594.2	14552.8	4.05	9073.5	5479.3	
64	0.6202	495.170	491.5	3.4	11091.5	3594.2	14685.8	4.09	9140.0	5545.8	
65	0.6263	501.951	498.3	3.6	11231.9	3594.2	14826.1	4.12	9210.2	5615.9	
66	0.6316	508.283	504.7	3.6	11363.6	3594.2	14957.8	4.16	9276.0	5681.8	
67	0.6377	515.040	511.4	3.8	11502.6	3594.2	15096.8	4.20	9345.5	5751.3	
68	0.6431	520.730	517.1	3.9	11619.0	3594.2	15213.3	4.23	9403.8	5809.5	
69	0.6492	526.418	522.8	4.0	11733.5	3594.2	15327.7	4.26	9461.0	5866.7	
70	0.6545	532.042	528.4	4.1	11848.1	3594.2	15442.4	4.30	9518.3	5924.1	
71	0.6606	536.963	533.3	4.2	11944.8	3594.2	15539.0	4.32	9566.6	5972.4	
72	0.6659	541.715	538.1	4.3	12039.4	3594.2	15633.7	4.35	9613.9	6019.7	
73	0.6720	546.850	543.2	4.4	12140.4	3594.2	15734.7	4.38	9664.5	6070.2	
74	0.6772	552.377	548.8	4.5	12251.9	3594.2	15846.2	4.41	9720.2	6126.0	
75	0.6828	557.598	554.0	4.6	12355.8	3594.2	15950.0	4.44	9772.1	6177.9	
76	0.6890	562.122	558.5	4.7	12442.1	3594.2	16036.4	4.46	9815.3	6221.1	
77	0.6943	566.279	562.7	4.8	12522.3	3594.2	16116.5	4.48	9855.4	6261.1	
78	0.7004	570.143	566.5	4.9	12593.9	3594.2	16188.2	4.50	9891.2	6297.0	
79	0.7057	573.730	570.1	5.0	12661.0	3594.2	16255.2	4.52	9924.7	6330.5	
80	0.7118	577.032	573.4	5.1	12719.7	3594.2	16314.0	4.54	9954.1	6359.9	
81	0.7256	584.989	581.4	5.3	12862.7	3594.2	16457.0	4.58	10025.6	6431.4	
82	0.7396	592.425	588.8	5.6	12993.0	3594.2	16587.2	4.61	10090.7	6496.5	
83	0.7536	598.986	595.4	5.8	13103.1	3594.2	16697.3	4.65	10145.8	6551.5	
84	0.7676	605.631	602.0	6.1	13214.2	3594.2	16808.4	4.68	10201.3	6607.1	
85	0.7817	611.662	608.0	6.3	13310.8	3594.2	16905.0	4.70	10249.6	6655.4	
86	0.7956	617.382	613.8	6.6	13400.2	3594.2	16994.5	4.73	10294.4	6700.1	
87	0.8096	622.440	618.8	6.8	13474.6	3594.2	17068.9	4.75	10331.6	6737.3	
88	0.8236	625.848	622.2	7.1	13512.6	3594.2	17106.8	4.76	10350.5	6756.3	
89	0.8376	629.480	625.9	7.3	13554.8	3594.2	17149.0	4.77	10371.6	6777.4	
90	0.8523	632.180	628.6	7.6	13574.9	3594.2	17169.1	4.78	10381.7	6787.4	
91	0.8661	636.294	632.7	7.8	13627.3	3594.2	17221.5	4.79	10407.9	6813.6	
92	0.8799	641.395	637.8	8.1	13700.3	3594.2	17294.6	4.81	10444.4	6850.2	
93	0.8940	644.874	641.3	8.3	13737.6	3594.2	17331.8	4.82	10463.0	6868.8	
				Newfie	elds Mini	ing Design a	and Technic	al Ser	vices _		

					Test Re	adings for	Specimen N	lo. 1		
No.	Def. Dial in.	Load Dial	Load lbs.	Strain %	Deviator Stress psf	Minor Princ. Stress psf	Major Princ. Stress psf	1:3 Ratio	P psf	Q psf
94	0.9080	647.539	643.9	8.6	13757.1	3594.2	17351.3	4.83	10472.8	6878.5
95	0.9220	651.786	648.2	8.8	13809.9	3594.2	17404.1	4.84	10499.2	6904.9
96	0.9360	654.390	650.8	9.1	13827.2	3594.2	17421.5	4.85	10507.8	6913.6
97	0.9500	657.538	653.9	9.3	13856.0	3594.2	17450.3	4.86	10522.3	6928.0
98	0.9641	659.780	656.2	9.6	13865.1	3594.2	17459.3	4.86	10526.8	6932.5
99	0.9782	662.374	658.8	9.8	13881.1	3594.2	17475.4	4.86	10534.8	6940.6
100	0.9922	664.734	661.1	10.1	13892.3	3594.2	17486.5	4.87	10540.4	6946.1
101	1.0061	666.251	662.6	10.3	13885.6	3594.2	17479.8	4.86	10537.0	6942.8
102	1.0201	666.765	663.1	10.6	13857.7	3594.2	17451.9	4.86	10523.1	6928.9
103	1.0341	667.198	663.6	10.8	13827.9	3594.2	17422.1	4.85	10508.2	6913.9
104	1.0482	666.338	662.7	11.1	13771.1	3594.2	17365.4	4.83	10479.8	6885.6
105	1.0622	669.472	665.9	11.3	13797.4	3594.2	17391.7	4.84	10492.9	6898.7
106	1.0762	671.986	668.4	11.6	13810.5	3594.2	17404.7	4.84	10499.5	6905.2
107	1.0902	672.034	668.4	11.8	13772.4	3594.2	17366.6	4.83	10480.4	6886.2
108	1.1042	672.877	669.3	12.1	13750.6	3594.2	17344.9	4.83	10469.5	6875.3
109	1.1183	674.096	670.5	12.3	13736.3	3594.2	17330.5	4.82	10462.4	6868.2
110	1.1323	675.005	671.4	12.6	13715.6	3594.2	17309.9	4.82	10452.1	6857.8
111	1.1462	675.285	671.7	12.8	13682.6	3594.2	17276.9	4.81	10435.6	6841.3
112	1.1604	675.432	671.8	13.1	13645.9	3594.2	17240.1	4.80	10417.2	6822.9
113	1.1742	676.545	672.9	13.3	13629.6	3594.2	17223.9	4.79	10409.1	6814.8
114	1.1883	676.841	673.2	13.6	13595.9	3594.2	17190.2	4.78	10392.2	6798.0
115	1.2023	677.310	673.7	13.8	13566.3	3594.2	17160.5	4.77	10377.4	6783.1
116	1.2163	676.803	673.2	14.1	13516.6	3594.2	17110.9	4.76	10352.6	6758.3
117	1.2303	675.622	672.0	14.3	13453.7	3594.2	17048.0	4.74	10321.1	6726.9

3594.2

3594.2

3594.2

17000.8

17019.2

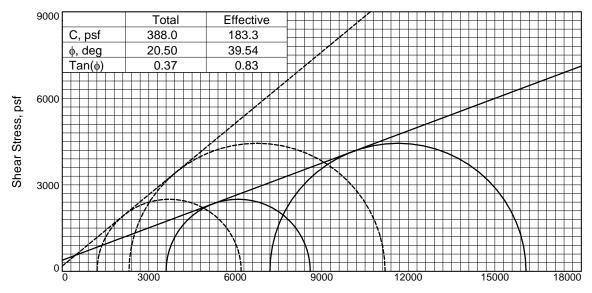
16962.2

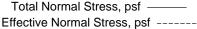
4.73 10297.5 6703.3

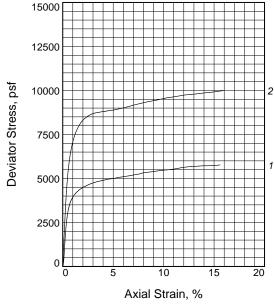
4.74 10306.7 6712.5

4.72 10278.2 6684.0

671.6 14.6 13406.5


674.5 14.8 13424.9


673.1 15.0 13367.9


118 1.2444 675.239

119 1.2583 678.120

120 1.2684 676.681

T	- •	T 4
Type	ot	Test:

CU with Pore Pressures **Sample Type:** Remolded

Description: Filter Cake with Salt at OMC - CU

Test

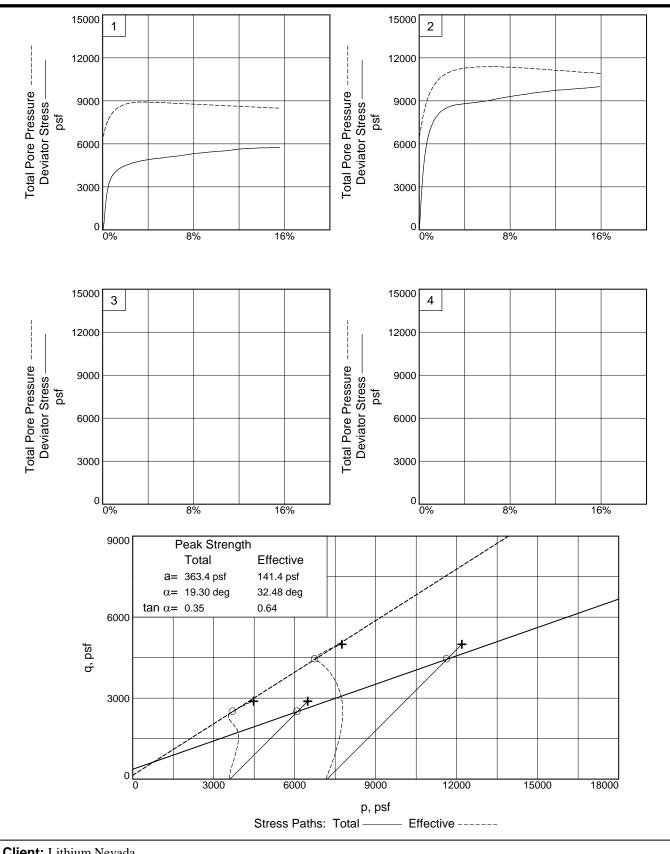
LL= 51 **PL=** 11 **PI=** 40

Assumed Specific Gravity= 3.2 Remarks: Failure chosen at 5% strain

	Sai	mple No.	1	2	
		Water Content, %	49.4		
	_	Dry Density, pcf	69.2		
	Initial	Saturation, %	83.7		
	In	Void Ratio	1.8886	1.8784	
2		Diameter, in.	2.804	2.803	
		Height, in.	5.604	5.605	
		Water Content, %	48.9	44.4	
	+ ;	Dry Density, pcf	77.8	82.6	
	At Test	Saturation, %	100.0	100.0	
1	Ļ	Void Ratio	1.5661	1.4198	
	⋖	Diameter, in.	2.695	2.644	
		Height, in.	5.390	5.296	
	Str	ain rate, %/min.	0.02	0.02	
	Eff.	. Cell Pressure, psi	25.000	50.000	
	Fai	I. Stress, psf	5000.0	8881.4	
		Total Pore Pr., psf	8880.5	11358.1	
		Strain, %	5.0	5.0	
		. Stress, psf			
		Total Pore Pr., psf			
		Strain, %			
		Failure, psf	6205.3	11194.7	
	$\overline{\sigma}_3$	Failure, psf	1205.3	2313.3	

Client: Lithium Nevada

Project: Thacker Pass


Source of Sample: Reconstituted Tailings

Sample Number: 19-421-07,-08

Proj. No.: 475.0385.000 **Date Sampled:** 12/9/19

■NewFields

Figure _____

Client: Lithium Nevada Project: Thacker Pass

Source of Sample: Reconstituted Tailings **Sample Number:** 19-421-07,-08

Project No.: 475.0385.000 Figure _____ Newfields Mining Design and Technical Services

TRIAXIAL COMPRESSION TEST

12/17/2019 4:43 PM

CU with Pore Pressures

Date: 12/9/19

Client: Lithium Nevada
Project: Thacker Pass
Project No.: 475.0385.000

Location: Reconstituted Tailings

Sample Number: 19-421-07,-08

Description: Filter Cake with Salt at OMC - CU Test

Remarks: Failure chosen at 5% strain

Type of Sample: Remolded

Assumed Specific Gravity=3.2 LL=51 PL=11 Pl=40

Test Method: COE uniform strain

	-			
P	arameters f	or Specimen No.	.1	
Specimen Parameter	Initial	Saturated	Consolidated	Final
Moisture content: Moist soil+tare, gms.	567.550			1191.360
Moisture content: Dry soil+tare, gms.	468.830			885.770
Moisture content: Tare, gms.	269.020			267.500
Moisture, %	49.4	59.0	48.9	49.4
Moist specimen weight, gms.	938.60			
Diameter, in.	2.804	2.804	2.695	
Area, in.²	6.175	6.175	5.704	
Height, in.	5.604	5.604	5.390	
Net decrease in height, in.		0.000	0.214	
Wet density, pcf	103.3	110.0	115.9	
Dry density, pcf	69.2	69.2	77.8	
Void ratio	1.8886	1.8886	1.5661	
Saturation, %	83.7	100.0	100.0	

Test Readings for Specimen No. 1

Membrane modulus = 0.124105 kN/cm^2

Membrane thickness = 0.02 cm

Consolidation cell pressure = 70.040 psi (10085.8 psf)

Consolidation back pressure = 45.040 psi (6485.8 psf)

Consolidation effective confining stress = 3600.0 psf

Strain rate, %/min. = 0.02

Fail. Stress = 5000.0 psf at reading no. 78

	Test Readings for Specimen No. 1										
No.	Def. Dial in.	Load Dial	Load lbs.	Strain %	Stress psf	Minor Eff. Stress psf	Stress psf	1:3 Ratio	Pore Press. psi	P psf	Q psf
0	-0.5528	3.292	0.0	0.0	0.0	3575.9	3575.9	1.00	45.207	3575.9	0.0
1	-0.5509	5.215	1.9	0.0	48.5	3552.7	3601.2	1.01	45.369	3576.9	24.3
2	-0.5495	8.643	5.4	0.1	135.0	3511.0	3646.1	1.04	45.658	3578.5	67.5
3	-0.5481	13.831	10.5	0.1	265.9	3454.1	3720.0	1.08	46.053	3587.1	132.9
4	-0.5467	20.458	17.2	0.1	432.9	3386.5	3819.4	1.13	46.523	3602.9	216.5
5	-0.5453	29.725	26.4	0.1	666.4	3298.3	3964.7	1.20	47.135	3631.5	333.2
6	-0.5439	39.442	36.1	0.2	911.2	3208.9	4120.1	1.28	47.756	3664.5	455.6
7	-0.5425	49.300	46.0	0.2	1159.4	3121.7	4281.1	1.37	48.362	3701.4	579.7
8	-0.5411	58.931	55.6	0.2	1401.7	3037.6	4439.3	1.46	48.945	3738.5	700.9
9	-0.5397	67.863	64.6	0.2	1626.3	2958.1	4584.4	1.55	49.498	3771.2	813.2
10	-0.5383	76.044	72.8	0.3	1831.9	2884.5	4716.4	1.64	50.009	3800.4	915.9
11	-0.5369	83.858	80.6	0.3	2028.1	2813.3	4841.4	1.72	50.504	3827.3	1014.1
12	-0.5355	90.994	87.7	0.3	2207.2	2745.8	4952.9	1.80	50.972	3849.4	1103.6
13	-0.5341	97.489	94.2	0.3	2370.0	2684.2	5054.2	1.88	51.400	3869.2	1185.0
14	-0.5327	103.309	100.0	0.4	2515.8	2628.0	5143.8	1.96	51.790	3885.9	1257.9
15		108.359	105.1	0.4	2642.1	2574.9	5217.0	2.03	52.159	3896.0	1321.1
16		113.370	110.1	0.4	2767.4	2523.2	5290.7	2.10	52.517	3907.0	1383.7
17		117.848	114.6	0.5	2879.2	2473.0	5352.2	2.16	52.866	3912.6	1439.6
18		121.860	118.6	0.5	2979.3	2426.7	5406.0	2.23	53.188	3916.4	1489.6
19		125.465	122.2	0.5	3069.1	2383.3	5452.4	2.29	53.489	3917.9	1534.5
20		128.763	125.5	0.5	3151.1	2342.1	5493.2	2.35	53.775	3917.6	1575.6
21		131.706	128.4	0.6	3224.2	2303.2	5527.3	2.40	54.046	3915.2	1612.1
22		134.582	131.3	0.6	3295.5	2264.5	5560.0	2.46	54.314	3912.3	1647.8
23		137.234	133.9	0.6	3361.2	2227.7	5588.9	2.51	54.570	3908.3	1680.6
24		139.549	136.3	0.6	3418.4	2193.6	5612.0	2.56	54.807	3902.8	1709.2
25	-0.5173		138.4	0.7	3471.5	2160.0	5631.5	2.61	55.040	3895.8	1735.7
26		143.912	140.6	0.7	3526.0	2127.0	5653.0	2.66	55.269	3890.0	1763.0
27		145.887	142.6	0.7	3574.6	2095.8	5670.4	2.71	55.486	3883.1	1787.3
28	-0.5143		144.4	0.7	3619.2	2095.6	5684.8	2.71	55.696	3875.2	1809.6
									55.902		
		149.411	146.1	0.8	3661.0	2035.8	5696.9	2.80		3866.4	1830.5
		151.054	147.8	0.8	3701.2	2006.9	5708.1	2.84	56.103	3857.5	1850.6
		152.553	149.3	0.8	3737.8	1978.9	5716.7	2.89	56.298	3847.8	1868.9
		153.762	150.5	0.8	3767.1	1952.5	5719.6	2.93	56.481	3836.1	1883.5
		155.093	151.8	0.9	3799.4	1926.5	5725.9	2.97	56.662	3826.2	1899.7
		156.275	153.0	0.9	3828.0	1900.9	5728.9	3.01	56.839	3814.9	1914.0
		157.516	154.2	0.9	3858.0	1876.1	5734.1	3.06	57.012	3805.1	1929.0
		158.554	155.3	0.9	3883.0	1852.3	5735.3	3.10	57.177	3793.8	1941.5
		159.661	156.4	1.0	3909.6	1828.7	5738.3	3.14	57.341	3783.5	1954.8
		160.790	157.5	1.0	3936.8	1806.4	5743.3	3.18	57.495	3774.9	1968.4
		161.780	158.5	1.0	3960.6	1784.2	5744.7	3.22	57.650	3764.5	1980.3
		162.799	159.5	1.0	3985.0	1763.0	5748.0	3.26	57.797	3755.5	1992.5
		166.369	163.1	1.2	4069.9	1685.8	5755.7	3.41	58.333	3720.7	2034.9
		169.577	166.3	1.3	4145.6	1620.0	5765.6	3.56	58.790	3692.8	2072.8
		172.415	169.1	1.4	4211.9	1558.4	5770.3	3.70	59.218	3664.4	2105.9
		174.838	171.5	1.5	4267.7	1505.4	5773.1	3.84	59.586	3639.2	2133.9
		177.065	173.8	1.6	4318.6	1460.0	5778.6	3.96	59.901	3619.3	2159.3
46	-0.4627	179.081	175.8	1.7	4364.1	1419.6	5783.6	4.07	60.182	3601.6	2182.0
				Newfie	elds Mini	ing Desig	n and Tec	hnical	Service	s	

	Test Readings for Specimen No. 1										
No.	Def. Dial in.	Load Dial	Load lbs.	Strain %	Deviator Stress psf	Minor Eff. Stress psf	Major Eff. Stress psf	1:3 Ratio	Pore Press. psi	P psf	Q psf
47	-0.4571	181.065	177.8	1.8	4408.7	1385.3	5793.9	4.18	60.420	3589.6	2204.3
48	-0.4515	182.608	179.3	1.9	4442.2	1353.5	5795.7	4.28	60.641	3574.6	2221.1
49		184.438	181.1	2.0	4482.8	1325.9	5808.7	4.38	60.832	3567.3	2241.4
50		186.060	182.8	2.1	4518.1	1301.8	5819.9	4.47	61.000	3560.8	2259.1
51		187.235	183.9	2.2	4542.3	1282.3	5824.7	4.54	61.135	3553.5	2271.2
52	-0.4290	188.681	185.4	2.3	4573.2	1263.0	5836.2	4.62	61.269	3549.6	2286.6
53		190.054	186.8	2.4	4602.2	1246.9	5849.1	4.69	61.381	3548.0	2301.1
54		191.451	188.2	2.5	4631.7	1232.6	5864.3	4.76	61.480	3548.4	2315.8
55		192.796	189.5	2.6	4659.8	1219.9	5879.7	4.82	61.568	3549.8	2329.9
56		194.084	190.8	2.7	4686.5	1208.5	5894.9	4.88	61.648	3551.7	2343.2
57		195.282	192.0	2.8	4710.9	1197.3	5908.2	4.93	61.725	3552.8	2355.4
58		196.142	192.9	2.9	4726.9	1188.0	5914.9	4.98	61.790	3551.4	2363.4
59		197.288	194.0	3.0	4749.9	1182.1	5932.0	5.02	61.831	3557.0	2374.9
60		198.267	195.0	3.1	4768.8	1177.3	5946.0	5.05	61.864	3561.7	2384.4
61		199.179	195.9	3.2	4785.9	1173.3	5959.2	5.08	61.892	3566.2	2393.0
62		200.230	196.9	3.3	4806.4	1170.0	5976.4	5.11	61.915	3573.2	2403.2
63		201.219	197.9	3.4	4825.4	1168.2	5993.5	5.13	61.928	3580.9	2412.7
64		202.191	198.9	3.5	4843.8	1167.2	6011.1	5.15	61.934	3589.2	2421.9
65		202.691	199.4	3.6	4850.8	1167.3	6018.0	5.16	61.934	3592.6	2425.4
66		203.525	200.2	3.8	4865.8	1167.4	6033.2	5.17	61.933	3600.3	2432.9
67		204.252	201.0	3.9	4878.2	1170.4	6048.6	5.17	61.912	3609.5	2439.1
68		204.933	201.6	4.0	4889.5	1174.2	6063.7	5.16	61.886	3619.0	2444.7
69		205.689	202.4	4.1	4902.5	1178.3	6080.8	5.16	61.857	3629.5	2451.2
70		206.543	203.3	4.2	4917.8	1182.0	6099.8	5.16	61.832	3640.9	2458.9
71		207.319	204.0	4.3	4931.3	1185.1	6116.4	5.16	61.810	3650.7	2465.6
72		208.126	204.8	4.4	4945.4	1189.2	6134.6	5.16	61.782	3661.9	2472.7
73		208.942	205.7	4.5	4959.7	1193.4	6153.1	5.16	61.752	3673.3	2479.9
74		209.499	206.2	4.6	4967.7	1196.7	6164.4	5.15	61.730	3680.5	2483.9
75		210.007	206.7	4.7	4974.5	1199.8	6174.4	5.15	61.708	3687.1	2487.3
	-0.2946		207.3	4.8	4983.4	1202.6	6185.9	5.14	61.689	3694.2	2491.7
	-0.2890		207.9	4.9	4991.1	1204.4	6195.5	5.14	61.676	3700.0	2495.5
	-0.2834		208.5	5.0	5000.0	1205.3	6205.3	5.15	61.670		2500.0
	-0.2778 -0.2722		209.1 209.8	5.1 5.2	5009.6 5021.6	1206.2 1208.1	6215.8	5.15 5.16	61.664 61.650	3711.0 3718.9	2504.8 2510.8
	-0.2722		211.8	5.5	5055.0	1208.1	6229.7 6269.2	5.16	61.608	3741.7	2527.5
	-0.2382		213.3	5.7	5076.2	1214.2	6300.3	5.15	61.539	3762.2	2538.1
	-0.2302		214.9	6.0	5099.9	1238.6	6338.4	5.12	61.439	3788.5	2549.9
	-0.2302		214.9	6.2	5120.9	1251.7	6372.6	5.09	61.348	3812.1	2560.4
	-0.2102		217.9	6.5	5144.8	1263.0	6407.7	5.07	61.269	3835.3	2572.4
	-0.2022		217.9	6.8	5170.0	1273.1	6443.1	5.06	61.199	3858.1	2585.0
	-0.1742		221.4	7.0	5196.6	1279.1	6475.7	5.06	61.157	3877.4	2598.3
	-0.1602		223.5	7.3	5232.4	1285.1	6517.5	5.07	61.116	3901.3	2616.2
	-0.1462		224.9	7.5	5250.3	1293.1	6543.3	5.06	61.061	3918.2	2625.2
	-0.1402		227.4	7.8	5293.0	1303.9	6596.9	5.06	60.985	3950.4	2646.5
	-0.1322		229.7	8.1	5332.8	1303.9	6651.4	5.04	60.883	3985.0	2666.4
		234.462	231.2	8.3	5350.8	1332.2	6683.0	5.02	60.789		2675.4
		235.762	232.5	8.6	5365.6	1342.6	6708.3	5.00		4025.5	2682.8
73	0.0702	200.102					n and Tec				2002.0
						- 5 - 5 - S				-	

	Test Readings for Specimen No. 1										
No.	Def. Dial in.	Load Dial	Load lbs.	Strain %	Deviator Stress psf	Minor Eff. Stress psf	Major Eff. Stress psf	1:3 Ratio	Pore Press. psi	P psf	Q psf
94	-0.0762	237.225	233.9	8.8	5384.0	1352.9	6736.9	4.98	60.645	4044.9	2692.0
95	-0.0622	238.840	235.5	9.1	5405.8	1357.4	6763.2	4.98	60.614	4060.3	2702.9
96	-0.0482	240.447	237.2	9.4	5427.1	1364.0	6791.1	4.98	60.567	4077.6	2713.5
97	-0.0342	241.866	238.6	9.6	5443.9	1372.3	6816.2	4.97	60.510	4094.3	2722.0
98	-0.0202	243.437	240.1	9.9	5464.0	1387.1	6851.1	4.94	60.407	4119.1	2732.0
99	-0.0062	244.956	241.7	10.1	5482.7	1398.8	6881.5	4.92	60.326	4140.2	2741.4
100	0.0078	245.988	242.7	10.4	5490.2	1412.7	6903.0	4.89	60.229	4157.9	2745.1
101	0.0218	247.569	244.3	10.7	5509.9	1421.5	6931.4	4.88	60.169	4176.5	2755.0
102	0.0358	248.979	245.7	10.9	5525.6	1432.3	6957.9	4.86	60.094	4195.1	2762.8
103	0.0498	250.870	247.6	11.2	5551.9	1435.6	6987.5	4.87	60.070	4211.6	2776.0
104	0.0638	252.778	249.5	11.4	5578.4	1441.7	7020.0	4.87	60.028	4230.9	2789.2
105	0.0778	254.884	251.6	11.7	5608.9	1452.5	7061.4	4.86	59.953	4257.0	2804.5
106	0.0918	256.738	253.4	12.0	5633.7	1466.3	7100.0	4.84	59.857	4283.1	2816.8
107	0.1058	258.149	254.9	12.2	5648.3	1479.0	7127.3	4.82	59.769	4303.2	2824.1
108	0.1198	259.768	256.5	12.5	5667.4	1489.4	7156.8	4.81	59.697	4323.1	2833.7
109	0.1339	261.283	258.0	12.7	5683.9	1499.5	7183.4	4.79	59.627	4341.4	2841.9
110	0.1479	262.254	259.0	13.0	5688.3	1507.7	7196.0	4.77	59.570	4351.8	2844.2
111	0.1619	263.224	259.9	13.3	5692.6	1512.2	7204.7	4.76	59.539	4358.4	2846.3
112	0.1759	264.589	261.3	13.5	5705.3	1519.0	7224.3	4.76	59.491	4371.7	2852.7
113	0.1899	265.905	262.6	13.8	5716.8	1531.0	7247.8	4.73	59.408	4389.4	2858.4
114	0.2039	267.045	263.8	14.0	5724.3	1542.6	7266.9	4.71	59.328	4404.8	2862.2
115	0.2179	267.617	264.3	14.3	5719.4	1553.6	7273.0	4.68	59.251	4413.3	2859.7
116	0.2319	268.767	265.5	14.6	5726.9	1561.4	7288.3	4.67	59.197	4424.9	2863.4
117	0.2459	270.139	266.8	14.8	5739.0	1572.1	7311.1	4.65	59.122	4441.6	2869.5
118	0.2599	271.292	268.0	15.1	5746.2	1578.8	7325.0	4.64	59.076	4451.9	2873.1
119	0.2739	272.382	269.1	15.3	5751.9	1585.9	7337.8	4.63	59.027	4461.8	2876.0

120 0.2872 273.944 270.7 15.6 5768.4 1591.7 7360.1 4.62 58.986 4475.9 2884.2

Parameters for Specimen No. 2											
ed Consolidated	Final										
	1006.680										
	715.130										
	100.880										
.7 44.4	47.5										
2.644											
71 5.490											
5.296											
0.309											
.1 119.2											
.4 82.6											
34 1.4198											
.0 100.0											
78 0	784 1.4198										

Test Readings for Specimen No. 2

Membrane modulus = 0.124105 kN/cm^2

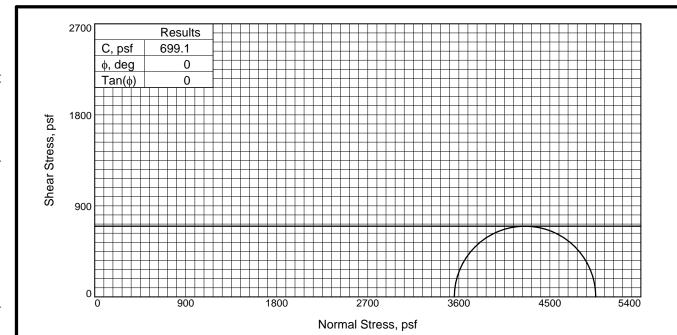
Membrane thickness = 0.02 cm

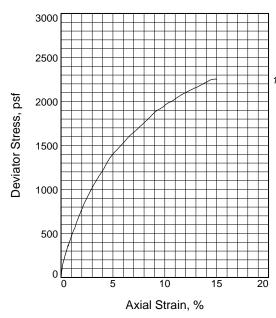
Consolidation cell pressure = 94.940 psi (13671.4 psf)

Consolidation back pressure = 44.940 psi (6471.4 psf)

Consolidation effective confining stress = 7200.0 psf

Strain rate, %/min. = 0.02


Fail. Stress = 8881.4 psf at reading no. 77


No.	Def. Dial in.	Load Dial	Load lbs.	Strain %	Deviator Stress psf	Minor Eff. Stress psf	Major Eff. Stress psf	1:3 Ratio	Pore Press. psi	P psf	Q psf
0	-0.5834	3.238	0.0	0.0	0.0	7155.8	7155.8	1.00	45.247	7155.8	0.0
1	-0.5820	10.489	7.3	0.0	190.1	7093.9	7284.1	1.03	45.676	7189.0	95.1
2	-0.5806	23.099	19.9	0.1	520.6	6993.0	7513.6	1.07	46.377	7253.3	260.3
3	-0.5792	37.221	34.0	0.1	890.6	6878.6	7769.2	1.13	47.172	7323.9	445.3
4	-0.5778	51.312	48.1	0.1	1259.5	6762.0	8021.5	1.19	47.982	7391.7	629.8
5	-0.5764	65.276	62.0	0.1	1625.0	6642.9	8267.8	1.24	48.809	7455.4	812.5
6	-0.5750	78.668	75.4	0.2	1975.2	6524.8	8500.1	1.30	49.629	7512.5	987.6
7	-0.5736	91.774	88.5	0.2	2317.8	6404.0	8721.8	1.36	50.468	7562.9	1158.9
8	-0.5722	104.178	100.9	0.2	2641.8	6286.1	8927.9	1.42	51.287	7607.0	1320.9
9	-0.5707	116.004	112.8	0.2	2950.6	6170.4	9121.0	1.48	52.090	7645.7	1475.3
10	-0.5693	127.385	124.1	0.3	3247.5	6056.1	9303.6	1.54	52.884	7679.8	1623.7
11	-0.5679	138.079	134.8	0.3	3526.3	5944.3	9470.5	1.59	53.660	7707.4	1763.1
12	-0.5665	148.154	144.9	0.3	3788.8	5835.2	9623.9	1.65	54.418	7729.6	1894.4
13	-0.5651	157.827	154.6	0.3	4040.6	5727.0	9767.6	1.71	55.169	7747.3	2020.3
14	-0.5637	166.749	163.5	0.4	4272.6	5624.4	9897.0	1.76	55.882	7760.7	2136.3
15	-0.5623	174.947	171.7	0.4	4485.6	5527.4	10013.0	1.81	56.555	7770.2	2242.8
16	-0.5609	182.802	179.6	0.4	4689.6	5431.1	10120.7	1.86	57.224	7775.9	2344.8
17	-0.5595	190.250	187.0	0.5	4882.8	5339.1	10221.9	1.91	57.863	7780.5	2441.4
18	-0.5581	197.088	193.9	0.5	5060.0	5250.8	10310.8	1.96	58.476	7780.8	2530.0
19	-0.5567	203.576	200.3	0.5	5228.0	5164.9	10392.9	2.01	59.073	7778.9	2614.0
20	-0.5553	209.773	206.5	0.5	5388.2	5081.3	10469.6	2.06	59.653	7775.4	2694.1
21	-0.5539	215.497	212.3	0.6	5536.1	5002.0	10538.1	2.11	60.204	7770.0	2768.1
22	-0.5525	220.778	217.5	0.6	5672.3	4924.9	10597.2	2.15	60.739	7761.1	2836.2
23	-0.5511	225.868	222.6	0.6	5803.5	4850.6	10654.1	2.20	61.256	7752.3	2901.8
24	-0.5497	230.548	227.3	0.6	5923.9	4779.7	10703.6	2.24	61.748	7741.6	2962.0
				Newfi	elds Mini	ng Desig	n and Tec	hnical	Service	s	

	Test Readings for Specimen No. 2											
No.	Def. Dial in.	Load Dial	Load lbs.	Strain %	Deviator Stress psf	Minor Eff. Stress psf	Major Eff. Stress psf	1:3 Ratio	Pore Press. psi	P psf	Q psf	
25	-0.5483	235.062	231.8	0.7	6040.0	4710.4	10750.4	2.28	62.229	7730.4	3020.0	
26	-0.5469	239.179	235.9	0.7	6145.6	4645.1	10790.7	2.32	62.683	7717.9	3072.8	
27	-0.5455	243.096	239.9	0.7	6246.0	4580.4	10826.3	2.36	63.132	7703.3	3123.0	
28	-0.5441	247.012	243.8	0.7	6346.2	4518.0	10864.2	2.40	63.565	7691.1	3173.1	
29	-0.5427	250.579	247.3	0.8	6437.4	4459.1	10896.4	2.44	63.974	7677.8	3218.7	
30	-0.5413	254.109	250.9	0.8	6527.5	4400.5	10928.0	2.48	64.381	7664.2	3263.7	
31	-0.5399	257.311	254.1	0.8	6609.0	4344.9	10953.9	2.52	64.767	7649.4	3304.5	
32	-0.5385	260.277	257.0	0.8	6684.4	4291.7	10976.1	2.56	65.136	7633.9	3342.2	
33	-0.5371	263.366	260.1	0.9	6762.9	4239.3	11002.2	2.60	65.501	7620.7	3381.5	
34	-0.5357	266.397	263.2	0.9	6839.9	4188.0	11027.9	2.63	65.857	7607.9	3419.9	
35	-0.5342	269.105	265.9	0.9	6908.4	4139.1	11047.5	2.67	66.196	7593.3	3454.2	
36	-0.5328	271.623	268.4	1.0	6972.0	4092.3	11064.3	2.70	66.521	7578.3	3486.0	
37	-0.5314	274.242	271.0	1.0	7038.1	4046.6	11084.7	2.74	66.839	7565.6	3519.1	
38	-0.5300	276.632	273.4	1.0	7098.3	4002.1	11100.4	2.77	67.147	7551.3	3549.2	
39	-0.5286	278.987	275.7	1.0	7157.6	3959.7	11117.3	2.81	67.442	7538.5	3578.8	
40	-0.5272	281.095	277.9	1.1	7210.3	3919.5	11129.8	2.84	67.721	7524.6	3605.2	
41	-0.5216	288.931	285.7	1.2	7405.7	3764.3	11170.0	2.97	68.799	7467.2	3702.9	
42	-0.5160	296.336	293.1	1.3	7589.5	3623.1	11212.7	3.09	69.779	7417.9	3794.8	
43	-0.5104	302.230	299.0	1.4	7733.8	3499.2	11233.0	3.21	70.640	7366.1	3866.9	
44	-0.5048	307.720	304.5	1.5	7867.4	3385.5	11252.9	3.32	71.430	7319.2	3933.7	
45	-0.4992	312.351	309.1	1.6	7978.5	3281.2	11259.6	3.43	72.154	7270.4	3989.2	
46	-0.4936	316.702	313.5	1.7	8082.1	3187.3	11269.4	3.54	72.806	7228.4	4041.0	
47	-0.4880	320.739	317.5	1.8	8177.3	3103.1	11280.4	3.64	73.391	7191.7	4088.7	
48	-0.4823	323.893	320.7	1.9	8249.6	3029.2	11278.8	3.72	73.904	7154.0	4124.8	
49	-0.4767	326.977	323.7	2.0	8320.0	2959.3	11279.3	3.81	74.389	7119.3	4160.0	
50		329.754	326.5	2.1	8382.3	2897.6	11279.9	3.89	74.818	7088.7	4191.1	
51	-0.4655	331.893	328.7	2.2	8428.1	2841.4	11269.5	3.97	75.208	7055.4	4214.0	
52		334.004	330.8	2.3	8473.0	2791.1	11264.1	4.04	75.557	7027.6	4236.5	
53	-0.4543	336.280	333.0	2.4	8522.0	2744.6	11266.7	4.10	75.880	7005.7	4261.0	
	-0.4487		334.8	2.5	8558.9	2703.9	11262.8	4.17	76.163	6983.4	4279.5	
		339.677	336.4	2.6	8590.3	2671.3	11261.5	4.22	76.390	6966.4	4295.1	
		341.506	338.3	2.8	8627.6	2636.3	11263.9	4.27	76.632	6950.1	4313.8	
	-0.4318		339.7	2.9	8655.1	2605.5	11260.6	4.32	76.846	6933.0	4327.5	
58	-0.4262	344.281	341.0	3.0	8679.4	2575.7	11255.1	4.37	77.053	6915.4	4339.7	
	-0.4206		342.1	3.1	8697.9	2546.6	11244.5	4.42	77.255	6895.6	4349.0	
	-0.4150		343.2	3.2	8715.8	2521.0	11236.8	4.46	77.433	6878.9	4357.9	
	-0.4094		344.0	3.3	8727.2	2497.5	11224.7	4.49	77.596	6861.1	4363.6	
62	-0.4038	348.074	344.8	3.4	8737.6	2477.0	11214.6	4.53	77.739	6845.8	4368.8	
	-0.3982		345.7	3.5	8751.1	2456.4	11207.5	4.56	77.882	6831.9	4375.5	
	-0.3926		346.5	3.6	8760.0	2438.1	11198.2	4.59	78.009	6818.1	4380.0	
	-0.3870		347.4	3.7	8773.4	2422.9	11196.3	4.62	78.115	6809.6	4386.7	
	-0.3813		348.2	3.8	8784.6	2408.2	11192.8	4.65	78.216	6800.5	4392.3	
		352.286	349.0	3.9	8795.8	2394.8	11190.6	4.67	78.310	6792.7	4397.9	
	-0.3701		349.9	4.0	8808.6	2383.0	11191.5	4.70	78.392	6787.3	4404.3	
		353.355	350.1	4.1	8803.3	2375.7	11179.0	4.71	78.442	6777.3	4401.7	
	-0.3589		351.1	4.2	8818.6	2368.9	11187.4	4.72	78.490	6778.1	4409.3	
71	-0.3533	355.278	352.0	4.3	8832.1	2359.9	11192.0	4.74	78.552	6775.9	4416.0	
				Newfie	elds Mini	ing Desig	n and Tec	hnical	Service	s		

Test Readings for Specimen No. 2											
No.	Def. Dial in.	Load Dial	Load lbs.	Strain %	Deviator Stress psf	Minor Eff. Stress psf	Major Eff. Stress psf	1:3 Ratio	Pore Press. psi	P psf	Q psf
72	-0.3477	356.060	352.8	4.5	8841.9	2350.9	11192.8	4.76	78.614	6771.9	4421.0
73	-0.3421	356.846	353.6	4.6	8851.8	2340.5	11192.3	4.78	78.687	6766.4	4425.9
74	-0.3365	357.665	354.4	4.7	8862.4	2331.7	11194.1	4.80	78.748	6762.9	4431.2
75	-0.3308	358.510	355.3	4.8	8873.7	2325.3	11199.0	4.82	78.792	6762.1	4436.8
76	-0.3252	359.199	356.0	4.9	8881.0	2318.7	11199.8	4.83	78.838	6759.2	4440.5
77	-0.3196	359.612	356.4	5.0	8881.4	2313.3	11194.7	4.84	78.875	6754.0	4440.7
78	-0.3140	360.354	357.1	5.1	8890.0	2308.1	11198.1	4.85	78.911	6753.1	4445.0
79	-0.3084	361.667	358.4	5.2	8912.7	2302.6	11215.3	4.87	78.950	6759.0	4456.4
80	-0.3028	362.504	359.3	5.3	8923.5	2300.5	11224.0	4.88	78.964	6762.3	4461.8
81	-0.2888	364.709	361.5	5.6	8953.2	2295.2	11248.4	4.90	79.001	6771.8	4476.6
82	-0.2747	367.033	363.8	5.8	8985.5	2297.6	11283.0	4.91	78.985	6790.3	4492.7
83	-0.2607	369.477	366.2	6.1	9020.4	2291.9	11312.3	4.94	79.024	6802.1	4510.2
84	-0.2467	372.192	369.0	6.4	9061.6	2287.6	11349.2	4.96	79.054	6818.4	4530.8
85	-0.2326	374.815	371.6	6.6	9100.2	2287.4	11387.7	4.98	79.055	6837.5	4550.1
		377.919	374.7	6.9	9150.2	2290.4	11440.6	4.99	79.034	6865.5	4575.1
87		380.537	377.3	7.2	9187.9	2299.2	11487.1	5.00	78.974	6893.1	4594.0
88	-0.1905		379.8	7.4	9223.3	2310.6	11533.8	4.99	78.894	6922.2	4611.6
	-0.1765		382.4	7.7	9259.2	2314.2	11573.4	5.00	78.869	6943.8	4629.6
90		388.362	385.1	7.9	9298.2	2318.3	11616.5	5.01	78.840	6967.4	4649.1
91		390.667	387.4	8.2	9326.9	2328.3	11655.2	5.01	78.771	6991.7	4663.5
	-0.1344		390.4	8.5	9370.9	2341.5	11712.4	5.00	78.680	7027.0	4685.5
	-0.1204		392.3	8.7	9390.7	2356.5	11747.2	4.99	78.575	7051.8	4695.4
94		398.236	395.0	9.0	9426.8	2369.0	11795.8	4.98	78.488	7082.4	4713.4
	-0.1004		396.9	9.3	9445.3	2377.4	11822.7	4.97	78.430	7100.0	4722.6
		402.918	399.7	9.5	9483.0	2388.2	11871.2	4.97	78.355	7100.0	4741.5
90 97		405.577	402.3	9.8	9518.2	2402.9	11921.1	4.96	78.253	7162.0	4759.1
98		408.193	405.0	10.1	9551.9	2402.9	11921.1	4.94	78.121	7197.8	4775.9
99		410.960	407.7	10.1	9588.8	2421.9	12027.9	4.93	78.002	7233.5	4773.9
	-0.0302		407.7	10.5	9605.2	2452.7	12027.9	4.93	77.907	7255.4	4802.6
					9624.9						
		414.928	411.7	10.9		2464.3	12089.3	4.91	77.827	7276.8	4812.5
02		417.135	413.9	11.1	9647.8	2479.1	12126.9	4.89	77.724	7303.0	4823.9
03		419.576	416.3	11.4	9675.8	2496.7	12172.5	4.88	77.602	7334.6	4837.9
04		421.904	418.7	11.7	9700.8	2515.5	12216.3	4.86	77.472	7365.9	4850.4
05		424.366	421.1	11.9	9728.6	2535.5	12264.1	4.84	77.332	7399.8	4864.3
06		426.627	423.4	12.2	9751.4	2549.2	12300.6	4.83	77.237	7424.9	4875.7
.07		428.451	425.2	12.5	9763.8	2564.9	12328.7	4.81	77.128	7446.8	4881.9
80		429.947	426.7	12.7	9768.5	2575.0	12343.6	4.79	77.058	7459.3	4884.3
09		432.333	429.1	13.0	9793.4	2586.9	12380.3	4.79	76.975	7483.6	4896.7
10		434.036	430.8	13.2	9802.3	2600.9	12403.2	4.77	76.878	7502.0	4901.1
11		436.491	433.3	13.5	9828.1	2623.7	12451.8	4.75	76.720	7537.8	4914.0
12		438.454	435.2	13.8	9842.3	2640.3	12482.7	4.73	76.604	7561.5	4921.2
13		440.623	437.4	14.0	9861.0	2658.2	12519.2	4.71	76.481	7588.7	4930.5
14		442.869	439.6	14.3	9881.1	2672.5	12553.6	4.70	76.381	7613.1	4940.5
15		444.527	441.3	14.6	9887.7	2688.0	12575.7	4.68	76.273	7631.8	4943.8
16		446.679	443.4	14.8	9905.1	2694.3	12599.4	4.68	76.230	7646.8	4952.6
17	0.2163	449.089	445.9	15.1	9928.0	2706.5	12634.4	4.67	76.145	7670.4	4964.0
18	0.2303	451.367	448.1	15.4	9947.6	2719.5	12667.1	4.66	76.055	7693.3	4973.8
				Newfie	elds Mini	ing Desig	n and Tec	hnical	Service	s	

	Test Readings for Specimen No. 2													
No.	Def. Dial in.	Load Dial	Load lbs.	Strain %		Minor Eff. Stress psf	Major Eff. Stress psf	1:3 Ratio	Pore Press. psi	P psf	Q psf			
119	0.2444	453.862	450.6	15.6	9971.6	2740.5	12712.2	4.64	75.909	7726.3	4985.8			
120	0.2584	456.120	452.9	15.9	9990.1	2756.4	12746.6	4.62	75.798	7751.5	4995.1			
121	0.2586	455.999	452.8	15.9	9987.1	2757.2	12744.3	4.62	75.793	7750.8	4993.5			

Type of Test:

Unconsolidated Undrained **Sample Type:** Remolded

Description: Filtercake with Salt - UU Test

LL= 51 **PL=** 40 **PI=** 11

Specific Gravity= 3.2

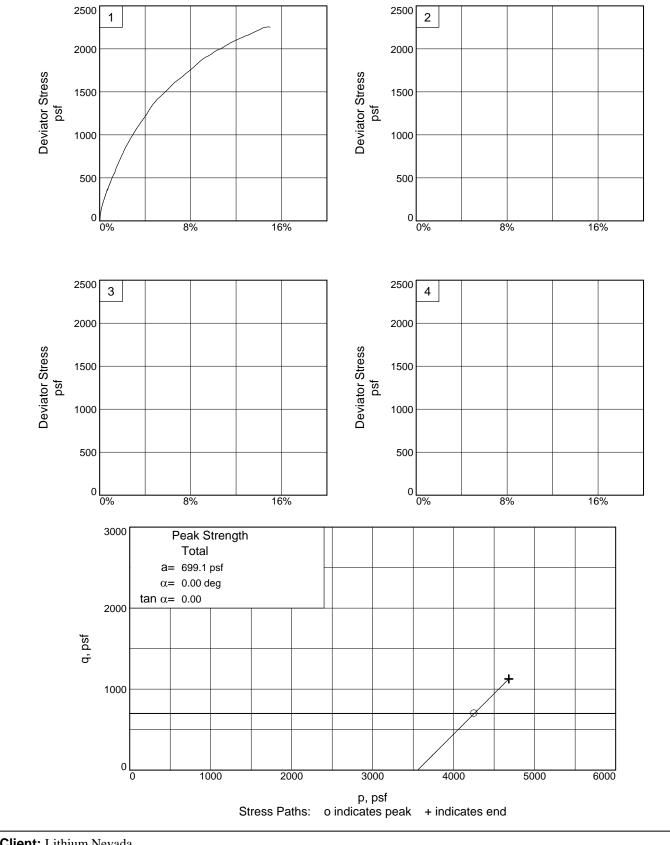
Remarks: Failure chosen at 5% strain

	Saı	mple No.	1	
		Water Content, % Dry Density, pcf	49.4 68.9	
	ā	Saturation, %	83.3	
1	Initial	Void Ratio	1.8978	
		Diameter, in.	2.807	
		Height, in.	5.602	
		Water Content, %	50.3	
	st	Dry Density, pcf	68.9	
	At Test	Saturation, %	84.9	
	Αţ	Void Ratio	1.8978	
		Diameter, in.	2.807	
		Height, in.	5.602	
	Str	ain rate, %/min.	1.00	
	Ba	ck Pressure, psi	0.000	
	Cel	ll Pressure, psi	24.690	
	Fai	I. Stress, psf	1398.2	
	S	Strain, %	5.0	
	Ult.	Stress, psf		
	S	Strain, %		
	σ_1	Failure, psf	4953.6	
	σ_{3}	Failure, psf	3555.4	

Client: Lithium Nevada

Project: Thacker Pass

Source of Sample: Reconstituted Tailings


Sample Number: 19-421-06

Proj. No.: 475.0385.000 **Date Sampled:** 12/9/19

■NewFields

Figure ____

Tested By: K.Magner Checked By: K.Magner

Client: Lithium Nevada **Project:** Thacker Pass

Source of Sample: Reconstituted Tailings **Sample Number:** 19-421-06

Project No.: 475.0385.000 Figure _____ Newfields Mining Design and Technical Services

TRIAXIAL COMPRESSION TEST

12/17/2019 4:37 PM

Unconsolidated Undrained

Date: 12/9/19

Client: Lithium Nevada
Project: Thacker Pass
Project No.: 475.0385.000

Location: Reconstituted Tailings

Sample Number: 19-421-06

Description: Filtercake with Salt - UU Test **Remarks:** Failure chosen at 5% strain

Type of Sample: Remolded

Specific Gravity=3.2 LL=51 PL=40 Pl=11

Test Method: ASTM D 2850

F	Parameters	for Specimen No. 1
Specimen Parameter	Initial	Final
Moisture content: Moist soil+tare, gms.	567.550	1024.550
Moisture content: Dry soil+tare, gms.	468.830	715.250
Moisture content: Tare, gms.	269.020	100.940
Moisture, %	49.4	50.3
Moist specimen weight, gms.	937.30	
Diameter, in.	2.807	
Area, in. ²	6.188	
Height, in.	5.602	
Wet density, pcf	103.0	
Dry density, pcf	68.9	
Void ratio	1.8978	
Saturation, %	83.3	

Test Readings for Specimen No. 1

Membrane modulus = 0.124105 kN/cm^2

Membrane thickness = 0.02 cm

Cell pressure = 24.690 psi (3555.4 psf)

Back pressure = 0.000 psi (0.0 psf)

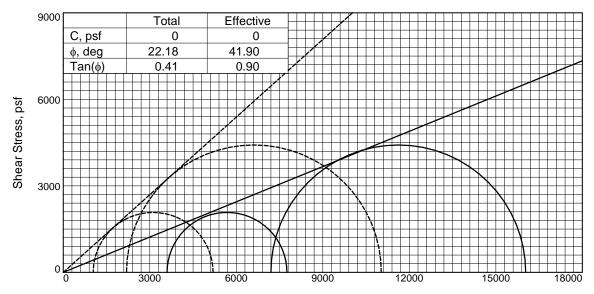
Strain rate, %min. = 1.00

Fail. Stress = 1398.2 psf at reading no. 79

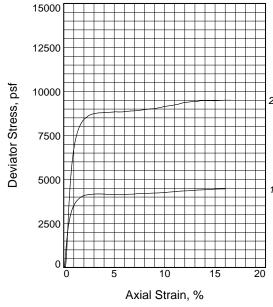
Test Readings for Specimen No. 1										
No.	Def. Dial in.	Load Dial	Load lbs.	Strain %	Deviator Stress psf	Minor Princ. Stress psf	Major Princ. Stress psf	1:3 Ratio	P psf	Q psf
0	0.1364	3.194	0.0	0.0	0.0	3555.4	3555.4	1.00	3555.4	0.0
1	0.1383	4.670	1.5	0.0	34.3	3555.4	3589.7	1.01	3572.5	17.2
2	0.1396	5.926	2.7	0.1	63.5	3555.4	3618.9	1.02	3587.1	31.8
3	0.1409	6.965	3.8	0.1	87.7	3555.4	3643.0	1.02	3599.2	43.8
4	0.1423	7.870	4.7	0.1	108.7	3555.4	3664.1	1.03	3609.7	54.4
5	0.1437	8.631	5.4	0.1	126.4	3555.4	3681.7	1.04	3618.5	63.2
6	0.1451	9.374	6.2	0.2	143.6	3555.4	3699.0	1.04	3627.2	71.8
7	0.1465	10.031	6.8	0.2	158.8	3555.4	3714.2	1.04	3634.8	79.4
8	0.1479	10.537	7.3	0.2	170.5	3555.4	3725.9	1.05	3640.6	85.3
9	0.1493	11.075	7.9	0.2	183.0	3555.4	3738.3	1.05	3646.9	91.5
10	0.1507	11.610	8.4	0.3	195.4	3555.4	3750.7	1.05	3653.0	97.7
11	0.1521	12.014	8.8	0.3	204.7	3555.4	3760.0	1.06	3657.7	102.3
12	0.1535	12.523	9.3	0.3	216.4	3555.4	3771.8	1.06	3663.6	108.2
13	0.1550	12.980	9.8	0.3	227.0	3555.4	3782.3	1.06	3668.8	113.5
14	0.1564	13.432	10.2	0.4	237.4	3555.4	3792.7	1.07	3674.1	118.7
15	0.1578	13.871	10.7	0.4	247.5	3555.4	3802.9	1.07	3679.1	123.8
16	0.1570	14.302	11.1	0.4	257.4	3555.4	3812.8	1.07	3684.1	128.7
17	0.1606	14.788	11.6	0.4	268.6	3555.4	3824.0	1.08	3689.7	134.3
18	0.1620	15.183	12.0	0.5	277.7	3555.4	3833.1	1.08	3694.2	138.9
19	0.1634	15.625	12.4	0.5	287.9	3555.4	3843.2	1.08	3699.3	143.9
20	0.1648	16.095	12.4	0.5	298.7	3555.4	3854.0	1.08	3704.7	149.3
21	0.1662	16.551	13.4	0.5	309.2	3555.4	3864.5	1.09	3704.7	154.6
22	0.1676	16.929	13.7	0.6	317.8	3555.4	3873.2	1.09	3714.3	154.0
23	0.1670	17.337	14.1	0.6	327.2	3555.4	3882.6	1.09	3714.3	163.6
23 24	0.1090	17.912	14.1	0.6	340.4	3555.4	3895.8	1.10	3715.6	170.2
	0.1704	18.288			349.0	3555.4 3555.4	3904.4			170.2
25 26			15.1	0.6				1.10	3729.9	
26	0.1733	18.714	15.5	0.7	358.8	3555.4	3914.1	1.10	3734.7	179.4
27	0.1747	19.189	16.0	0.7	369.7	3555.4	3925.0	1.10	3740.2	184.8
28	0.1761	18.652	15.5	0.7	357.2	3555.4	3912.5	1.10	3733.9	178.6
29	0.1775	19.418	16.2	0.7	374.8	3555.4	3930.1	1.11	3742.7	187.4
30	0.1789	19.984	16.8	0.8	387.7	3555.4	3943.1	1.11	3749.2	193.9
31	0.1803	20.402	17.2	0.8	397.3	3555.4	3952.6	1.11	3754.0	198.6
32	0.1817	20.666	17.5	0.8	403.3	3555.4	3958.6	1.11	3757.0	201.6
33	0.1831	21.067	17.9	0.8	412.4	3555.4	3967.8	1.12	3761.6	206.2
34	0.1845	21.400	18.2	0.9	420.0	3555.4	3975.4	1.12	3765.4	210.0
35	0.1859	21.743	18.5	0.9	427.8	3555.4	3983.2	1.12	3769.3	213.9
36	0.1874	22.186	19.0	0.9	437.9	3555.4	3993.3	1.12	3774.3	219.0
37	0.1888	22.536	19.3	0.9	445.9	3555.4	4001.2	1.13	3778.3	222.9
38	0.1902	22.839	19.6	1.0	452.7	3555.4	4008.1	1.13	3781.7	226.4
39	0.1916	23.293	20.1	1.0	463.1	3555.4	4018.5	1.13	3786.9	231.5
40	0.1930	23.660	20.5	1.0	471.4	3555.4	4026.8	1.13	3791.1	235.7
41	0.1984	25.186	22.0	1.1	506.1	3555.4	4061.4	1.14	3808.4	253.0
42	0.2046	26.580	23.4	1.2	537.6	3555.4	4092.9	1.15	3824.1	268.8
43	0.2099	27.363	24.2	1.3	555.0	3555.4	4110.4	1.16	3832.9	277.5
44	0.2161	29.457	26.3	1.4	602.4	3555.4	4157.8	1.17	3856.6	301.2
	0.2213	30.832	27.6	1.5	633.4	3555.4	4188.7	1.18	3872.0	316.7
45	0.2213	30.032								

Test Readings for Specimen No. 1										
No.	Def. Dial in.	Load Dial	Load lbs.	Strain %	Deviator Stress psf	Minor Princ. Stress psf	Major Princ. Stress psf	1:3 Ratio	P psf	Q psf
47	0.2326	33.574	30.4	1.7	694.8	3555.4	4250.2	1.20	3902.8	347.4
48	0.2388	34.941	31.7	1.8	725.2	3555.4	4280.6	1.20	3918.0	362.6
49	0.2441	36.257	33.1	1.9	754.6	3555.4	4309.9	1.21	3932.6	377.3
50	0.2503	37.492	34.3	2.0	781.9	3555.4	4337.2	1.22	3946.3	390.9
51	0.2555	38.826	35.6	2.1	811.5	3555.4	4366.9	1.23	3961.1	405.8
52	0.2611	40.113	36.9	2.2	840.0	3555.4	4395.3	1.24	3975.3	420.0
53	0.2673	41.375	38.2	2.3	867.7	3555.4	4423.1	1.24	3989.2	433.8
54	0.2725	42.380	39.2	2.4	889.7	3555.4	4445.0	1.25	4000.2	444.8
55	0.2787	43.484	40.3	2.5	913.7	3555.4	4469.1	1.26	4012.2	456.9
56	0.2839	44.592	41.4	2.6	938.0	3555.4	4493.3	1.26	4024.3	469.0
57	0.2900	45.699	42.5	2.7	961.9	3555.4	4517.3	1.27	4036.3	481.0
58	0.2954	46.737	43.5	2.8	984.5	3555.4	4539.8	1.28	4047.6	492.2
59	0.3014	47.766	44.6	2.9	1006.6	3555.4	4562.0	1.28	4058.7	503.3
60	0.3067	48.862	45.7	3.0	1030.4	3555.4	4585.7	1.29	4070.6	515.2
61	0.3129	49.864	46.7	3.2	1050.4	3555.4	4607.1	1.30	4081.2	525.9
62	0.3123	50.812	47.6	3.2	1072.1	3555.4	4627.5	1.30	4091.4	536.0
63	0.3243	51.817	48.6	3.4	1093.5	3555.4	4648.9	1.31	4102.1	546.7
54	0.3295	52.678	49.5	3.4	1111.8	3555.4	4667.1	1.31	4111.3	555.9
55	0.3356	53.596	50.4	3.6	1131.1	3555.4	4686.5	1.32	4120.9	565.6
56	0.3409	54.556	51.4	3.7	1151.6	3555.4	4706.9	1.32	4131.1	575.8
57	0.3470	55.380	52.2	3.8	1168.7	3555.4	4724.1	1.33	4139.7	584.4
57 58	0.3522	56.289	53.1	3.9	1187.9	3555.4	4743.3	1.33	4149.3	593.9
59	0.3584	57.181	54.0	4.0	1206.5	3555.4	4761.8	1.34	4158.6	603.2
0	0.3637	58.041	54.8	4.0	1200.5	3555.4	4779.8	1.34	4167.6	612.2
71	0.3698	58.983	55.8	4.1	1244.1	3555.4	4779.8	1.34	4177.4	622.0
72	0.3751	60.157	57.0	4.3	1269.0	3555.4	4824.4	1.36	4189.9	634.5
72 73	0.3812	61.297	58.1	4.4	1292.9	3555.4	4848.3	1.36	4201.8	646.5
73 74	0.3865	62.209	59.0	4.4	1311.9			1.37	4201.8	656.0
74 75				4.5 4.6		3555.4	4867.3			
	0.3920	63.106	59.9		1330.5	3555.4	4885.9	1.37	4220.6	665.3
76 77	0.3976	64.069	60.9	4.7	1350.5	3555.4	4905.8	1.38	4230.6	675.2
77 70	0.4037	64.956	61.8	4.8	1368.6	3555.4	4924.0	1.38	4239.7	684.3
78 70	0.4090	65.643	62.4	4.9	1382.5	3555.4	4937.8	1.39		691.2
79	0.4151	66.428	63.2	5.0	1398.2	3555.4	4953.6	1.39	4254.5	699.1
80	0.4204	67.232	64.0	5.1	1414.6	3555.4	4970.0	1.40	4262.7	707.3
81	0.4345	68.719	65.5	5.3	1443.6	3555.4	4999.0	1.41	4277.2	721.8
82	0.4485	70.311	67.1	5.6	1474.8	3555.4	5030.1	1.41	4292.7	737.4
83	0.4626	71.963	68.8	5.8	1507.1	3555.4	5062.4	1.42	4308.9	753.5
84	0.4765	73.597	70.4	6.1	1538.8	3555.4	5094.1	1.43	4324.7	769.4
85	0.4905	75.358	72.2	6.3	1573.1	3555.4	5128.4	1.44	4341.9	786.5
86	0.5046	77.091	73.9	6.6	1606.5	3555.4	5161.9	1.45	4358.6	803.3
87	0.5186	78.485	75.3	6.8	1632.5	3555.4	5187.8	1.46	4371.6	816.2
88	0.5326	79.772	76.6	7.1	1655.9	3555.4	5211.3	1.47	4383.3	828.0
89	0.5466	81.195	78.0	7.3	1682.2	3555.4	5237.5	1.47	4396.4	841.1
90	0.5606	82.812	79.6	7.6	1712.4	3555.4	5267.8	1.48	4411.6	856.2
91	0.5747	84.211	81.0	7.8	1737.7	3555.4	5293.1	1.49		868.9
വ	0.5886	85.725	82.5	8.1	1765.4	3555.4	5320.8	1.50	4438.1	882.7
92 93	0.6026	87.236	84.0	8.3	1792.9	3555.4	5348.2	1.50	4451.8	896.4

					Test Re	eadings for	Specimen N	No. 1		
No.	Def. Dial in.	Load Dial	Load lbs.	Strain %	Deviator Stress psf	Minor Princ. Stress psf	Major Princ. Stress psf	1:3 Ratio	P psf	Q psf
94	0.6168	88.924	85.7	8.6	1823.8	3555.4	5379.2	1.51	4467.3	911.9
95	0.6307	90.591	87.4	8.8	1854.2	3555.4	5409.6	1.52	4482.5	927.1
96	0.6448	92.168	89.0	9.1	1882.5	3555.4	5437.9	1.53	4496.6	941.2
97	0.6587	93.394	90.2	9.3	1903.2	3555.4	5458.6	1.54	4507.0	951.6
98	0.6728	94.389	91.2	9.6	1918.9	3555.4	5474.2	1.54	4514.8	959.4
99	0.6868	95.557	92.4	9.8	1938.1	3555.4	5493.4	1.55	4524.4	969.0
100	0.7014	97.116	93.9	10.1	1965.1	3555.4	5520.4	1.55	4537.9	982.5
101	0.7153	98.289	95.1	10.3	1984.2	3555.4	5539.5	1.56	4547.4	992.1
102	0.7293	99.160	96.0	10.6	1996.8	3555.4	5552.1	1.56	4553.7	998.4
103	0.7432	100.294	97.1	10.8	2014.7	3555.4	5570.1	1.57	4562.7	1007.4
104	0.7572	101.630	98.4	11.1	2036.7	3555.4	5592.1	1.57	4573.7	1018.4
105	0.7712	102.783	99.6	11.3	2054.8	3555.4	5610.2	1.58	4582.8	1027.4
106	0.7852	104.046	100.9	11.6	2075.0	3555.4	5630.3	1.58	4592.8	1037.5
107	0.7992	105.109	101.9	11.8	2090.9	3555.4	5646.3	1.59	4600.8	1045.5
108	0.8132	106.108	102.9	12.1	2105.4	3555.4	5660.8	1.59	4608.1	1052.7
109	0.8272	107.170	104.0	12.3	2121.1	3555.4	5676.5	1.60	4615.9	1060.5
110	0.8412	108.151	105.0	12.6	2135.0	3555.4	5690.4	1.60	4622.9	1067.5
111	0.8554	109.223	106.0	12.8	2150.6	3555.4	5705.9	1.60	4630.7	1075.3
112	0.8693	110.050	106.9	13.1	2161.2	3555.4	5716.5	1.61	4635.9	1080.6
113	0.8834	111.159	108.0	13.3	2177.3	3555.4	5732.6	1.61	4644.0	1088.6
114	0.8979	112.290	109.1	13.6	2193.5	3555.4	5748.9	1.62	4652.1	1096.8
115	0.9119	113.409	110.2	13.8	2209.6	3555.4	5765.0	1.62	4660.2	1104.8
116	0.9256	114.432	111.2	14.1	2223.8	3555.4	5779.1	1.63	4667.3	1111.9
117		115.679	112.5	14.3	2242.2	3555.4	5797.5	1.63	4676.5	1121.1
118	0.9536	116.458	113.3	14.6	2251.1	3555.4	5806.5	1.63	4680.9	1125.6
119	0.9676	117.014	113.8	14.8	2255.6	3555.4	5810.9	1.63	4683.1	1127.8


2251.6

3555.4


5806.9

1.63 4681.1 1125.8

120 0.9770 117.036 113.8 15.0

Total Normal Stress, psf ———— Effective Normal Stress, psf ————

Type of Test	:	
--------------	---	--

CU with Pore Pressures **Sample Type:** Remolded

Description: Filter Cake with Salt at +9% - CU

Test

LL= 51 **PL=** 11 **PI=** 40

Specific Gravity= 3.2

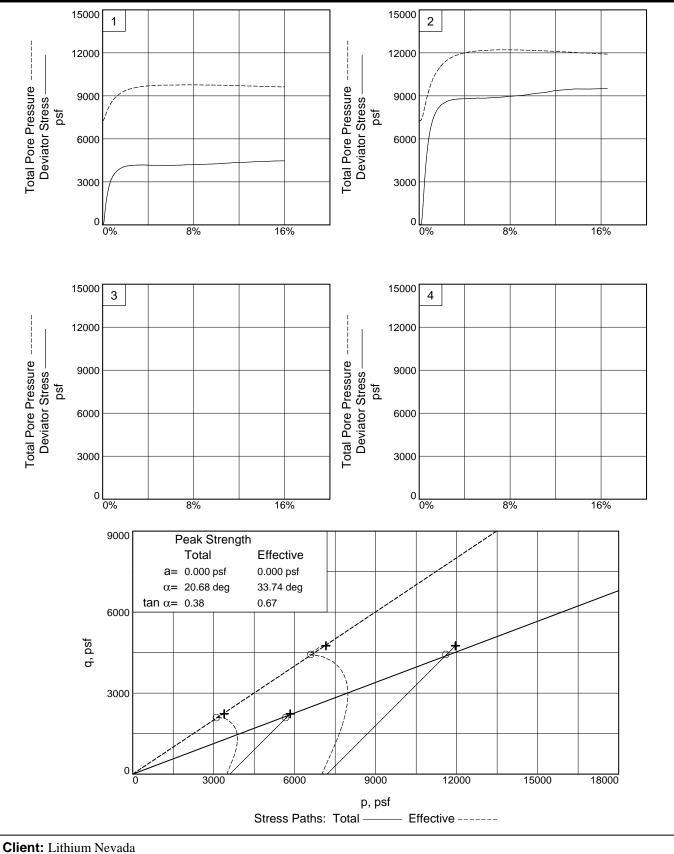
Remarks: Failure chosen at 5% strian

	Saı	mple No.	1	2	
		Water Content, %	54.0	54.0	
		Dry Density, pcf	66.5	65.4	
	Initial	Saturation, %	86.3	84.1	
	İ	Void Ratio	2.0031	2.0558	
_		Diameter, in.	2.800	2.803	
2		Height, in.	5.605	5.652	
		Water Content, %	46.5	38.9	
	+ 2	Dry Density, pcf	80.3	89.0	
	<u>e</u> s	Saturation, %	100.0	100.0	
	At Test	Void Ratio	1.4890	1.2457	
	1	Diameter, in.	2.628	2.525	
1		Height, in.	5.272	5.119	
	Str	ain rate, %/min.	0.02	0.02	
	Eff.	Cell Pressure, psi	25.000	50.000	
	Fai	I. Stress, psf	4154.6	8833.7	
	Т	otal Pore Pr., psf	9742.2	12121.5	
	S	Strain, %	5.0	5.0	
	Ult.	Stress, psf			
	Т	otal Pore Pr., psf			
	5	Strain, %			
	$\overline{\sigma}_1$	Failure, psf	5193.7	11027.3	
		Failure, psf	1039.1	2193.6	

Client: Lithium Nevada

Project: Thacker Pass

Source of Sample: Reconstituted Tailings


Sample Number: 19-421-04,-05

Proj. No.: 475.0385.000 **Date Sampled:** 12/11/19

■NewFields

Figure ____

Tested By: K.Magner Checked By: K.Magner

Client: Lithium Nevada
Project: Thacker Pass

Source of Sample: Reconstituted Tailings **Sample Number:** 19-421-04,-05

Project No.: 475.0385.000 Figure _____ Newfields Mining Design and Technical Services

Tested By: K.Magner Checked By: K.Magner

TRIAXIAL COMPRESSION TEST

CU with Pore Pressures

12/18/2019 10:26 AM

Date: 12/11/19

Client: Lithium Nevada
Project: Thacker Pass
Project No.: 475.0385.000

Location: Reconstituted Tailings

Sample Number: 19-421-04,-05

Description: Filter Cake with Salt at +9% - CU Test

Remarks: Failure chosen at 5% strian

Type of Sample: Remolded

Specific Gravity=3.2 LL=51 PL=11 Pl=40

Test Method: COE uniform strain

P	arameters f	or Specimen No.	.1	
Specimen Parameter	Initial	Saturated	Consolidated	Final
Moisture content: Moist soil+tare, gms.	388.800			1067.840
Moisture content: Dry soil+tare, gms.	294.900			763.500
Moisture content: Tare, gms.	121.020			180.930
Moisture, %	54.0	62.6	46.5	52.2
Moist specimen weight, gms.	928.10			
Diameter, in.	2.800	2.800	2.628	
Area, in.²	6.158	6.158	5.426	
Height, in.	5.605	5.605	5.272	
Net decrease in height, in.		0.000	0.333	
Wet density, pcf	102.4	108.2	117.6	
Dry density, pcf	66.5	66.5	80.3	
Void ratio	2.0031	2.0031	1.4890	
Saturation, %	86.3	100.0	100.0	

Test Readings for Specimen No. 1

Membrane modulus = 0.124105 kN/cm^2

Membrane thickness = 0.02 cm

Consolidation cell pressure = 74.870 psi (10781.3 psf)

Consolidation back pressure = 49.870 psi (7181.3 psf)

Consolidation effective confining stress = 3600.0 psf

Strain rate, %/min. = 0.02

Fail. Stress = 4154.6 psf at reading no. 77

	Test Readings for Specimen No. 1											
No.	Def. Dial in.	Load Dial	Load lbs.	Strain %	Deviator Stress psf	Minor Eff. Stress psf	Major Eff. Stress psf	1:3 Ratio	Pore Press. psi	P psf	Q psf	
0	-0.5305	2.497	0.0	0.0	0.0	3505.4	3505.4	1.00	50.527	3505.4	0.0	
1	-0.5291	3.733	1.2	0.0	32.8	3491.1	3523.9	1.01	50.626	3507.5	16.4	
2	-0.5277	3.086	0.6	0.1	15.6	3494.0	3509.6	1.00	50.606	3501.8	7.8	
3	-0.5263	4.727	2.2	0.1	59.1	3472.5	3531.6	1.02	50.756	3502.0	29.6	
4	-0.5249	9.044	6.5	0.1	173.6	3434.3	3607.9	1.05	51.021	3521.1	86.8	
5	-0.5235	16.126	13.6	0.1	361.3	3378.1	3739.4	1.11	51.411	3558.8	180.6	
6	-0.5221	23.673	21.2	0.2	561.1	3318.9	3880.0	1.17	51.822	3599.5	280.6	
7	-0.5207	31.694	29.2	0.2	773.4	3256.7	4030.1	1.24	52.254	3643.4	386.7	
8	-0.5192	39.038	36.5	0.2	967.7	3198.7	4166.4	1.30	52.657	3682.6	483.9	
	-0.5178	46.272	43.8	0.2	1159.0	3139.9	4298.9	1.37	53.065	3719.4	579.5	
	-0.5164	53.242	50.7	0.3	1343.2	3082.1	4425.3	1.44	53.466	3753.7	671.6	
11	-0.5150	59.504	57.0	0.3	1508.5	3026.4	4534.9	1.50	53.854	3780.6	754.3	
	-0.5136		62.7	0.3	1658.3	2973.2	4631.5	1.56	54.223	3802.3	829.1	
	-0.5122	70.660	68.2	0.3	1802.8	2920.2	4723.0	1.62	54.591	3821.6	901.4	
	-0.5108	75.982	73.5	0.4	1943.0	2867.5	4810.5	1.68	54.957	3839.0	971.5	
15	-0.5094	80.811	78.3	0.4	2070.1	2817.2	4887.3	1.73	55.306	3852.3	1035.1	
	-0.5080	85.308	82.8	0.4	2188.4	2766.7	4955.1	1.79	55.657	3860.9	1094.2	
17	-0.5066	89.485	87.0	0.4	2298.2	2718.3	5016.5	1.79	55.993	3867.4	1149.1	
18	-0.5052	93.410	90.9		2401.2	2672.3	5073.6	1.90	56.312	3872.9	1200.6	
				0.5								
19	-0.5038	97.228	94.7	0.5	2501.4	2626.5	5127.9	1.95	56.630	3877.2	1250.7	
20		100.858	98.4	0.5	2596.6	2582.4	5179.0	2.01	56.937	3880.7	1298.3	
21		104.078	101.6	0.6	2680.9	2540.5	5221.3	2.06	57.228	3880.9	1340.4	
22		106.886	104.4	0.6	2754.2	2500.6	5254.8	2.10	57.505	3877.7	1377.1	
23		109.847	107.4	0.6	2831.6	2460.0	5291.6	2.15	57.787	3875.8	1415.8	
24		112.649	110.2	0.6	2904.7	2419.9	5324.6	2.20	58.065	3872.3	1452.4	
25		115.219	112.7	0.7	2971.7	2381.7	5353.4	2.25	58.330	3867.6	1485.9	
26		117.563	115.1	0.7	3032.7	2345.1	5377.8	2.29	58.584	3861.5	1516.3	
27		119.753	117.3	0.7	3089.6	2309.8	5399.4	2.34	58.830	3854.6	1544.8	
	-0.4912		119.4	0.7	3146.1	2275.5	5421.6	2.38	59.068	3848.6	1573.0	
		123.799	121.3	0.8	3194.5	2242.5	5436.9	2.42			1597.2	
30	-0.4884	125.656	123.2	0.8	3242.5	2210.0	5452.5	2.47	59.523	3831.2	1621.2	
31	-0.4870	127.438	124.9	0.8	3288.5	2179.0	5467.5	2.51	59.738	3823.3	1644.3	
32	-0.4856	129.009	126.5	0.9	3329.0	2149.7	5478.6	2.55	59.942	3814.2	1664.5	
33	-0.4841	130.501	128.0	0.9	3367.3	2120.5	5487.8	2.59	60.144	3804.2	1683.7	
34	-0.4827	132.003	129.5	0.9	3405.9	2092.8	5498.7	2.63	60.337	3795.8	1703.0	
35	-0.4813	133.408	130.9	0.9	3441.9	2065.3	5507.2	2.67	60.528	3786.2	1721.0	
36	-0.4799	134.708	132.2	1.0	3475.2	2038.6	5513.7	2.70	60.713	3776.1	1737.6	
37	-0.4785	135.925	133.4	1.0	3506.2	2013.0	5519.2	2.74	60.891	3766.1	1753.1	
38	-0.4771	137.240	134.7	1.0	3539.8	1987.7	5527.5	2.78	61.067	3757.6	1769.9	
39	-0.4757	138.428	135.9	1.0	3570.1	1963.5	5533.6	2.82	61.235	3748.5	1785.1	
40	-0.4743	139.460	137.0	1.1	3596.2	1940.2	5536.4	2.85	61.397	3738.3	1798.1	
		143.406	140.9	1.2	3695.9	1854.1	5550.0	2.99	61.994	3702.0	1847.9	
		146.527	144.0	1.3	3773.7	1775.9	5549.6	3.12	62.537	3662.8	1886.8	
		149.211	146.7	1.4	3839.8	1705.0	5544.9	3.25	63.029	3625.0	1919.9	
		151.730	149.2	1.5	3901.6	1642.2	5543.7	3.38	63.466	3593.0	1950.8	
		153.845	151.3	1.6	3952.6	1586.4	5538.9	3.49			1976.3	
		155.813	153.3	1.7	3999.6	1534.6	5534.2	3.61	64.213	3534.4	1999.8	
.5	5.1707	100.010										
				Newtie	acs Wiln	ing Desig	n and lec	nnical	Service	·s		

	Test Readings for Specimen No. 1										
No.	Def. Dial in.	Load Dial	Load lbs.	Strain %	Deviator Stress psf	Minor Eff. Stress psf	Major Eff. Stress psf	1:3 Ratio	Pore Press. psi	P psf	Q psf
47	-0.4350	157.201	154.7	1.8	4031.5	1485.6	5517.1	3.71	64.553	3501.4	2015.7
48	-0.4294	158.634	156.1	1.9	4064.4	1441.5	5505.9	3.82	64.860	3473.7	2032.2
49	-0.4238	159.834	157.3	2.0	4091.2	1402.1	5493.3	3.92	65.133	3447.7	2045.6
50	-0.4182	160.635	158.1	2.1	4107.6	1367.7	5475.3	4.00	65.372	3421.5	2053.8
51	-0.4126	161.192	158.7	2.2	4117.5	1337.1	5454.6	4.08	65.585	3395.8	2058.8
52	-0.4070	161.869	159.4	2.3	4130.6	1309.2	5439.8	4.16	65.778	3374.5	2065.3
53		162.480	160.0	2.4	4141.9	1286.0	5428.0	4.22	65.939	3357.0	2071.0
54	-0.3958	162.880	160.4	2.6	4147.7	1265.1	5412.9	4.28	66.084	3339.0	2073.9
55	-0.3902	163.373	160.9	2.7	4156.0	1244.0	5400.0	4.34	66.231	3322.0	2078.0
56	-0.3845	163.600	161.1	2.8	4157.3	1225.6	5382.9	4.39	66.359	3304.3	2078.6
57		164.018	161.5	2.9	4163.5	1209.6	5373.1	4.44	66.470	3291.3	2081.7
58		164.298	161.8	3.0	4166.1	1193.5	5359.7	4.49	66.582	3276.6	2083.1
59	-0.3677	164.737	162.2	3.1	4172.9	1176.7	5349.6	4.55	66.698	3263.2	2086.4
60		165.008	162.5	3.2	4175.2	1161.2	5336.4	4.60	66.806	3248.8	2087.6
61		165.279	162.8	3.3	4177.6	1147.7	5325.3	4.64	66.900	3236.5	2088.8
62		165.411	162.9	3.4	4176.4	1135.9	5312.3	4.68	66.982	3224.1	2088.2
63		165.727	163.2	3.5	4179.9	1124.0	5303.8	4.72	67.065	3213.9	2089.9
64		165.944	163.4	3.6	4180.8	1114.0	5294.8	4.75	67.134	3204.4	2090.4
65		165.922	163.4	3.7	4175.6	1104.8	5280.4	4.78	67.198	3192.6	2087.8
66		166.010	163.5	3.8	4173.3	1096.9	5270.1	4.80	67.253	3183.5	2086.6
67		166.089	163.6	3.9	4170.6	1089.6	5260.2	4.83	67.303	3174.9	2085.3
68		166.098	163.6	4.0	4166.3	1082.0	5248.2	4.85	67.356	3165.1	2083.1
69		166.196	163.7	4.2	4164.1	1075.1	5239.3	4.87	67.404	3157.2	2082.1
70		166.137	163.6	4.3	4158.0	1069.1	5227.1	4.89	67.446	3148.1	2079.0
71		166.304	163.8	4.4	4157.6	1063.4	5221.1	4.91	67.485	3142.2	2078.8
72		166.464	164.0	4.5	4157.1	1059.1	5216.1	4.93	67.515	3137.6	2078.5
73		166.720	164.2	4.6	4158.9	1054.0	5212.9	4.95	67.550	3133.5	2079.5
74		166.855	164.4	4.7	4157.7	1049.3	5207.0	4.96	67.583	3128.2	2078.8
75 75		167.039	164.5	4.8	4157.7	1045.7	5203.3	4.98	67.609	3124.5	2078.8
	-0.2723		164.7	4.9	4157.3	1042.0	5199.3	4.99	67.634	3120.6	2078.7
	-0.2667		164.8	5.0	4154.6	1039.1	5193.7	5.00	67.654		2077.3
	-0.2611		165.1	5.1	4158.2	1035.4	5193.5	5.02	67.680		2079.1
	-0.2555		165.3	5.2	4159.2	1034.5	5193.7	5.02	67.686	3114.1	2079.6
	-0.2499		165.4	5.3	4156.6 4156.8	1034.3 1032.6	5190.9	5.02	67.687	3112.6	2078.3
	-0.2358		165.9	5.6	4150.8	1032.6	5189.4 5183.2	5.03 5.04	67.699 67.723	3111.0 3106.2	2078.4
	-0.2218 -0.2078		166.3 166.7	5.9				5.04	67.734	3100.2	2077.0 2076.9
	-0.2078		167.5	6.1	4153.8	1027.6 1024.7	5181.4 5185.5	5.06	67.754	3104.3	2070.9
	-0.1938			6.4	4160.8			5.07	67.766	3103.1	
	-0.1797		168.0 168.8	6.7	4162.9 4169.3	1023.0 1015.5	5185.9	5.11	67.818		2081.4
				6.9			5184.8			3100.2	2084.7
	-0.1517 -0.1376		170.0 170.8	7.2 7.5	4187.0 4196.0	1013.6 1011.8	5200.6 5207.8	5.13 5.15	67.831 67.844	3107.1 3109.8	2093.5 2098.0
	-0.1376		170.8	7.3 7.7	4196.0	1011.8	5207.8 5204.6	5.15	67.844	3109.8	2098.0
	-0.1236		171.2	8.0	4193.3	1011.3	5212.5	5.13	67.833	3112.9	2096.6
	-0.1096		171.9	8.2	4203.8	1015.3	5212.3	5.14	67.814	3117.9	2101.9
	-0.0933		172.0	8.5	4203.8	1016.1	5234.0	5.14	67.810		2101.9
	-0.0675		173.7	8.8	4217.3	1010.7	5248.5	5.13		3125.3	2113.2
)3	0.0013	177.070					n and Tec				2113.2
				MCANIE	rus WIIII	פייוש הפייו	ii ailu 180	iiiical	OCI VICE	·	

					Test Re	adings fo	or Specim	en No.	. 1		
No.	Def. Dial in.	Load Dial	Load lbs.	Strain %	Deviator Stress psf	Minor Eff. Stress psf	Major Eff. Stress psf	1:3 Ratio	Pore Press. psi	P psf	Q psf
94	-0.0535	177.726	175.2	9.0	4229.7	1026.8	5256.5	5.12	67.740	3141.6	2114.9
95	-0.0394	178.548	176.1	9.3	4237.1	1025.7	5262.8	5.13	67.747	3144.2	2118.6
96	-0.0254	179.396	176.9	9.6	4245.0	1027.5	5272.6	5.13	67.735	3150.0	2122.5
97	-0.0114	180.341	177.8	9.8	4255.2	1029.8	5285.0	5.13	67.719	3157.4	2127.6
98	0.0027	181.216	178.7	10.1	4263.5	1032.5	5296.0	5.13	67.700	3164.3	2131.7
99	0.0167	182.469	180.0	10.4	4280.7	1036.0	5316.7	5.13	67.675	3176.4	2140.3
100	0.0307	183.437	180.9	10.6	4290.9	1041.3	5332.2	5.12	67.639	3186.7	2145.5
101	0.0448	184.572	182.1	10.9	4305.0	1045.8	5350.7	5.12	67.608	3198.3	2152.5
102	0.0588	185.577	183.1	11.2	4315.8	1053.1	5368.9	5.10	67.557	3211.0	2157.9
103	0.0728	186.884	184.4	11.4	4333.6	1063.1	5396.7	5.08	67.487	3229.9	2166.8
104	0.0868	187.840	185.3	11.7	4343.0	1065.2	5408.2	5.08	67.473	3236.7	2171.5
105	0.1009	188.824	186.3	12.0	4352.9	1069.0	5421.9	5.07	67.446	3245.4	2176.4
106	0.1149	189.637	187.1	12.2	4358.6	1073.9	5432.5	5.06	67.412	3253.2	2179.3
107	0.1289	190.408	187.9	12.5	4363.3	1085.3	5448.6	5.02	67.333	3267.0	2181.7
108	0.1430	191.551	189.1	12.8	4376.5	1092.9	5469.4	5.00	67.280	3281.2	2188.2
109	0.1570	192.683	190.2	13.0	4389.3	1094.7	5484.0	5.01	67.268	3289.4	2194.6
110	0.1710	193.896	191.4	13.3	4403.7	1097.4	5501.2	5.01	67.249	3299.3	2201.9
111	0.1851	194.654	192.2	13.6	4407.6	1106.4	5514.1	4.98	67.186	3310.2	2203.8
112	0.1991	195.560	193.1	13.8	4414.8	1114.8	5529.6	4.96	67.128	3322.2	2207.4
113	0.2131	196.285	193.8	14.1	4417.7	1121.4	5539.0	4.94	67.083	3330.2	2208.8
114	0.2271	197.164	194.7	14.4	4424.0	1122.7	5546.6	4.94	67.074	3334.7	2212.0
115	0.2412	198.413	195.9	14.6	4438.5	1124.8	5563.3	4.95	67.059	3344.1	2219.2
116	0.2552	199.373	196.9	14.9	4446.3	1133.8	5580.2	4.92	66.996	3357.0	2223.2
117	0.2692	200.570	198.1	15.2	4459.4	1143.2	5602.6	4.90	66.931	3372.9	2229.7
118	0.2833	201.197	198.7	15.4	4459.5	1150.9	5610.4	4.87	66.878	3380.6	2229.7
119	0.2973	202.015	199.5	15.7	4463.7	1155.6	5619.3	4.86	66.845	3387.5	2231.9
120	0.3113	202.806	200.3	16.0	4467.3	1154.5	5621.7	4.87	66.853	3388.1	2233.6

 $121 \quad 0.3114 \quad 202.753 \quad 200.3 \quad 16.0 \quad 4466.0 \quad 1155.4 \quad 5621.5 \quad 4.87 \quad 66.846 \quad 3388.5 \quad 2233.0$

P	arameters	s for Specimen No	. 2	
Specimen Parameter	Initial	Saturated	Consolidated	Final
Moisture content: Moist soil+tare, gms.	388.800			1067.840
Moisture content: Dry soil+tare, gms.	294.900			763.500
Moisture content: Tare, gms.	121.020			180.930
Moisture, %	54.0	64.2	38.9	52.2
Moist specimen weight, gms.	921.70			
Diameter, in.	2.803	2.803	2.525	
Area, in. ²	6.171	6.171	5.007	
Height, in.	5.652	5.652	5.119	
Net decrease in height, in.		0.000	0.533	
Wet density, pcf	100.7	107.4	123.6	
Dry density, pcf	65.4	65.4	89.0	
Void ratio	2.0558	2.0558	1.2457	
Saturation, %	84.1	100.0	100.0	

Test Readings for Specimen No. 2

Membrane modulus = 0.124105 kN/cm^2

Membrane thickness = 0.02 cm

Consolidation cell pressure = 99.410 psi (14315.0 psf)

Consolidation back pressure = 49.410 psi (7115.0 psf)

Consolidation effective confining stress = 7200.0 psf

Strain rate, %/min. = 0.02

Fail. Stress = 8833.7 psf at reading no. 75

No.	Def. Dial in.	Load Dial	Load lbs.	Strain %	Stress	Minor Eff. Stress	Stress	1:3 Ratio	Pore Press.	P	Q psf
					psf	psf	psf		psi	psf	•
	-0.5305	2.455	0.0	0.0	0.0	7080.2	7080.2	1.00	50.242	7080.2	0.0
1	-0.5291	3.295	0.8		24.1	7054.4	7078.5	1.00	50.421	7066.4	12.1
2	-0.5277	3.358	0.9	0.1	26.0	7041.2	7067.2	1.00	50.513	7054.2	13.0
3	-0.5263	3.469	1.0	0.1	29.1	7030.5	7059.7	1.00	50.587	7045.1	14.6
4	-0.5249	3.527	1.1	0.1	30.8	7021.9	7052.7	1.00	50.647	7037.3	15.4
5	-0.5234	3.663	1.2	0.1	34.7	7013.2	7047.9	1.00	50.707	7030.5	17.3
6	-0.5220	4.177	1.7	0.2	49.4	7002.3	7051.7	1.01	50.783	7027.0	24.7
7	-0.5206	6.377	3.9	0.2	112.6	6978.9	7091.5	1.02	50.945	7035.2	56.3
8	-0.5192	11.730	9.3	0.2	266.2	6932.8	7199.0	1.04	51.266	7065.9	133.1
9	-0.5178	18.839	16.4	0.2	470.0	6875.0	7345.1	1.07	51.667	7110.1	235.0
10	-0.5164	28.060	25.6	0.3	734.4	6802.7	7537.1	1.11	52.169	7169.9	367.2
11	-0.5150	37.943	35.5	0.3	1017.5	6725.3	7742.8	1.15	52.707	7234.0	508.8
12	-0.5135	48.603	46.1	0.3	1322.8	6641.3	7964.1	1.20	53.290	7302.7	661.4
13	-0.5121	60.301	57.8	0.4	1657.7	6547.4	8205.1	1.25	53.942	7376.3	828.8
14	-0.5107	72.660	70.2	0.4	2011.3	6447.4	8458.7	1.31	54.636	7453.1	1005.7
15	-0.5093	84.937	82.5	0.4	2362.4	6345.8	8708.2	1.37	55.342	7527.0	1181.2
16	-0.5079	96.893	94.4	0.4	2704.1	6243.8	8947.9	1.43	56.050	7595.8	1352.0
17	-0.5065	108.331	105.9	0.5	3030.7	6143.1	9173.8	1.49	56.750	7658.5	1515.4
18	-0.5051	119.052	116.6	0.5	3336.7	6043.8	9380.5	1.55	57.439	7712.1	1668.4
19	-0.5036	129.257	126.8	0.5	3627.7	5946.4	9574.1	1.61	58.116	7760.3	1813.9
20	-0.5022	138.981	136.5	0.6	3904.8	5850.2	9755.1	1.67	58.783	7802.6	1952.4
21	-0.5008	148.289	145.8	0.6	4169.9	5754.6	9924.5	1.72	59.447	7839.6	2085.0
22	-0.4994	156.974	154.5	0.6	4417.0	5661.6	10078.6	1.78	60.093	7870.1	2208.5
23	-0.4980	165.138	162.7	0.6	4649.1	5571.1	10220.2	1.83	60.722	7895.6	2324.6
24	-0.4966	172.933	170.5	0.7	4870.5	5482.5	10353.0	1.89	61.337	7917.7	2435.3
				Newfi	elds Mini	na Desia	n and Tec	hnical	Service	S	

Newfields Mining Design and Technical Services

	Test Readings for Specimen No. 2										
No.	Def. Dial in.	Load Dial	Load lbs.	Strain %	Deviator Stress psf	Minor Eff. Stress psf	Major Eff. Stress psf	1:3 Ratio	Pore Press. psi	P psf	Q psf
25	-0.4952	180.358	177.9	0.7	5081.2	5394.6	10475.8	1.94	61.948	7935.2	2540.6
26	-0.4937	187.301	184.8	0.7	5278.1	5309.5	10587.6	1.99	62.538	7948.5	2639.0
27	-0.4923	193.909	191.5	0.7	5465.2	5225.2	10690.4	2.05	63.124	7957.8	2732.6
28	-0.4909	200.040	197.6	0.8	5638.7	5144.8	10783.4	2.10	63.683	7964.1	2819.3
29	-0.4895	205.939	203.5	0.8	5805.4	5065.8	10871.2	2.15	64.231	7968.5	2902.7
30	-0.4881	211.430	209.0	0.8	5960.4	4990.2	10950.6	2.19	64.756	7970.4	2980.2
31	-0.4867	216.366	213.9	0.9	6099.5	4918.6	11018.0	2.24	65.253	7968.3	3049.7
32	-0.4853	221.160	218.7	0.9	6234.5	4846.8	11081.3	2.29	65.752	7964.0	3117.2
33	-0.4838	225.783	223.3	0.9	6364.4	4776.8	11141.2	2.33	66.238	7959.0	3182.2
34	-0.4824	230.044	227.6	0.9	6484.1	4708.6	11192.7	2.38	66.711	7950.6	3242.0
35	-0.4810	234.359	231.9	1.0	6605.2	4641.4	11246.6	2.42	67.178	7944.0	3302.6
36	-0.4796	238.093	235.6	1.0	6709.7	4577.3	11287.0	2.47	67.623	7932.2	3354.8
37	-0.4782	241.675	239.2	1.0	6809.7	4514.7	11324.4	2.51	68.058	7919.6	3404.9
38		245.179	242.7	1.0	6907.6	4453.9	11361.5	2.55	68.480	7907.7	3453.8
39	-0.4754	248.423	246.0	1.1	6997.9	4394.9	11392.8	2.59	68.890	7893.8	3499.0
40	-0.4739	251.456	249.0	1.1	7082.2	4337.4	11419.6	2.63	69.289	7878.5	3541.1
41	-0.4683	262.342	259.9	1.2	7383.6	4124.3	11507.9	2.79	70.769	7816.1	3691.8
42	-0.4626	271.084	268.6	1.3	7623.4	3936.4	11559.9	2.94	72.074	7748.2	3811.7
43		278.307	275.9	1.4	7819.7	3769.1	11588.8	3.07	73.236	7678.9	3909.8
44		284.416	282.0	1.5	7983.9	3620.1	11603.9	3.21	74.271	7612.0	3991.9
45		289.523	287.1	1.7	8119.4	3485.1	11604.4	3.33	75.208	7544.8	4059.7
46		293.653	291.2	1.8	8226.9	3365.1	11592.0	3.44	76.041	7478.6	4113.5
47		297.606	295.2	1.9	8329.3	3254.8	11584.0	3.56	76.807	7419.4	4164.6
48		300.712	298.3	2.0	8407.4	3152.6	11560.1	3.67	77.517	7356.4	4203.7
49		302.952	300.5	2.1	8461.0	3063.8	11524.8	3.76	78.134	7294.3	4230.5
50		305.299	302.8	2.2	8517.5	2979.0	11496.5	3.86	78.723	7237.7	4258.8
51		307.107	304.7	2.3	8558.7	2904.8	11463.5	3.95	79.237	7184.2	4279.3
52		309.513	307.1	2.4	8616.5	2835.8	11452.3	4.04	79.717	7144.0	4308.3
53		310.962	308.5	2.5	8647.4	2776.6	11424.0	4.11	80.128	7100.3	4323.7
	-0.3948		310.0	2.7	8678.4	2722.1	11400.5	4.19	80.506	7061.3	4339.2
	-0.3892		311.2	2.8	8703.9	2668.6	11372.5	4.26	80.878	7020.5	4352.0
	-0.3835		312.2	2.9	8721.3	2621.2	11342.6	4.33	81.207		4360.7
	-0.3779		313.1	3.0	8736.1	2578.3	11314.4	4.39	81.505	6946.3	4368.0
	-0.3722		314.2	3.1	8756.2	2537.7	11293.9	4.45	81.787	6915.8	4378.1
	-0.3666		314.8	3.2	8762.5	2503.7	11266.2	4.50	82.023	6885.0	4381.3
	-0.3609		315.4	3.3	8771.6	2470.8	11242.4	4.55	82.251	6856.6	4385.8
	-0.3553		316.1	3.4	8780.8	2439.5	11220.3	4.60	82.469	6829.9	4390.4
	-0.3496		316.8	3.5	8790.5	2411.1	11201.6	4.65	82.666	6806.4	4395.3
	-0.3440		317.1	3.6	8786.5	2386.5	11173.0	4.68	82.837	6779.8	4393.2
	-0.3383		317.7	3.8	8793.9	2364.4	11158.3	4.72	82.990	6761.4	4396.9
	-0.3326		318.1	3.9	8796.1	2343.4	11139.6	4.75	83.136	6741.5	4398.1
	-0.3270		318.7	4.0	8800.9	2321.9	11122.8	4.79	83.286	6722.3	4400.4
	-0.3213		319.2	4.1	8805.1	2302.2	11107.3	4.82	83.423	6704.7	4402.6
	-0.3157		319.8	4.2	8812.3	2282.1	11094.4	4.86	83.562	6688.2	4406.2
	-0.3100		320.3	4.3	8814.0	2265.4	11079.3	4.89	83.678	6672.4	4407.0
	-0.3044		320.6	4.4	8814.3	2247.5	11061.8	4.92	83.803	6654.6	4407.2
71	-0.2987	323.596	321.1	4.5	8818.0	2233.0	11051.0	4.95	83.903	6642.0	4409.0
				Newfie	elds Mini	ing Desig	n and Tec	hnical	Service	s	

	Test Readings for Specimen No. 2										
No.	Def. Dial in.	Load Dial	Load lbs.	Strain %	Deviator Stress psf	Minor Eff. Stress psf	Major Eff. Stress psf	1:3 Ratio	Pore Press. psi	P psf	Q psf
72	-0.2931	323.940	321.5	4.6	8817.2	2219.8	11037.0	4.97	83.995	6628.4	4408.6
73	-0.2874	324.674	322.2	4.7	8827.1	2208.5	11035.6	5.00	84.073	6622.1	4413.6
74	-0.2818	325.126	322.7	4.9	8829.2	2203.1	11032.3	5.01	84.111	6617.7	4414.6
75	-0.2761	325.664	323.2	5.0	8833.7	2193.6	11027.3	5.03	84.177	6610.4	4416.9
76	-0.2705	326.441	324.0	5.1	8844.6	2184.9	11029.6	5.05	84.237	6607.3	4422.3
77	-0.2648	326.807	324.4	5.2	8844.3	2178.1	11022.5	5.06	84.284	6600.3	4422.2
78	-0.2592	327.079	324.6	5.3	8841.4	2171.4	11012.8	5.07	84.331	6592.1	4420.7
79	-0.2535	327.214	324.8	5.4	8834.8	2166.3	11001.1	5.08	84.366	6583.7	4417.4
80	-0.2479	327.684	325.2	5.5	8837.3	2157.2	10994.5	5.10	84.429	6575.9	4418.6
81	-0.2337	328.683	326.2	5.8	8838.5	2143.6	10982.1	5.12	84.524	6562.8	4419.3
82	-0.2196	330.299	327.8	6.1	8856.3	2132.0	10988.3	5.15	84.604	6560.2	4428.1
83	-0.2055	331.837	329.4	6.3	8871.7	2118.0	10989.7	5.19	84.701	6553.9	4435.8
84	-0.1914	333.482	331.0	6.6	8889.7	2105.7	10995.4	5.22	84.787	6550.5	4444.8
		334.843	332.4	6.9	8899.9	2104.0	11003.9	5.23	84.799	6553.9	4449.9
		336.136	333.7	7.2	8908.0	2103.7	11011.7	5.23	84.801	6557.7	4454.0
87		337.812	335.4	7.5	8926.1	2102.2	11028.3	5.25	84.812	6565.2	4463.1
		339.595	337.1	7.7	8946.8	2102.8	11049.6	5.25	84.807	6576.2	4473.4
		341.358	338.9	8.0	8966.7	2105.6	11072.3	5.26	84.788	6588.9	4483.3
		343.125	340.7	8.3	8986.4	2108.0	11094.4	5.26	84.771	6601.2	4493.2
91		344.949	342.5	8.6	9007.3	2110.8	11118.2	5.27	84.751	6614.5	4503.7
-		346.428	344.0	8.8	9018.9	2114.8	11133.7	5.26	84.724	6624.3	4509.4
93		348.028	345.6	9.1	9033.4	2120.7	11154.1	5.26	84.683	6637.4	4516.7
94		350.586	348.1	9.4	9072.6	2130.1	11202.7	5.26	84.618	6666.4	4536.3
		352.696	350.2	9.7	9099.8	2136.1	11236.0	5.26	84.575	6686.1	4549.9
		355.344	352.9	9.9	9140.6	2142.6	11283.2	5.27	84.531	6712.9	4570.3
97		357.417	355.0	10.2	9166.1	2147.5	11313.7	5.27	84.497	6730.6	4583.1
98		359.424	357.0	10.5	9189.6	2156.5	11346.1	5.26	84.434	6751.3	4594.8
99		361.488	359.0	10.3	9214.2	2166.0	11340.1	5.25	84.368	6773.1	4607.1
100		363.763	361.3	11.0	9243.9	2175.5	11380.2	5.25	84.302	6797.5	4622.0
101		365.916	363.5	11.3	9270.2	2185.7	11455.8	5.24	84.232	6820.7	4635.1
102		368.898	366.4	11.6	9317.1	2195.4	11512.5	5.24	84.164	6854.0	4658.6
103		371.871	369.4	11.9	9363.4	2207.1	11570.4	5.24	84.083	6888.7	4681.7
104		373.753	371.3	12.1	9381.6	2222.9	11604.5	5.22	83.973	6913.7	4690.8
105		375.691	373.2	12.4	9400.9	2237.9	11638.9	5.20	83.869	6938.4	4700.5
106		377.659	375.2	12.7	9420.7	2245.0	11665.8	5.20	83.819	6955.4	4710.4
107		379.374	376.9	13.0	9433.9	2254.5	11688.3	5.18	83.754	6971.4	4716.9
108		380.840	378.4	13.3	9440.5	2265.0	11705.6	5.17	83.681	6985.3	4720.3
109		383.409	381.0	13.5	9474.4	2276.9	11751.3	5.16	83.598	7014.1	4737.2
110		384.960	382.5	13.8	9482.6	2294.0	11776.6	5.13	83.479	7035.3	4741.3
111		386.089	383.6	14.1	9480.1	2310.1	11790.2	5.10	83.368	7050.1	4740.0
112		387.223	384.8	14.4	9477.6	2320.8	11798.3	5.08	83.294	7059.5	4738.8
113		388.619	386.2	14.6	9481.3	2324.8	11806.1	5.08	83.265	7065.5	4740.7
114		389.580	387.1	14.9	9474.2	2335.2	11809.4	5.06	83.193	7072.3	4737.1
115		391.096	388.6	15.2	9480.4	2346.2	11826.6	5.04	83.117	7086.4	4740.2
116		392.707	390.3	15.5	9488.7	2362.9	11851.6	5.02	83.001	7107.3	4744.4
117		394.250	391.8	15.7	9495.1	2375.9	11871.0	5.00	82.911	7123.4	4747.6
118	0.2891	396.113	393.7	16.0	9509.1	2387.0	11896.0	4.98	82.834	7141.5	4754.5
				Newfie	elds Mini	ing Desig	n and Tec	hnical	Service	s	

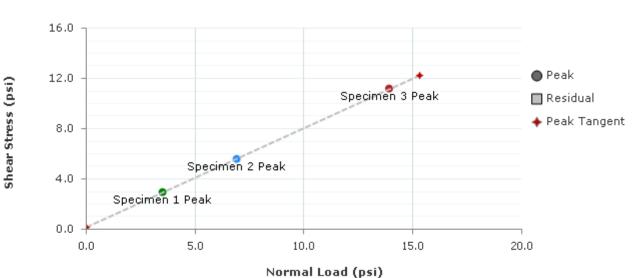
					Test Re	eadings to	or Specim	en No.	. 2			
No.	Def. Dial in.	Load Dial	Load lbs.	Strain %	Deviator Stress psf	Minor Eff. Stress psf	Major Eff. Stress psf	1:3 Ratio	Pore Press. psi	P psf	Q psf	
119	0.3032	397.010	394.6	16.3	9499.4	2395.2	11894.6	4.97	82.776	7144.9	4749.7	
120	0.3171	398.703	396.2	16.6	9509.2	2403.2	11912.4	4.96	82.721	7157.8	4754.6	

Tested By: KE Checked By: KM

NewFields 2227 North 5th Street Elko, Nevada 775-738-3399

NewFields

Direct Shear Test


ASTM D3080

Project: Thacker Pass Project Number: 475.0385.000

Location: Salt

Client Name: Lithium Nevada

Shear Stress Vs. Normal Stress

C (psi): 0.2 Phi (°): 38.2 Residual C (psi): NA Residual Phi (°): NA

				Specimen	Number			
Initial	1	2	3	4	5	6	7	8
Moisture (%):	84.1	84.1	84.1					
Dry Density (pcf):	42.1	42.1	42.1					
Void Ratio:	3.035	3.035	3.035					
Saturation (%):	75.4	75.4	75.4					
Diameter (in):	2.5000	2.5000	2.5000					
Height (in):	1.2000	1.2000	1.2000					
Final	1	2	3	4	5	6	7	8
Moisture (%):	84.1	84.1	84.1					
Dry Density (pcf):	42.4	42.9	42.4					
Void Ratio:	3.006	2.962	3.005					
Saturation (%):	76.1	77.2	76.1					
Height (in):	1.1914	1.1783	1.1910					
Normal Stress (psi):	3.5	6.9	13.9					
Peak Shear Stress (psi):	3.0	5.6	11.2					
Residual Stress (psi):	NA	NA	NA					
Horizontal Deformation (%):			12.0					
Rate (in/min):	0.006250	0.006250	0.006250					

Project Name: Thacker Pass Project Number: 475.0385.000

Checked By: _____ Date: ____

Direct Shear Test

ASTM D3080

Project: Thacker Pass
Project Number: 475.0385.000
Sampling Date: 2/3/2020

Sample Number:
Sample Depth:
Location: Salt

Client Name: Lithium Nevada

Remarks: Salt Testing: As recevied +10% Water

Information Parameters			9	Specimer	n Number			
Information I didnicters	1	2	3	4	5	6	7	8
Liquid Limit:	0	0	0					
Plastic Limit:	0	0	0					
Specific Gravity:	2.72	2.72	2.72					
Specific Gravity Method:	ASSUMED	ASSUMED	ASSUMED					
Initial Parameters	1	2	3	4	5	6	7	8
Test Temperature (°C):	0.0	0.0	0.0					
Sample Shape:	ROUND	ROUND	ROUND					
Height (in):	1.2000	1.2000	1.2000					
Diameter (in):	2.5000	2.5000	2.5000					
Area (in²):	4.909	4.909	4.909					
Volume (in³):	5.8905	5.8905	5.8905					
Moisture (%):	84.1	84.1	84.1					
Dry Density (pcf):	42.1	42.1	42.1					
Wet Density (pcf):	77.5	77.5	77.5					
Saturation (%):	75.4	75.4	75.4					
Void Ratio:	3.035	3.035	3.035					
Porosity (%):	75.2	75.2	75.2					
Consolidation Parameters	1	2	3	4	5	6	7	8
Initial Reference Height (in):	1.2000	1.2000	1.2000					
Final Reference Height (in):	1.1914	1.1783	1.1910					
Height (in):	1.1914	1.1783	1.1910					
Final Parameters	1	2	3	4	5	6	7	8
Moisture Content (%)	84.1	84.1	84.1					
Dry Density (pcf):	42.4	42.9	42.4					
Wet Density (pcf):	78.0	78.9	78.1					
Saturation (%):	76.1	77.2	76.1					
Void Ratio:	3.006	2.962	3.005					
Porosity (%):	75.0	74.8	75.0					

Project Name: Thacker Pass Project Number: 475.0385.000 Checked By: _____

Report Created: 4/2/2020 Page 2

Date: _____

NewFields 2227 North 5th Street Elko, Nevada 775-738-3399

Direct Shear Test

ASTM D3080

Project: Thacker Pass

Project Number: 475.0385.000 Sampling Date: 2/3/2020

Sample Number:

Sample Depth:

Location: Salt

Client Name: Lithium Nevada

Remarks: Salt Testing: As recevied +10% Water

Specific Gravity: 0 Plastic Limit: 0 Liquid Limit: 0

Type: Bulk Soil Classification: Salt

Specimen Description: White Salt

Specimen 1	Specimen 2	Specimen 3	Specimen 4	Specimen 5	Specimen 6	Specimen 7	Specimen 8
Failure Sketch	Failure Sketch	Failure Sketch	Failure Sketch	Failure Sketch	Failure Sketch	Failure Sketch	Failure Sketch
					! !		
			i i				
i i	i i	i i	i i	i i	i i	1	
i i	i i	i i	i i	i i	i i		
!!	L!	<u> </u>	!!	<u> </u>	·	<u></u> !	!

Project Name: Thacker Pass Project Number: 475.0385.000

Checked By: _____ Date: _____

NewFields

Direct Shear Test

ASTM D3080

Specimen 1

Test Description: ASTM D3080

Other Associated Tests:

Device Details: Humboldt 5760 E-803

Test Specification:

Test Time: 1/31/2020

Technician: K. Magner Sampling Method: Bulk

Specimen Code: Specimen Lab #:

Specimen Description: Salt. As received moisture +10% moisture

Specific Gravity: 2.72

Plastic Limit: 0 Liquid Limit: 0

Test Remarks: As received moisture +10% water

Specimen 2

Test Description: ASTM D3080

Other Associated Tests:

Device Details: Humboldt 5760 E-803

Test Specification:

Test Time: 2/2/2020

Technician: K. Magner Sampling Method: Specimen Code: Specimen Lab #:

Specimen Description: Salt. As received moisture +10% moisture

Specific Gravity: 2.72

Plastic Limit: 0 Liquid Limit: 0

Test Remarks: As received moisture +10% moisture

Project Name: Thacker Pass Project Number: 475.0385.000

Checked By: _____ Date: ____ Page 4

NewFields 2227 North 5th Street Elko, Nevada 775-738-3399

Direct Shear Test

ASTM D3080

Specimen 3

Test Description: ASTM D3080

Other Associated Tests:

Device Details: Humboldt 5760 E-803

Test Specification:

Test Time: 4/2/2020

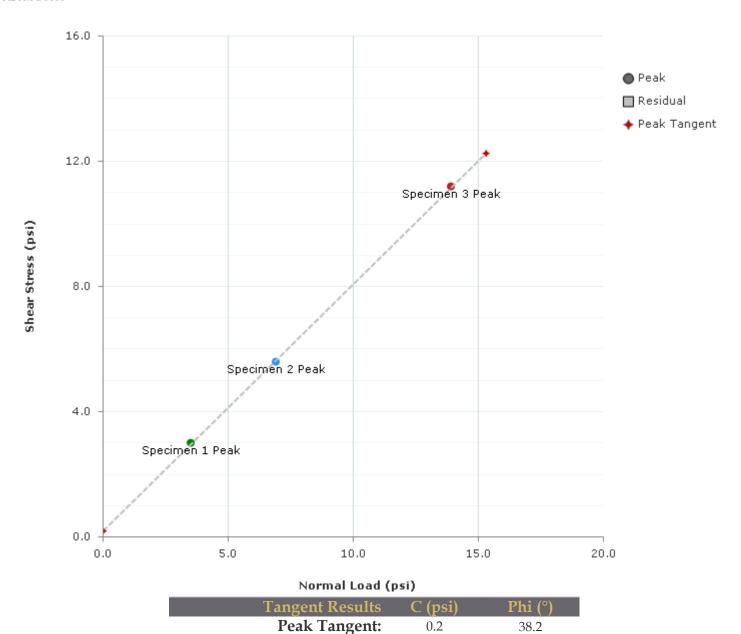
Technician: K. Magner Sampling Method: Specimen Code: Specimen Lab #:

Specimen Description: Salt. As received moisture +10% moisture

Specific Gravity: 2.72

Plastic Limit: 0 Liquid Limit: 0

Test Remarks:


Project Name: Thacker Pass Project Number: 475.0385.000

 Checked By: ______
 Date: ______
 Page 5

Direct Shear Test - Shear Stress Vs. Normal Stress

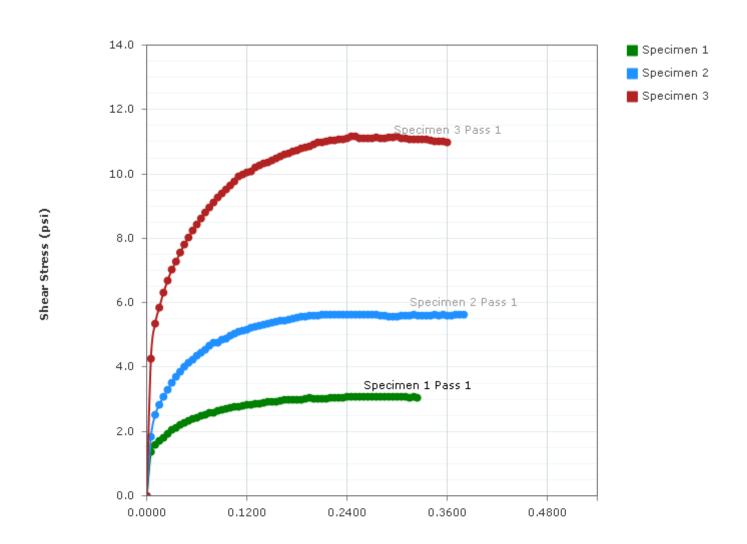
ASTM D3080

Project Name: Thacker Pass Project Number: 475.0385.000

Residual Tangent:

Checked By: _____

NA

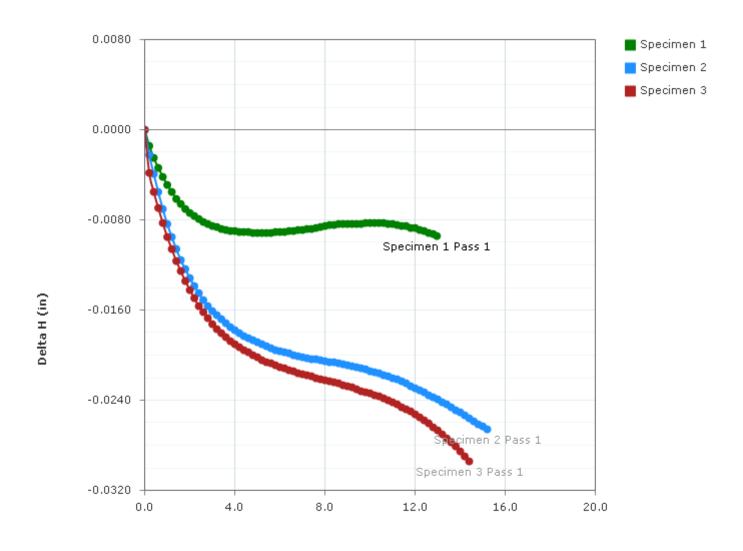

NA

Date:

Graph - Stress Deformation

ASTM D3080

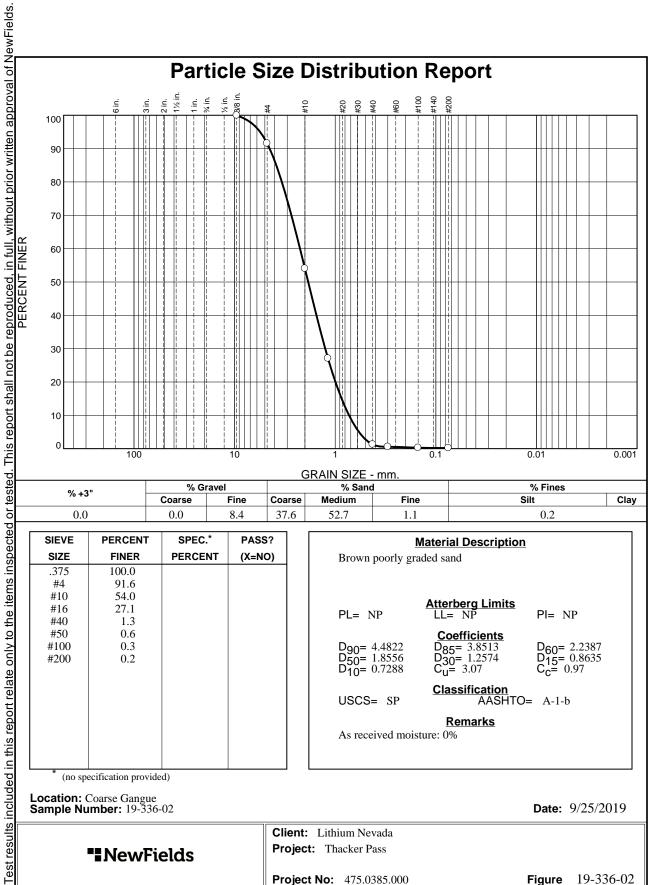
Horizontal Deformation (in)


Project Name: Thacker Pass Project Number: 475.0385.000

Checked By: _____

Date:

Graph - Delta H


Axial Strain (%)

Project Name: Thacker Pass Project Number: 475.0385.000 Checked By: _____

Date: _____

% +3"	% Gı	ravel		% Sand		% Fines		
	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay	
0.0	0.0	8.4	37.6	52.7	1.1	0.2		

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
.375	100.0		
#4	91.6		
#10	54.0		
#16	27.1		
#40	1.3		
#50	0.6		
#100	0.3		
#200	0.2		

Brown poorly gr	<u>Material Descriptio</u>	<u>11</u>
Brown poorly gr	aueu sanu	
	Atterberg Limits	
PL= NP	LL= NP	PI= NP
	Coefficients	
$D_{90} = 4.4822$		$D_{60} = 2.2387$
D ₉₀ = 4.4822 D ₅₀ = 1.8556 D ₁₀ = 0.7288	D ₈₅ = 3.8513 D ₃₀ = 1.2574 C _u = 3.07	D ₆₀ = 2.2387 D ₁₅ = 0.8635 C _c = 0.97
D ₁₀ = 0.7288	$C_{u}=3.07$	$C_{C} = 0.97$
	Classification	
USCS= SP	AASHT	O= A-1-b
	Remarks	
As received mois	sture: 0%	

Date: 9/25/2019

(no specification provided)

Location: Coarse Gangue **Sample Number:** 19-336-02

NewFields

Client: Lithium Nevada **Project:** Thacker Pass

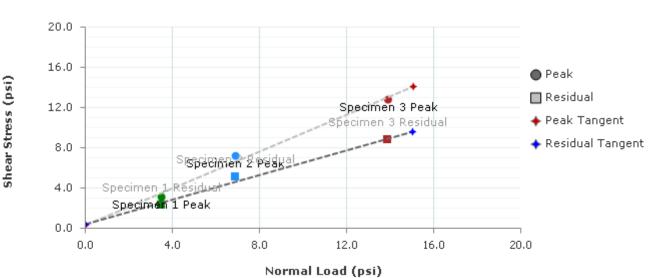
Figure 19-336-02 **Project No:** 475.0385.000

Tested By: JH Checked By: JH

NewFields 2227 North 5th Street Elko, Nevada 775-738-3399

NewFields

Direct Shear Test


ASTM D3080

Project: Thacker Pass Project Number: 475.0385

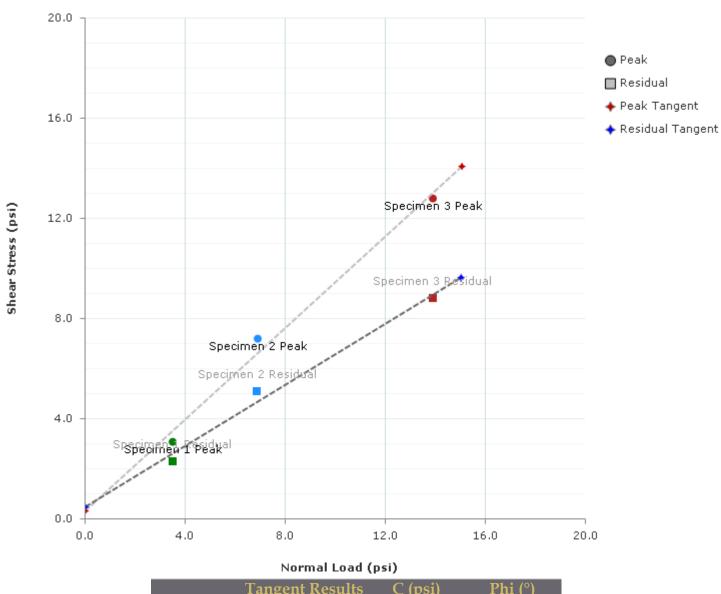
Location: Coarse Gangue Stockpile

Client Name: Lithium Nevada

Shear Stress Vs. Normal Stress

C (psi): 0.3 Phi (°): 42.4 Residual C (psi): 0.5 Residual Phi (°): 31.3

		Specimen Number										
Initial	1	2	3	4	5	6	7	8				
Moisture (%):	0.0	0.0	0.0									
Dry Density (pcf):	88.8	88.8	88.8									
Void Ratio:	0.912	0.912	0.912									
Saturation (%):	0.0	0.0	0.0									
Diameter (in):	4.0000	4.0000	4.0000									
Height (in):	1.2600	1.2600	1.2600									
Final	1	2	3	4	5	6	7	8				
Moisture (%):	0.0	0.0	0.0									
Dry Density (pcf):	88.9	88.8	88.8									
Void Ratio:	0.911	0.912	0.912									
Saturation (%):	0.0	0.0	0.0									
Height (in):	1.2596	1.2600	1.2600									
Normal Stress (psi):	3.5	6.9	13.9									
Peak Shear Stress (psi):	3.1	7.2	12.8									
Residual Stress (psi):	2.3	5.1	8.8									
Horizontal Deformation (%):												
Rate (in/min):	0.040000	0.040000	0.040000									

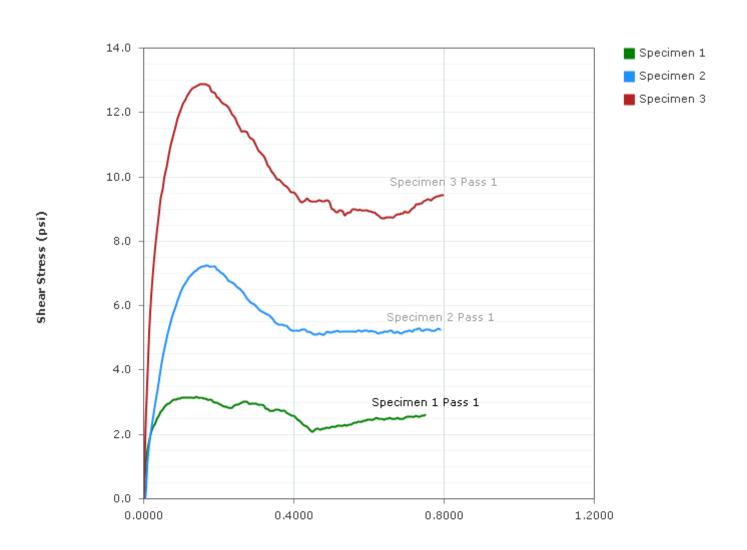

Project Name: Thacker Pass Project Number: 475.0385

Checked By: _____ Date: ____

Direct Shear Test - Shear Stress Vs. Normal Stress

ASTM D3080

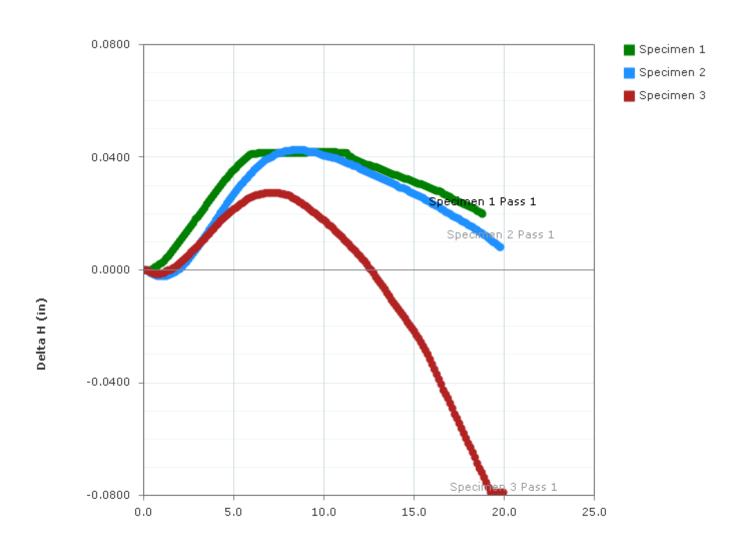
Tangent Results	C (psi)	Phi (°)
Peak Tangent:	0.3	42.4
Residual Tangent:	0.5	31.3


Project Name: Thacker Pass Project Number: 475.0385

Checked By: _____ Date: ____

Graph - Stress Deformation

ASTM D3080


Horizontal Deformation (in)

Project Name: Thacker Pass Project Number: 475.0385 Checked By: _____

Date: _____

Graph - Delta H

Axial Strain (%)

Project Name: Thacker Pass Project Number: 475.0385 Checked By: _____

xed By: _____ Date: _____

APPENDIX D Geotechnical Evaluation

APPENDIX D.1 Plant Site Soils and Foundation Report (2019)

PLANT SITE SOILS AND FOUNDATION REPORT THACKER PASS PROJECT

Prepared for: Lithium Nevada Corporation 3685 Lakeside Drive Reno, Nevada 89509

Prepared by:
NewFields
9400 Station Street, Suite 300
Lone Tree, CO 80124

NewFields Project No. 475.0385.000 November 29, 2019

November 29, 2019 NewFields Project No. 475.0385.000

Lithium Nevada Corporation 3685 Lakeside Drive Reno, Nevada 89509

Attn: Mr. Brett Rabe

Vice President of Engineering

Subject: Process Plant Site Soil and Foundation Report

Thacker Pass Project

Humboldt County, Nevada

Mr. Rabe,

We are pleased to submit the soil and foundation report for the Thacker Pass Process Plant Site Project.

Reporting was completed in general conformance with the proposal to prepare Engineering Design (NewFields Proposal No. 18PD.133). Bearing capacity and design recommendations for spread, strip and mat footings are presented, and general soil recommendations in support of the earthworks associated with the process plant site development are provided. Recommendations presented in the report are based on results of a recent geotechnical investigation and laboratory testing program completed to facilitate design of the mine process plant site area and associated infrastructure.

We appreciate the opportunity to work with Lithium Nevada Corporation on this project. If you have any questions or require additional information, please contact the undersigned.

Sincerely,

NewFields Mining Design & Technica S

Kerry A. Magner, P.E.

Senior Geotechnical Engineer

Addressee: (via e-mail)

Reviewed by:

Paul Kaplan, P.E. Principal Engineer

Y:\Projects\0385.000-Thacker Pass Lithium Nevada\J-REPORTS\Plant Site S&F Report\Thacker Pass Plant Site S_F Report.REV0.docx

TABLE OF CONTENTS

1.	INTRO	DDUCTION	1
	1.1.	Project Background and Scope	1
2.	SITE L	OCATION AND DESCRIPTION	1
	2.1.	Regional Geology and Seismicity	2
	2.2.	Local Geology	
3.	PROC	ESS PLANT SITE GEOTECHNICAL INVESTIGATION	
	3.1.	2019 Field Investigation	
	3.2.	Laboratory Results	
		3.2.1. Index Properties	
		3.2.2. Moisture Content – Unit Weight Relationship	4
		3.2.3. Corrosivity Potential	4
4.	PROC	ESS PLANT SITE CONDITIONS	4
	4.1.	Subsurface Conditions	5
		Groundwater Conditions	
5.		ECHNICAL RECOMMENDATIONS	
	5.1.	Foundation Recommendations	6
		5.1.1. Spread and Strip Footings	7
		5.1.2. Mat Foundations	7
		5.1.3. Slab-on-Grade	8
		5.1.4. Dynamic Properties	9
	5.2.	Lateral Earth Pressures	9
	5.3.	Seismic Design	
		5.3.1. Code Based Seismic Parameters for Structures	11
	5.4.	Site Grading Recommendations	11
		5.4.1. Construction Guidance	12
		5.4.2. Site Preparation	12
		5.4.3. Borrow Material for Fill / Backfill	12
		5.4.4. Deleterious Material	13
		5.4.5. Fill Placement and Compaction	13
		5.4.6. Earthworks Monitoring	
	5.5.	Slopes	
		5.5.1. Temporary Excavations	
		5.5.2. Permanent Slopes	
	5.6.	Control of Water	
	-	5.6.1. Drainage near Structures	
6.	LIMIT	ATIONS	
	FFRFN		

		 _			
	10	16	1 /	ж	LES
_		 ,,		v	ᄔ

Table 3-1. Results of Corrosivity Potential Testing	4
Table 5-1: Compressibility Parameters for Foundation Design	7
Table 5-2: Recommended Damping Ratio	9
Table 5-3: Recommended Lateral Earth Pressure Coefficients	10
Table 5-5: Minimum Compaction Requirements	14
Table B-1: Laboratory Testing Results Summary	
LIST OF FIGURES	
Figure 5-1: Modulus of Subgrade Reaction	8

LIST OF APPENDED FIGURES

Figure 1 Process plant Site General Arrangement and Geotechnical Investigation

LIST OF APPENDICES

Appendix A Process Plant Borehole and Test Pit Logs

Appendix B Laboratory Testing Data Sheets

Lithium Nevada Corporation Plant Site Soil and Foundation Report Thacker Pass Project NewFields Project No. 475.0385.000 November 29, 2019

1. INTRODUCTION

This report presents the findings from the geotechnical investigation of the Thacker Pass Project for Lithium Nevada Corporation (LNC), and subsequent soil and foundation recommendations for the Process Plant site infrastructure. The work was completed in general conformance with the Proposal to Prepare Water Pollution Control Permit and Engineering Design presented to LNC (October, 2018)

The Thacker Pass Project comprises the development of an open pit lithium mine and associated infrastructure including mine waste facilities (Clay Tailings Filter Stack (CTFS), Waste Rock Dump (WRD), Coarse Gangue Stockpile); Process Plant; and storm water management infrastructure.

1.1. Project Background and Scope

A prefeasibility level geotechnical study (PFS) for an alternate process plant site was completed (AMEC, 2011). The study included a site investigation and subsequent geotechnical recommendations including preliminary geotechnical recommendations for the open pit and foundation and earthwork recommendations for the various facilities associated with the project.

The general location of the process plant and individual structures orientated on the various process plant pads have been altered since the PFS was completed. In spring 2019, NewFields completed a geotechnical investigation to assess the geotechnical conditions in the subsurface beneath the altered Process Plant location. Since the investigation was completed, additional alterations to the plant location and structures has occurred.

In general, sufficient data is available to suitably characterize the subsurface beneath the Process Plant, but additional data is necessary to confirm conditions beneath the sulfuric acid plant. An additional geotechnical program is planned for the future to confirm subsurface conditions beneath the sulfuric acid plant.

NewFields considered information and data from the current and previous investigations, and information from LNC, as the basis to complete our analysis and to evaluate the geotechnical conditions of the proposed Process Plant site. The result of this work was the development of general soil and foundations recommendations that are presented herein.

2. SITE LOCATION AND DESCRIPTION

The Thacker Pass Project is located in Humboldt County Nevada, approximately 60 miles north-northwest of the Winnemucca, Nevada and approximately 50 miles south of the Nevada-Oregon border.

Based on the topographic contours shown on the site plan provided by LNC (Survey by Geoterra, 2017), the Process Plant Site area is characterized by gently sloping topography with existing elevations ranging between 4680 and 4760 feet above mean sea level (amsl). The process plant site is located north of Nevada Route 293 along a southeast facing slope of the Santa Rosa Mountain Range. The area is currently used for ranching with native vegetation in the region consisting primarily of sagebrush and several perennial and ephemeral streams crossing the site

2.1. Regional Geology and Seismicity

The Project is located within the McDermitt caldera near the northern extent of the Great Basin region of the Basin and Range Physiographic Province. In general, the Great Basin is characterized by a series of north trending mountain ranges, and traces of recently active faults are located at the base of many of the linear mountain ranges in the Province. Earthquakes in this region are typically associated with geologically young fault traces and recently active volcanoes.

The McDermitt caldera formed approximately 16.4 million years ago (ma), in an area that had undergone two episodes of Eocene intermittent volcanism at 47 and 39 ma and a major middle Miocene volcanism that led continuously to caldera formation. The caldera is well exposed and has been negligibly affected by later extension.

The McDermitt caldera complex, as wide as 28 miles in diameter, is situated within one of the largest recognized structural depressions. The majority of the collapse occurred along a narrow ring-fault zone of discrete faults with variable downwarp into the caldera between faults (Henry et al., 2016). The region has experienced moderate to low levels of seismicity during recent times.

2.2. Local Geology

The Thacker Pass Project site is located between the Montana Mountains and the Double H Mountains, near the southern edge of the McDermitt Caldera in the Santa Rosa Mountain Range. The stratigraphy and bedrock within the process plant site generally consists of Quaternary alluvial deposits overlying Tertiary basalt and rhyolitic volcanics.

3. PROCESS PLANT SITE GEOTECHNICAL INVESTIGATION

As previously discussed, a PFS site investigation has been completed for the development of the Thacker Pass Project (AMEC, 2011). The locations of the NewFields 2019 borings and test pits associated with the current Process Plant location, as well the previous investigation, are shown on **Figure 1**.

3.1. 2019 Field Investigation

A field exploration campaign for the Project was performed in early 2019 and included a total of thirty-one borings and twenty-nine test pits. Seven borings and three test pits were completed within the general proximity of the currently proposed Process Plant. This investigation was completed to supplement existing site data and acquire more detailed geotechnical information beneath select facilities (Process Plant and CTFS). One boring within the Process Plant footprint was extended to a depth of 100 feet below ground surface (bgs), and the remaining six borings were extended to between 30 to 50 feet bgs. Test pits were excavated to depths of approximately 15 to 20 feet bgs. Test pits completed to less than 20 feet bgs were terminated due to practical refusal on bedrock.

The results from the investigation and laboratory testing have been presented in a Geotechnical Factual Report (NewFields, 2019a). Borehole and test pit logs for exploration performed within the Process Plant are presented in **Appendix A**.

3.2. Laboratory Results

Soil and rock samples obtained during the field investigation were labeled, packaged and transported to the NewFields laboratory in Elko, Nevada where the majority of the soil testing was completed. Bulk samples tested for corrosivity potential were sent to Sunland Analytical Laboratory. Samples obtained from the field investigation were tested for index properties, natural moisture and unit weight, specific gravity of soil solids, moisture content/unit weight relationships, and corrosivity potential. Individual laboratory data sheets are presented in **Appendix B** and summarized in **Table B-1**.

Soil classification involved particle size analyses and Atterberg limits which were used to divide soils into groups such that the engineering properties of the soils within each group are similar. Each sample was categorized according to the Unified Soil Classification System (USCS), which is based on the material gradation and plasticity.

3.2.1. Index Properties

The index properties of soils were evaluated by particle size analyses and Atterberg limits tests. Results indicate that the materials encountered were predominantly composed of fine to coarse grained silty sand with varying amounts of gravel particles.

Atterberg limits results indicate the plasticity index (PI) ranges from nonplastic to high plasticity with the majority of fine-grained materials exhibiting nonplastic behavior. Based on the measured gravimetric water content, the majority of the plastic materials are at or below the plastic limit. The samples yielded an average moisture content of 13.5 percent as measured on

a dry weight-basis (i.e. geotechnical definition). The apparent specific gravity of soil solids was measured as 2.54.

3.2.2. Moisture Content – Unit Weight Relationship

The relationships between unit weight (density) and moisture content was established for a bulk sample using Proctor compaction test procedure. The modified Proctor test (ASTM D1557) was performed on a bulk test pit sample to determine the maximum dry unit weight and the corresponding optimum moisture content. The sample yielded a maximum dry unit weight of 78.3 pcf and an optimum moisture content of 34.0 percent.

3.2.3. Corrosivity Potential

Laboratory soil resistivity, pH, and water soluble sulfates and chlorides tests were conducted on soils obtained from select areas to assess their corrosivity potential, and results are presented in **Table 3-1**.

Sample	Depth (ft)	Material Type	рН	Resistivity (ohm-cm)	Sulfates (ppm)	Chlorides (ppm)
BH19-12	2.5-6.5	Silty SAND (SM)	7.65	150	691.9	1246.9
BH19-13	7.5-10.5	Silty SAND (SM)	7.88	780	45.5	103.2
BH19-26	10-11.5	SAND (SW-SM) with gravel and silt	7.85	750	295.2	97.2

Table 3-1. Results of Corrosivity Potential Testing

The average pH of the native soil was approximately 7.8, which is considered mildly alkaline. The measured resistivity ranged from 150 to 750 ohm-cm, which indicates the soil has a high corrosion potential for steel (American Petroleum Institute, 1991). The average measured chlorides ranged from 97 to 1240 parts per million (ppm), which indicates the soil is mildly corrosive to corrosive to steel. The measured water soluble sulfates in the soil ranged from 46 to 690ppm, which indicates negligible sulfate exposure for concrete (American Concrete Institute, 1994).

4. PROCESS PLANT SITE CONDITIONS

As noted previously, the location of the Process Plant has changed since the 2019 site investigation was completed, but in general, sufficient information is available to suitably characterize the subsurface.

4.1. Subsurface Conditions

Subsurface conditions can generally be classified as a thin veneer of growth media, approximately 12 inches in thickness, overlying alluvium overburden consisting of loose to very dense fine to coarse silty sands with varying amounts of gravel overlying residuum composed of slightly weathered to highly weathered basalt. Measured SPT blow counts (N-values) in the alluvium soil ranged between 11 and practical sampler refusal, with the majority of soils exhibiting dense to very dense relative density. Practical refusal is the result of increased gravel fractions. The thickness of alluvium overburden varies significantly across the Process Plant, with recorded thicknesses between 11 feet to over 30 feet.

Exposed surficial bedrock and rock outcrops are present across the entire project site, although outcrop was not observed within the process plant site footprint. Bedrock was encountered at depths of 11 feet near the main parking lot and laydown yard. Under the process plant facilities, bedrock was encountered at depths of 21 feet to over 30 feet bgs. The rock quality designation (RQD) of the bedrock ranges between 0 and 100 percent, and was typically lower near the transition from soil to weathered rock.

There is no general trend of overburden thickness or bedrock elevation across the site, primarily due to the degree of weathering and the basalt depositional process.

4.2. Groundwater Conditions

Groundwater was encountered in the deep borehole at a depth of approximately 93 feet below ground surface (bgs). Throughout the remainder of the Process Plant, the boreholes did not encounter groundwater in the upper 50 feet bgs. In general, groundwater is not expected to influence construction of the Process Plant or future operations.

5. GEOTECHNICAL RECOMMENDATIONS

This section summarizes our geotechnical recommendations based on the proposed construction and subsurface conditions encountered beneath the Process Plant. Design parameters and a discussion of geotechnical considerations related to construction of the various components of the process plant site are included herein.

At this time, information regarding the proposed grading plan, building type, foundation types, foundation elevations, finish floor grades, and structural loads are not available. All recommendations provided herein are preliminary and will be revised when further information becomes available.

Lithium Nevada Corporation Plant Site Soil and Foundation Report Thacker Pass Project NewFields Project No. 475.0385.000 November 29, 2019

As previously noted, there is an approximate 80-foot drop across the Process Plan footprint. Based on this, we have generally assumed that both cut into the existing terrain and fill will be required to create either a large, level pad or series of smaller pads to site the structures.

5.1. Foundation Recommendations

Based on our understanding of the proposed project, anticipated structural loadings, and subsurface conditions, the various mine infrastructure may be supported using a combination of shallow footings (strip and spread footings), mat foundations, and slab-on-grade. Deep foundation elements such as caissons or driven piles are not appropriate. Geotechnical recommendations for design and construction of these foundation types are presented in the following subsections.

The recommendations presented herein assume that mat foundations will include 3 feet of embedment and spread footings include 3 feet of embedment below the proposed ground surface. All foundation elements were assumed to bear upon homogeneous, alluvium with no influence from the underlying rock.

The foundation evaluations considered bearing capacity as a function of shear strength as well as allowable settlement. Because loading information was not available, values of settlement are considered a conservative estimate.

Bearing capacity based on shear strength utilized Mohr-Coulomb strength parameters developed from the current field investigation data and the standard bearing capacity equation with coefficients as defined by Meyerhof (1963). Based upon grainsize distribution and SPT values, all soils at the site were assumed to have an effective friction angle of 36 degrees and a moist unit weight of 100 pounds per cubic foot (pcf). It is assumed that native soils and compacted fills prepared from native soils will have similar strength and deformation properties. The modulus of elasticity (Young's Modulus) was assumed to be 500 kips per square foot (ksf) based on the relationship of SPT blow counts with Young's Modulus presented by Bowles (1996). Drained conditions were considered appropriate for all potential loading scenarios.

The settlement analyses for both shallow footing and mat foundations considered strength and deformation data from the current laboratory testing programs associated with this process plant site location to estimate Young's modulus, which was subsequently related to the subgrade modulus. All compressibility properties applied in the settlement evaluations are summarized in **Table 5-1**.

Table 5-1: Compressibility Parameters for Foundation Design

Material	Unit Weight (pcf)	Young's Modulus (ksf)	Poisson's Ratio
Alluvial Soil	100	500	0.40

5.1.1. Spread and Strip Footings

Allowable (*gross*) bearing capacity estimates were based on shear failure in the foundation utilizing the general Terzaghi bearing capacity equation (1943) that includes factors for foundation shape and embedment depth. The allowable bearing capacity, defined as the maximum foundation pressure against subsurface soils, varies with the footing width. Only vertical loads were considered and the influence from sloping ground conditions around the footings were not evaluated. If these assumptions are not valid, the bearing capacity recommendations should be revised accordingly. Allowable (*net*) bearing pressure was also estimated considering a maximum settlement of 1 inch. Settlement beneath footings was calculated using an elastic theory methodology developed by Schmertmann (1978).

A maximum allowable bearing capacity of 5,000 pounds per square foot (psf) is recommended for spread footings with widths ranging from four to eight feet bearing on either intact cut or compacted fill. For temporary wind or seismic loading, the allowable bearing capacity can be increased by one-third. The recommended allowable bearing pressures are applicable to both cut and fill soils. The recommendations are based on a minimum embedment depth of 36 inches. As noted previously, the proposed site is characterized by zones of both cut and fill.

Strip foundations, if necessary, should be designed with a minimum width of two feet and an allowable bearing capacity of 5,000 psf.

5.1.2. Mat Foundations

Foundation dimensions, anticipated applied pressures, and estimated grading required for mat foundations were not available at the time of this report preparation. All mat foundations should bear on dense intact alluvium or compacted fill, and excavations should be extended as necessary to remove all high plasticity materials beneath the foundation. In general, we do not recommend that mat foundations transition from cut to fill as varying performance of the subgrade can lead to differential settlement across the mat.

For the mat foundations, allowable (*gross*) bearing capacity based on shear failure in the foundation soil utilized the same methodology and strength parameters as that for spread and strip footings.

The modulus of vertical subgrade reaction (k_s) was determined for a range of mat widths and an assumed homogenous subsurface, as shown in **Figure 5-1**.

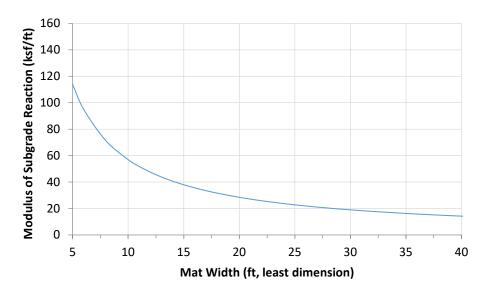


Figure 5-1: Modulus of Subgrade Reaction

5.1.3. Slab-on-Grade

Floor slabs should be supported on a minimum 12-inch layer of *Select Fill* meeting the requirements discussed in **Section 5.4**. Compacted in-place soils or *Common Fill* are all acceptable beneath the *Select Fill* layer. Slab-on-grade floors should be isolated from (e.g. not be structurally connected to) columns and foundation walls to accommodate potential movements between structural elements. The modulus of subgrade reaction can be estimated using the relationship presented in **Figure 5-1**.

We recommend that a vapor barrier be installed between the bottom of the floor slab and the underlying *Select Fill* if any of the following three conditions are met:

- Shallow groundwater is encountered during foundation excavation (unlikely);
- ➤ Floor finishes such as linoleum (glue), wood, or moisture-sensitive finishes/coatings are installed over the slab; and/or,
- Drainage pipes are located beneath the slab.

Shallow groundwater is not expected to influence the structures; therefore, installation of subslab drains does not appear necessary provided good perimeter drainage is installed around the exterior of the structures. All utility pipes beneath floors should have sealed joints to prevent leaks from degrading the subgrade. Designs should account for downspout connections and

ensure that all drainage is away from structures and to engineered surface water runoff collection points. We recommend minimum grade of five percent for at least 10 feet from the base of the structure.

5.1.4. Dynamic Properties

Since shear wave velocity measurements were not obtained during the site investigation, the dynamic, maximum shear moduli (G_{max}) of foundation soils were estimated from correlations with standard penetration resistance (Seed et al., 1986), and recommended design values are as follows:

- ➤ G_{max} at the existing ground surface is approximately 1500 ksf
- ➤ G_{max} at a depth of 30 feet below the existing ground surface is approximately 4,000 ksf.
- A linear distribution of maximum shear modulus should be considered between these depths and the value should be capped at 4,000 ksf.
- > The maximum shear moduli are valid to approximately 0.01 percent dynamic shear strain and should be degraded for larger strains, if applicable.

Estimates of the damping ratio were based on published information (Vucetic and Dobry, 1991) and a nonplastic average plasticity index. Similar to the shear modulus, damping ratio changes with increasing dynamic shear strain, and thus appropriate values should be selected based on the strains induced in the foundation soils. **Table 5-2** presents the recommended damping ratio to be used for design.

Table 5-2: Recommended Damping Ratio

Dynamic Shear Strain (%)	Damping Ratio (%)
0.0001	1.0
0.001	1.5
0.005	3.5
0.01	5.2

5.2. Lateral Earth Pressures

Retaining walls and below-grade foundation walls should be designed to withstand lateral earth pressures caused by adjacent soil and surcharge loads. Lateral loads may be resisted by: (1) friction between the foundation bottoms and the supporting materials, and (2) passive pressures acting against the sides of the footings. For retaining walls bearing on alluvium, we recommend a coefficient of friction of 0.5 times the vertical dead load for sliding resistance.

The recommended lateral earth pressure coefficients and associated equivalent fluid pressures are listed in **Table 5-3**. The transition from the fixed to active condition should be assumed to occur after movements that exceed 0.001H and the transition from the at-rest to passive condition should be assumed to occur after movements that exceed 0.02H, where H is the height of the retained soil.

Table 5-3: Recommended Lateral Earth Pressure Coefficients

Loading Condition	Lateral Earth Coefficient	Equivalent Fluid Pressure (pcf)
Active Case	0.26	26
Fixed (Restrained) Case	0.41	41
Passive Case	3.85	385

Notes: Based on a drained friction angle of 36 degrees for select fill and an average unit weight of 100 pcf.

If surcharge loads are present, including haul truck traffic, these should also be included in the lateral pressure used for wall design. For uniform surcharge pressures, one-half of the surcharge pressure should be included. The resultant force from surcharge loads would act at H/2 from the base of the wall. Point loads should be considered on a case by case basis.

All foundation walls and soil retention structures should be backfilled with *Select Fill* material meeting the requirements discussed in **Section 5.4**. The backfill should be compacted to 92 percent of the standard Proctor unit weight (ASTM D1557) within 3 percent of optimum moisture content. Backfill should be free draining and an engineered drainage system installed to prevent the build-up of hydrostatic pressures behind structures. Backfill should be placed in uniform lifts and not over-compacted since this can cause excessive lateral pressure on the walls.

It should be noted that these recommendations are applicable to retaining structures that do not exceed 20 feet in height. For structures that exceed 20 feet in height and/or for structures that have traffic loads adjacent to walls that may increase lateral loads, the geotechnical engineer should be retained to review the final wall design. A reinforced soil wall often presents performance and economic advantages compared to conventional cast-in-place concrete for these higher walls.

5.3. Seismic Design

NewFields completed a seismic hazard analysis and these results were previously presented (NewFields, 2019b). In accordance with the 2015 International Building Code (IBC) and ASCE 7-10, the site classifies as very dense soil and soft rock, Site Class C. Based on our understanding

0.43g

0.18g

of the proposed foundation conditions, there is a possibility that the foundation beneath the process facilities could be reclassified as Site Class B, rock, if the depth to rock is fairly shallow below specific structures. If a re-evaluation of the site class is necessary, the shear wave velocity in the upper 100 feet would need to be directly measured in the field.

5.3.1. Code Based Seismic Parameters for Structures

The maximum considered earthquake response accelerations at short and long periods, S_S and S_1 , respectively, were determined using an online calculator from the Structural Engineers Association of California (SEAC) (SEAC, 2019). All relevant seismic design values for structures on site are listed in **Table 5.4.**

Site Soil Class

Mapped MCE_R, five (5) percent damped, spectral response acceleration parameter at short periods (Site Class C), S_S Mapped MCE_R, five (5) percent damped, spectral response acceleration parameter at a period of one (1) second (Site Class C), S_1 0.18g

Table 5.4: Code Based Seismic Parameters

Design, five (5) percent damped, spectral response acceleration parameter at short

Design, five (5) percent damped, spectral response acceleration parameter at period of

5.4. Site Grading Recommendations

periods, S_{DS}

one (1) second, S_{D1}

The site grading recommendations consider the existing topography at the time of this report, the type of structures anticipated, and the design recommendations for foundations and floor slabs presented in this report. At the time of this report, a grading plan was not available. Cut and fill thickness of up to 10 feet have been assumed. Should conditions change from those discussed in this report, NewFields should be retained to review the changes to determine if the recommendations contained herein are still applicable.

Grading will be required to bring the site to the required grades for some of the structures. Grading should include stripping, clearing and grubbing, preparation of the exposed subgrade, and placement and compaction of fill materials as described in the following subsections. In general, this work includes removal of the existing near surface soil and any shallow bedrock. There is the possibility that local areas of shallow bedrock may be encountered, which may be difficult to excavate by traditional mechanical excavation methods, and light blasting might be required. The existing subsurface data is insufficient to delineate areas, but it is recommended that an earthwork contractor provide a line-item provision for blasting on an as-needed basis, and with LNC approval.

5.4.1. Construction Guidance

Grading will likely be necessary to bring the site to the required grade for the proposed facilities. Grading should include stripping, clearing and grubbing, preparation of the exposed subgrade, the removal/placement of materials, and compaction of fill materials as described in the **Section 5.4.3**. The site grading recommendations consider the existing topography at the time of this report, the type of structures anticipated, and the design recommendations for foundations and floor slabs presented herein. Should conditions change from those discussed in this report, NewFields should be retained to review the changes to determine if the recommendations contained herein are still applicable.

5.4.2. Site Preparation

Topsoil, existing vegetation, and any soft soil should be stripped from areas to receive fill and/or structures. Topsoil should be stockpiled at locations approved by LNC. Positive drainage away from the foundations should be maintained during construction.

In areas to receive fill, the exposed subgrade should be proof-rolled, scarified to a minimum depth of six inches, moisture conditioned and then recompacted to 90 percent of the maximum dry unit weight as determined by a modified Proctor (ASTM D1557) prior to placement of additional fill or construction of overlying structures. If deflections greater than ½-inch are observed during proof-rolling, the soil should be removed and replaced with *Select Fill*, or the materials may be ripped and recompacted until acceptable conditions are observed. Fill and structures should never be placed on soft material.

The surface of natural and compacted subgrade soil can deteriorate and lose strength when exposed to environmental changes and construction activity. In general, after substantial delays in grading, the surface of the soil subgrade should be proof-rolled before placement of additional fill or construction of pavements and slabs, whether due to weather or other factors. Ponded water in excavations at any time during construction is an indication that subgrade materials are likely softened and require attention and recompaction or replacement.

5.4.3. Borrow Material for Fill / Backfill

Fill may be required to bring the subgrade to the specified elevation for some structures and *Select Fill* will be necessary around and beneath structures. The following materials are recommended for earthworks associated with the Process Plant site facilities:

Common Fill should be used to bring building pads to grade, for use in fill slopes, and for localized replacement of soft soils. We recommend Common Fill be composed of existing site materials less than four inches in nominal diameter (< 4 inch) and less than 20-percent passing the #200 sieve, provided the fill material is not considered deleterious or expansive (PI less</p>

- than 15). In general, *Common Fill* should be composed of on-site, near-surface predominantly granular soils.
- Select Fill should be used as a base layer underneath foundation elements, slab-on-grade construction, as backfill material behind retaining walls, and as drainage medium for wall and perimeter drains. We recommend that Select Fill be composed of nonplastic to low plasticity, two-inch minus material with less than 10-percent materials passing the No. 200 sieve. The PI should be less than 10.

Based on laboratory tests and observations during the field exploration, it is anticipated that a portion of on-site material may be sufficient for use as *Common Fill* with the exception that some material may include high plasticity fines, thereby making it unsuitable for use as *Common Fill*. The site soils likely contain too many fines for *Select Fill*, thus sourcing for an alternative location will be required. Any material brought from off-site borrow areas should be approved before delivery to the site.

5.4.4. Deleterious Material

Material other than satisfactory soil and aggregate, as described above, should be considered unsatisfactory unless a qualified geotechnical engineer states otherwise after visual inspection of the material. Inspection may require confirmatory laboratory testing. Deleterious materials should not be used in site fills and backfills, regardless of whether it is from an on-site source or delivered to the site. Unsatisfactory soils include those included in USCS groups MH, CH, OL, or OH. Soils that are classified as fine-grained (clays and silts) and that exhibit a Plasticity Index greater than 20 are considered high plasticity materials. Deleterious material also includes any organic matter, wood, metal, piping, and may include concrete waste or soil containing cobbles (3 inches to 12 inches) and boulders (greater than 12 inches).

5.4.5. Fill Placement and Compaction

Common Fill should be used to rough grade the building areas in need of fill. A six-inch thick layer of Select Fill should extend from the base of the foundation footings past the foundation footprint and at a slope of 2:1 to the ground surface. A six-inch thick layer of Select Fill should be placed beneath all floor slabs.

The moisture content of fill materials should be controlled to permit ease in handling and placement and to achieve the specified compaction. **Table 5-5** summarizes the recommended minimum compaction requirements for various areas within the process plant area. Although a large variation in the moisture content is specified, it is generally easier to achieve the specified compaction density if the moisture content of fill is not more three percent above or below the optimum moisture content.

Table 5-5: Minimum Compaction Requirements

Area	Minimum Relative Compaction (%)
Common Fill – Rough Grading	92
Common Fill – Building Areas (Footings beneath Select Fill)	95
Common Fill – Building Areas (above footings)	92
Select Fill – Retention Structures, Trenches	92
Select Fill – Directly Beneath Footings and Slab-on-grade flooring	98

Note: Recommended relative compaction given for fill placement are expressed as a percentage of the maximum dry unit weight in accordance with the modified Proctor laboratory test (ASTM D1557 or equivalent). Fill should be moisture-conditioned and placed at no less than 3% below optimum moisture or 3% above the optimum moisture.

Fill should be placed in lifts no greater than 12 inches thick as measured when the material is loose and heavy equipment is used for compaction. For light compaction equipment (hand-operated equipment), loose lifts should be no thicker than six inches. Hand compaction should be performed for all fills within three feet laterally of existing concrete footings or soil retention structures. Thicker lifts should only be used with the written permission of the geotechnical engineer responsible for testing fill placement.

5.4.6. Earthworks Monitoring

All fill placement and proof rolling of exposed subgrade should be monitored by an experienced geotechnical engineer or soil technician to verify that unsuitable materials are not present and that proper placement and compaction of materials have been accomplished. For mass earthwork, construction specifications should require at least one in-place density test of the compacted fill for every 500 cubic yards with a minimum of one test for each lift. For backfill in trenches or around structures, construction specifications should require at least one in-place density test of the compacted fill for every 150 cubic yards of fill with a minimum of one test for each lift.

Before fill operations begin, representative samples of proposed fill materials should be tested for determination of laboratory compaction characteristics in accordance with the ASTM D1557 standard. Several samples of on-site materials that are suitable for use as *Common Fill* have been tested. Fill soil imported to the site would require testing. The proposed fill materials should be tested for grain size distribution and Atterberg Limits according to ASTM D422 and D4318 standards (or equivalent), respectively.

5.5. Slopes

At the time of this report preparation, a proposed grading plan has not been provided. Based on our understanding of the proposed project, various slopes including benched slopes, continuous slopes and temporary excavation slopes may be necessary for the development of the Process Plant. Geotechnical recommendations for design and construction of these slopes are presented in the following subsections.

For slopes with the potential to support loads (i.e. structures or stockpiles) the desired minimum long term static factor of safety is 2.0; for non-load bearing slopes the desired minimum long term static factor of safety is 1.5. For temporary slopes, a desired end-of-construction factor of safety is 1.3.

5.5.1. Temporary Excavations

All temporary excavations, such as those required for foundation excavations, utility trenches, tanks, and other infrastructure requiring excavation work, should consider slope stability and safety issues, as well as be performed in accordance with Occupational Safety and Health Administration (OSHA) and local regulations; if applicable.

The maximum allowable slope for excavations less than 20 feet in height shall be 1.5H:1V (34 degrees). The excavation can be a continuous slope or vertical excavations no greater than 4 feet deep with benches that have an overall 1.5H:1V slope. Vertical excavations are acceptable if properly shored. Excavations greater than 20 feet are not anticipated; but if required during construction, these slopes should be reviewed by NewFields.

Grading plans should anticipate all temporary excavations will be laid back, or property shored. Excavation spoils should not be stockpiled next to cut slopes. A minimum setback equal to the depth of the excavation should be maintained between the top of the cut slope and the toe of spoil piles. Exposed slopes should be protected from erosion and saturation by rainfall using berms, diversion ditches, and/or plastic sheeting.

Caution should still be exercised as slopes excavated in accordance with these recommendations may still experience localized sloughing, raveling, and sliding. All excavation operations should be performed under the supervision of qualified site personnel.

5.5.2. Permanent Slopes

In general, permanent slopes in alluvium should be constructed no steeper than 2H:1V overall, and flatter slopes should be provided where possible. Slopes should have a minimum of a 3-foot to 5-foot wide bench for each 25 feet of height to intercept runoff and help prevent erosion. Wider benches are recommended to provide operational access and repairs. Permanent,

continuous slopes will be susceptible to excessive erosion, surficial sloughing, and raveling, especially until they are revegetated. Revegetation efforts should initiate immediately after construction is complete.

Slopes should be constructed with crest berms and interceptor ditches at the brow of the slope to collect and divert surface runoff away from the slope face. Intermediate benches should be graded at approximately 5 percent (longitudinally) to prevent ponding and divert runoff to controlled downdrain locations. The base of slopes should be designed to drain water to specified collection points to prevent ponding of water.

We do not anticipate groundwater or seepage will be encountered in cut slope excavations. However, if encountered, a stability investigation should be conducted to determine if the seepage will adversely affect the cut. The native soils are susceptible to erosion, and thus drainage control along the slope crest and slope face should be addressed in the grading design. The crest of slopes should be graded at 2 percent to promote drainage away from the slope face.

Structures should be setback a sufficient distance from ascending and descending slopes. Per IBC regulations for ascending slopes, the face of a structure shall be set back from the toe of slope the smaller of half the vertical height of the slope or 15 feet. For descending slopes, the face of the footing shall be set back from the crest of slope the smaller of one-third of the slope height or 35 feet.

5.6. Control of Water

Based on the conditions observed in the borings, natural groundwater is anticipated to have little to no impact on construction activities. We do not anticipate that groundwater will be encountered in significant quantities in any structure or utility excavations; however, if encountered, water should be controllable via ditches and sumps.

Control of surface runoff to prevent erosion of exposed soils, especially on slopes, and the softening of subgrade beneath structures and pavement will be critical if earthwork is performed during the wet season. Surficial drainage of slopes, ditches, trench drains, and pumping from sumps should be used to readily remove any surface water, if needed.

Due to the potential for erosion of the soils prevalent at the site, especially after the ground surface has been disturbed, we recommend a storm water management plan and erosion control plan be developed prior to beginning construction work, implemented, and periodically inspected to reduce storm water runoff, fugitive dust emissions, and erosion. The grades of ditches should be fairly flat to prevent erosion. Sumps should be designed that will minimize siltation and that can be readily cleaned. Additionally, a revegetation plan should be developed and implemented to ensure successful revegetation of slopes and reduce erosion problems.

5.6.1. Drainage near Structures

The following recommendations should be followed to mitigate the potential for detrimental foundation movements due to excessive changes in soil moisture content:

- Positive surface drainage should be provided adjacent to structures such that all surface water is directed away from the foundation and any adjacent ponds, if applicable. Water should be directed into drop inlets and closed pipes that lead to suitable discharge facilities. Rainwater collected on the roof of the buildings should be transported through gutters, downspouts and closed pipes to suitable discharge facilities or drainage swales. In general, drainage conditions should be implemented such that rainwater, including roof water, will not collect or pond adjacent to the building structures.
- One way to alleviate this condition is to grade the ground surface adjacent to the proposed structure such that water flows away from the foundation at a minimum grade of five percent for at least 10 feet from the base of the structure. Concrete walkways should have a minimum slope of two-percent away from the structure to provide positive drainage away from the foundation.
- Landscape vegetation (except grass cover) should not be planted within 5 feet of exterior footings.
- > All drain or utility pipes beneath floors should have tight joints to prevent leakage.

6. LIMITATIONS

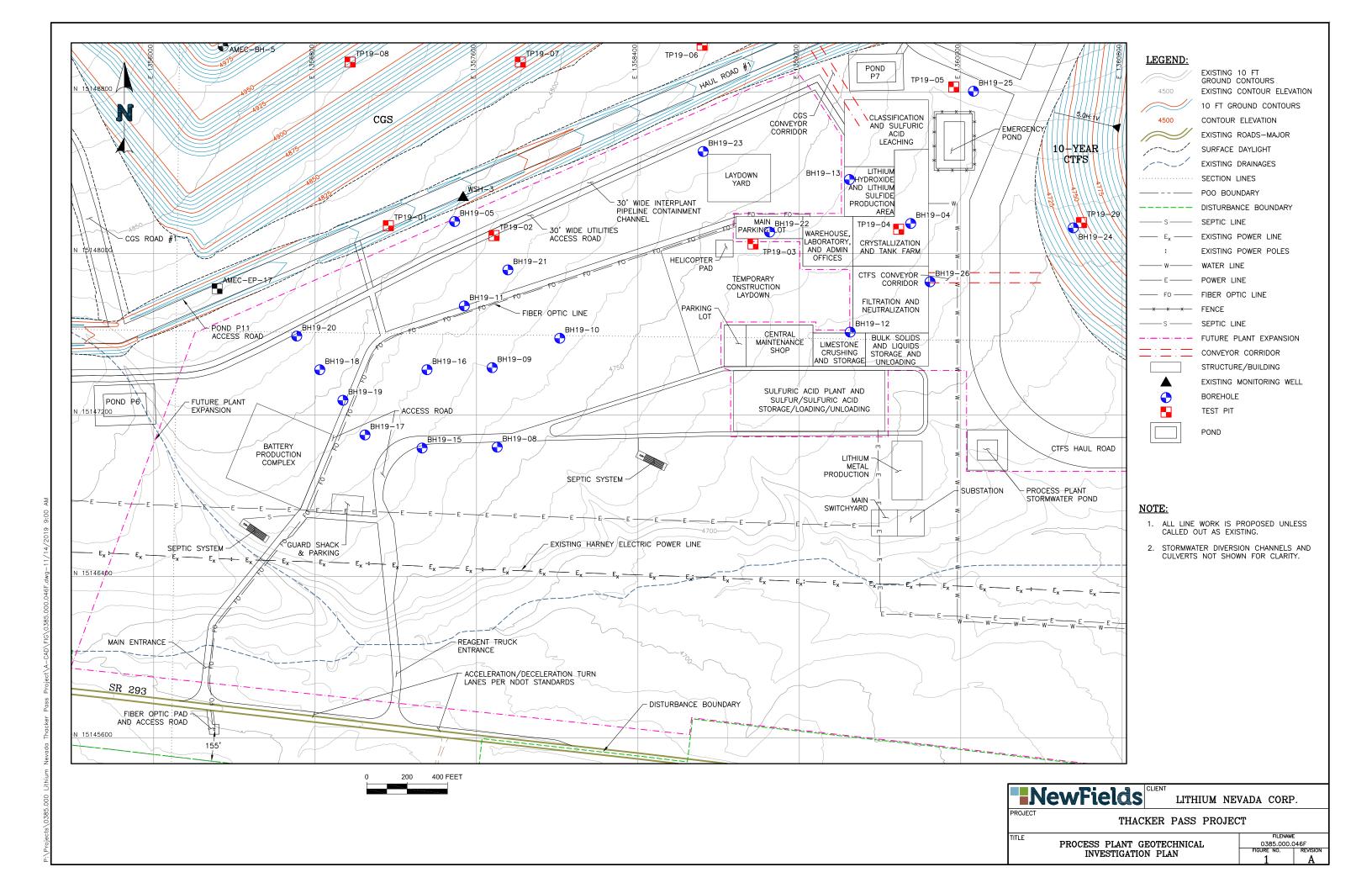
The analyses, conclusions, and recommendations presented in this report are based on a limited knowledge of site conditions and general assumptions that the geology and geotechnical characteristics of the borings and test pits are representative of the actual subsurface conditions throughout the site (i.e. the actual subsurface conditions at the site are not significantly different from those encountered during the field investigation program). If, during construction, subsurface conditions vary from those encountered in the study described herein, advise NewFields at once so that we can review these conditions and reconsider our recommendations, as necessary. NewFields reserves the opportunity to revise, adjust, or modify the recommendations presented herein.

Unanticipated soil, rock, and groundwater conditions are frequently encountered and cannot be fully determined through limited pre-construction subsurface investigations. Such unexpected conditions commonly require additional expenditures to develop a properly constructed project. Therefore, some contingency in construction budgets is recommended to accommodate potential additional costs.

We strongly recommend NewFields be retained to review the final structural design of the facilities and those portions of the plans and specifications which pertain to earthwork and

foundations to determine if they are consistent with our recommendations. In addition, a qualified engineering and testing firm should be retained to observe and document construction, particularly the compaction of engineered fill, general site excavations, and foundation preparation. The construction monitoring and testing services should be performed under separate contract from that of the construction contractor because the purpose of services during construction is to verify contractor compliance with the plans and specifications.

REFERENCES


- AMEC (2011). *Prefeasibility Level Geotechnical Study Report*. AMEC Project No. 10-417-00961. March.
- American Concrete Institute (1994). *Manual of Concrete Practice, Part 1, Materials and General Properties of Concrete.*
- American Petroleum Institute (1991). *Cathodic Protection of Aboveground Petroleum Storage Tanks*. API Recommended Practice No. 651, Washington D.C.
- American Society of Civil Engineers (2010), *Minimum Design Loads for Buildings and Other Structures*. ASCE 7-10.
- Bowles, J.E., (1996). Foundation Analysis and Design. Fifth Edition. McGraw-Hill Companies, Inc.
- GeoTerra (2017). Thacker Pass Topographic Survey Data
- Henry et al. (2017). "Geology and evolution of the McDermitt caldera, northern Nevada and southeastern Oregon, western USA". July.
- International Building Code (2015), International Code Council, Inc.
- Kulhawy, F.H. and Mayne, P.W. (1990). *Manual for Estimating Soil Properties for Foundation Design*. Electric Power Research Institute; Cornell University, Geotechnical Engineering Group, EL-6800, Research Project 1493-6.
- Meyerhof, G.G. (1963). "Some Recent Research on the Bearing Capacity of Foundations." *Canadian Geotechnical Journal*, Vol. 1, No. 1, pp. 16-26.
- Meyerhof, G.G., (1963). "Some Recent Research on the Bearing Capacity of Foundations." *Canadian Geotechnical Journal*, Vol. 1, No. 1, pp. 16-26.
- NewFields (2019a). Geotechnical Investigation Factual Report for the Thacker Pass Project. NewFields Project 475.0385.000, October 16.
- NewFields (2019b). Deterministic Seismic Hazard Analysis. Technical Memorandum. NewFields Project 475.0385.000, July 18.
- OSHA Standard 192 Subpart P App B Sloping and Benching

- Schmertmann, J. H., Hartman, J. P., and Brown, P. R. (1978). "Improved Strain Influence Factor Diagrams." *Journal of the Geotechnical Engineering Division*, 104 (No. GT8), 1131-1135.
- Schmertmann, J.H. (1970). "Static Cone to Compute Static Settlement over Sand." *ASCE Journal of Soil Mechanics and Foundation Division*, Vol. 96, SM 3, May, pp.1101-1043.
- Schmertmann, J.H., Hartman, J.P., and Brown, P.R. (1978). "Improved Strain Influence Factor Diagrams." *ASCE Journal of the Soil Mechanics and Foundations Division,* Vol. 96, No. SM3, p. 1011-1043.
- SEAC (2019). Structural Engineers Association of California, Office of State Wide Health Planning and Decelopment, U.S. Seismic Design Maps. https://seismicmaps.org/
- Seed, H.B., Wong, R.T., Idriss, I.M., and Tokimatsu, K. (1986). "Moduli and Damping Factors for Dynamic Analysis of Cohesionless Soils." *ASCE Journal of Geotechnical Engineering*, Vol. 112 (GT11).
- Terzaghi, K. (1955). "Evaluation of Coefficient of Subgrade Reaction." *Geotechnique*, Vol. 5, pp 297-326.
- Vucetic, M., and Dobry, R. (1991). "Effect of Soil Plasticity on Cyclic Response." *ASCE Journal of Geotechnical Engineering*, Vol. 117 (1).

FIGURES Geotechnical Field Exploration Plan

APPENDIX A

Borehole and Test Pit Exploration Logs

CLIENT Lithium Nevada PROJECT NAME Thacker Pass Geotechnical Investigation **PROJECT NUMBER** 475.0385.000 PROJECT LOCATION _ Thacker Pass, Nevada DATE STARTED 3/17/19 **COMPLETED** 3/18/19 GROUND ELEVATION 4725.4 ft HOLE SIZE 4.25in **DRILLING CONTRACTOR** HazTech **COORDINATES (WGS-84):** DRILLING METHOD HSA NORTHING 15145149 _ EASTING 1359752 LOGGED BY M. Erdmann CHECKED BY K. Magner NF-GEOTECH BH COLUMNS - GINT STD US LAB. GDT - 11/12/1/19 15:10 - Y:\PROJECTS\0385.000-THACKER PASS LITHIUM NEVADA\L-GEOTECH DATA - ELKO\BOREHOLE LOGS\BOREHOLE SOIL LOGS\-CC.19.08.29. DEPTH TO WATER (FT BGS) 92.5 NOTES Backfilled with cement grout **ATTERBERG** MOISTURE CONTENT (%) SAMPLE TYPE NUMBER LIMITS ELEVATION (ft) GRAPHIC LOG BLOW COUNTS (N VALUE) RECOVERY (INCHES) REMARKS % GRAVEL SAND FINES DEPTH (ft) PLASTICITY LIQUID MATERIAL DESCRIPTION % % Snow/Mud Top Soil / Root Zone silty SAND (SM), with gravel, fine to corase grained, sub angular, loose to dense, light brown, dry 5-5-6 SS 18 \$PT-0 (11)4720 MC 8-18-27 18 (45)SS 7-8-10 18 (18) \$PT-02 4715 silty SAND (SM), with gravel, well graded, fine to coarse MC 16-21-22 18 grained, sub angular, dense to very dense, light brown, dry (43)4710 SS 20-50/6cm 11.5 4705 MC MC 70/5cm 5 CAL-0 Switched to rock core at 21.5'

PAGE 1 OF 2

NewFields

CLIENT _Lithium Nevada PROJECT NAME _Thcker Pass Geotechnical Investigation

PROJECT NUMBER _475.0385.000 PROJECT LOCATION _Thacker Pass, Nevada

DATE STARTED _3/17/19 COMPLETED _3/18/19 GROUND ELEVATION _4725.4 ft HOLE SIZE _4.25 in

DRILLING CONTRACTOR _HazTech COORDINATES (WGS84):

DRILLING METHOD _HQ Core NORTHING _15145149 EASTING _1359752

LOGGED BY _M. Erdmann CHECKED BY _K. Magner DEPTH TO WATER (FT BGS) _92.5

1	ES E						nt ar		DEPTH TO WA	1111111111	<u>92.5</u>							_
_	T						- 9"							DISCO	NTIN	TIUN	/ LOC	<u></u>
NH-GEOTECH ROCK CORE LOG - GINT STD US LAB. GDT - 9/23/19 10:29 - 7/PROJECT S/0385, 000-1 HACKER PASS LITHIUM NEVADAL-GEOTECH DATA - EIKOBOREHOLESKROK CORE LOGS-CC.GFU P	20	RUN NO.	RUN LENGTH	REC (%)	RQD (%)	WEATHERING	HARDNESS	GRAPHIC LOG	MATERIAL DESCRIPTION Surface details: Snow/Mud	SAMPLE TYPE NUMBER	BLOW COUNTS (N VALUE)	WATER LEVEL	TYPE	DIP	SPACING	APERTURE	ROUGHNESS	INFILL
ZEHOLES/KO	† 	1	3.5	79	0	MW	/ R1		[Continuation from soil log at 20 feet] Blocky volcanic rock, moderately weathered, very weak rock, very close joint spacing, smooth joint surfaces			- -	JT		VC		ω	
9 - - - - - -	25	2	2	88	0	MW	/R1					- -	JT		VC		S	
- DATA -	-	3	2	90	0	MW	/R1					-	JT 		VC		S	
4695 4695	30	4	3	100	55	MW	/ R1					- -	JT		VC		S	
ASS LITHIUM NEVADA	35	5	5	100	41	MW	/ R1		Basalt, black to brown, moderately weathered to slightly weathered, very weak to medium strong rock, very close to close joint spacing, slightly rough joint surfaces, clay and calcite alteration on joint surfaces			- - -	JT		VC		SR	
- 14990 - 14900 - 1490	- - - - - - - - - - - - - - - - - - -	6	5	100	43	MW	' R1					- - -	JT		vc vc		SR	
	45	7	5	100	58	MW	/ R1					- - - -	JT		VC		SR	
76 - 175 - 1	50	8	5	100	49	MW	/ R1					- - -	JT		VC		SR	
4670	55	9	5	100	79	MW	/ R1					- - -	JT		С		SR	CA
NF-GEOLECH KO	60	10	5	100	65	sw	R3					- - -			Contin		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	

PAGE 2 OF 2

NewFields

CLIENT Lithium Nevada PROJECT NAME The Pass Geotechnical Investigation **PROJECT NUMBER** 475.0385.000 PROJECT LOCATION Thacker Pass, Nevada DISCONTINUITY LOG SAMPLE TYPE NUMBER WEATHERING WATER LEVEL RUN LENGTH ELEVATION (ft) HARDNESS GRAPHIC LOG BLOW COUNTS (N VALUE) ROUGHNESS RQD (%) REC (%) RUN NO. **APERTURE** DEPTH (ft) SPACING NFIL. MATERIAL DESCRIPTION 딤 60 Basalt, black to brown, moderately weathered to С SR CA JT NF-GEOTECH ROCK CORE LOG-GINT STD US LAB GDT - 9/23/19 10:29 - Y/PROJECTS/0385.000-THACKER PASS LITHIUM NEVADAIL-GEOTECH DATA - ELKOIBOREHOLES/ROCK CORE LOGS-CC.GP, slightly weathered, very weak to medium strong rock, very close to close joint spacing, slightly rough joint surfaces, clay and calcite alteration on 5 100 87 SW R3 joint surfaces (continued) 65 4660 С SR CA JT 12 5 100 90 SW R3 70 4655 С SR CL JT 100 83 SW R3 13 5 75 4650 JT С SR CL 5 100 95 SW R3 14 80 4645 С SR CL JT 15 5 100 85 SW R3 85 4640 С SR CL 16 5 100 88 SW R2 90 4635 SR CL JT С <u>1</u> 17 5 100 90 SW R2 95 4630 CL С SR JT 5 100 86 SW R2 18 100 4625 Borehole terminated at 100.5'

CLIENT Lithium Nevada **PROJECT NUMBER** 475.0385.000 PROJECT LOCATION Thacker Pass, Nevada DATE STARTED 3/18/19 **COMPLETED** 3/19/19 GROUND ELEVATION 4717.5 ft HOLE SIZE 4.25in COORDINATES (WGS-84): **DRILLING CONTRACTOR** HazTech DRILLING METHOD HSA NORTHING <u>15147611</u> __ EASTING 1357942 LOGGED BY C. Coleman CHECKED BY K. Magner NF-GEOTECH BH COLUMNS - GINT STD US LAB. GDT - 11/21/19 15:11 - Y:PROJECTS\0385.000-THACKER PASS LITHIUM NEVADAIL-GEOTECH DATA - ELKOBOREHOLE LOGS\BOREHOLE SOIL LOGS\CC.19.08.29. DEPTH TO WATER (FT BGS) No free water encountered NOTES Backfilled with cuttings and cement grout **ATTERBERG** SAMPLE TYPE NUMBER MOISTURE CONTENT (%) LIMITS ELEVATION (ft) GRAPHIC LOG BLOW COUNTS (N VALUE) RECOVERY (INCHES) % GRAVEL SAND FINES DEPTH (ft) PLASTICITY LIQUID MATERIAL DESCRIPTION % % Snow/Mud Top Soil / Root Zone silty SAND (SM), with gravel, fine to coarse sand and gravel, MPS 1.0", sub angular, nonplastic fines, dense, 4715 light brown, dry SS 7-15-31 18 \$PT-0 (46)GRAVEL (GW-GM), with sand and silt, fine to coarse sand and gravel, MPS 3.0", sub angular, nonplastic to high MC 30-45-48 18 Hard drilling CAL-0 (93)plasticitiy fines, very dense, brown, dry 4710 21-27-16 \$PT-02 50/4cm 43-70/5cm 11 4705 SS 22-27-34 49.7 35.8 14.5 18 10.5 48 27 \$PT-03 (61)4700 CLAY (CL), with sand, trace gravel, fine grained sand, fine to coarse gravel, MPS 1.5", sub angular, medium plasticity fines, hard, brown, damp 14-18-24 18 (42)4695 SS 28-50/4cm 10 Refusal on gravel \$PT-04 SAND (SW-SC), some clay and gravel, fine to coarse sand / rocky material and gravel, low plasticty fines, very dense, brown, dry 4690 MC 68-70/3cm 9 Borehole terminated at 31.5

CLIENT Lithium Nevada PROJECT NAME Thacker Pass Geotechnical Investigation **PROJECT NUMBER** 475.0385.000 PROJECT LOCATION _ Thacker Pass, Nevada DATE STARTED 3/16/19 **COMPLETED** 3/16/19 GROUND ELEVATION 4740.2 ft HOLE SIZE 4.25in **DRILLING CONTRACTOR** HazTech **COORDINATES (WGS-84):** DRILLING METHOD HSA NORTHING <u>15148367</u> _ **EASTING** 1359448 LOGGED BY M. Erdmann CHECKED BY K. Magner NF-GEOTECH BH COLUMNS - GINT STD US LAB. GDT - 11/21/19 15:11 - Y:PROJECTS\0385.000-THACKER PASS LITHIUM NEVADA\L-GEOTECH DATA - ELKOBOREHOLE LOGS\BOREHOLE SOIL LOGS\CC.19.08.29. DEPTH TO WATER (FT BGS) No free water encountered NOTES Backfilled with cement grout ATTERBERG MOISTURE CONTENT (%) SAMPLE TYPE NUMBER LIMITS ELEVATION (ft) GRAPHIC LOG BLOW COUNTS (N VALUE) RECOVERY (INCHES) REMARKS % GRAVEL SAND FINES DEPTH (ft) PLASTICITY LIQUID MATERIAL DESCRIPTION % % Snow/Mud Top Soil / Root Zone silty SAND (SM), with gravel, well graded, fine to coarse grained, sub angular, very dense, brown, dry 15 50/3cm 4735 62-70/6cm 11.5 20-41-16 \$PT-02 50/4cm 4730 10 MC 59-70/5cm 10.5 15 4725 SS 20-30-15 50/3cm 20 4720 MC 35-41-17 70/5cm 25 4715 SS 12-35-17 \$PT-04 50/5cm 30 4710 MC 28-70/5cm Switched to rock core at 31.5'

PROJECT NAME Thcker Pass Geotechnical Investigation CLIENT Lithium Nevada PROJECT NUMBER _475.0385.000 PROJECT LOCATION _ Thacker Pass, Nevada **DATE STARTED** <u>3/16/19</u> **COMPLETED** <u>3/16/19</u> GROUND ELEVATION 4740.2 ft HOLE SIZE 4.25 in DRILLING CONTRACTOR HazTech **COORDINATES (WGS84):** DRILLING METHOD HQ Core NORTHING 15148367 _____ **EASTING** _1357448 LOGGED BY M. Erdmann CHECKED BY K. Magner DEPTH TO WATER (FT BGS) No free water encountered

NOTES Backfilled with cement grout

7			H			S G	S			H.		Ē		OISCO	NITNC	YTIUN		3
ш	, DEPTH (ft)	RUN NO.	RUN LENGTH	REC (%)	RQD (%)	WEATHERING	HARDNESS	GRAPHIC LOG	MATERIAL DESCRIPTION Surface details: Snow/Mud	SAMPLE TYPE NUMBER	BLOW COUNTS (N VALUE)	WATER LEVEL	TYPE	DIP	SPACING	APERTURE	ROUGHNESS	INFILL
4710	30							**	[Continuation from soil log at 30 feet]			_	JT		VC		S	
	 	1	5	100	8	HW	'R1		Basalt, black, highly to moderately weathered, very weak to medium strong rock, very close joint spacing, smooth joint surface, calcite alteration on joint surface			- - -						
4705	35											_	JT		VC		S	
		2	5	100	24	HW	'R1					-						
4700	40											_	JT		VC		s	
-i	 	3	5	100	53	MW	R2					- -						
_ 4695_	45											_	JT		VC		s	С
-												-						
=		4	5	100	59	SW	R3					-						
_	 50								Borehole terminated at 50'			-						
									Boronoic terminated at 00									

PAGE 1 OF 1

NewFields

CLIENT Lithium Nevada PROJECT NAME Thacker Pass Geotechnical Investigation **PROJECT NUMBER** 475.0385.000 PROJECT LOCATION _ Thacker Pass, Nevada DATE STARTED 3/15/19 **COMPLETED** 3/15/19 GROUND ELEVATION 4741.9 ft HOLE SIZE 4.25in **DRILLING CONTRACTOR** HazTech **COORDINATES (WGS-84):** DRILLING METHOD HSA NORTHING <u>15148106</u> __ **EASTING** 1359052 NF-GEOTECH BH COLUMNS - GINT STD US LAB.GDT - 11/21/19 15:11 - Y:PROJECTS/0385.000-THACKER PASS LITHIUM NEVADAIL-GEOTECH DATA - ELKO'BOREHOLE LOGS'BOREHOLE SOIL LOGS-CC. 19:08.29. GPJ LOGGED BY M. Erdmann CHECKED BY K. Magner DEPTH TO WATER (FT BGS) No free water encountered NOTES Backfilled with benontie chips and cement grout ATTERBERG MOISTURE CONTENT (%) SAMPLE TYPE NUMBER LIMITS ELEVATION (ft) GRAPHIC LOG BLOW COUNTS (N VALUE) RECOVERY (INCHES) REMARKS % GRAVEL SAND FINES DEPTH (ft) PLASTICITY LIQUID MATERIAL DESCRIPTION % Snow/Mud Top Soil / Root Zone silty SAND (SM), well graded, fine grained, sub angular, medium dense to dense, light brown, dry 4740 SS 13-12-11 18 \$PT-0 (23)19-37-50 MC 18 (87) 50/5cm 5 \$PT-02 70/4cm **™** MC 4

Switched to rock core at 11.5'

PAGE 1 OF 1

NewFields

PROJECT NAME Thcker Pass Geotechnical Investigation CLIENT Lithium Nevada PROJECT NUMBER 475.0385.000 PROJECT LOCATION _ Thacker Pass, Nevada **DATE STARTED** 3/15/19 **COMPLETED** 3/16/19 GROUND ELEVATION 4741.9 ft HOLE SIZE 4.25 in DRILLING CONTRACTOR HazTech **COORDINATES (WGS84):** DRILLING METHOD HQ Core NORTHING 15148106 ____ **EASTING** 1359051 LOGGED BY M. Erdmann CHECKED BY K. Magner DEPTH TO WATER (FT BGS) No free water encountered

NOTES Backfilled with bentonite chips and cement grout

-			Į			<u>0</u>	(0			Щ		긥		DISCO	NTINC	\UIT\		3
ELEVATION (ft)	DEPTH (ft)	RUN NO.	RUN LENGTH	REC (%)	RQD (%)	WEATHERING	HARDNESS	GRAPHIC LOG	MATERIAL DESCRIPTION Surface details: Snow/Mud	SAMPLE TYPE NUMBER	BLOW COUNTS (N VALUE)	WATER LEVEL	TYPE	DIP	SPACING	APERTURE	ROUGHNESS	INFILL
4730		1	2			HW		***	[Continuation from soil log at 11.5 feet] Blocky volcanic rock, brown, highly weathered, very			-	JT		VC			ОХ
	- - 	2	2	100	25	HW	R1		Blocky volcanic rock, brown, highly weathered, very weak to medium strong rock, very close joint spacing, oxidization on joint surface			-	JT		VC			ох
	15											_						
4725		3	5	100	0	HW	R1					-						
 	- 											-	JT		VC			ОХ
	20	4	2.5	40	0	HW	R1					_	1					
4720	- -											-	JT		VC			ОХ
	- 	5	4	100	0	HW	R1					-						
	25											_	JT		VC			ОХ
4715	- - -	6	2.5	100	0	HW	R1					-						
 		7	1	75	0	HW	R1					-	JT		VC VC			OX OX
	30	-8	2	62	0	HW	R1					_						
4710	- 											-	JT		VC			ОХ
	-	9	4	43	0	HW	R1					-						
	35											_	JT		VC			ОХ
4705	 											-						
 L]		10	5	81	42	HW	R1					-	1					
	40							\boxtimes	Borehole terminated at 40'			_						
									Borefiole terminated at 40									

CLIENT Lithium Nevada PROJECT NAME Thacker Pass Geotechnical Investigation **PROJECT NUMBER** 475.0385.000 PROJECT LOCATION _ Thacker Pass, Nevada DATE STARTED 3/15/19 **COMPLETED** 3/15/19 GROUND ELEVATION 4766.2 ft HOLE SIZE 4.25in **DRILLING CONTRACTOR** HazTech **COORDINATES (WGS-84):** DRILLING METHOD HSA NORTHING <u>15148506</u> __ **EASTING** 1358723 DEPTH TO WATER (FT BGS) No free water encountered LOGGED BY M. Erdmann CHECKED BY K. Magner NF-GEOTECH BH COLUMNS - GINT STD US LAB. GDT - 11/21/19 15:11 - Y:PROJECTS\0385.000-THACKER PASS LITHIUM NEVADAIL-GEOTECH DATA - ELKOBOREHOLE LOGS\BOREHOLE SOIL LOGS\CC.19.08.29. NOTES Backfilled with benontie chips and cement grout ATTERBERG MOISTURE CONTENT (%) SAMPLE TYPE NUMBER LIMITS ELEVATION (ft) GRAPHIC LOG BLOW COUNTS (N VALUE) RECOVERY (INCHES) REMARKS % GRAVEL SAND FINES DEPTH (ft) PLASTICITY LIQUID MATERIAL DESCRIPTION % Snow/Mud Top Soil / Root Zone 4765 silty SAND (SM), with gravel, fine to coarse grained, well graded, sub angular, nonplastic fines, dense, light brown, SS 9-41-49 14.6 NP 36.9 45.6 17.5 \$PT-0 (90)MC 33-70/5cm 11 SS 12-20-30 18 11.3 NP NP 40.2 46.6 13.2 \$PT-02 (50)70/3cm MC 3 4755 Switched to rock core at 11.5'

PAGE 1 OF 2

NewFields

5 50

3

0 HW R1

100 77 MW R3

CLIENT Lithium Nevada PROJECT NAME The Pass Geotechnical Investigation **PROJECT NUMBER** _475.0385.000 PROJECT LOCATION _ Thacker Pass, Nevada **DATE STARTED** <u>3/15/19</u> GROUND ELEVATION 4766.2 ft **COMPLETED** 3/15/19 HOLE SIZE 4.25 in DRILLING CONTRACTOR HazTech **COORDINATES (WGS84):** DRILLING METHOD HQ Core NORTHING 15148506 **EASTING** 1358723 LOGGED BY M. Erdmann CHECKED BY K. Magner DEPTH TO WATER (FT BGS) No free water encountered NOTES Backfilled with bentonite chips and cement grout

			ı			G				Щ			[DISCO	NTIN	\UIT\	/ LOC	3
ELEVATION (ft)	DEPTH (ft)	RUN NO.	RUN LENGTH	REC (%)	RQD (%)	WEATHERING	HARDNESS	GRAPHIC LOG	MATERIAL DESCRIPTION Surface details: Snow/Mud	SAMPLE TYPE NUMBER	BLOW COUNTS (N VALUE)	WATER LEVEL	TYPE	DIP	SPACING	APERTURE	ROUGHNESS	INFILL
4755		1	1.5	30	0	HW	R1	\nearrow	[Continuation from soil log at 10 feet] Blocky volcanic rock, reddish brown, highly			_	JT		VC		S	
 - -	-	2	2	40	0	HW	R1		weathered, very weak rock, very close joint spacing, smooth joint suface			-	JT		VC		S	
	-											-	JT		VC		S	
-	15_	3	2	40	0	HW	R1					_	JT		VC		S	
4750	20	4	5	100	8	HW	R1					- - - -	JT		VC		S	
4740	25	5	5	100	10	HW	'R1					- - -	JT		VC		S	
4735	30	6	5	100	0	HW	'R1					- - -	JT		VC		S	
	35	7	5	100	20	HW	R1					- - -	JT		VC		S	
NO L	40	8	5	37	25	HW	'R1					- - - -						
	- - -											-	JT		VC		S	

Basalt, black, moderately weathered, medium strong rock, close joint spacing, smooth joint

surface, calcite alteration on joint surface

SR CA

С

JT

NewFields

CLIENT Lithium Nevada PROJECT NAME Theker Pass Geotechnical Investigation

PROJECT NUMBER 475.0385.000 PROJECT LOCATION Thacker Pass, Nevada

Γ			_			C						ш		L	DISCONTINUITY LOG						
í	 о DEPTH О (ft)	RUN NO.	RUN LENGTH	REC (%)	RQD (%)	WEATHERING	HARDNESS	GRAPHIC LOG		MA	TERIAL DESCRIPTI	ON	SAMPLE TYPI NUMBER	BLOW COUNTS (N VALUE)	WATER LEVE	TYPE	DIP	SPACING	APERTURE	ROUGHNESS	
ьE								$1 \rightarrow \leftarrow$	Rasalt I	hlack	moderately weathers	d medium									┸

Basalt, black, moderately weathered, medium strong rock, close joint spacing, smooth joint surface, calcite alteration on joint surface

Borehole terminated at 50.5'

NF-GEOTECH ROCK CORE LOG - GINT STD US LAB GDT - 9/23/19 10:30 - Y:/PROJECTS/0385.000-THACKER PASS LITHIUM NEVADAIL-GEOTECH DATA - ELKO'BOREHOLES'ROCK CORE LOGS-CC.GPJ

CLIENT Lithium Nevada PROJECT NAME Thacker Pass Geotechnical Investigation **PROJECT NUMBER** 475.0385.000 PROJECT LOCATION _ Thacker Pass, Nevada DATE STARTED 3/20/19 **COMPLETED** 3/20/19 GROUND ELEVATION 4734.7 ft HOLE SIZE 4.25in **DRILLING CONTRACTOR** HazTech **COORDINATES (WGS-84):** DRILLING METHOD HSA NORTHING <u>15148804</u> _ **EASTING** 1360063 LOGGED BY C. Coleman CHECKED BY K. Magner NF-GEOTECH BH COLUMNS - GINT STD US LAB. GDT - 11/12/1/19 15:11 - Y:PROJECTS\0385.000-THACKER PASS LITHIUM NEVADAIL-GEOTECH DATA - ELKOIBOREHOLE LOGS\BOREHOLE SOIL LOGS\-CC.19.08.29. DEPTH TO WATER (FT BGS) No free water encountered NOTES Backfilled with cement grout ATTERBERG MOISTURE CONTENT (%) SAMPLE TYPE NUMBER LIMITS ELEVATION (ft) GRAPHIC LOG BLOW COUNTS (N VALUE) RECOVERY (INCHES) REMARKS % GRAVEL SAND FINES DEPTH (ft) PLASTICITY LIQUID MATERIAL DESCRIPTION % Snow/Mud Top Soil / Root Zone silty SAND (SM), fine to medium grained, porrly graded, subangular, nonplastic fines, medium dense to very dense, brown, dry 5-8-8 SS 18 18.4 NP 5.1 62.2 32.7 \$PT-0 (16)4730 MC 11-17-18 18 (35)SS 7-9-9 74.1 24.5 18 22.3 NP NP 1.4 \$PT-02 (18)4725 10 MC 6-16-22 18 (38)4720 15 SS 13-25-25 35.3 NP NP 78.2 21.8 18 0 \$PT-03 (50) 4715 20 MC 70/4cm 4 CAL-0 Switched to rock core at 21.5'

ELKO/BOREHOLES/ROCK CORE LOGS-CC.GP.

NF-GEOTECH ROCK CORE LOG - GINT STD US LAB.GDT - 9/23/19 10:30 - Y∴PROJECTS/0385,000-THACKER PASS LITHIUM NEVADA\L-GEOTECH DATA -

4685

CLIENT Lithium Nevada PROJECT NAME The Pass Geotechnical Investigation **PROJECT NUMBER** 475.0385.000 PROJECT LOCATION _ Thacker Pass, Nevada DATE STARTED 3/20/19 **COMPLETED** 3/20/19 GROUND ELEVATION 4734.7 ft HOLE SIZE 4.25 in DRILLING CONTRACTOR HazTech **COORDINATES (WGS84):** DRILLING METHOD HQ Core NORTHING <u>15148804</u> _ EASTING 1360063 LOGGED BY C. Coleman CHECKED BY K. Magner DEPTH TO WATER (FT BGS) No free water encountered

NOTES Backfilled with cement grout DISCONTINUITY LOG SAMPLE TYPE NUMBER WEATHERING **WATER LEVEL** ELEVATION (ft) RUN LENGTH HARDNESS GRAPHIC LOG BLOW COUNTS (N VALUE) ROUGHNESS REC (%) RQD (%) DEPTH (ft) RUN NO. **APERTURE** SPACING TYPE MATERIAL DESCRIPTION 딤 Surface details: Snow/Mud [Continuation from soil log at 20 feet] Basalt, black, highly weathered, very weak rock, very close joint spacing, oxidization on joint surface 4.5 100 0 HW R1 JT VC 25

ΟX 4710 OX 2 4.5 100 0 HW R1 VC JT OX 4705 30 3 5.5 100 0 HW R1 4700 JT VC OX 35 100 43 HW R1 4695 VC JT OX 40 5 95 43 HW R1 4690 VC OX JT 45 6 5.5 95 58 HW R1

Borehole terminated at 50

CLIENT Lithium Nevada PROJECT NAME Thacker Pass Geotechnical Investigation **PROJECT NUMBER** 475.0385.000 PROJECT LOCATION Thacker Pass, Nevada DATE STARTED 3/18/19 **COMPLETED** 3/19/19 GROUND ELEVATION 4715.4 ft HOLE SIZE 4.25in DRILLING CONTRACTOR HazTech **COORDINATES (WGS-84):** DRILLING METHOD HSA NORTHING <u>15147860</u> _ **EASTING** 1359848 LOGGED BY C. Coleman CHECKED BY K. Magner NNF-GEOTECH BH COLUMNS - GINT STD US LAB. GDT - 1/1/2/1/19 15:11 - Y:PROJECTS)(0385,000-THACKER PASS LITHIUM NEVADALL-GEOTECH DATA - ELKOBOREHOLE LOGS/BOREHOLE SOIL LOGS-CC.19,08.29, DEPTH TO WATER (FT BGS) No free water encountered NOTES Backfilled with cement grout **ATTERBERG** SAMPLE TYPE NUMBER MOISTURE CONTENT (%) LIMITS ELEVATION (ft) GRAPHIC LOG BLOW COUNTS (N VALUE) RECOVERY (INCHES) GRAVEL SAND FINES DEPTH (ft) PLASTICITY LIQUID MATERIAL DESCRIPTION % % Snow/Mud Top Soil / Root Zone silty SAND (SM), with gravel, fine to medium sand, fine to coarse gravels, MPS 1.5", sub angular, nonplastic fines, medium dense to dense, Igiht brown, dry SS 17-20-21 18 \$PT-0 (41)4710 MC. 24-18-14 18 13.5 NP NP 28.3 54.6 17.1 DD= 80.6 pcf (32)SAND (SW-SM), with gravel and silt, fine to corase grained, MPS 1.5", sub angular, nonplastic fines, dense, brown, dry 16-32-39 SS 18 \$PT-02 (71)4705 37-45-Increase in gravel 16 70/4cm size, MPS 2.5" GRAVEL (GW-GM), with sand and silt, fine to corase SS 40-50/4cm 10 grained, MPS 2.0", sub angular, nonplastic fines, dense, \$PT-03 brown, dry MC 43-70/4cm 4690 SS 31-50/4cm clayey SAND (SC), trace gravel, fine grained, low plasticity 10 \$PT-04 fines, dense, dark brown, dry MC 70-70/3cm 9 Borehole terminated at 31.5'

PAGE 1 OF 1

NewFields

 CLIENT _ Lithium Nevada Corporation
 PROJECT NAME _ Thacker Pass Project

 PROJECT NUMBER _ 475.0385.000
 PROJECT LOCATION _ Thacker Pass

 DATE STARTED _ 2/27/19 _ COMPLETED _ 2/27/19 _ EXCAVATION CONTRACTOR _ Hunewill Construction _ Hunewill Construction _ COORDINATES ():
 COORDINATES ():

 EQUIPMENT _ CAT 320E
 NORTHING _ 15148047 _ EASTING _ 1358970 _

LOGGED BY C.Coleman CHECKED BY M. Walden DEPTH TO WATER (FT BGS) No groundwater encountered

NOTES Backfilled with excavated material

1											
ELEVATION (ft)	O (ft)	GRAPHIC LOG	MATERIAL DESCRIPTION Surface Conditions: Mud	SAMPLE TYPE NUMBER	MOISTURE CONTENT (%)		PLASTICITY 하 INDEX S	% GRAVEL	% SAND	% FINES	REMARKS
4740	5		lean CLAY (CL) with sand, fine grained, medium plasticity, moist, brown, (root zone) silty SAND (SM) with gravel, fine to coarse grained sand and gravel, subrounded, nonplastic, dry, brown	m GB \$-03-2	, 15.9	37	8	25.4	41.4	33.2	
4735			silty GRAVEL (GM) with sand, fine to coarse grained sand and gravel, subrounded, nonplastic, dry, brown	My GB S-03-28	10.8	NP	NP	47.8	36.4	13.8	Hard digging at 6ft, cobbles and boulders to 16in diameter, blocky volcanics % Cobble = 2.0
4730	- - -										

Test pit terminated at 14ft, refusal on weathered basalt

NF-GEOTECH TEST PIT - GINT STD US LAB.GDT - 7/3/19 16:08 - S.\PROJECTS\0385.000-THACKER PASS LITHIUM NEVADA\L-GEOTECH DATA\TEST PITS\THACKER PASS LOGS.GPJ

PAGE 1 OF 1

CLIENT Lithium Nevada Corporation PROJECT NAME Thacker Pass Project

PROJECT NUMBER 475.0385.000 PROJECT LOCATION Thacker Pass

DATE STARTED 2/27/19 COMPLETED 2/27/19 GROUND ELEVATION 4726 ft TOTAL PIT DEPTH 19 ft

EXCAVATION CONTRACTOR Hunewill Construction COORDINATES ():

EQUIPMENT CAT 320E NORTHING 15148120 EASTING 1359692

LOGGED BY C.Coleman CHECKED BY M. Walden DEPTH TO WATER (FT BGS) No groundwater encountered

NOTES Backfilled with excavated material

ELEVATION (ft) DEPTH	GRAPHIC	MATERIAL DESCRIPTION Surface Conditions: Mud	SAMPLE TYPE NUMBER	MOISTURE CONTENT (%)		PLASTICITY GINDEX INDEX	% GRAVEL	% SAND	% FINES	REMARKS
4725	5 - 10 - 15 - 15 - 1	GRAVEL (GW-GM) with sand and silt, fine to coarse grained sand and gravel, subangular, nonplastic, dry, light brown, (ash bed) GRAVEL (GW-GM) with sand and silt, fine to coarse grained sand and gravel, subrounded, nonplastic, dry, brown	© GB \$-04-29 © GB \$-04-30 © GB \$-04-3	20.2	NP NP	NP NP	49.1	56.4	9.8	Extremely hard digging at 4ft, dense soil layer, ash Cobbles and boulders up to 16in diameter at 8ft, blocky volcanics

Test pit terminated at 19ft, (Excavator limits)

NF-GEOTECH TEST PIT - GINT STD US LAB.GDT - 7/3/19 16:08 - S./PROJECTS/0385,000-THACKER PASS LITHIUM NEVADAIL-GEOTECH DATA/TEST PITS/ITHACKER PASS LOGS.GPJ

PAGE 1 OF 1

NewFields

CLIENT Lithium Nevada Corporation

PROJECT NUMBER 475.0385.000

DATE STARTED 2/28/19 _____ COMPLETED 2/28/19

EXCAVATION CONTRACTOR Hunewill Construction

EQUIPMENT CAT 320E

LOGGED BY C.Coleman CHECKED BY M. Walden

PROJECT NAME Thacker Pass Project

PROJECT LOCATION Thacker Pass

GROUND ELEVATION 4734 ft TOTAL PIT DEPTH 15 ft

COORDINATES ():

NORTHING <u>15148825</u> EASTING <u>1359965</u>

DEPTH TO WATER (FT BGS) No groundwater encountered

NOTES Backfilled with excavated material

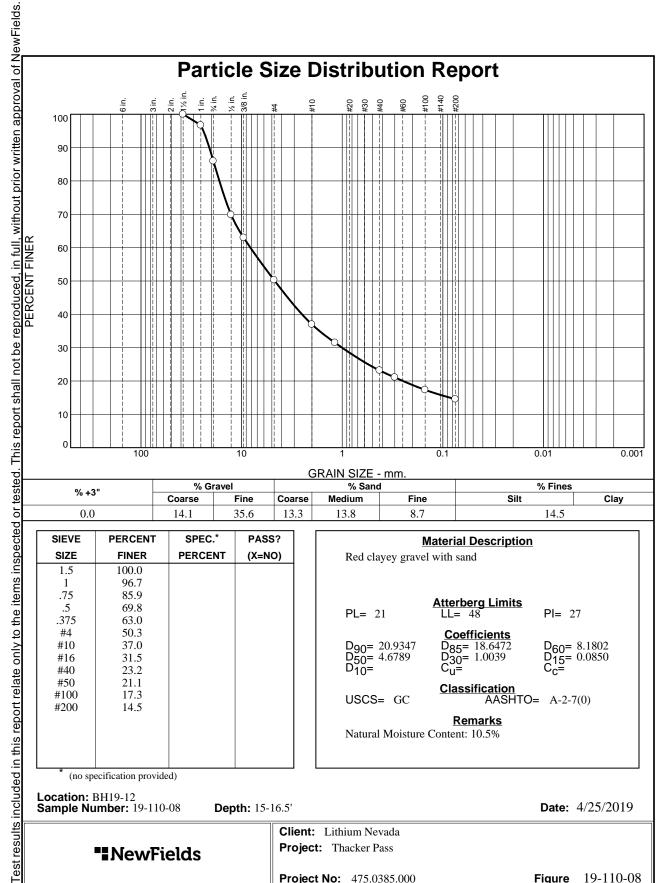
ELEVATION (ft) O DEPTH (ft)	GRAPHIC LOG	MATERIAL DESCRIPTION Surface Conditions: Mud	SAMPLE TYPE NUMBER	MOISTURE CONTENT (%)	ATTER LIMIT LIMIT	PLASTICITY SINDEX	% GRAVEL	% SAND	% FINES	REMARKS
4730		lean CLAY (CL) with sand, fine grained, medium plasticity, moist, brown, (root zone) GRAVEL (GW-GC) with sand and silt, fine to coarse grained sand and gravel, subrounded, low plasticity, moist, brown	om GB \$-05-33	3						Cobbles and boulders up to 12in diameter
4725 10 10 4720 15	- - -	sandy SILT (ML), fine to coarse grained sand, subrounded, low plasticity, damp, brown Test pit terminated at 15ft. refusal on weathered basalt	M GB \$-05-34	23.7	41	10	1.4	31.8	66.8	Weathered basalt starting at 10ft, soft digging

Test pit terminated at 15ft, refusal on weathered basalt

NF-GEOTECH TEST PIT - GINT STD US LAB.GDT - 7/3/19 16:09 - S:\PROJECTS\0385.000-THACKER PASS LITHIUM NEVADALL-GEOTECH DATA\TEST PITS\THACKER PASS LOGS.GPJ

APPENDIX B Laboratory Data Sheets

Table B-1 Lithium Nevada Coproration Geotechnical Investigation Thacker Pass Project - Process Plant Facilities


acker Pass Project - Process Plant Faciliti Laboratory Test Summary

	Sample						P	ARTICLE	SIZE DI	STRUE	BITION						MOISTURE	NATURAL	ATTI	ERBERG LI	MITS	MOD. F	PROCTOR ¹
Borehole Number	Depth	Sample Number			GF	RAVEL					S	AND			CLAY/SILT	USCS	CONTENT	DRY DENSITY	LIQUID	PLASTIC	PLASTIC	MAX. DRY DENSITY	OPTIMUM MOISTURE
	(ft)		3.0"	2.0"	1.0"	0.75"	0.5"	0.375"	#4	#10	#16	#40	#50	#100	#200		(%)	(pcf)	LIMIT	LIMIT	INDEX	(pcf)	CONTENT (%)
BH19-12	15-16.5'	19-110-08	100.0	100.0	96.7	85.9	69.8	63.0	50.3	37.0	31.5	23.2	21.1	17.3	14.5	GC	10.5		48	21	27		
BH19-23	2.5-4'	19-110-18	100.0	100.0	100.0	87.6	76.8	73.1	63.1	49.8	43.6	34.3	31.4	24.9	17.5	SM	14.6		NP	NP	NP		
BH19-23	7.5-9'	19-110-19	100.0	100.0	100.0	81.4	76.8	73.1	59.8	47.0	41.0	30.0	26.6	19.4	13.2	SM	11.3		NP	NP	NP		
BH19-25	2.5-4'	19-110-23	100.0	100.0	100.0	100.0	100.0	99.3	94.9	84.3	78.4	67.3	63.4	52.5	32.7	SM	18.4		NP	NP	NP		
BH19-25	7.5-9'	19-110-24	100.0	100.0	100.0	100.0	100.0	100.0	98.6	89.7	82.4	64.3	57.0	38.7	24.5	SM	22.3		NP	NP	NP		
BH19-25	15-16.5'	19-110-25	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	86.5	71.2	40.9	21.8	SM	35.3		NP	NP	NP		
BH19-26	5-6'	19-110-26	100.0	100.0	86.6	83.2	81.2	78.6	71.7	57.3	49.0	35.6	31.7	23.7	17.1	SM	13.5	80.6	NP	NP	NP		
TP19-03	2-4'	19-106-02	100.0	97.9	90.7	87.3	82.9	80.2	74.6	68.2	61.8	53.0	50.1	43.0	33.2	SM	15.9		37	29	8		
TP19-03	6-9'	19-060-03	98.0	95.5	78.4	71.5	63.6	59.0	50.2	37.3	31.6	23.7	21.6	17.8	13.8	GM	10.8		NP	NP	NP		
TP19-04	2-4'	19-106-03	100.0	100.0	100.0	100.0	99.8	99.6	99.3	98.3	93.9	78.0	71.7	57.6	42.9	SM	31.2		47	46	1	78.4	33.8
TP19-04	5-7'	19-060-04	100.0	96.8	84.0	77.5	67.0	59.9	50.9	36.3	31.0	23.7	21.0	15.3	9.8	GW-GM	20.2		NP	NP	NP		
TP19-05	8-10'	19-060-05	100.0	100.0	100.0	100.0	99.7	99.4	98.6	94.3	91.5	87.5	85.6	81.2	66.8	ML	23.7		41	31	10		
¹ Oversize	Correction A	pplied																					

LABORATORY DATA

Borehole Samples: Particle Size Distribution

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
1.5	100.0		
1	96.7		
.75	85.9		
.5	69.8		
.375	63.0		
#4	50.3		
#10	37.0		
#16	31.5		
#40	23.2		
#50	21.1		
#100	17.3		
#200	14.5		
* (no sp	ecification provide	ed)	1

Coarse

14.1

Fine

35.6

Coarse

13.3

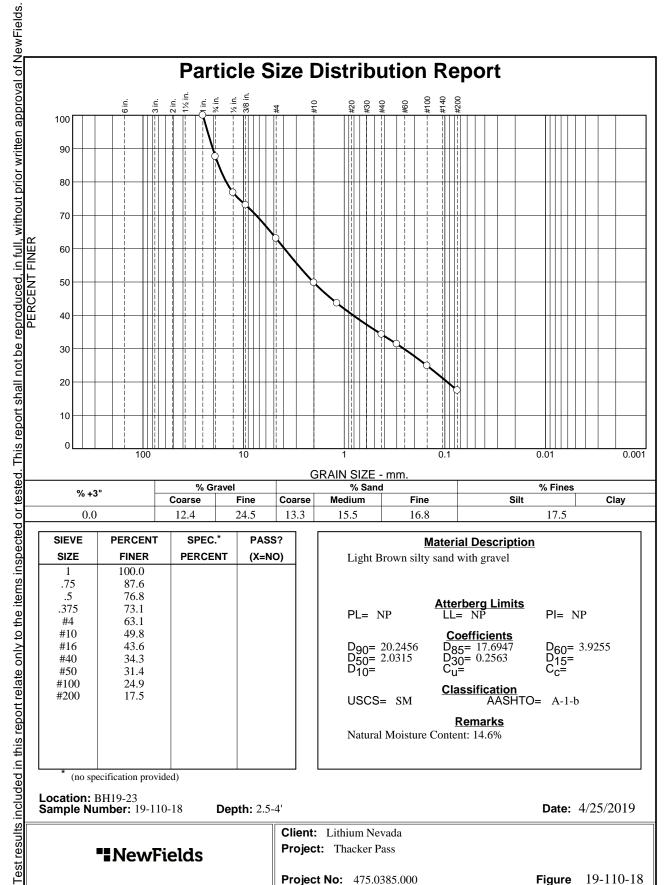
Medium

Fine

13.8	8.7		14.5									
Material Description Red clayey gravel with sand												
PL= 2	Atte	erberg Limits = 48	PI= 27									
D ₉₀ = D ₅₀ = D ₁₀ =		oefficients 85= 18.6472 80= 1.0039	D ₆₀ = 8.1802 D ₁₅ = 0.0850 C _c =									
USCS:		assification AASHTO=	A-2-7(0)									
Natural	Remarks Natural Moisture Content: 10.5%											

Clay

0.0


Location: BH19-12 Sample Number: 19-110-08 **Date:** 4/25/2019 **Depth:** 15-16.5'

NewFields

Client: Lithium Nevada **Project:** Thacker Pass

Figure 19-110-08 **Project No:** 475.0385.000

Tested By: JH/CB Checked By: JH

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
1	100.0		
.75	87.6		
.5	76.8		
.375	73.1		
#4	63.1		
#10	49.8		
#16	43.6		
#40	34.3		
#50	31.4		
#100	24.9		
#200	17.5		
* (no spe	ecification provide	ed)	

12.4

24.5

13.3

15.5

16.8

Material Description Light Brown silty sand with gravel										
PL= NP	Atterberg Limits	PI= NP								
D ₉₀ = 20.2456 D ₅₀ = 2.0315 D ₁₀ =	Coefficients D ₈₅ = 17.6947 D ₃₀ = 0.2563 C _u =	D ₆₀ = 3.9255 D ₁₅ = C _c =								
USCS= SM	Classification AASHT	O= A-1-b								
Natural Moisture	Remarks Content: 14.6%									

17.5

Date: 4/25/2019

Figure 19-110-18

Tested By: JH/CB

0.0

Location: BH19-23 Sample Number: 19-110-18


Depth: 2.5-4'

NewFields

Client: Lithium Nevada **Project:** Thacker Pass

Project No: 475.0385.000

Checked By: JH

12.8

21.6

17.0

16.8

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
1	100.0		
.75	81.4		
.5	76.8		
.375	73.1		
#4	59.8		
#10	47.0		
#16	41.0		
#40	30.0		
#50	26.6		
#100	19.4		
#200	13.2		

18.6

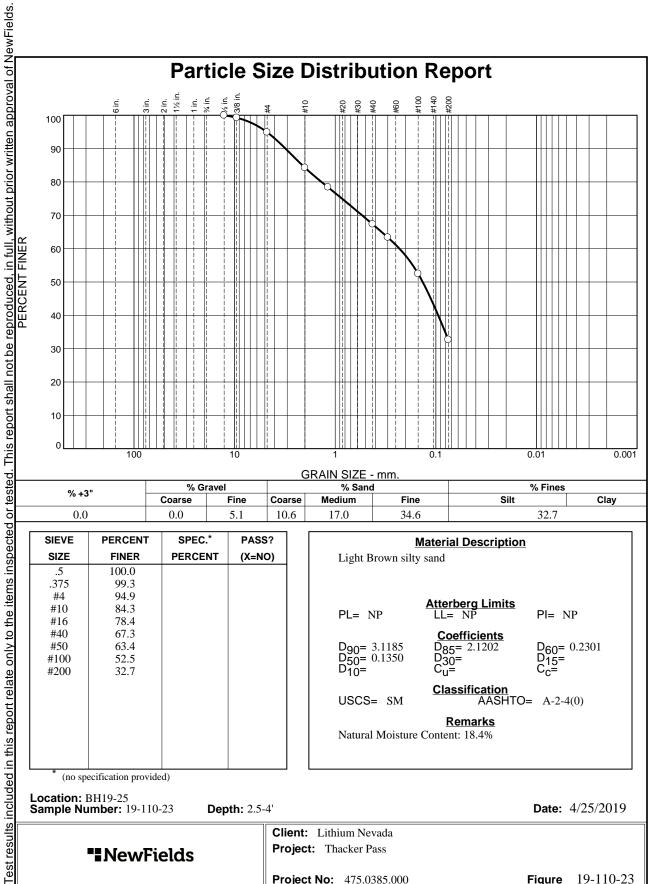
Brown silty sand	Material Descriptio with gravel	<u>on</u>
PL= NP	Atterberg Limits LL= NP	PI= NP
D ₉₀ = 22.1901 D ₅₀ = 2.5271 D ₁₀ =	Coefficients D ₈₅ = 20.4974 D ₃₀ = 0.4238 C _u =	D ₆₀ = 4.8152 D ₁₅ = 0.0923 C _c =
USCS= SM	Classification AASHT	O= A-1-a
Natural Moisture	Remarks Content: 11.3%	

13.2

(no specification provided)

0.0

Location: BH19-23 Sample Number: 19-110-19 **Date:** 4/25/2019 **Depth:** 7.5-9'


NewFields

Client: Lithium Nevada **Project:** Thacker Pass

Figure 19-110-19 **Project No:** 475.0385.000

Tested By: JH/CB Checked By: JH

% +3"		% G	ravel		% Sand	i	% Fines		
	70 ±3		Coarse	Fine	Coarse	Medium	Fine	Silt	Clay
	0.0		0.0	5.1	10.6	17.0	34.6	32.7	
	015/15	DEDOENI		* 5400					

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
.5	100.0		
.375	99.3		
#4	94.9		
#10	84.3		
#16	78.4		
#40	67.3		
#50	63.4		
#100	52.5		
#200	32.7		
*		l	

Light Brown silty	Material Description y sand	<u>on</u>			
PL= NP	Atterberg Limits	PI= NP			
D ₉₀ = 3.1185 D ₅₀ = 0.1350 D ₁₀ =	Coefficients D ₈₅ = 2.1202 D ₃₀ = C _u =	D ₆₀ = 0.2301 D ₁₅ = C _c =			
USCS= SM	Classification AASHT	O= A-2-4(0)			
Remarks Natural Moisture Content: 18.4%					

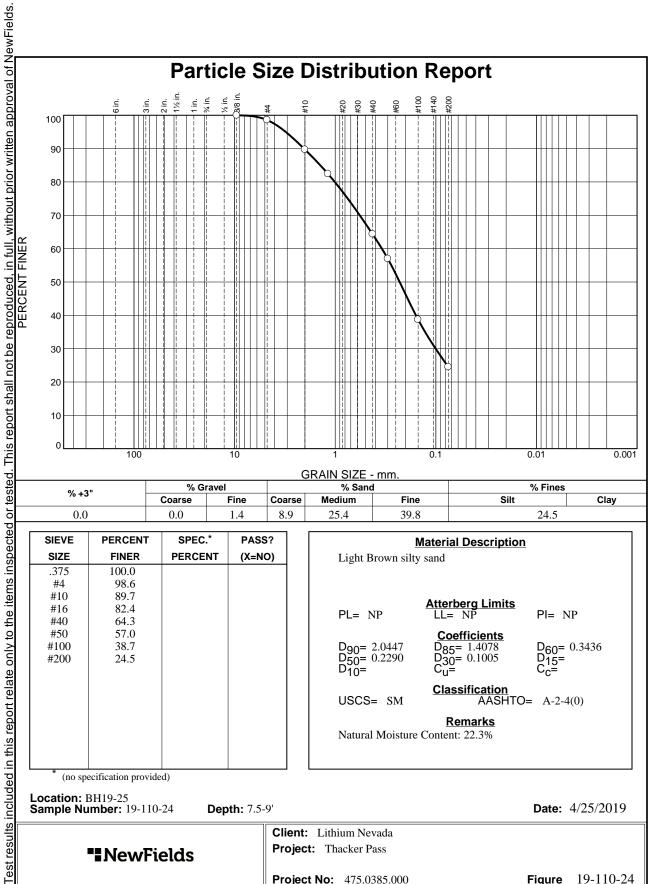
Date: 4/25/2019

* (no specification provided)

Location: BH19-25 Sample Number: 19-110-23

Depth: 2.5-4'

Client: Lithium Nevada **Project:** Thacker Pass


Figure 19-110-23 **Project No:** 475.0385.000

NewFields

Tested By: JH

Checked By: JH

?	% +3"	% Gravel			% Sand		% Fines	
٤	76 ±3	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay
5	0.0	0.0	1.4	8.9	25.4	39.8	24.5	
2								

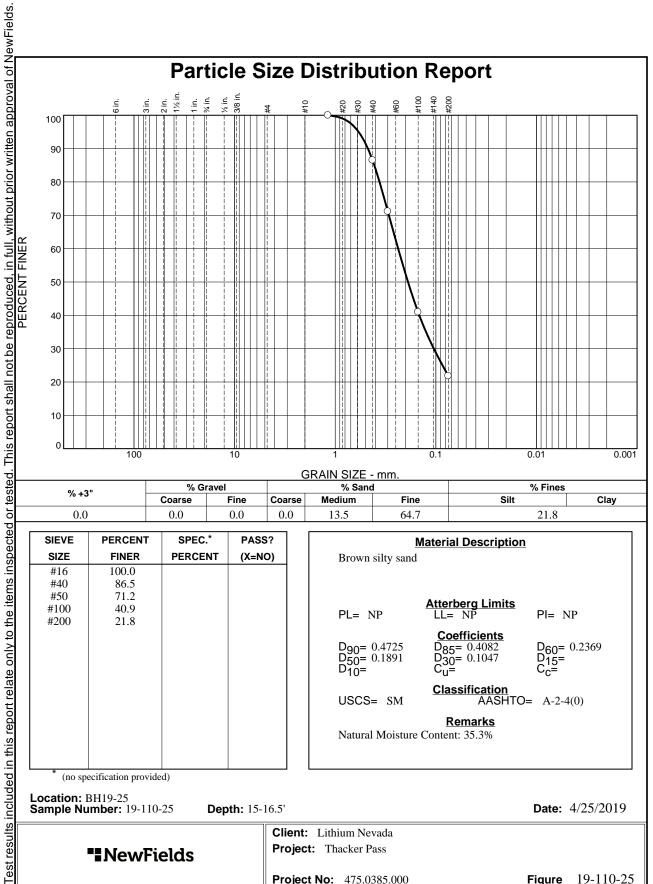
SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
.375	100.0		
#4	98.6		
#10	89.7		
#16	82.4		
#40	64.3		
#50	57.0		
#100	38.7		
#200	24.5		

Light Brown silty	Material Description / sand	<u>on</u>			
PL= NP	Atterberg Limits	PI= NP			
D ₉₀ = 2.0447 D ₅₀ = 0.2290 D ₁₀ =	Coefficients D ₈₅ = 1.4078 D ₃₀ = 0.1005 C _u =	D ₆₀ = 0.3436 D ₁₅ = C _c =			
USCS= SM	Classification AASHT	O= A-2-4(0)			
Remarks Natural Moisture Content: 22.3%					

Date: 4/25/2019

Figure 19-110-24

* (no specification provided)


Location: BH19-25 Sample Number: 19-110-24 **Depth:** 7.5-9'

> Client: Lithium Nevada **Project:** Thacker Pass

Project No: 475.0385.000

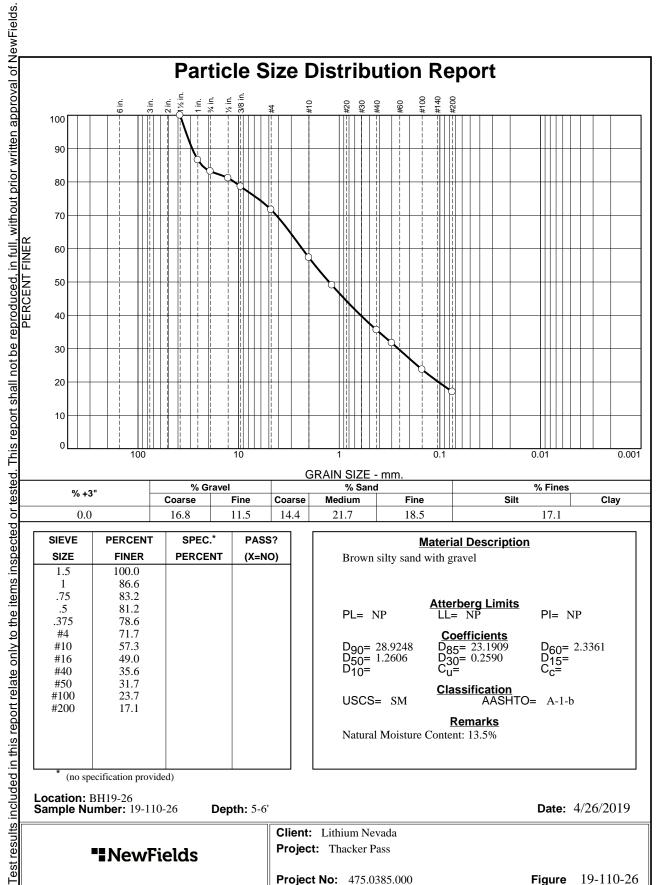
NewFields

Tested By: JH Checked By: JH

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
#16	100.0		
#40	86.5		
#50	71.2		
#100	40.9		
#200	21.8		
*	cification provide		

Brown silty sand	Material Description	<u>on</u>			
PL= NP	Atterberg Limits LL= NP	PI= NP			
D ₉₀ = 0.4725 D ₅₀ = 0.1891 D ₁₀ =	Coefficients D ₈₅ = 0.4082 D ₃₀ = 0.1047 C _u =	D ₆₀ = 0.2369 D ₁₅ = C _c =			
USCS= SM	Classification AASHT	O= A-2-4(0)			
Remarks Natural Moisture Content: 35.3%					

Location: BH19-25 Sample Number: 19-110-25 **Date:** 4/25/2019 **Depth:** 15-16.5'


NewFields

Client: Lithium Nevada **Project:** Thacker Pass

Figure 19-110-25 **Project No:** 475.0385.000

Tested By: JH/CB Checked By: JH

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
1.5	100.0		
1	86.6		
.75	83.2		
.5	81.2		
.375	78.6		
#4	71.7		
#10	57.3		
#16	49.0		
#40	35.6		
#50	31.7		
#100	23.7		
#200	17.1		
* (no sp	ecification provide	ed)	

NewFields

Coarse

16.8

Fine

11.5

Coarse

14.4

Medium

21.7

Fine

18.5

Material Description Brown silty sand with gravel						
PL= NP	Atterberg Limits LL= NP	PI= NP				
D ₉₀ = 28.9248 D ₅₀ = 1.2606 D ₁₀ =	Coefficients D ₈₅ = 23.1909 D ₃₀ = 0.2590 C _u =	D ₆₀ = 2.3361 D ₁₅ = C _c =				
USCS= SM	Classification AASHT	O= A-1-b				
Remarks Natural Moisture Content: 13.5%						

Clay

Date: 4/26/2019

Figure 19-110-26

17.1

Location: BH19-26 Sample Number: 19-110-26

0.0

Depth: 5-6'

Client: Lithium Nevada **Project:** Thacker Pass

Project No: 475.0385.000

Tested By: JH Checked By: JH

LABORATORY DATA

Borehole Samples: Natural Unit Weight

Dry Soil, Ws

Moisture Content, (%)

LABORATORY WORKSHEET

Client:	Li	thium Nevada		Location:	See B	elow	
Project Title:		Thacker Pass		Elevation:	See B		
Project Number:		175.0385.000		Test Date:	4/26/		
Project Engineer:		Eric Niebler		Tested By:		JH JH	
Field Sample ID: Laboratory Sample ID:		BH 19-110		Checked By:	JI	H	
Laboratory Sample ID.		19-110					
Drying Condition	ons: 60 deg C / 1	10 deg C	Met	hod: <mark>Oven (O)</mark>	/ Microwave (N	/ 1)	
Trail No.	1	2	3	4	5		
Sample No.		19-110-09	19-110-11	19-110-13	19-110-14	19-110-26	
Location		BH19-15	BH19-17	BH19-18	BH19-18	BH19-26	
Depth		5.5-6'	10.5-11'	10.5-11'	20.5-21'	5-6'	
Soil Description							
(USCS)							
Soil + Liner Wt., g.	Α	914.8	912.4	855.4	930.1	898.8	
Liner Wt., g.	В	233.9	240.6	232.0	237.6	230.0	
Soil Wt., g.	C= A-B	680.9	671.8	623.4	692.5	668.8	
Liner Length, in.	D_1	5.995	5.959	5.965	5.973	5.942	
Sample Length, in.	D ₂	5.995	5.959	5.965	5.973	5.942	
Liner Diameter, in.	Е	2.429	2.417	2.413	2.402	2.443	
Liner Area, in ²	F= (D ₂ ² /4)*pi	4.63	4.59	4.57	4.53	4.69	
Sample Volume, in ³	G= D ₂ *F	27.78	27.34	27.28	27.07	27.85	
Sample Wet Density, pcf	H= (C/G)*3.81	93.4	93.6	87.1	97.5	91.5	
Sample Dry Density, pcf	H/(1+(N/100))	82.6	71.0	63.4	72.1	80.6	
Tare No.							
Tare + Wet Soil	1	702.2	685.3	645.2	711.7	691	
Tare + Dry Soil	J	623.5	525.4	475.8	531.9	611.2	
Tare	К	22.3	22	22.1	22.1	22.1	
Wt. of Water	L= I-J	78.7	159.9	169.4	179.8	79.8	
					_		

Remarks:

601.2

13.1%

503.4

31.8%

453.7

37.3%

509.8

35.3%

589.1

13.5%

M=-J-K

N= (L/M) x100

LABORATORY DATA

Borehole Samples: Chemical Testing Results

11419 Sunrise Gold Circle, #10 Rancho Cordova, CA 95742 (916) 852-8557

> Date Reported 08/23/2019 Date Submitted 08/20/2019

To: Kerry Magner

Newfields MDTS 2227 N. 5th St.

Elko, NV

89801

From: Gene Oliphant, Ph.D. \ Randy Horney General Manager \ Lab Manager \

The reported analysis was requested for the following location: Location : BH19-12 Site ID : 2.5-6.5 FT. Your purchase order number is 4750385. Thank you for your business.

* For future reference to this analysis please use SUN # 80416-168076.

EVALUATION FOR SOIL CORROSION

Soil pH 7.65

Minimum Resistivity 0.15 ohm-cm (x1000)

Chloride

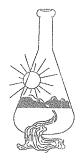
1246.9 ppm 00.12469 %

Sulfate

691.9ppm 00.06919 %

Redox Potential

No Test


Sulfides

No Test

METHODS

pH AASHTO T289, Min.Resistivity AASHTO T288 Mod.(Sm.Cell) Sulfate AASHTO T290, Chloride AASHTO T291 Redox Potential ASTM G-200, Sulfides AWWA C105/A25.5

Rancho Cordova, CA 95742 (916) 852-8557

> Date Reported 08/23/2019 Date Submitted 08/20/2019

To: Kerry Magner

Newfields MDTS 2227 N. 5th St.

Elko, NV

89801

From: Gene Oliphant, Ph.D. \ Randy Horney General Manager \ Lab Manager \

The reported analysis was requested for the following location: Location: BH19-13 Site ID: 7.5-10.5 FT.

Your purchase order number is 4750385.

Thank you for your business.

* For future reference to this analysis please use SUN # 80416-168077.

EVALUATION FOR SOIL CORROSION

Soil pH

7.88

Minimum Resistivity 0.78 ohm-cm (x1000)

Chloride

103.2 ppm 00.01032 %

Sulfate

45.5ppm

00.00455 %

Redox Potential

No Test

Sulfides

No Test

METHODS

pH AASHTO T289, Min.Resistivity AASHTO T288 Mod.(Sm.Cell) Sulfate AASHTO T290, Chloride AASHTO T291 Redox Potential ASTM G-200, Sulfides AWWA C105/A25.5

Sunland Analytical

11419 Sunrise Gold Circle, #10 Rancho Cordova, CA 95742 (916) 852-8557

> 08/23/2019 Date Reported Date Submitted 08/20/2019

To: Kerry Magner Newfields MDTS 2227 N. 5th St.

Elko, NV

89801

7.85

From: Gene Oliphant, Ph.D. \ Randy Horney General Manager \ Lab Manager

The reported analysis was requested for the following location: Location: BH19-26 Site ID : 10-11.5 FT. Your purchase order number is 4750385. Thank you for your business.

* For future reference to this analysis please use SUN # 80416-168078.

EVALUATION FOR SOIL CORROSION

Soil pH

Minimum Resistivity 0.75 ohm-cm (x1000)

Chloride

97.2 ppm

00.00972 %

Sulfate

295.2ppm

00.02952 %

Redox Potential

No Test

Sulfides

No Test

METHODS

pH AASHTO T289, Min.Resistivity AASHTO T288 Mod.(Sm.Cell) Sulfate AASHTO T290, Chloride AASHTO T291 Redox Potential ASTM G-200, Sulfides AWWA C105/A25.5

LABORATORY DATA

Borehole Samples: Natural Moisture Content

LABORATORY WORKSHEET

Client:	Lithium Nevada	Location:	See Below
Project Title:	Thacker Pass	Elevation:	See Below
Project Number:	475.0385.000	Test Date:	4/24/2019
Project Engineer:	Eric Niebler	Tested By:	JH
Field Sample ID:	ВН	Checked By:	JH

Drying Conditions: 60 deg C / 110 deg C Method: Oven (O) / Microwave (M) / Hot Plate (H)

Sample No.		19-110-01	19-110-02	19-110-03	19-110-04	19-110-05
Location		BH19-01	BH19-01	BH19-02	BH19-02	BH19-08
Depth		7.5-9'	25-26.5'	25-26.5'	45-46.5'	2.5-4'
Soil Description						
(USCS)						
Trial No.		1	2	3	4	5
Tare No.						
Tare + Wet Soil	Α	674.9	1000.5	599	869.5	509.3
Tare + Dry Soil	В	516.2	774.8	385.5	638.9	430.3
Tare	С	22.3	22.1	22.2	22.1	22.3
Wt. of Water	D= A-B	158.7	225.7	213.5	230.6	79
Dry Soil, Ws	E= B-C	493.9	752.7	363.3	616.8	408
Moisture Content, (%)	(D/E) x100	32.1%	30.0%	58.8%	37.4%	19.4%

Sample No.		19-110-06	19-110-07	19-110-08	19-110-09	19-110-10
Location		BH19-09	BH19-11	BH19-12	BH19-15	BH19-16
Depth		2.5-4'	2.5-4'	15-16.5'	5.5-6'	2.5-4'
Soil Description						
(USCS)						
Trial No.		6	7	8	9	10
Tare No.						
Tare + Wet Soil	Α	748.6	489.4	760.8	702.2	474.2
Tare + Dry Soil	В	681	400.1	690.5	623.5	403.7
Tare	С	22.2	22.2	22.4	22.3	22.1
Wt. of Water	D= A-B	67.6	89.3	70.3	78.7	70.5
Dry Soil, Ws	E= B-C	658.8	377.9	668.1	601.2	381.6
Moisture Content, (%)	(D/E) x100	10.3%	23.6%	10.5%	13.1%	18.5%

Remarks:

LABORATORY WORKSHEET

Client:	Lithium Nevada	Location:	See Below
Project Title:	Thacker Pass	Elevation:	See Below
Project Number:	475.0385.000	Test Date:	4/24/2019
Project Engineer:	Eric Niebler	Tested By:	JH
Field Sample ID:	ВН	Checked By:	JH

Drying Conditions: 60 deg C / 110 deg C Method: Oven (O) / Microwave (M) / Hot Plate (H)

Sample No.		19-110-11	19-110-12	19-110-13	19-110-14	19-110-15
Location		BH19-17	BH19-17	BH19-18	BH19-18	BH19-20
Depth		10.5-11'	20-21'	10.5-11'	20.5-21'	5-6.5'
Soil Description						
(USCS)						
Trial No.		11	12	13	14	15
Tare No.						
Tare + Wet Soil	Α	685.3	1746.3	645.2	711.7	1912.4
Tare + Dry Soil	В	525.4	1590.1	475.8	531.9	1726.9
Tare	С	22	21.8	22.1	22.1	21.9
Wt. of Water	D= A-B	159.9	156.2	169.4	179.8	185.5
Dry Soil, Ws	E= B-C	503.4	1568.3	453.7	509.8	1705
Moisture Content, (%)	(D/E) x100	31.8%	10.0%	37.3%	35.3%	10.9%

Sample No.		19-110-16	19-110-17	19-110-18	19-110-19	19-110-20
Location		BH19-20	BH19-21	BH19-23	BH19-23	BH19-24
Depth		30-30.5'	2.5-4'	2.5-4'	7.5-9	2.5-4'
Soil Description						
(USCS)						
Trial No.		16	17	18	19	20
Tare No.						
Tare + Wet Soil	Α	1638.1	614.4	759.7	672.9	554.5
Tare + Dry Soil	В	1399.6	501.7	665.5	606.7	485.2
Tare	С	22.2	22	22.4	22.3	22.3
Wt. of Water	D= A-B	238.5	112.7	94.2	66.2	69.3
Dry Soil, Ws	E= B-C	1377.4	479.7	643.1	584.4	462.9
Moisture Content, (%)	(D/E) x100	17.3%	23.5%	14.6%	11.3%	15.0%

Re	em	ıar	ks:
----	----	-----	-----

LABORATORY WORKSHEET

Client:	Lithium Nevada	Location:	See Below
Project Title:	Thacker Pass	Elevation:	See Below
Project Number:	475.0385.000	Test Date:	4/24/2019
Project Engineer:	Eric Niebler	Tested By:	JH
Field Sample ID:	ВН	Checked By:	JH

Drying Conditions: 60 deg C / 110 deg C Method: Oven (O) / Microwave (M) / Hot Plate (H)

Sample No.		19-110-21	19-110-22	19-110-23	19-110-24	19-110-25
Location		BH19-24	BH19-24	BH19-25	BH19-25	BH19-25
Depth		15-16.5'	35-36.5'	2.5-4'	7.5-9'	15-16.5'
Soil Description						
(USCS)						
Trial No.		21	22	23	24	25
Tare No.						
Tare + Wet Soil	Α	671.9	882.8	501.5	523.1	622.6
Tare + Dry Soil	В	604.4	626.1	427	431.8	466
Tare	С	22	22	22.1	22.4	22.4
Wt. of Water	D= A-B	67.5	256.7	74.5	91.3	156.6
Dry Soil, Ws	E= B-C	582.4	604.1	404.9	409.4	443.6
Moisture Content, (%)	(D/E) x100	11.6%	42.5%	18.4%	22.3%	35.3%

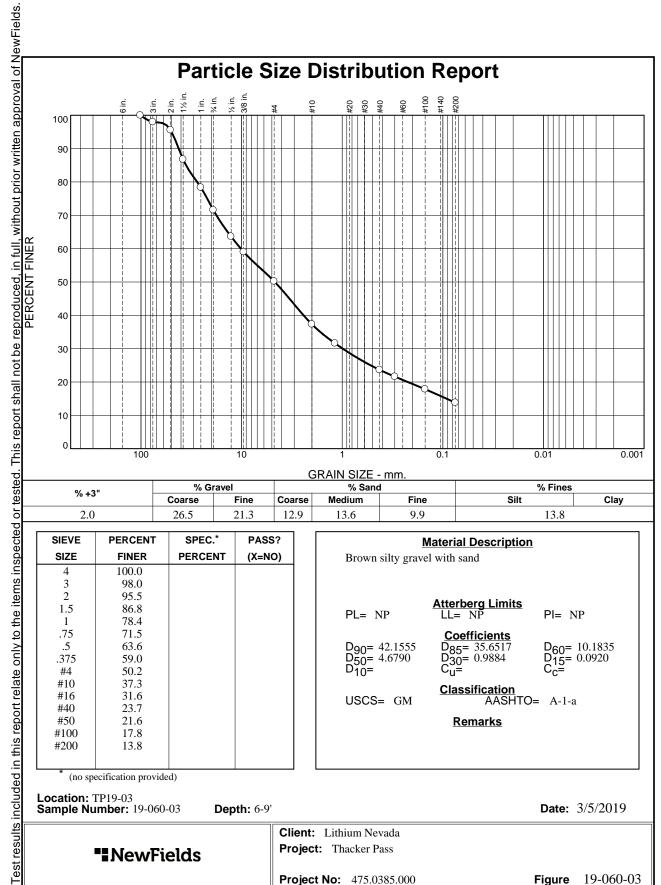
Sample No.		19-110-26	19-110-27	19-110-28	19-110-29	19-110-30
Location		BH19-26	BH19-28	BH19-29	BH19-29	BH19-29
Depth		5-6'	8.5-9'	2.5-4'	7.5-9'	15-16.5'
Soil Description						
(USCS)						
Trial No.		26	27	28	29	30
Tare No.						
Tare + Wet Soil	Α	691	751.3	708.9	631.2	924.8
Tare + Dry Soil	В	611.2	652.7	631.5	588.6	805.2
Tare	С	22.1	22.4	22.2	22.2	22
Wt. of Water	D= A-B	79.8	98.6	77.4	42.6	119.6
Dry Soil, Ws	E= B-C	589.1	630.3	609.3	566.4	783.2
Moisture Content, (%)	(D/E) x100	13.5%	15.6%	12.7%	7.5%	15.3%

Remarks:

Moisture Content, (%) (D/E) x100

MOISTURE CONTENT (ASTM D 2216 / ASTM D 4643)

LABORATORY WORKSHEET


Client:	Lithium N	levada	Location:	See Below
Project Title:	Thacker	Pass	Elevation:	See Below
Project Number:	475.0385.000		Test Date:	4/24/2019
Project Engineer:	Eric Nie	ebler	Tested By:	JH
Field Sample ID:	ВН		Checked By:	JH

, 8	0 - 7	0 -		(-//	- \ //	· · · · · · · · · · · · · · · · · · ·
Sample No.		19-110-31	19-110-32	19-110-33		
Location		BH19-29	BH19-31	BH19-32		
Depth		25-26'	5.5-6'	15-16.5'		
Soil Description						
(USCS)						
Trial No.		31	32	33	4	5
Tare No.						
Tare + Wet Soil	Α	427.1	754.7	892.2		
Tare + Dry Soil	В	350.3	649.4	745.6		
Tare	С	22	21.8	22.4		
Wt. of Water	D= A-B	76.8	105.3	146.6		
Dry Soil, Ws	E= B-C	328.3	627.6	723.2		
Moisture Content, (%)	(D/E) x100	23.4%	16.8%	20.3%		
Sample No.						
Location						
Depth						
Soil Description						
(USCS)						
Trial No.		6	7	8	9	10
Tare No.						
Tare + Wet Soil	Α					
Tare + Dry Soil	В					
Tare	С					
Wt. of Water	D= A-B					
Dry Soil, Ws	E= B-C					
		i	· · · · · · · · · · · · · · · · · · ·	1	1	1

LABORATORY DATA

Test Pit Samples: Particle Size Distribution

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
4	100.0		
3	98.0		
2	95.5		
1.5	86.8		
1	78.4		
.75	71.5		
.5	63.6		
.375	59.0		
#4	50.2		
#10	37.3		
#16	31.6		
#40	23.7		
#50	21.6		
#100	17.8		
#200	13.8		

Coarse

26.5

Fine

21.3

Coarse

12.9

Medium

13.6

Fine

9.9

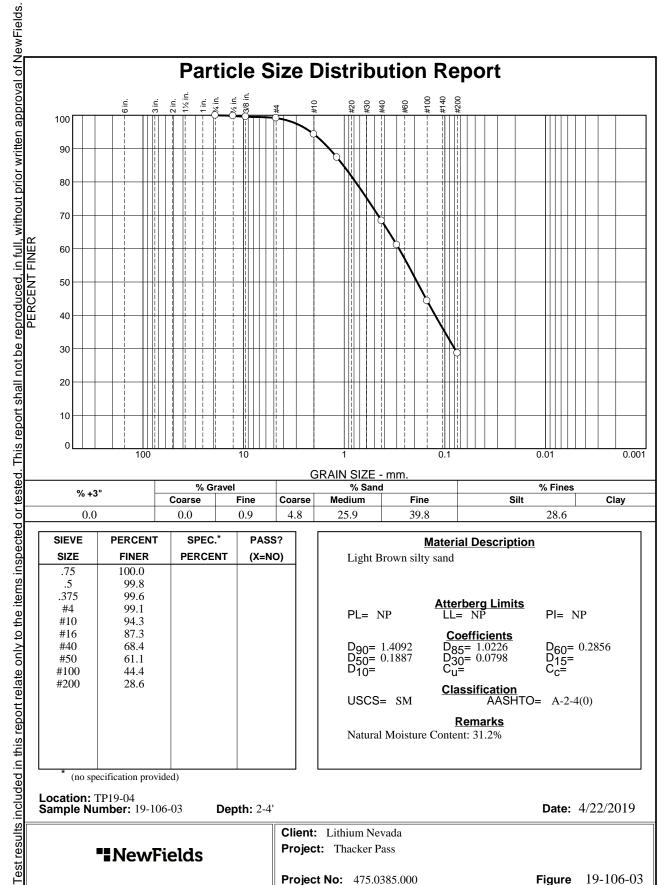
<u>N</u> Brown silty grave	Material Description el with sand	<u>on</u>
PL= NP	Atterberg Limits	PI= NP
D ₉₀ = 42.1555 D ₅₀ = 4.6790 D ₁₀ =	Coefficients D ₈₅ = 35.6517 D ₃₀ = 0.9884 C _u =	D ₆₀ = 10.1835 D ₁₅ = 0.0920 C _c =
USCS= GM	Classification AASHT	O= A-1-a
	<u>Remarks</u>	

Clay

13.8

(no specification provided)

2.0


Location: TP19-03 Sample Number: 19-060-03 **Date:** 3/5/2019 **Depth:** 6-9'

NewFields

Client: Lithium Nevada **Project:** Thacker Pass

Figure 19-060-03 **Project No:** 475.0385.000

Tested By: KS/JB Checked By: JH

	SPEC.*	PASS?
FINER	PERCENT	(X=NO)
100.0		
99.8		
99.6		
99.1		
94.3		
87.3		
68.4		
61.1		
44.4		
28.6		
	99.8 99.6 99.1 94.3 87.3 68.4 61.1 44.4	99.8 99.6 99.1 94.3 87.3 68.4 61.1 44.4 28.6

0.0

0.9

4.8

25.9	25.9 39.8 28.6						
Light B	Material Description Light Brown silty sand						
PL= N	Atte NP LL:	rberg Limits = NP	PI= NP				
D ₉₀ = D ₅₀ = D ₁₀ =		oefficients 5= 1.0226 0= 0.0798 =	D ₆₀ = 0.2856 D ₁₅ = C _c =				
USCS:		assification AASHTO=	A-2-4(0)				
Natural	Remarks Natural Moisture Content: 31.2%						

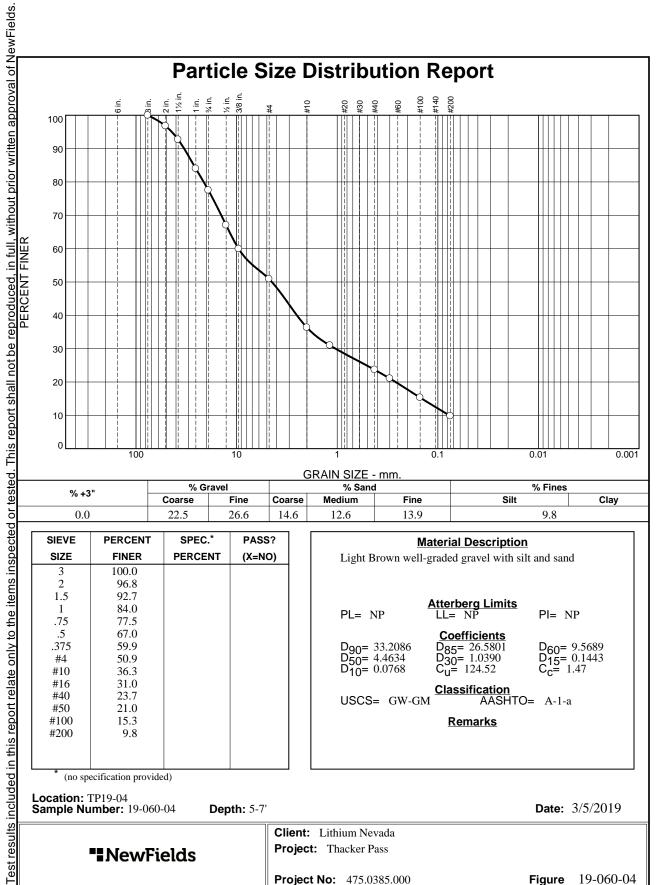
Date: 4/22/2019

Figure 19-106-03

(no specification provided)

0.0

Location: TP19-04 Sample Number: 19-106-03


NewFields

Depth: 2-4'

Client: Lithium Nevada **Project:** Thacker Pass

Project No: 475.0385.000

Tested By: KS Checked By: JH

Coarse

14.6

26.6

Medium

12.6

Fine

13.9

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
3	100.0		
2	96.8		
1.5	92.7		
1	84.0		
.75	77.5		
.5	67.0		
.375	59.9		
#4	50.9		
#10	36.3		
#16	31.0		
#40	23.7		
#50	21.0		
#100	15.3		
#200	9.8		

Coarse

22.5

	Material Description				
Light Blown wen	Light Brown well-graded gravel with silt and sand				
PL= NP	Atterberg Limits LL= NP	PI= NP			
D ₉₀ = 33.2086 D ₅₀ = 4.4634 D ₁₀ = 0.0768	Coefficients D ₈₅ = 26.5801 D ₃₀ = 1.0390 C _u = 124.52	D ₆₀ = 9.5689 D ₁₅ = 0.1443 C _c = 1.47			
USCS= GW-GM	USCS= GW-GM AASHTO= A-1-a				
<u>Remarks</u>					

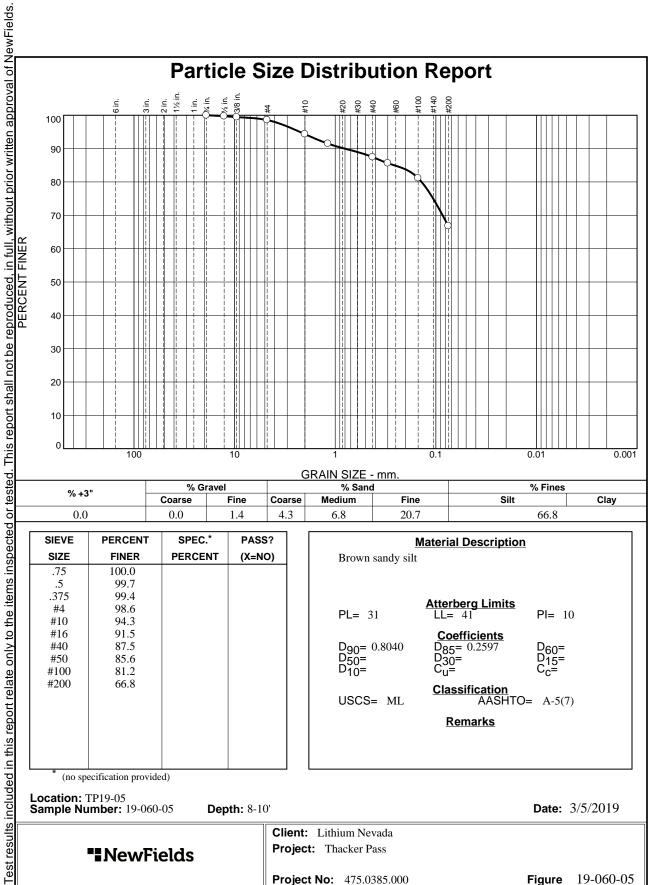
Clay

9.8

Date: 3/5/2019

(no specification provided)

0.0


Location: TP19-04 Sample Number: 19-060-04 **Depth:** 5-7'

NewFields

Client: Lithium Nevada **Project:** Thacker Pass

Figure 19-060-04 **Project No:** 475.0385.000

Tested By: KS/JB Checked By: JH

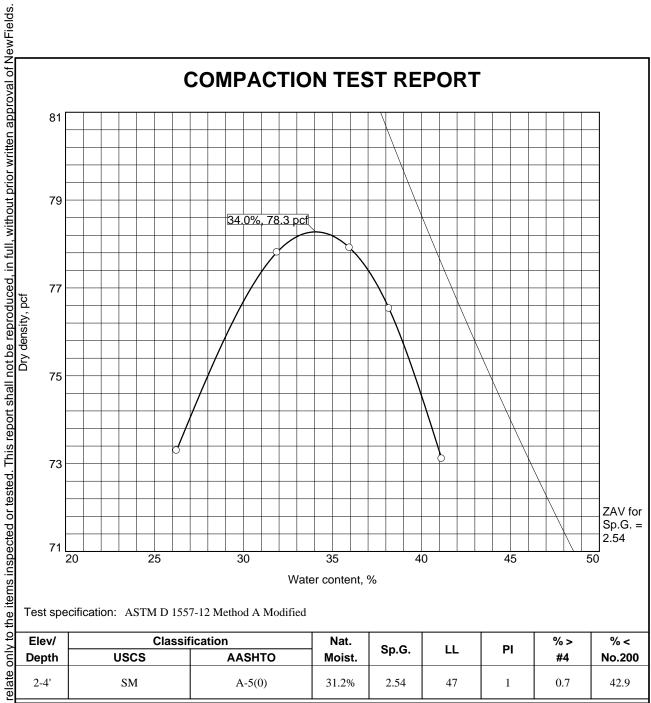
SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
.75	100.0		
.5	99.7		
.375	99.4		
#4	98.6		
#10	94.3		
#16	91.5		
#40	87.5		
#50	85.6		
#100	81.2		
#200	66.8		
* (no sp	ecification provide	:d)	

Material Description Brown sandy silt					
PL= 31	Atterberg Limits	PI= 10			
D ₉₀ = 0.8040 D ₅₀ = D ₁₀ =	<u>Coefficients</u> D ₈₅ = 0.2597 D ₃₀ = C _u =	D ₆₀ = D ₁₅ = C _c =			
USCS= ML	Classification				
	<u>Remarks</u>				

Location: TP19-05 Sample Number: 19-060-05 **Date:** 3/5/2019 **Depth:** 8-10'

NewFields

Client: Lithium Nevada **Project:** Thacker Pass


Figure 19-060-05 **Project No:** 475.0385.000

Tested By: KS/JB Checked By: JH

LABORATORY DATA

Test Pit Samples: Proctor Compaction

Test specification: ASTM D 1557-12 Method A Modified

Elev/	Classit	ication	Nat.	Sp.G.		ī	% >	% <
Depth	USCS	AASHTO	Moist.	Sp.G.	LL	PI	#4	No.200
2-4'	SM	A-5(0)	31.2%	2.54	47	1	0.7	42.9

port	TEST RESULTS		MATERIAL DESCRIPTION
this rep	Maximum dry density = 78.3 pcf		Light brown silty sand
in t	Optimum moisture = 34.0 %		
ded	Project No. 475.0385.000 Client: Lithium Nevada		Remarks:
included	Project: Thacker Pass		*Tested Specific Gravity
ij		ate: 5/1/2019	
ults	C Location: TP19-04 Sample Number: 19-106-03		
Test resul	™ NewFields		Figure 19-106-03

Tested By: CB Checked By: KE

LABORATORY DATA

Test Pit Samples: Natural Moisture Content

LABORATORY WORKSHEET

Client:	Lithium Nevada	Location:	TP
Project Title:	Thacker Pass	Elevation:	See Below
Project Number:	475.0385.000	Test Date:	3/5/2019
Project Engineer:	Eric Niebler	Tested By:	KS/JB
Field Sample ID:	TP	Checked By:	JH

Drying Conditions: 60 deg C / 110 deg C Method: Oven (O) / Microwave (M) / Hot Plate (H)

Sample No.		19-060-01	19-060-02	19-060-03	19-060-04	19-060-05
Location		TP19-01	TP19-02	TP19-03	TP19-04	TP19-05
Depth		4-7'	0-2'	6-9'	5-7'	8-10'
Soil Description						
(USCS)						
Trial No.		1	2	3	4	5
Tare No.						
Tare + Wet Soil	Α	603.3	580	895	602.1	664.7
Tare + Dry Soil	В	539.7	506.7	819.3	521.8	564.4
Tare	С	44.9	257.5	120.6	125.1	141.2
Wt. of Water	D= A-B	63.6	73.3	75.7	80.3	100.3
Dry Soil, Ws	E= B-C	494.8	249.2	698.7	396.7	423.2
Moisture Content, (%)	(D/E) x100	12.9%	29.4%	10.8%	20.2%	23.7%

Sample No.		19-060-06	19-060-07	19-060-08	19-060-09	19-060-10
Location		TP19-06	TP19-08	TP19-09	TP19-11	TP19-13
Depth		11-13'	6-9'	8-12'	7-11'	10-13'
Soil Description						
(USCS)						
Trial No.		6	7	8	9	10
Tare No.						
Tare + Wet Soil	Α	642.9	926.2	789.7	658.1	605.1
Tare + Dry Soil	В	597.1	854.8	732.5	618.3	514.9
Tare	С	189.5	124.9	270.1	125.3	223.4
Wt. of Water	D= A-B	45.8	71.4	57.2	39.8	90.2
Dry Soil, Ws	E= B-C	407.6	729.9	462.4	493	291.5
Moisture Content, (%)	(D/E) x100	11.2%	9.8%	12.4%	8.1%	30.9%

Remarks:

LABORATORY WORKSHEET

Client:	Lithium Nevada	Location:	TP
Project Title:	Thacker Pass	Elevation:	See Below
Project Number:	475.0385.000	Test Date:	3/5/2019
Project Engineer:	Eric Niebler	Tested By:	KS/JB
Field Sample ID:	TP	Checked By:	JH

Drying Conditions: 60 deg C / 110 deg C Method: Oven (O) / Microwave (M) / Hot Plate (H) Sample No. 19-060-11 19-060-12 19-060-13 19-060-14 19-060-15 TP19-14 TP19-15 TP19-16 TP19-17 TP19-18 Location 8-11' 8-11' 7-10' 4-7' 5-8' Depth Soil Description (USCS) Trial No. 14 15 11 12 13 Tare No. Tare + Wet Soil 632.6 934.6 859.5 654.3 460.1 Tare + Dry Soil 527.9 783.8 709.7 572.4 419.2 45 121 120.8 190.6 188.6 Tare 104.7 149.8 Wt. of Water D= A-B 150.8 81.9 40.9 Drv Soil. Ws E= B-C 406.9 663 519.1 383.8 374.2 Moisture Content, (%) (D/E) x100 25.7% 22.7% 28.9% 21.3% 10.9% 19-060-16 Sample No. 19-060-17 19-060-18 19-060-19 19-060-20 TP19-20 TP19-22 TP19-23 TP19-24 Location TP19-21 6-10' 3-5' 8-11' 5-9' 14-17' Depth Soil Description (USCS) 20 Trial No. 16 17 18 19 Tare No. Tare + Wet Soil Α 352.8 347.2 614.6 837.6 649.7 В 296.3 312.3 592 786.2 542.3 Tare + Dry Soil 44.9 189.3 225.5 45.1 121.1 Tare D= A-B Wt. of Water 56.5 34.9 22.6 51.4 107.4 Dry Soil, Ws E= B-C 251.4 267.2 470.9 596.9 316.8

22.5%

13.1%

4.8%

8.6%

33.9%

_					
R۹	m	а	r	kς	•

Moisture Content, (%) (D/E) x100

MOISTURE CONTENT (ASTM D 2216 / ASTM D 4643)

LABORATORY WORKSHEET

Client:	Lithium Nevada	Location:	TP
Project Title:	Thacker Pass	Elevation:	See Below
Project Number:	475.0385.000	Test Date:	3/5/2019
Project Engineer:	Eric Niebler	Tested By:	KS/JB
Field Sample ID:	TP	Checked By:	JH

Drying Conditions: 60 deg C / 110 deg C Method: Oven (O) / Microwave (M) / Hot Plate (H) 19-060-22 19-060-24 Sample No. 19-060-21 19-060-23 19-060-25 TP19-25 TP19-26 TP19-27 TP19-28 TP19-29 Location 7-12' 6-8' 3-5' 5-9' 4-7' Depth Soil Description (USCS) Trial No. 21 22 23 24 25 Tare No. Tare + Wet Soil 746.1 852.9 644 704.4 871.1 Tare + Dry Soil 699.3 738.3 533.9 668.6 814.8 123.9 123.5 Tare 190.9 45.2 124.6 Wt. of Water D= A-B 46.8 35.8 56.3 114.6 110.1 544 Dry Soil, Ws E= B-C 575.4 547.4 488.7 691.3 8.1% 20.9% Moisture Content, (%) (D/E) x100 22.5% 6.6% 8.1% Sample No. Location Depth Soil Description (USCS) Trial No. 26 27 28 29 30 Tare No. Tare + Wet Soil Α Tare + Dry Soil В C Tare Wt. of Water D= A-B Dry Soil, Ws E= B-C Moisture Content, (%) (D/E) x100

Remarks:	

MOISTURE CONTENT (ASTM D 2216 / ASTM D 4643)

LABORATORY WORKSHEET

Client:	Lithium Nevada	Location:	TP
Project Title:	Thacker Pass	Elevation:	See Below
Project Number:	475.0385.000	Test Date:	4/22/2019
Project Engineer:	Eric Niebler	Tested By:	KS
Field Sample ID:	TP	Checked By:	JH
- Total Gampions	••		

Drying Conditions: 60 deg C / 110 deg C Method: Oven (O) / Microwave (M) / Hot Plate (H)

Sample No.		19-106-02	19-106-03	19-106-04	19-106-05	19-106-06
Location		TP19-03	TP19-04	TP19-07	TP19-08	TP19-10
Depth		2-4'	2-4'	2-4'	2-4'	3-6'
Soil Description						
(USCS)						
Trial No.		1	2	3	4	5
Tare No.						
Tare + Wet Soil	Α	401.7	432.9	650.3	618.1	555.5
Tare + Dry Soil	В	363.7	358.6	574.2	563.2	492.6
Tare	С	124.7	120.8	257.4	191.2	125.3
Wt. of Water	D= A-B	38	74.3	76.1	54.9	62.9
Dry Soil, Ws	E= B-C	239	237.8	316.8	372	367.3
Moisture Content, (%)	(D/E) x100	15.9%	31.2%	24.0%	14.8%	17.1%

Sample No.		19-106-07	19-106-08			
Location		TP19-13	TP19-28			
Depth		3-5'	1-3'			
Soil Description						
(USCS)						
Trial No.		6	7	8	9	10
Tare No.						
Tare + Wet Soil	Α	433.6	440			
Tare + Dry Soil	В	381.7	347.3			
Tare	С	44.9	45			
Wt. of Water	D= A-B	51.9	92.7			
Dry Soil, Ws	E= B-C	336.8	302.3			
Moisture Content, (%)	(D/E) x100	15.4%	30.7%			

_			
R٤	ı٣	۱ar	ks

LABORATORY DATA

Test Pit Samples: Specific Gravity

NewFields

SPECIFIC GRAVITY SOILS (ASTM D854)

LABORATORY WORKSHEET

Client:	Lithium Nevada	Field Sample ID:	TP19-04	Test Start Date:	4/30/2019
Project Title:	Thacker Pass	Laboratory Sample ID:	19-106-03	Tested By:	KE
Project Number:	475.0385.000	Location:	TP19-04	Checked By:	JH
Project Engineer:	Eric Niebler	Elevation:	2-4'	Sample Description:	

Sample Number	19-10	6-03			
Sample Location	TP19-04	(2'-4')			
Prep Dish					
Flask No.	3	15			
1) Wt. of Flask + Soil	115.90	116.63			
2) Wt. of Flask	86.05	86.66			
3) Wt. of Soil = 1-2	29.85	29.97			
4) Calibrated Wt. of Flask + Water	335.19	335.73			
5) (3+4)	365.04	365.70			
6) Wt. of Flask + Water +Soil	353.34	353.98			
7) Volume of Soil = (5-6)	11.70	11.72			
8) Test Temperature, deg.C (Ta)	19.1	19.2			
9) Temperature Correction, k	1.00018	1.00016			
10) Specific Gravity	2.538	2.546			
11) Average Specific Gravity, Gs	2.54	42			

General Notes:			

APPENDIX D.2 Clay Tailings Filter Stack Stability Technical Memorandum (385-TM-08-STABILITY)

TECHNICAL MEMORANDUM (385-TM-08-STABILITY)

9400 Station Street, Suite 300 Lone Tree, CO 80124

T: 720.508.3300 F: 720.508.3339

To: Lithium Nevada Corporation

From: NewFields MDTS

Reviewed By: Matt Haley, P.E.

Project: Thacker Pass Project

Project No: 475.385.000

Subject: Clay Tailings Filter Stack Stability

Date: January 28, 2020

1. INTRODUCTION

NewFields has completed a stability assessment of the Clay Tailings Filter Stack (CTFS) Facility as part of Lithium Nevada Corporation's (LNC) proposed Thacker Pass Project. The CTFS is intended to store the solid waste products (filter cakes and sulfate salts) generated as a result of lithium production. The current stability evaluation was performed to support CTFS design and sizing, and to verify the facility will remain stable for the expected loading conditions. The results of the stability analysis and recommendations are presented herein.

2. GEOTECHNICAL DESIGN

The CTFS facility will consist of a native soils foundation overlain by a geomembrane containment liner, a granular drainage layer, an exterior structural tailings zone, and an interior non-structural tailings zone. The structural zone will be placed at specified relative compaction levels and near optimum moisture content. While the non-structural zone will be placed at a lower density (densified to allow for construction traffic) with potentially higher moisture content. Sulfate salts have been shown to adversely influence the characteristics of composite tailings mixtures in the short-term by reducing the amount of water the filter cake can absorb¹. The laboratory testing performed on the composite tailings materials mixed with the salts indicate trafficability during placement may be an issue. As a result the sulfate salts will be handled separately from the composite tailings and only placed in the non-structural zone. The higher density tailings in the structural zone, when placed with an exterior slope of 4:1 (horizontal:vertical) will provide the strength needed to achieve geotechnical stability for the facility. The drainage layer will allow for the collection of fluids draining from the base of the tailings mass.

_

¹ NewFields MDTS (2019). "Tailings Assessment." Technical Memo-07. December 20, 2019.

A maximum facility height of 400 feet as measured vertically from the top of the stack to the geomembrane liner was considered for stability evaluation, but the actual facility height will be a function of annual production, mine planning, and life of mine.

3. SEISMIC HAZARD ASSESSMENT

Ground motions associated with design-level earthquakes were previously developed² for the Thacker Pass Project and were based on field investigation, site specific analyses, published hazard maps, and building codes.

3.1 Design Ground Motions

The Seismic Hazard Analysis completed for Thacker Pass² compared the reported site-specific design accelerations to values reported by USGS³. NewFields considers the 475-year and 2,475-year events as reasonable risk levels for operational and closure conditions.

The USGS data was used to determine the operational basis event (OBE) which is considered a ground motion with 10 percent exceedance within a 50-year period (475 year return period). The OBE is based on a moment magnitude of 6.4 at a distance of 35 miles, resulting in a peak ground acceleration (PGA) of 0.09g at the site location. For post-closure design, the maximum design earthquake (MDE) was selected, which is a ground motion with a 2 percent probability of exceedance within a 50-year period (2,475 year return period). The MDE event for the project site is based on a moment magnitude of 6.6 at a distance of 14 miles, resulting in a PGA of 0.26g.

3.2 Material Properties

Design parameters utilized in the stability evaluations for the CTFS were conservatively selected based upon available laboratory test data^{1,4}. The material properties are summarized in **Table** 1.

² NewFields MDTS (2019). "Deterministic Seismic Hazard Analysis." Technical Memo-03. July 18, 2019

³ United State Geologic Survey (2019). United States Geological Survey – Earthquake Hazards Program, Unified Hazard Tool. https://earthquake.usgs.gov/hazards/interacitve/

⁴ NewFields MDTS (2019). "Geotechnical Investigation Factual Report for the Thacker Pass Project." October 16, 2019.

Table 1 – Summary of Material Properties

Material	Unit Weight (lb/ft³)	Friction Angle (degrees)	Cohesion (lb/ft²)
Alluvium - Foundation	110	32	0
Drainage Layer	110	35	0
Liner Interface	110	16	0
Non-structural Tailings	90	16	0
Structural Tailings	100	20	0

4. STABILITY EVALUATION

Stability analyses were performed using the computer program SLIDE v8 by RocScience. SLIDE is a two-dimensional slope stability program for evaluating circular or noncircular failure surfaces in soil or rock slopes using limit equilibrium methods. The Spencer's method, which is appropriate for all slope geometries and soil profiles, was utilized within the stability model and assumes all interslice forces are parallel and have the same inclination. The factor of safety can be defined generally as the resisting forces along a potential failure plane divided by the gravitational and dynamic driving forces.

Both static and long-term seismic conditions were analyzed. To assess the stability of slopes during seismic loadings, a pseudostatic approach was considered. This involves the potential slide mass being subjected to an additional destabilizing horizontal force, which represents the effect of earthquake motions and is directly related to the peak ground acceleration (PGA). Described simply, the seismic force is the weight of the slide mass multiplied by a horizontal pseudostatic earthquake coefficient (k_H). Because the earthquake motion is not a constant destabilizing force, using the full PGA for k_H has been shown to be overly conservative. Hynes-Griffin and Franklin⁵ discussed using one-half of the PGA for the horizontal pseudostatic earthquake coefficient, with the resulting minimum factor of safety being equal to at least 1.0, will result in slope deformations that will be within tolerable limits. The concept of "tolerable limits" was developed primarily for water retaining structures, such as traditional slurry tailings facilities, and refers to minor seismic induced deformation of the crest elevation and slopes without uncontrolled release of retained solutions.

The corresponding peak ground accelerations (PGA) for these events are 0.09g and 0.26g for the 475-year and 2,475-year events, respectively. Based on the seismic hazard parameters, a

⁵ Hynes-Griffin, M.E. and Franklin, A.G. (1984), Rationalizing the Seismic Coefficient Method, Final Report GL-84-13, U.S. Army Corps of Engineers, Washington, D.C.

reduced pseudostatic seismic coefficient of 0.13g (one-half of the PGA) is valid and was used to evaluate for post closure pseudostatic conditions.

The CTFS is not a water retaining structure, nor is it a dam. The intended use of the facility is the storage of mechanically placed filtered tailings solids. The facility will be constructed in horizontal lifts which will be sloped toward the exterior edges of the stack to shed precipitation runoff to the perimeter of the facility. Between the toe of the slope and the perimeter berm, perforated pipe will be buried in the overliner material to aid in conveying this runoff to the reclaim pond. Additionally, the perimeter of the facility is graded such that runoff can flow around the stacked tailings and down to the reclaim pond. As such, the facility has been evaluated as an engineered structure, similar to a waste rock storage facility or a heap leach pad. Minimum acceptable factors of safety for static and pseudostatic conditions were established as 1.3 and 1.05, respectively.

4.1 Stability Model Development

Both static and pseudostatic loadings were evaluated for a critical cross section through the ultimate CTFS configuration. This critical location was selected based upon existing topography, and proposed grading of the facility foundation. The location of the critical cross section is shown in **Figure 1**. The engineering parameters for the CTFS foundation were developed from laboratory index and strength test data in conjunction with observations from the field investigation and historical experience with similar materials. During pseudostatic analysis the tailings material parameters are reduced to account for strain softening during potential deformation.

Finite element seepage analyses were completed to estimate the maximum phreatic surface allowable to satisfy the minimum static factor of safety. The seepage model assumed the base geomembrane liner was impermeable, and the saturated hydraulic conductivity of tailings within the structural and non-structural zones was 1 x 10⁻⁷ cm/sec and 1 x 10⁻⁶ cm/sec, respectively. The hydraulic conductivity of the structural zone was based on laboratory measurements and the non-structural hydraulic conductivity of the combined tailings materials and the sulfate salts was assumed to be one order of magnitude higher due a lower density as a result of less compactive effort applied during placement. The self-weight consolidation of the tailings could lead to saturation in the lower portions of the facility, and the drainage layer is intended to provide base drainage and minimize phreatic surface development. This parametric study determined that the phreatic surface could extend to one-half of the facility height without adversely affecting the overall stability of the facility. The phreatic surface within the fully-lined tailings facility was conservatively assumed to be approximately one-half

of the facility height near the center of the non-structural zone tapering to the top of overliner at the toe.

4.2 Results

Results of the slope stability analyses for the cross section under consideration are presented on **Figures 2** and **3**. These figures detail the critical cross section, the modeled phreatic surface, and the failure planes with the lowest factors of safety. Based on this evaluation, the CTFS will remain stable for static loading conditions assuming conservative phreatic head conditions within the non-structural zone.

Pseudostatic loading conditions indicate that the factor of safety could be 0.7, as shown on Figure 3, for the conservative assumptions regarding the elevated phreatic surface conditions and using the MDE event (long term closure condition), and thus a deformation analysis was completed to estimate potential slope movements and determine if they are acceptable.

4.3 Deformation Analysis

Since the pseudostatic stability evaluation resulted in calculated minimum factors of safety less than 1.05 for the MDE event, as shown on Figure 3, potential seismic deformations of facility slopes were evaluated using a simplified method. Bray and Travasarou⁶ developed a semi-empirical relationship for estimating the magnitude and probability of permanent slope displacements that utilizes a non-linear, fully coupled stick-slip sliding block model to estimate dynamic performance of soil slopes. The response spectrum and moment magnitude of the design earthquake were based on data obtained from the USGS.

Results of the deformation analysis indicate that for the MDE event, potential slope displacements between 17 to 32 inches could be expected. This estimate is for movement along the entire slope length for the maximum height of 400 feet. It is our professional opinion that these slope movements are acceptable and any potential slope deformation from the MDE seismic event would not result in an excursion of the tailings outside containment.

5. DISCUSSION AND CONCLUSIONS

The results of the stability analyses indicate that the CTFS facility will remain stable during operations and post-closure. The presented design will function as expected as long as monitoring occurs and operational flexibility is considered with regards to material placement.

⁶ Bray, J.D., and Travasarou, T. (2007). Simplified Procedure for Estimating Earthquake-Induced Deviatoric Slope Displacement, Journal of Geotechnical and Geoenvironmental Engineering, Vol. 133, No. 4.

Systematic monitoring and visual inspection of the facility will be an integral part of the Operations to ensure that the facility is maintained within the design parameters.

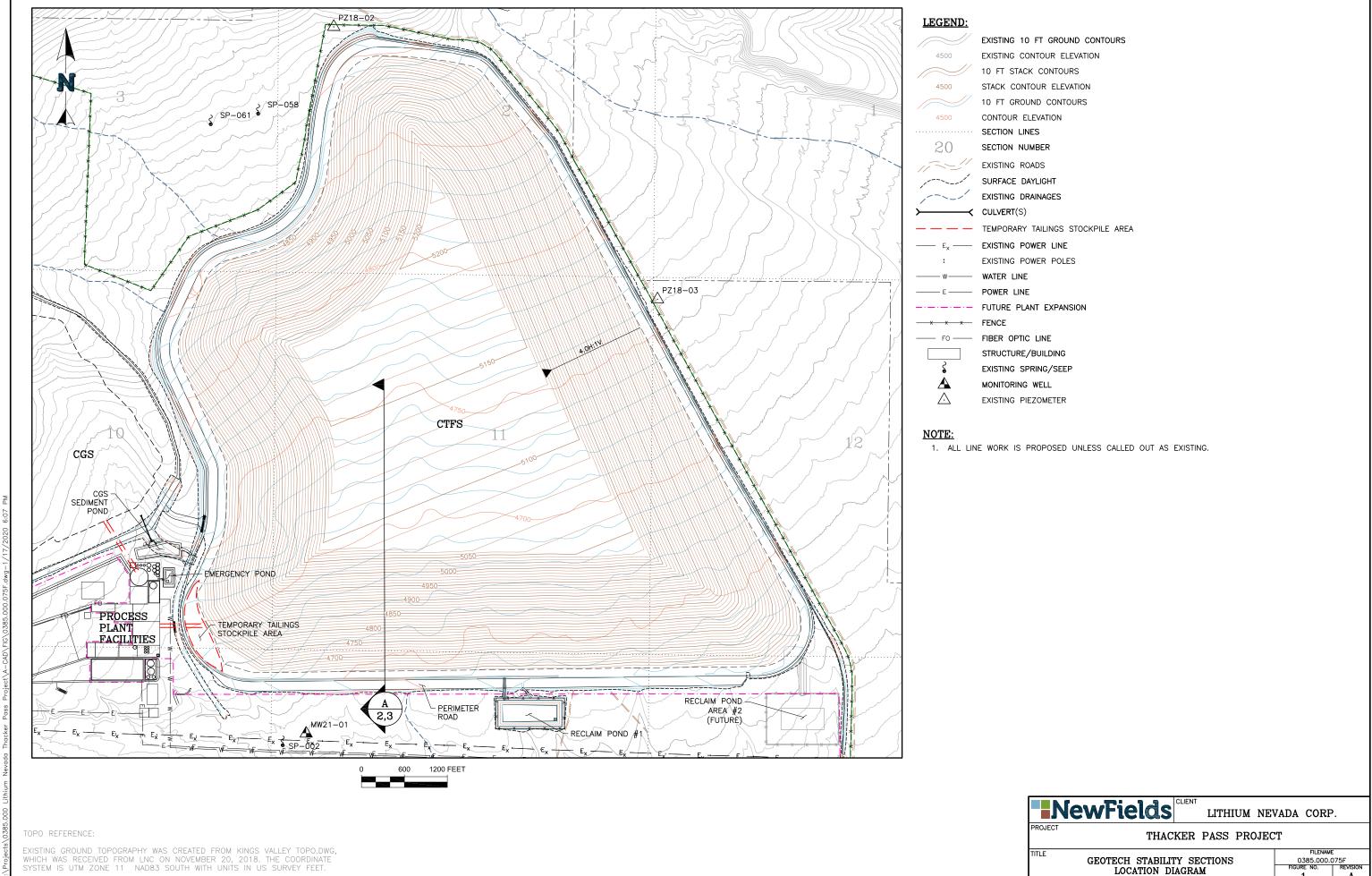
Results of the deformation analysis indicate that for an MDE seismic event, potential slope displacements could be as high as 2.5 feet when considering reasonable probability of exceedance and a conservative evaluation of the seismic risk. It is our engineering assessment that this level of slope deformation is within tolerable limits.

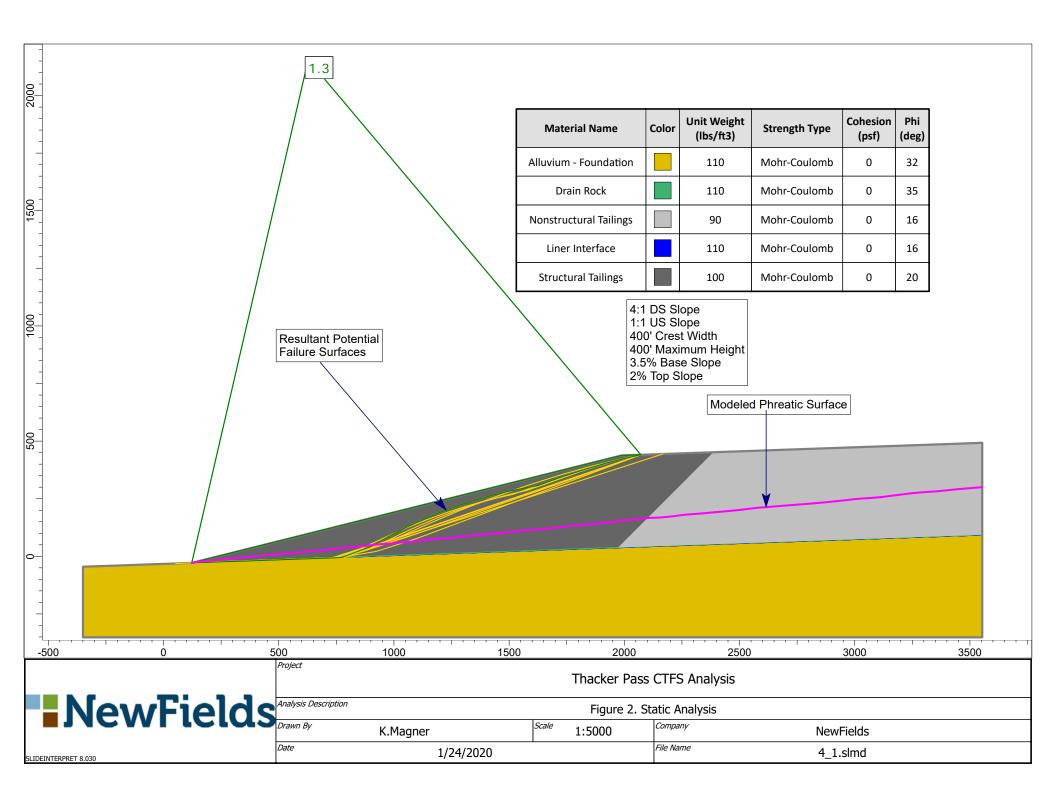
Based upon the laboratory data generated and observations of the filtered clay tailings materials both pre- and post-laboratory testing, it is believed that there will be an increase in material strength over time due to curing. At this time, the exact magnitude of this strength increase is unknown. Long-term, there is an opportunity to optimize the facility design if it can be demonstrated that the tailings achieve strength gain after placement. With that in mind, a field investigation program should be completed during early operations to assess in-situ strengths of the placed tailings.

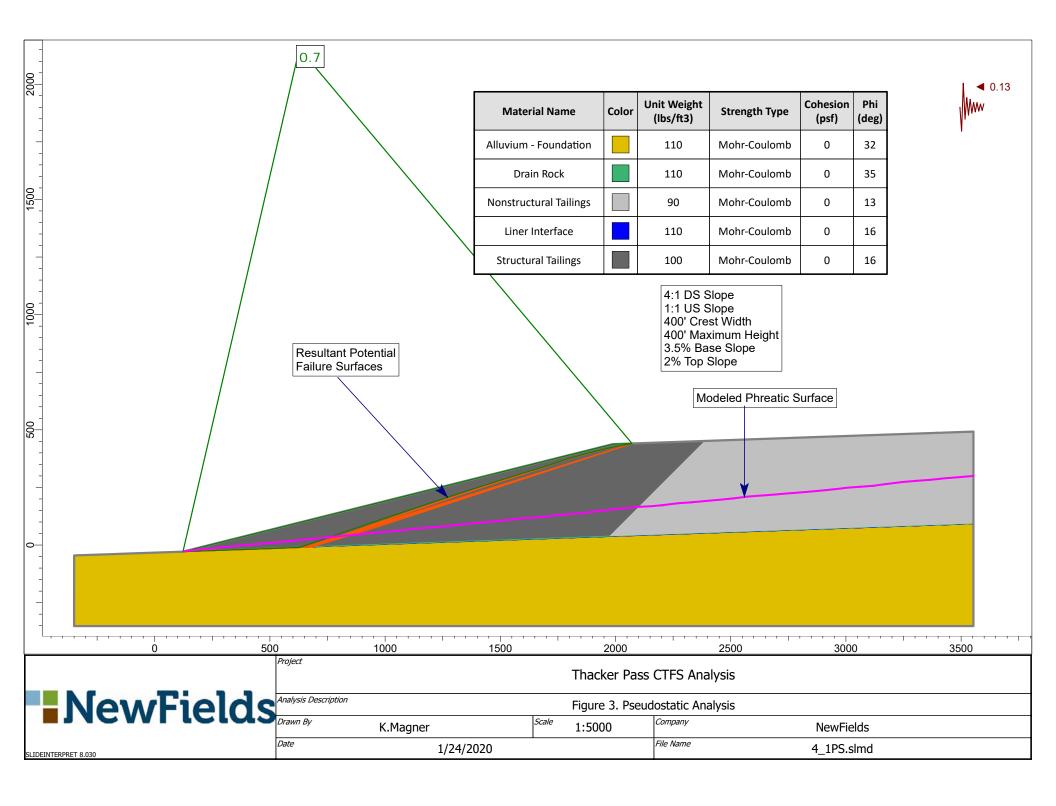
Attachments:

Figure 1: Location Diagram

Figure 2: Static Stability Assessment


Figure 3: Pseudostatic Stability Assessment


P:\Projects\0385.000 Lithium Nevada Thacker Pass Project\J-REPORTS\Technical Memos\TM-08 CTFS Stability\TM-08 - CTFS Stability\Rev2.docx



FIGURES

Location Diagram and Stability Assessments

9400 Station Street, Suite 300 Lone Tree, CO 80124

T: 720.508.3300 F: 720.508.3339

TECHNICAL MEMORANDUM (385-TM-09-R1-CGS/WRSF STABILITY)

To: Lithium Nevada Corporation

From: NewFields MDTS

Reviewed By: Matt Haley, P.E.

Project: Thacker Pass Project

Project No: 475.385.000

Subject: Coarse Gangue Stockpile and Waste Rock Storage Facilities Stability Evaluation

Date: February 22, 2020

1. INTRODUCTION

NewFields has completed a stability evaluation of the Coarse Gangue Stockpile (CGS) and the Waste Rock Storage Facilities (WRSF) as part of Lithium Nevada Corporation's (LNC) proposed Thacker Pass Project. The CGS and both East and West WRSF's are intended to store non-valuable materials generated from the mining and classification processes. Coarse gangue is a dewatered, fine-to-coarse sand material generated via multiple stages of hydrocylones and final dewatering screens. The hydrocyclones separate the high lithium-bearing, fine clay and silt materials in the feed slurry from the low lithium-bearing, coarse materials. Dewatering screens ensure a consistent low moisture content in the coarse gangue prior to being conveyed to the CGS. The lithium-bearing material reports to the chemical processing plant for lithium extraction and production. The lithium product is not expected to be processed economically at this time from the coarse gangue material.

The waste rock materials are expected to consist primarily of very weak claystone overburden materials excavated during the mining process. Relatively small quantities of alluvium and basalt may also be stored in the WRSF.

The current stability evaluation was performed to support CGS and WRSF design and sizing, and to verify the facility will remain stable for the expected loading conditions. The results of the stability evaluation and recommendations are presented herein.

2. MATERIAL PROPERTIES

Design parameters utilized in the stability evaluations for the CGS were conservatively selected based upon available laboratory test data¹. Design parameters utilized for the stability evaluations for the WRSFs were conservatively selected based upon previous reporting⁴ and experience with similar materials. The claystone material is reported by AMEC² to have an International Society for Rock Mechanics (ISRM) hardness of S6/RO and a Rock Quality Designation (RQD) ranging from 0 to 91. This implies that once excavated the material may exhibit engineering behavior similar to a stiff soil rather than a competent or intact rock. The AMEC report further states that the claystone appears to weather and breakdown into a high plastic soil upon exposure to the elements. The engineering parameters for the facility foundations were developed from laboratory index and strength test data in conjunction with observations from the field investigation, previous reporting by others and historical experience with similar materials.

The material properties utilized in the evaluations for all facilities are summarized in Table 1.

TABLE 1 COMMUNICATION TO THE TENT OF ENTIRES							
Material	Unit Weight (lb/ft³)	Friction Angle (degrees)	Cohesion (lb/ft²)				
Alluvium - Foundation	110	32	0				
Coarse Gangue Material	110	31	0				
Waste Rock (Claystone – Clay Soil)	100	18	200				

TABLE 1 – SUMMARY OF MATERIAL PROPERTIES

3. GEOTECHNICAL DESIGN

The CGS and WRSFs will each consist of a native soil foundation overlain by placed coarse gangue (sand) or mine pit waste rock (claystone). Materials will be placed in each facility under minimum relative compaction achieved by haulage equipment and at as-produced moisture contents. The design considers that each facility will be constructed as follows:

¹ NewFields MDTS (2019). "Geotechnical Investigation Factual Report for the Thacker Pass Project." Technical Report. October, 2019

² AMEC Earth and Environmental (2011). "Prefeasibility Level Geotechnical Study Report Kings Valley Lithium Project." Project No. 10-417-0096. March 9, 2011.

- The current CGS design is a maximum of 200 feet thick as measured vertically from the foundation soils to the top of fill. It has an inter-bench slope of 4-Horizontal:1-Vertical (4H:1V), 75-foot wide benches and 50-foot lift thicknesses for an overall slope of 5.5H:1V.
- ➤ The current East WRSF design is a maximum of 150 feet thick. It has an inter-bench slope of 4-Horizontal:1-Vertical (4H:1V), 75-foot wide benches and 50-foot lift thicknesses for an overall slope of 5.5H:1V.
- The current West WRSF will be constructed at a 3.5H:1V continuous slope with a maximum thickness of 275 feet.

The actual facility heights will be a function of annual production, mine planning, and life of mine.

4. SEISMIC HAZARD ASSESSMENT

Ground motions associated with design-level earthquakes were previously developed³ for the Thacker Pass Project and were based on field investigation, site specific analyses, published hazard maps, and building codes.

4.1 Design Ground Motions

The Seismic Hazard Analysis completed for Thacker Pass¹ compared the reported site-specific design accelerations to values reported by USGS⁴. NewFields considers the 475-year and 2,475-year events as reasonable risk levels for operational and closure conditions.

The USGS data was used to determine the operational basis event (OBE) which is considered a ground motion with 10 percent exceedance within a 50-year period (475-year return period). The OBE is based on a moment magnitude of 6.4 at a distance of 35 miles, resulting in a peak ground acceleration (PGA) of 0.09g at the site location. For post-closure design, the maximum design earthquake (MDE) was selected, which is a ground motion with a 2 percent probability of exceedance within a 50-year period (2,475 year return period). The MDE event for the project site is based on a moment magnitude of 6.6 at a distance of 14 miles, resulting in a PGA of 0.26g.

³ NewFields MDTS (2019). "Deterministic Seismic Hazard Analysis." Technical Memo-03. July 18, 2019

⁴ United State Geologic Survey (2019). United States Geological Survey – Earthquake Hazards Program, Unified Hazard Tool. https://earthquake.usgs.gov/hazards/interacitve/

Technical Memorandum (385-TM-09-R1-CGS/WRSF Stability)
Thacker Pass Project
Coarse Gangue Stockpile and Waste Rock Storage Facilities Stability Assessment
NewFields Project No. 475.0385.000
February 22, 2020

5. STABILITY EVALUATION

Stability analyses were performed using the computer program SLIDE v8 by RocScience. SLIDE is a two-dimensional slope stability program for evaluating circular or noncircular failure surfaces in soil or rock slopes using limit equilibrium methods. The Spencer's method, which is appropriate for all slope geometries and soil profiles, was utilized within the stability model and assumes all interslice forces are parallel and have the same inclination. The factor of safety can be defined generally as the resisting forces along a potential failure plane divided by the gravitational and dynamic driving forces. For the CGS and East WRSF both the inter-bench slope stability and overall slope stability were analyzed.

Both static and long-term seismic conditions were analyzed. To assess the stability of slopes during seismic loadings, a pseudostatic approach was considered. This involves the potential slide mass being subjected to an additional destabilizing horizontal force, which represents the effect of earthquake motions and is directly related to the peak ground acceleration (PGA). Described simply, the seismic force is the weight of the slide mass multiplied by a horizontal pseudostatic earthquake coefficient (k_H). Because the earthquake motion is not a constant destabilizing force, using the full PGA for k_H has been shown to be overly conservative. To reduce this level of conservativism Hynes-Griffin and Franklin⁵ showed that permanent displacements limited to less than 36-inches can be assured when using one-half of the PGA for the horizontal pseudostatic earthquake coefficient and a minimum factor of safety equal to unity.

As identified above, the corresponding PGA for the 475-year (OBE) and 2,475-year (MDE) events are 0.09g and 0.26g, respectively. Based on these seismic hazard parameters, and the Hynes-Griffin and Franklin⁵ analytical method, a reduced pseudostatic seismic coefficient of 0.13g (one-half of the PGA) is valid and was used to evaluate for post closure pseudostatic conditions.

The CGS and WRSFs have been evaluated as an engineered structure and designed as a waste rock storage facility. Minimum acceptable factors of safety for static and pseudostatic conditions were established as 1.3 and 1.05, respectively.

5.1 Stability Model Development

Both static and pseudostatic loadings were evaluated for a critical cross section through the ultimate CGS and WRSF configurations. This critical location was selected based upon existing

⁵ Hynes-Griffin, M.E. and Franklin, A.G. (1984), Rationalizing the Seismic Coefficient Method, Final Report GL-84-13, U.S. Army Corps of Engineers, Washington, D.C.

topography and proposed grading of the facility slopes. The location of the critical cross sections are shown in Figures 1, 2 and 3.

5.2 Results

Results of the slope stability analyses for the cross sections under consideration are summarized in **Table 2** and presented on **Figures 4** through **18**. These figures detail the critical cross section and the failure planes with the lowest factors of safety. Based on this evaluation, the CGS and WRSF's will remain stable for static loading conditions.

Static **Pseudostatic Pseudostatic** Location **OBE FoS MDE FoS** FoS CGS – Overall Stability 2.3 2.0 3.6 CGS - Inter-Bench Stability 2.6 1.9 1.7 East WRSF – Overall Stability 2.9 1.7 1.4 East WRSF – Inter-Bench Stability 2.2 1.5 1.3 West WRSF – Overall Stability 1.3 0.9 8.0

TABLE 2 – SUMMARY OF STABILITY ANALYSIS

Pseudostatic loading conditions indicate that the factor of safety could be less than 1.05 for the West WRSF under both the OBE and MDE events and thus a deformation analysis was completed to estimate potential slope movements.

5.3 Deformation Analysis

Since the pseudostatic stability evaluation for the West WRSF resulted in calculated minimum factors of safety less than 1.05 for the OBE and MDE event, potential seismic deformations of the facility slopes were evaluated using a simplified method. Bray and Travasarou⁶ developed a semi-empirical relationship for estimating the magnitude and probability of permanent slope displacements that utilizes a non-linear, fully coupled stick-slip sliding block model to estimate dynamic performance of soil slopes. The response spectrum and moment magnitude of the design earthquake were based on data obtained from the USGS.

⁶ Bray, J.D., and Travasarou, T. (2007). Simplified Procedure for Estimating Earthquake-Induced Deviatoric Slope Displacement, Journal of Geotechnical and Geoenvironmental Engineering, Vol. 133, No. 4.

Technical Memorandum (385-TM-09-R1-CGS/WRSF Stability)
Thacker Pass Project
Coarse Gangue Stockpile and Waste Rock Storage Facilities Stability Assessment
NewFields Project No. 475.0385.000
February 22, 2020

Results of the deformation analysis indicate that for the OBE and MDE events potential slope movements between 5 and 50 inches could be expected. This estimate is for movement along the entire slope length for the maximum thickness of 275 feet. This amount of displacement may cause minor surficial sloughing but will not impact the overall integrity of the facility.

6. DISCUSSION AND CONCLUSIONS

The results of the stability analyses indicate that the CGS and the East and West WRSF will remain stable during operations and post-closure. Additional laboratory testing of the remolded claystone waste rock should be performed during initial field operations to verify engineering properties used in this analysis. Systematic monitoring and visual inspection of the facilities will be an integral part of the operations to ensure that the facilities are maintained within the design parameters.

Results of the deformation analysis indicate that for an MDE seismic event, potential slope displacements could be as high as 4 feet when considering reasonable probability of exceedance and a conservative evaluation of the seismic risk. It is our engineering assessment that this level of slope deformation is within tolerable limits.

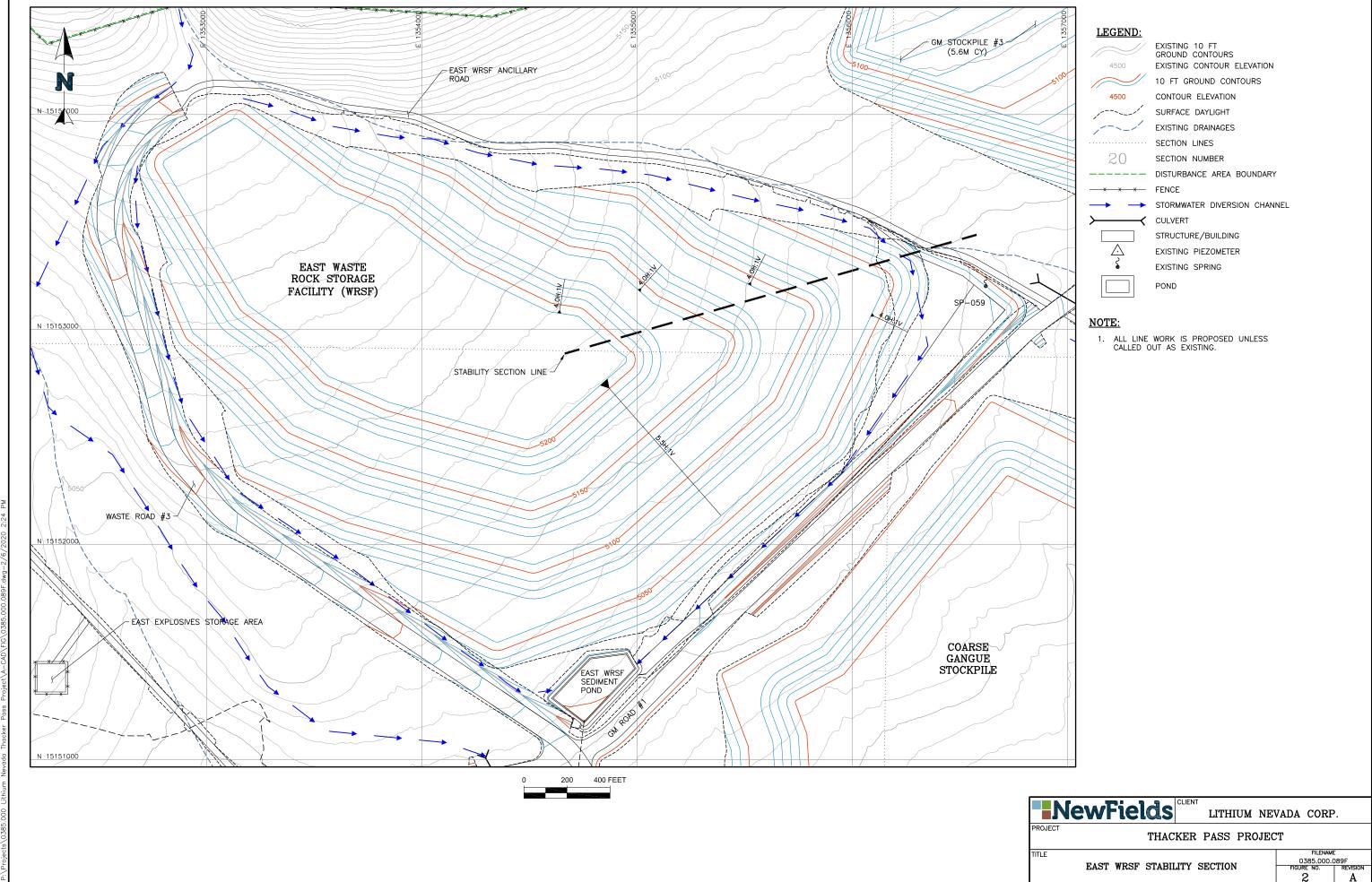
Attachments:

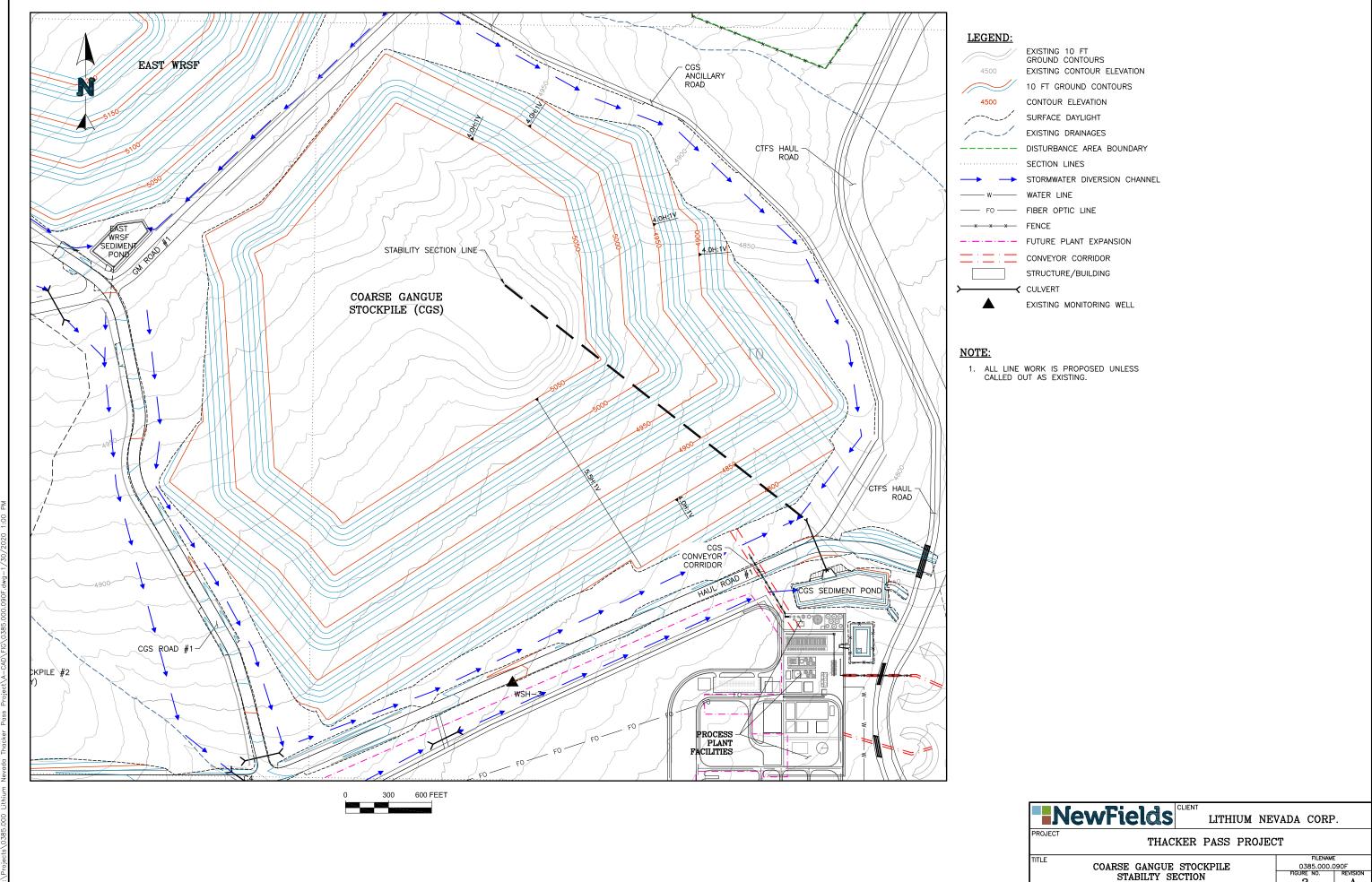
Figures 1, 2 and 3: Location Diagrams

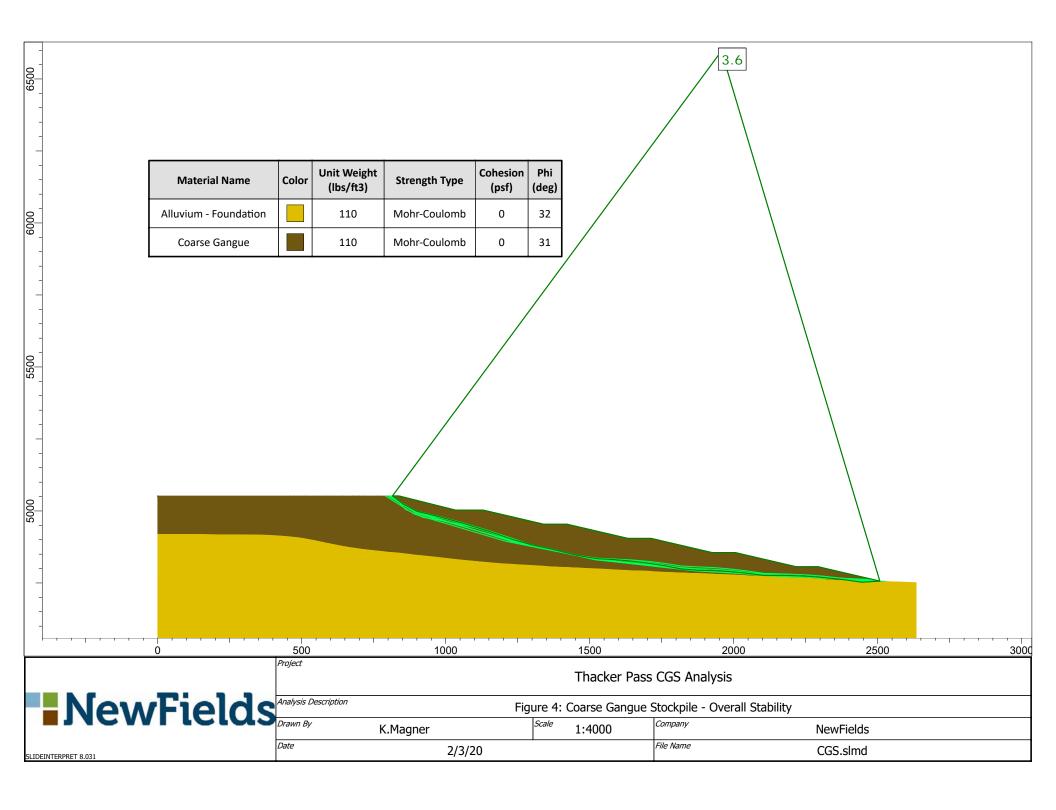
Figures 4 through 9: CGS Stability Assessment

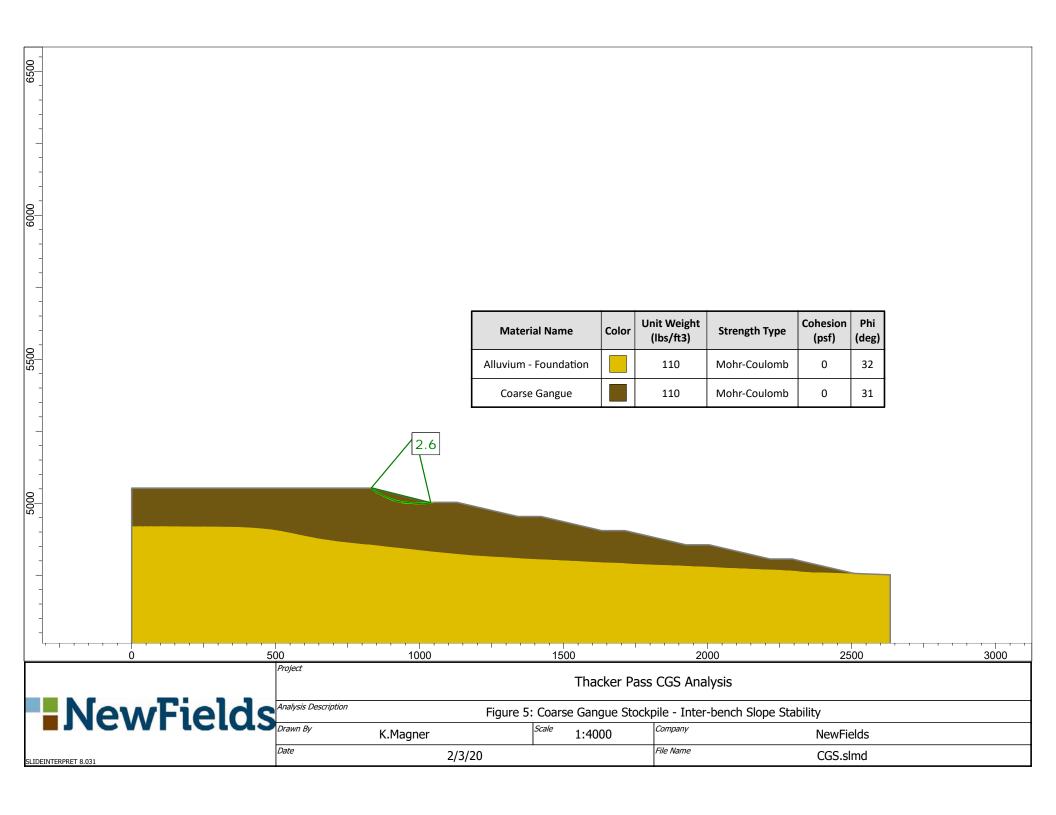
Figures 10 through 15: East WRSF Stability Assessment

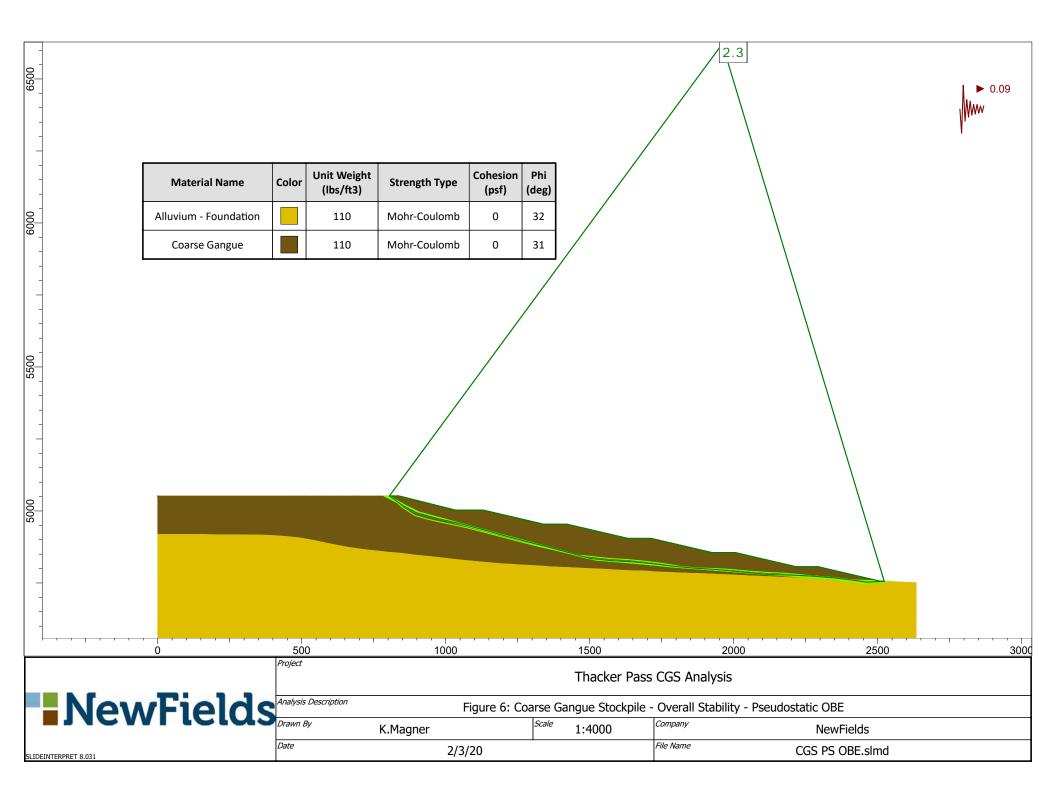
Figures 16 through 18: West WRSF Stability Assessment

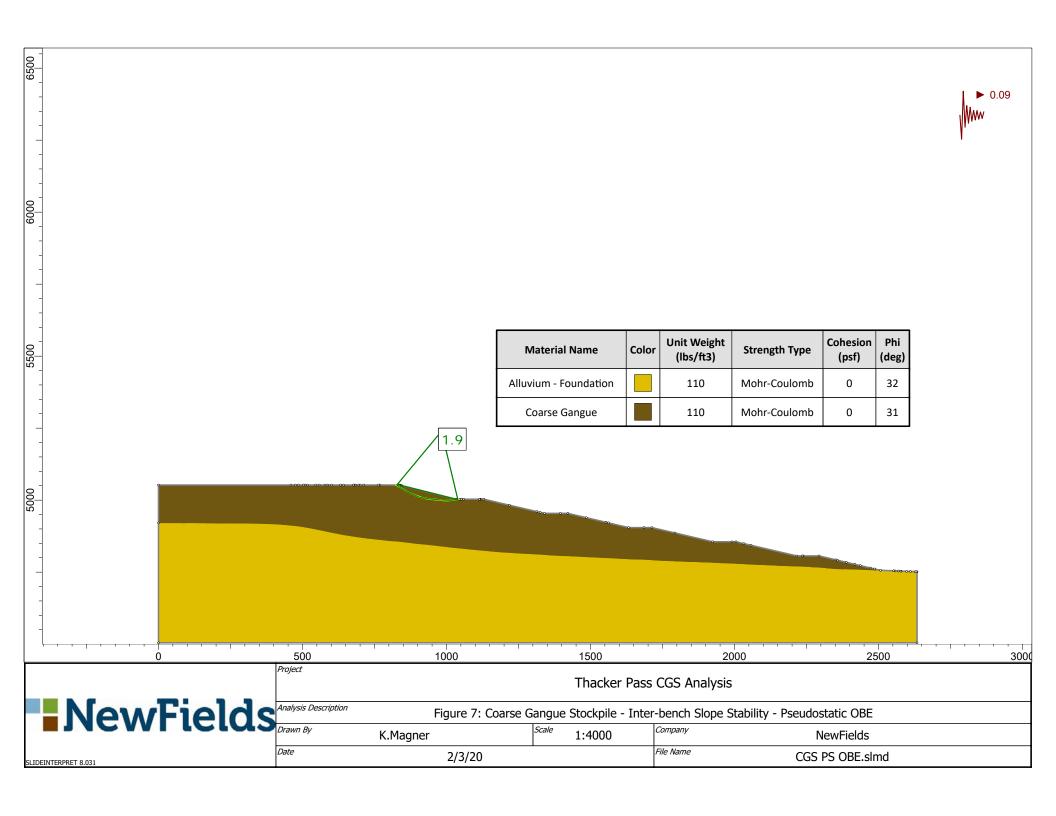

P:\Projects\0385.000 Lithium Nevada Thacker Pass Project\J-REPORTS\Technical Memos\TM-09 CGS and WRSF Stability\Rev 1\TM-09-R1- CGS & WRSF Stability.docx

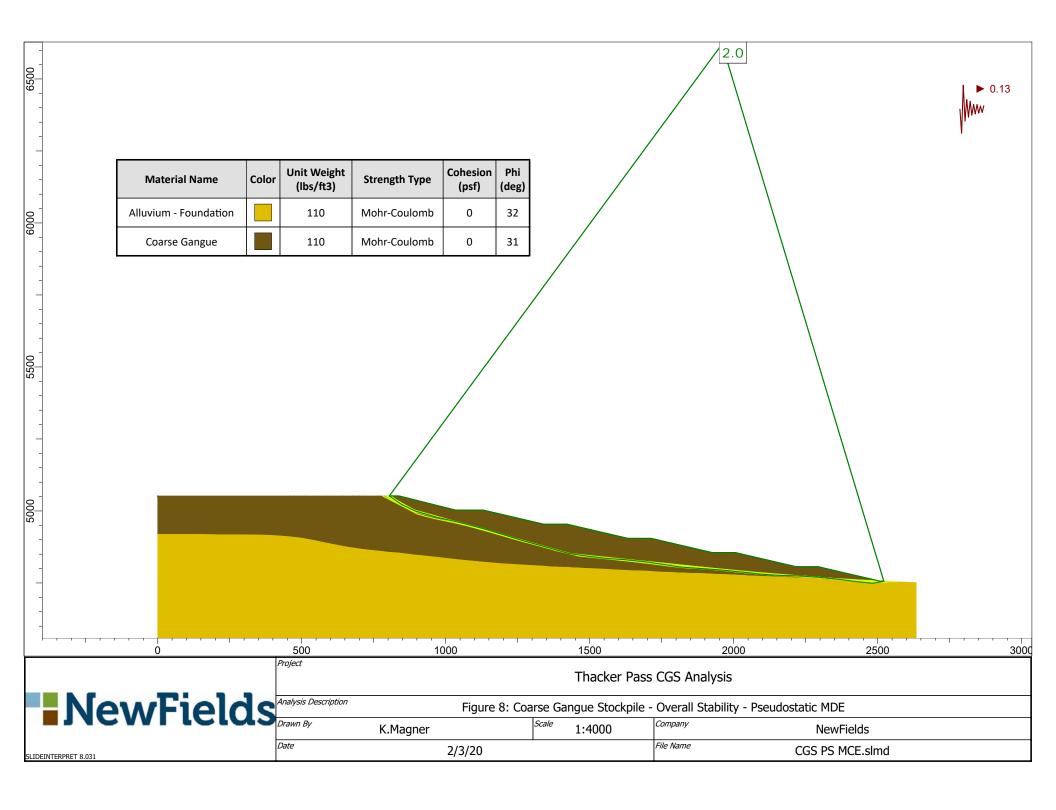


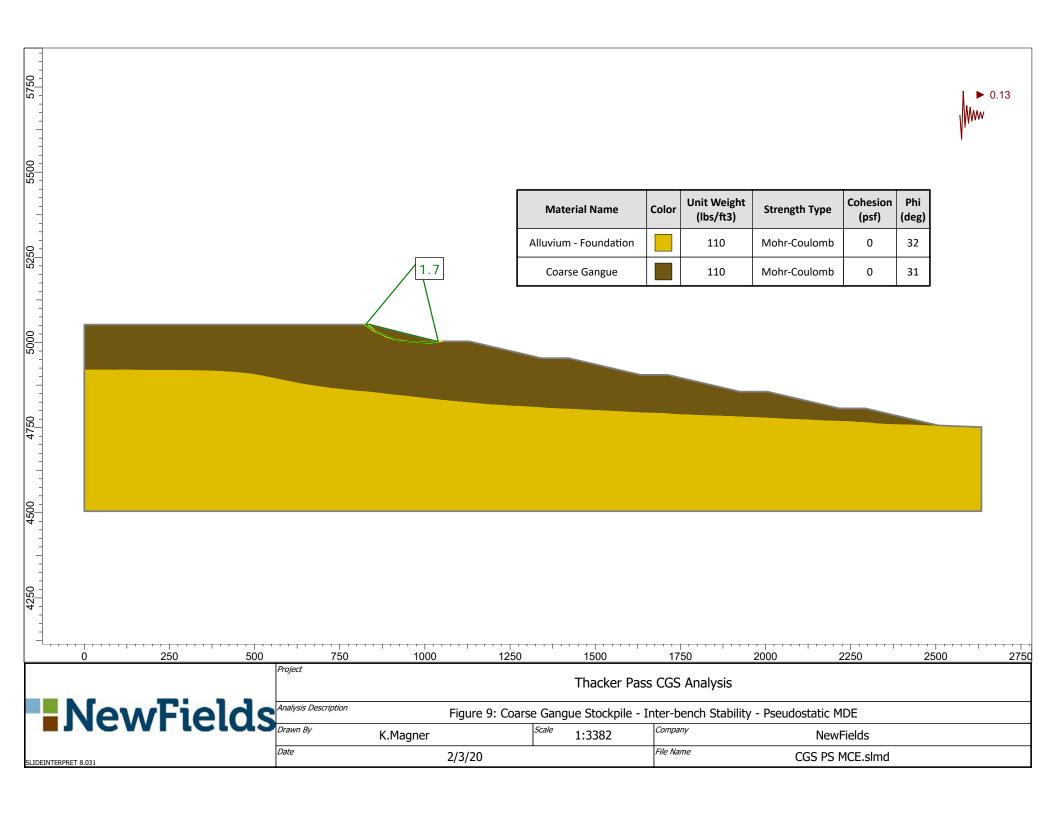

FIGURES

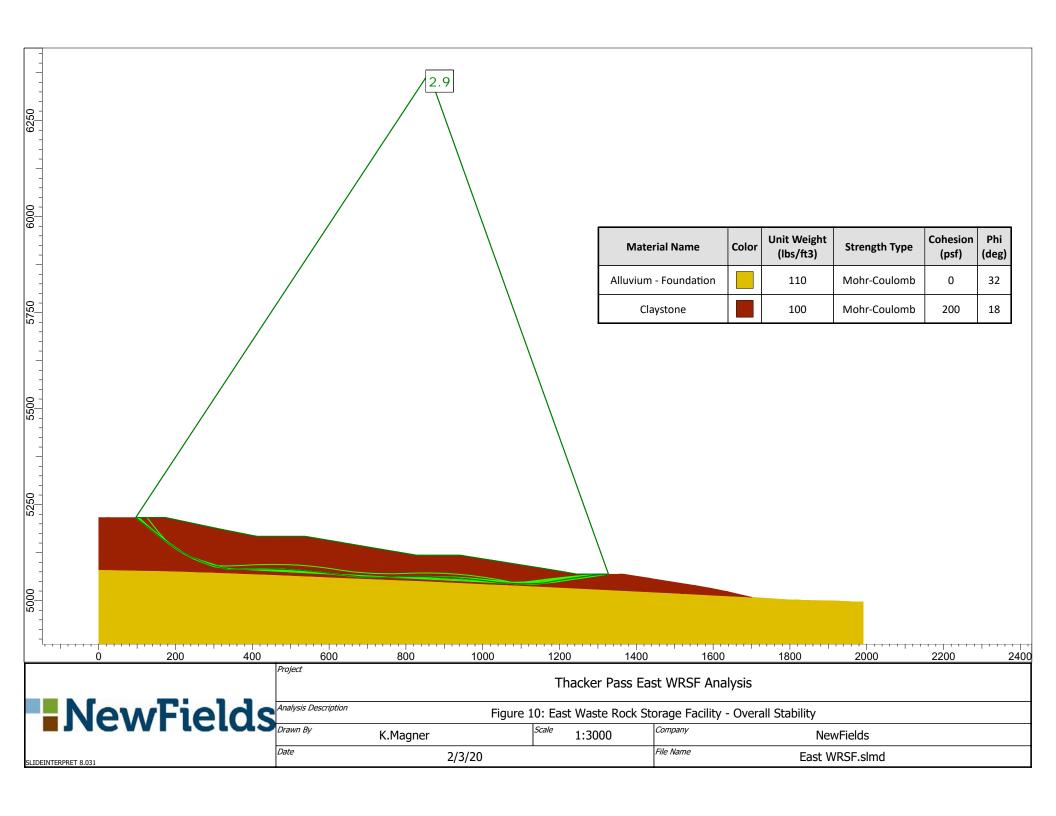

Location Diagram and Stability Assessments

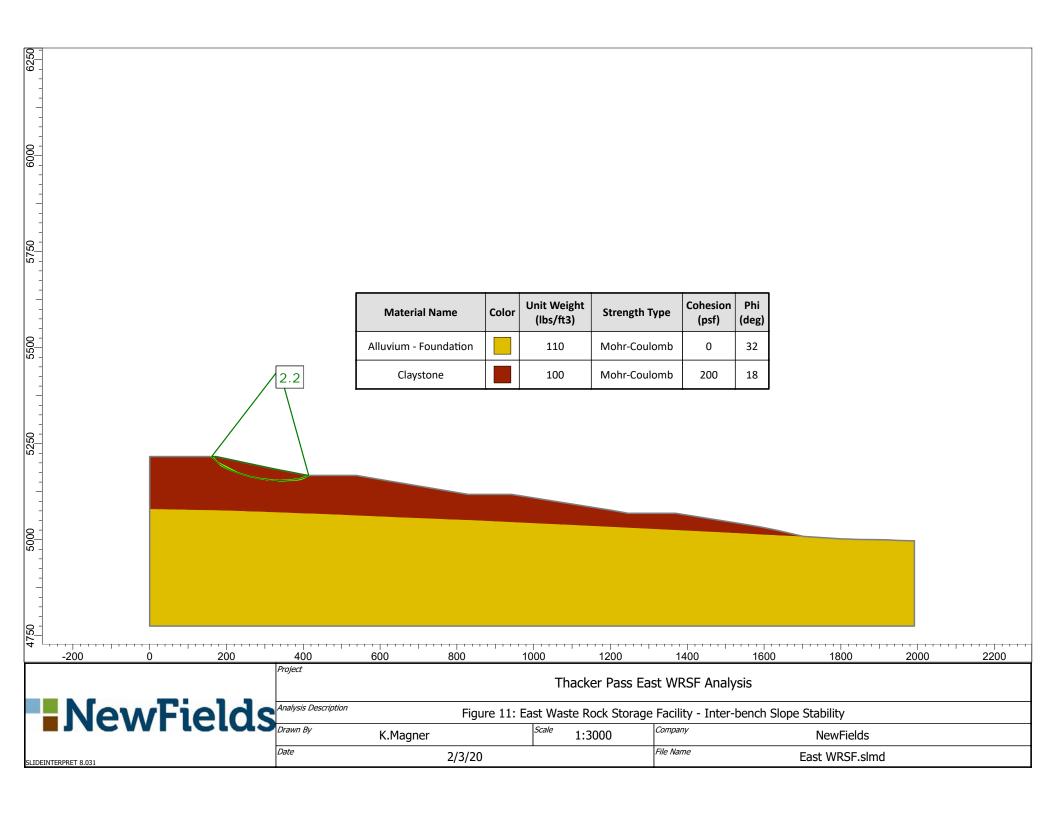


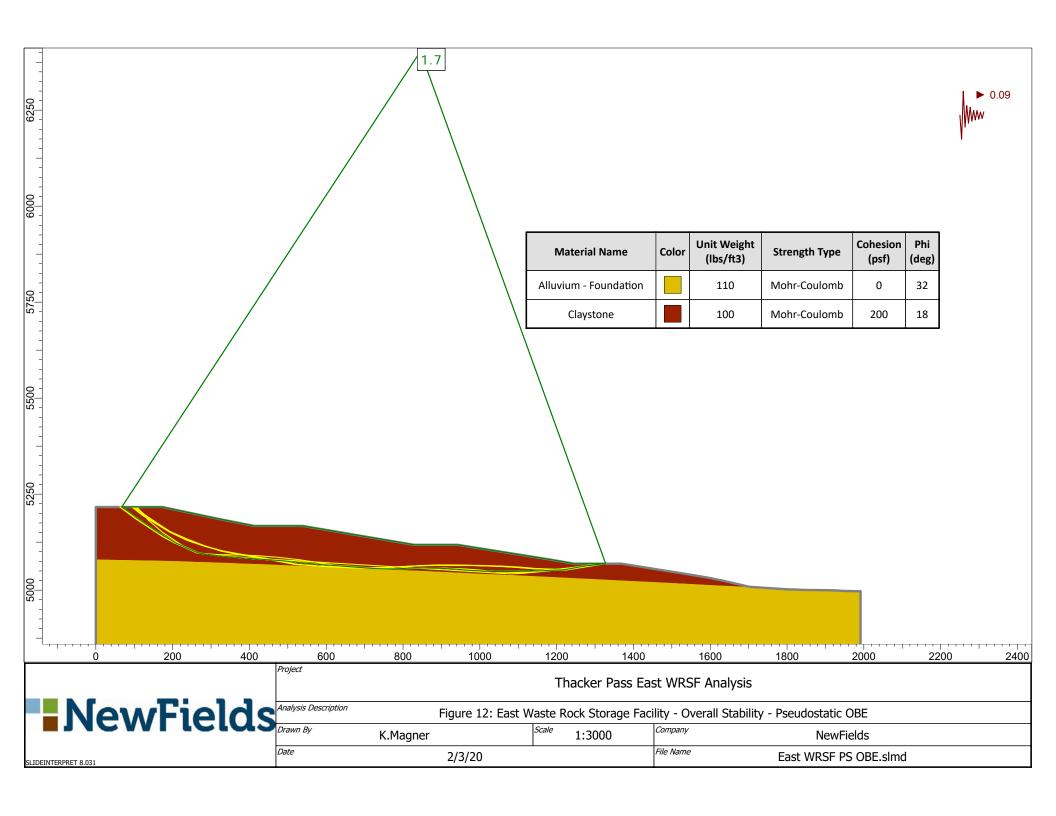


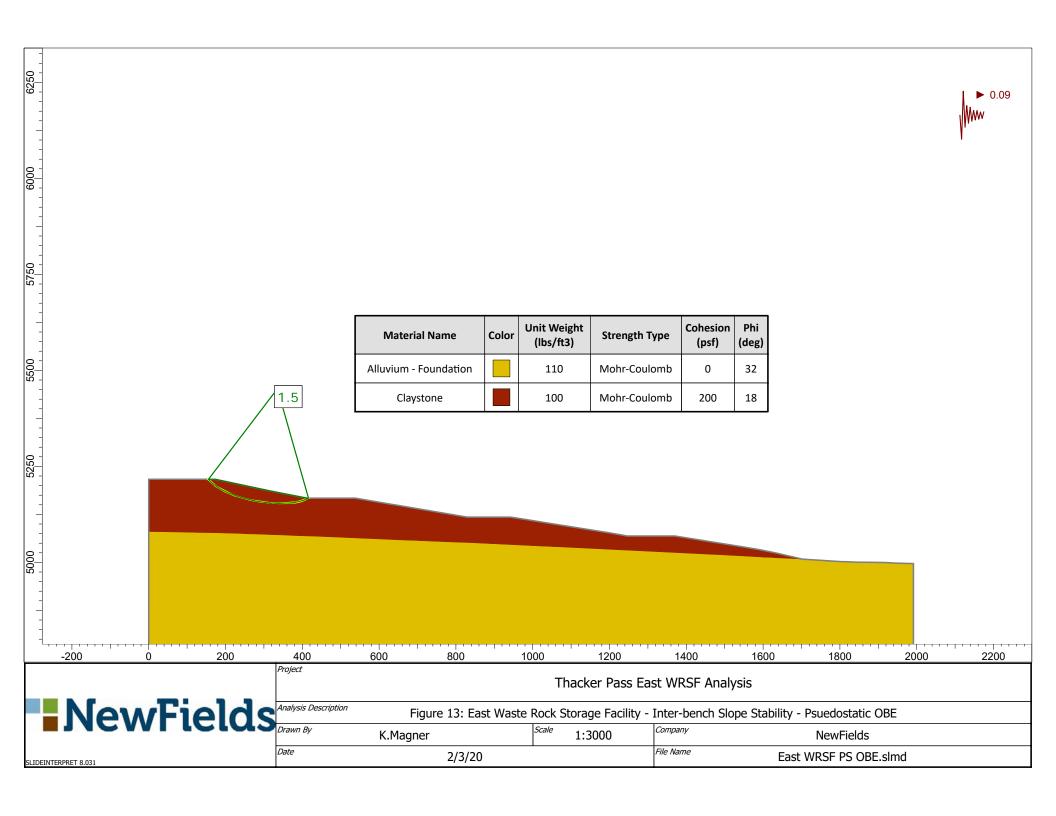


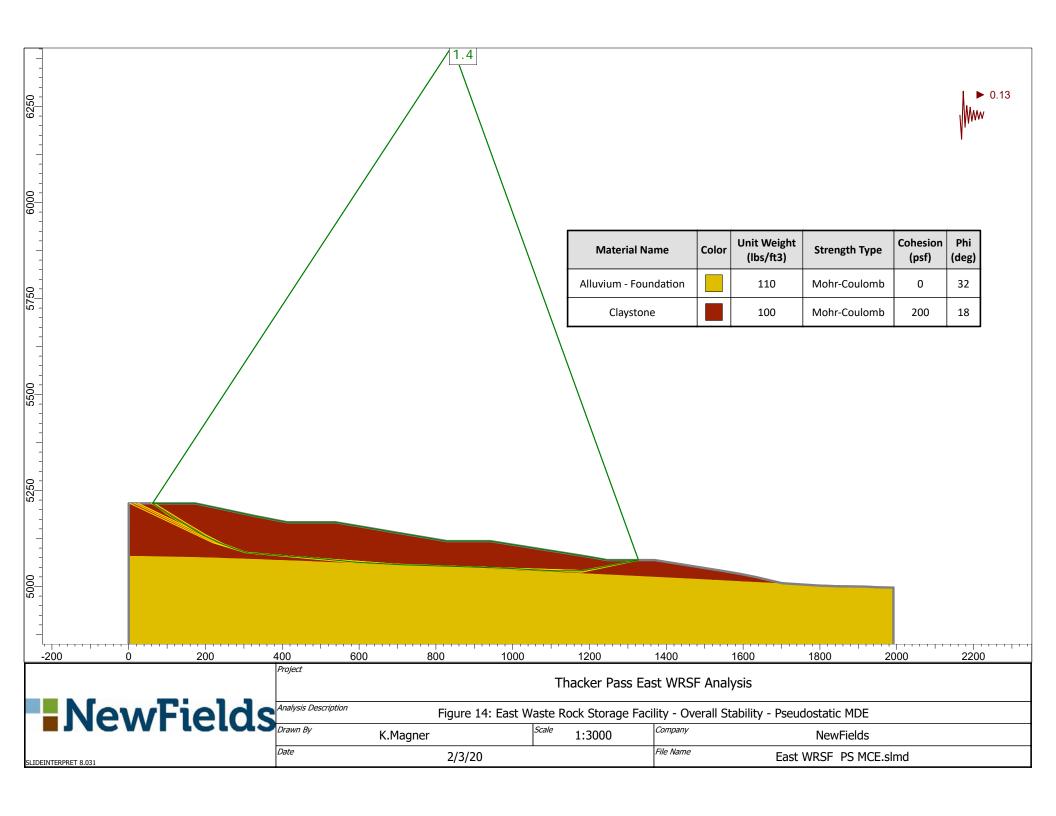




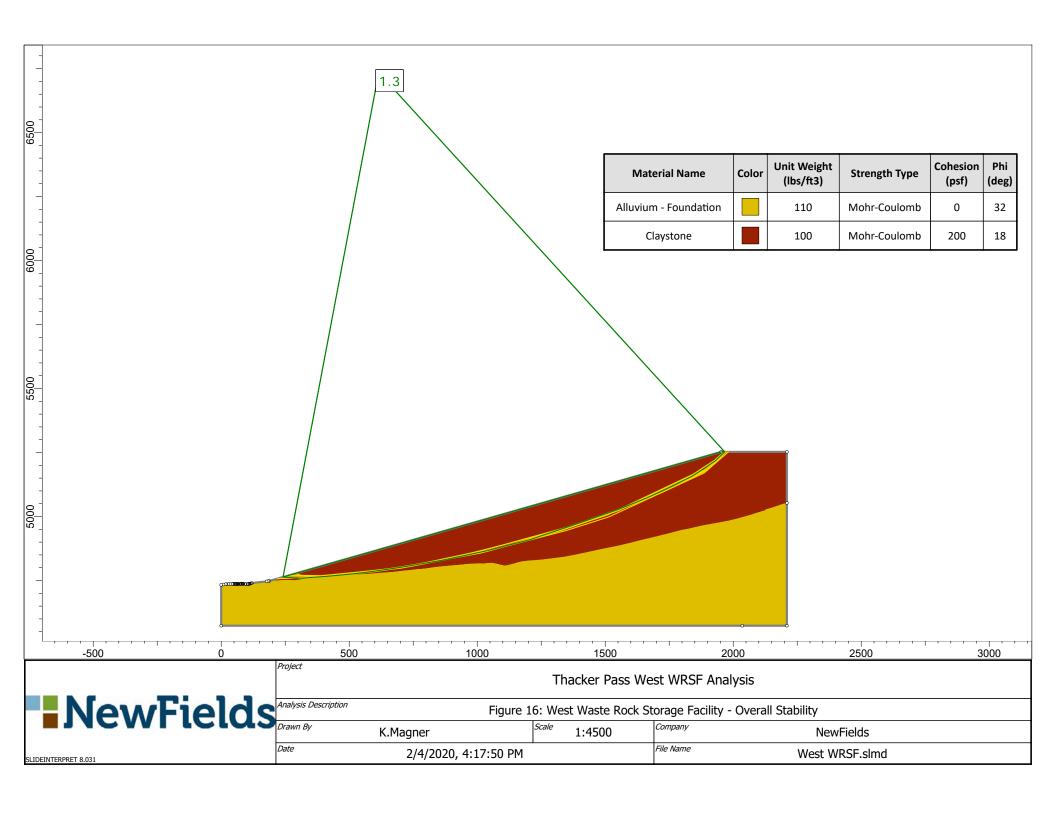


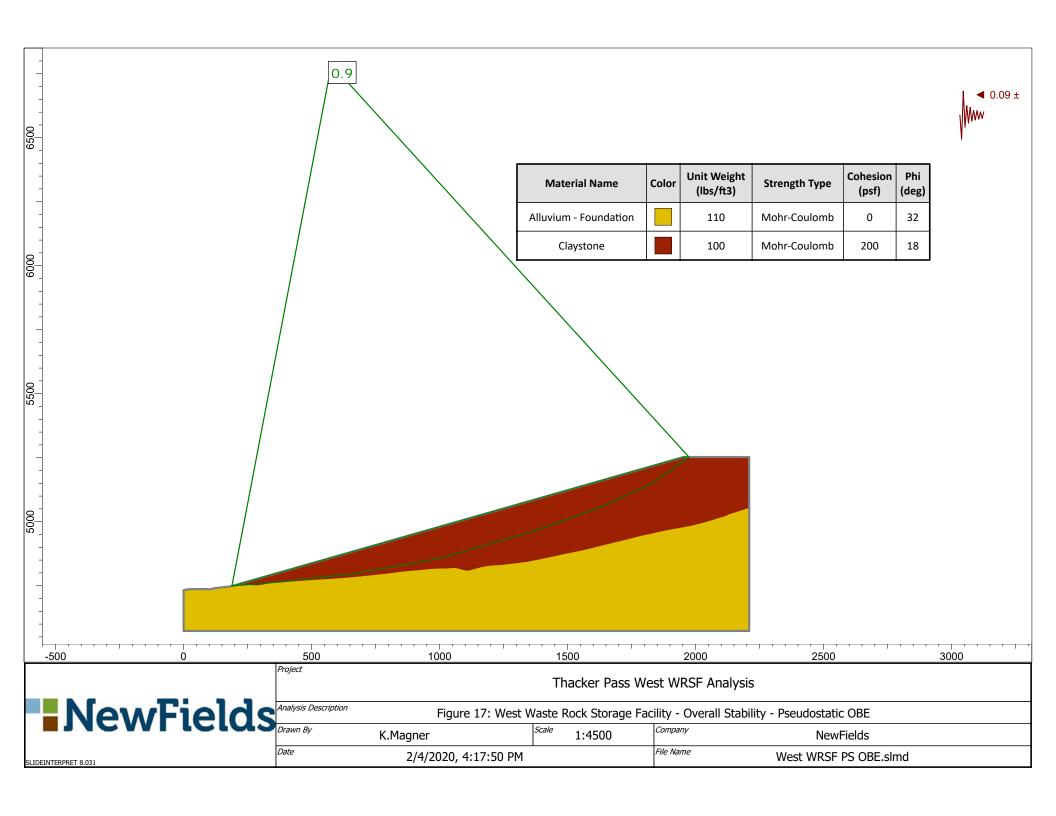


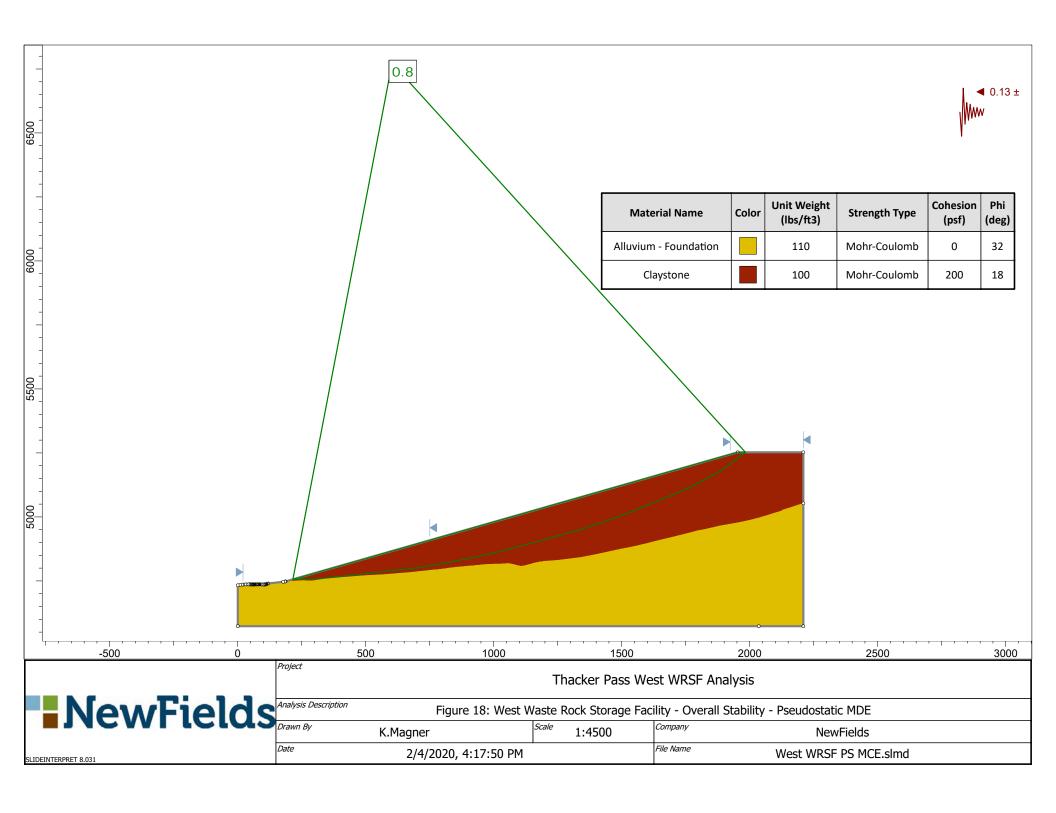


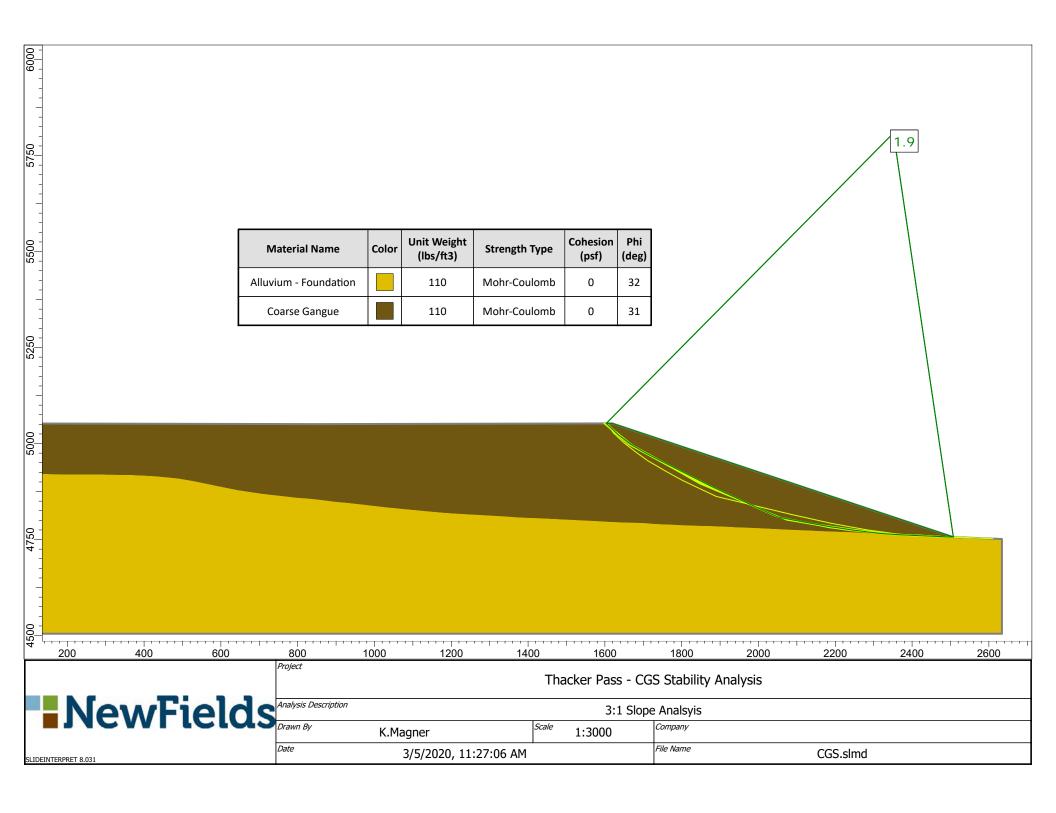


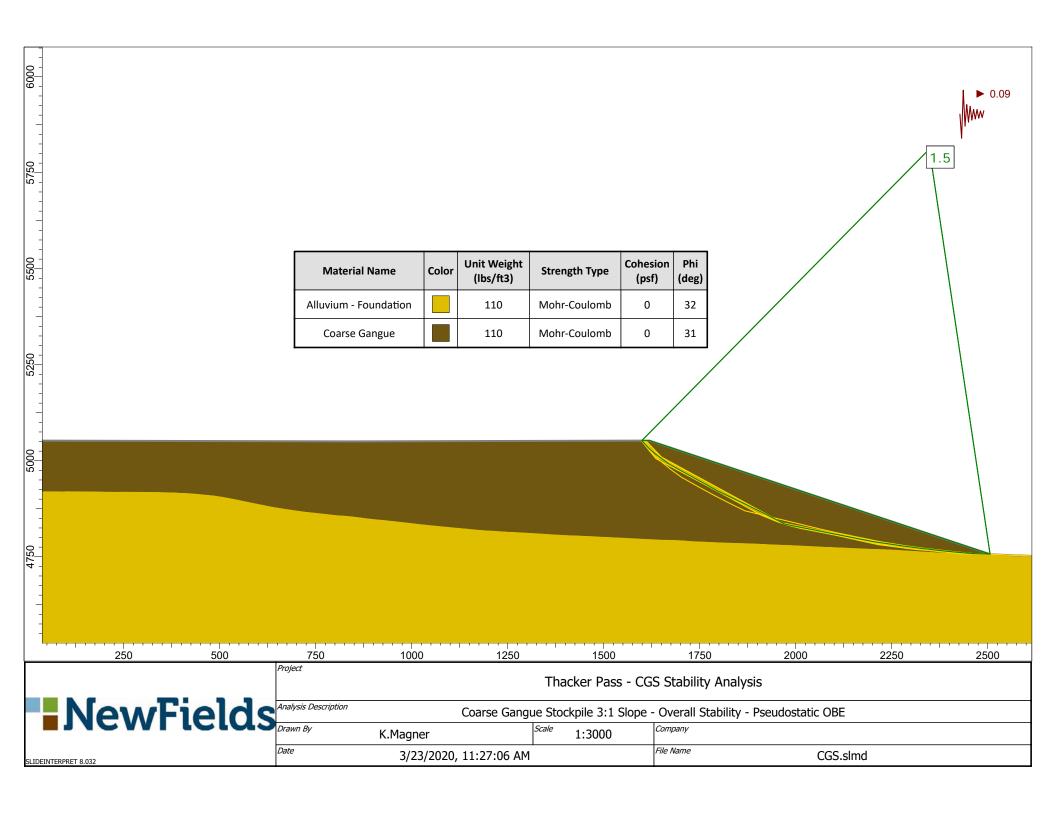


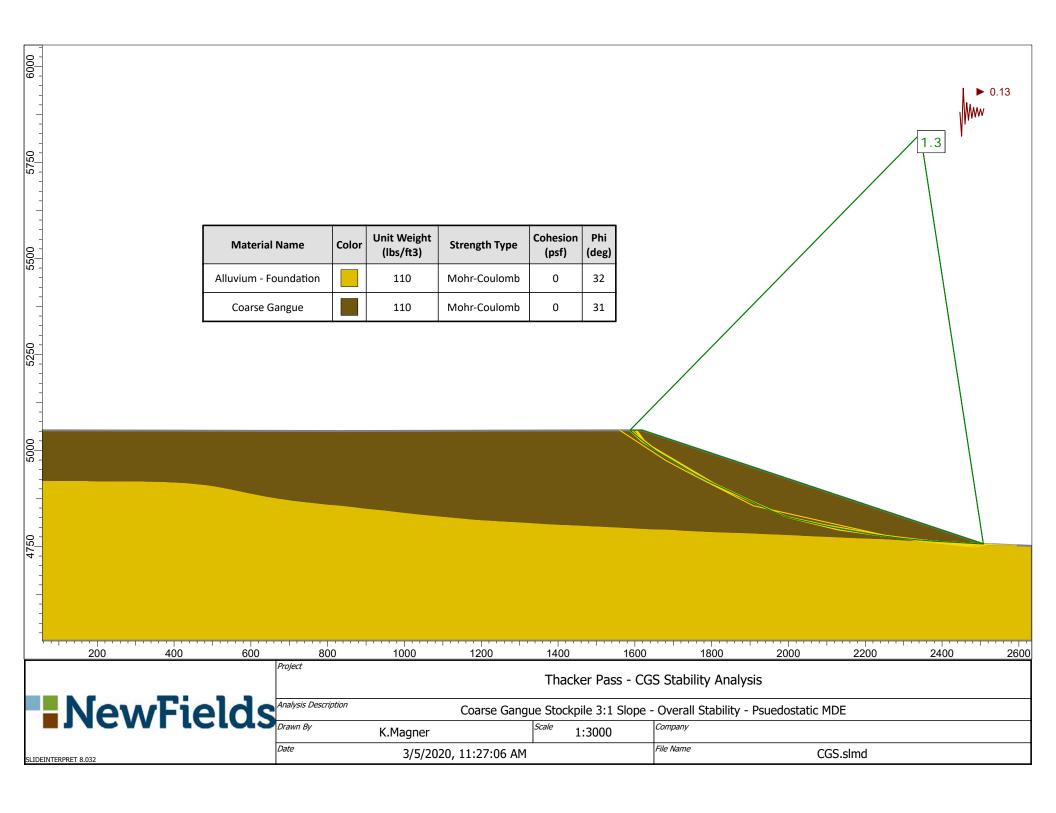












APPENDIX D.4 Deterministic Seismic Hazard Analysis Technical Memorandum (385-TM-03-RA)

TECHNICAL MEMORANDUM (385-TM-03-RA)

9400 Station Street, Suite 300 Lone Tree, CO 80124

T: 720.508.3300 F: 720.508.3339

To: Lithium Nevada Corporation

From: Mark Walden, P.Eng.

Reviewed By: Nick Rocco, PhD., P.E.

Project: Thacker Pass Project

Project No: 475.385.000

Subject: Deterministic Seismic Hazard Analysis

Date: July 18, 2019

1. INTRODUCTION

Lithium Nevada Corporation (LNC) requested that NewFields perform a seismic hazard assessment (SHA) for the Thacker Pass Project. This memo provides our interpretation of regional seismicity and recommendations for the site-wide seismic classification and peak ground accelerations (PGA) for use in design of the clay tailings filter stack (CTFS), coarse gangue stockpile, waste dumps, and material process components.

The scope of services completed for this SHA included the following:

- Review of available literature and project specific reports related to regional geology and tectonics, particularly during the Quaternary Period (last 2.6 million years);
- Review of earthquake catalogues to identify historical earthquake activity within approximately 124 miles from the Project;
- Identify major faults sources within 62 miles of the Project;
- > Identify the site classification and code-based seismic ordinates for structural design.
- Utilize existing United States Geological Survey (USGS) seismic hazard tools to perform a probabilistic seismic hazard analysis (PSHA);
- Perform a site-specific deterministic seismic hazard analysis (DSHA) to identify the MCE; and
- > Summarize the data and present estimates of seismic hazards in terms of peak horizontal ground acceleration and spectral accelerations for a range of return periods.

Regional seismicity, seismic site classification and recommended seismic design parameters are discussed in the following sections.

2. SEISMIC HISTORY

2.1 Regional Seismicity

The Project is located within the McDermitt caldera near the northern extent of the Great Basin region of the Basin and Range Physiographic Province. In general, the Great Basin is characterized by a series of north trending mountain ranges, and traces of recently active faults are located at the base of many of the linear mountain ranges in the Province. Earthquakes in this region are typically associated with geologically young fault traces and recently active volcanoes.

The McDermitt caldera formed approximately 6.39 ±0.02 million years ago (ma), in an area that had undergone two episodes of Eocene intermittent volcanism at 47 and 39 ma and a major middle Miocene volcanism that led continuously to caldera formation. The caldera is well exposed and has been negligibly affected by later extension. A major caldera fault is well exposed beneath the post-collapse intra-caldera sediment deposits and smaller displacement concentric faults, mostly noted along the northern and western margin, are present outside of the major fault (Henry et al., 2016).

The McDermitt caldera complex, as wide as 28 miles in diameter, is situated within one of the largest recognized structural depressions. The majority of the collapse occurred along a narrow ring-fault zone of discrete faults with variable downwarp into the caldera between faults (Henry et al., 2016). The region has experienced moderate to low levels of seismicity during recent times.

2.2 Historic Earthquake Events

Historical seismicity in the region was reviewed. The following earthquake catalogs were queried to identify earthquake events with a moment magnitude (M_w) of 4.0 or greater within a radius of approximately 124 miles from the Project:

- Advance National Seismic System (ANSS);
- International Seismological Centre (ISC);
- Southern California Earthquake Data Center (SCEDC);
- Northern California Earthquake Data Center (NCEDC); and
- United State Geological Survey (USGS).

All identified historical events were reviewed, and duplicate events, foreshocks and aftershocks were removed. Some historic events were recorded with different magnitude scales than moment magnitude, and the body wave magnitude (M_b) was adjusted to moment magnitude

using the recommendations of Scordilis (2006). Local magnitudes (M_I) on the Richter scale, duration magnitudes (M_D) and unknown (not reported) magnitudes were not converted since a universal relationship with moment magnitude does not exist.

The search indicated that few sizeable seismic events have been recorded in the vicinity of the Project. The spatial relationship between the historical earthquakes with M_w greater than 4.0 and the Project is presented in **Figure 1**.

Table 2.1 presents a summary of historical earthquakes with magnitudes of 5.0 and greater recorded within a radius of approximately 124 miles of the Project and the complete historical earthquake catalog is included in **Attachment 1**. The data indicates that large events can, and have occurred in the region. The largest earthquake within the 124-mile radius is the Pleasant Valley earthquake with a magnitude of 7.3 on October 03, 1915, as estimated by dePolo and dePolo, (2012); all other earthquakes within a 124-mile radius of the Project are below magnitude 6.0.

Table 2.1: Record of Historical Earthquakes

Source	Date	Magnitude (M _w)	Distance to Site (mi)
dePolo and dePolo, (2012)	10/3/1915	7.3	102.2
USGS	2/3/1916	5.9	50.5
USGS	8/3/1916	5.8	81.7
ISC	8/29/1941	5.5	81.7
ANSS	7/4/1961	5.4	26.8
USGS	5/30/1968	5.4	60.1
USGS	7/6/1968	5.4	105.3
ISC	6/3/1968	5.3	54.0
USGS	6/18/1937	5.3	98.4
USGS	2/16/1984	5.1	93.3
ISC	11/13/2014	5.1	111.4
USGS	4/11/1917	5.1	117.8
USGS	9/18/1945	5.1	95.8
USGS	1/15/1946	5.1	112.4
USGS	3/3/1973	5.0	120.2
ISC	2/10/1993	5.0	81.7
USGS	10/11/1916	5.0	56.5
USGS	1/11/1923	5.0	117.8
ANSS	12/20/1954	5.0	101.5

2.3 Potentially Active Fault Sources

The Project is close to some regionally active faults. Evaluation of regional faults within a 62-mile radius from site was focused on structures considered capable of generating earthquakes of $M_w 5.0$ or greater using an empirical relationship between magnitude and rupture area (Wells and Coppersmith, 1994). Faults further from the Project would attenuate and would not generate as significant ground motions at the site.

Table 2.2 presents a summary of active faults identified within 62 miles of the Thacker Pass project site. The data for each fault was based on documented fault length and widths as reported by Pederson, et al. (2008), and the USGS Fault and Fold Database (2006). The distance to site was measured as the closest distance from the fault trace to the project.

Typically, the length of rupture is a portion of the total length of the fault, but there is documentable evidence that shorter faults can rupture along their entire length. For this analysis, the length of rupture was estimated using the following criteria:

- > Half the total length for faults longer than 31 miles;
- Two-thirds of the fault length for fault lengths between 15.5 and 13 miles; and
- > The total fault length for faults shorter than 15.5 miles.

Traces of the active faults in relation to the project site are presented in Figure 1.

Table 2.2 - Parameters for Potentially Active Faults

Fault	Length ¹ (mi)	Width ² (mi)	Sense of slip ^{2,3}	Distance from site (mi) ¹	Magnitude (M _w) ⁴	Slip Rate (mm/yr.) ²
Montana Mountains - Desert Valley	62.8	12.4	50°/W/Normal	1.5	7.0	0.10
Hoppin Peaks	56.8	12.4	50°/E/Normal	5.5	7.0	0.10
Eastern Bilk Creek Mountains FZ	18.0	12.4	50°/W/Normal	9.6	6.6	0.01
Santa Rosa System	87.6	12.4	50°/W/Normal	13.6	7.2	0.13
Jackson Mountains FZ	11.8	12.4	50°/E/Normal	20.7	6.6	0.10
Bloody Run Hills Fault	16.2	12.4	50°/W/Normal	25.8	6.6	0.01
Eastern Pine Forest Range FZ	37.3	12.4	50°/E/Normal	26.8	6.8	0.10
Steens FZ	122.4	12.4	50°/E/Normal	34.7	7.3	0.30
McGee Mountain FZ	21.3	12.4	50°/Normal	45.6	6.7	0.01
Eastern Osgood Mountains FZ	23.1	12.4	50°/Normal	55.6	6.7	0.01
Dunn Glen fault	11.3	12.4	50°/W/Normal	58.0	6.6	0.10
Grass Valley FZ	33.1	12.4	50°/W/Normal	56.7	6.7	0.10
Tule Springs Rims fault	20.6	12.4	50°/NW/Norm	50.6	6.6	0.10
			al			
Black Rock FZ	43.1	12.4	50°/W/Normal	61.6	6.9	0.19
Background Source⁵	n/a	n/a	60°/Normal	9.4	6.5	n/a

NOTES:

- 1. Distance and length are as determined by the 2017 USGS quaternary faults interactive map
- 2. Slip rate, and width were determined from Peterson et al. (2008)
- 3. No dip direction reported; assumed to be 60 degrees based on Anderson's Theory of Faulting
- 4. Mw, Moment Magnitude, was calculated using relationship of Wells & Coppersmith (1994)
- 5. The background source accounts for the possibility that an event may be generated in regions that are not associated with previously observed seismic sources (dePolo, 1994)
- 6. FZ = Fault Zone

3. SEISMIC HAZARD ASSESSMENT

3.1 Site Classification

The results of the recent geotechnical subsurface investigation near the process facilities and CTFS (NewFields, 2019) determined that the upper 100 feet consist of 20 to 60 feet of very dense silty sand and gravel fan deposits overlying weathered basalt. The deepest boring near the proposed pit, which is west of the CTFS, was 50 feet and consisted of dense to very densely bedded ash and clay with average Standard Penetration Test (SPT) resistance of (N value) greater than 50 blows per foot. In accordance with the 2015 IBC and ASCE 7-16, the site classifies as very dense soil and soft rock, Site Class C.

Based on our understanding of the existing foundation conditions, there is a possibility that the foundation beneath the process facilities could be reclassified as Site Class B, rock, but the shear wave velocity in the upper 100 feet would need to be measured.

3.2 Code Based Seismic Parameters for Structures

The maximum considered earthquake response accelerations at short and long periods, S_S and S_1 , respectively, were determined using an online calculator from the Structural Engineers Association of California (SEAC) (SEAC, 2019). All relevant seismic design values for structures on site are listed in **Table 3.1** and the direct output from the SEAC Seismic Design Maps are presented in **Attachment 2**.

Table 3.1: Code Based Seismic Parameters

Site Soil Class	С
Mapped MCE $_R$, five (5) percent damped, spectral response acceleration parameter at short periods (Site Class C), S_S	0.50g
Mapped MCE $_{R}$, five (5) percent damped, spectral response acceleration parameter at a period of one (1) second (Site Class C), S_{1}	0.18g
Design, five (5) percent damped, spectral response acceleration parameter at short periods, S _{DS}	0.43g
Design, five (5) percent damped, spectral response acceleration parameter at period of one (1) second, S_{D1}	0.18g

3.3 Probabilistic Seismic Hazard Analysis

Ground motions associated with design-level earthquakes were developed for the Project and were based on site-specific analyses as defined by the USGS unified hazard tool. The unified hazard tool application is based on the 2014 USGS national seismic hazard maps and adjusts for the site classification.

The Project location and site classification were inputs for the probabilistic assessment. The reported PGA for a 2 percent and 10 percent chance of exceedance in 50 years, which correspond to a return period of 475 years and 2,475 years, are presented in **Table 3.2** and **Attachment 3**.

Deaggregation of the seismic hazard for the 475-year event indicates that the mean event is a 6.4 moment magnitude at 35 miles from the Project. Deaggregation of the seismic hazard for the 2,475-year indicates that the mean event is a 6.6 moment magnitude at 14 miles from the Project.

Table 3.2: Probabilistic Design Accelerations

Return Period 475-Year 2.475-Year	Reported PGA (g)				
475-Year	0.09				
2,475-Year	0.26				

3.4 Deterministic Hazard Analysis

Peak ground accelerations were estimated for historical seismic sources, fault sources, and a background source as part of the deterministic evaluation.

Historical earthquake magnitudes within 62 miles of the Project were all less than 6.0 in all cases, and for the current evaluation the radius was increased to 124 miles in an attempt to incorporate larger historical events. The largest historic event was the magnitude 7.3 Pleasant Valley Earthquake.

Major fault sources within 62 miles of the site were evaluated. The fault sources are limited to potentially active faults within the Quaternary Period (2.6 ma). The largest PGA determined was from the Eastern Bilk Creek Mountains Fault Zone, which is located 15.4 miles from site and has a magnitude of 6.6.

The background source accounts for the possibility that an event may be generated in regions that are not associated with previously observed seismic sources and is based on recommendations by dePolo (1994). The background source for the region is a M_w 6.5 event, which for the current deterministic analysis was assumed to rupture 9 miles from the site.

Attenuation relationships relate PGA or response spectral acceleration to earthquake magnitude, source-to-site distance, and local site conditions. Different attenuation models are required for different types of seismic sources. The five Next Generation (West) attenuation relationships of Abrahamson and Silva (2008), Boore and Atkinson (2008), Campbell and Bozorgnia (2008), Chiou and Youngs (2008), and Idriss (2008) were used to assess the local fault sources and the background event. The specified seismic accelerations are the average acceleration from the ground motion models. The ground motion models are based on the Mw and are generally applicable to Mw equal to 5.0 or greater. When moment magnitude was not available for historic seismic events, alternate available magnitudes were used in the models.

The ground motion models for fault sources rely on estimation of the various site-to-source distance parameters. The Boore and Atkinson attenuation relationship uses the closest horizontal distance to the surface projection of the rupture, often called the Joyner-Boore distance, which was calculated based on fault orientation and dip angle. The remaining four ground motion models use the closest direct distance to the rupture plane, and this distance

was estimated following the recommendations of Kaklamanos et al. (2011). The attenuation relationships were used with a conservative shear wave velocity of 1,760 feet per second in the upper one hundred feet of the subsurface materials, based on recent the recent geotechnical site investigation and in accordance with the 2015 IBC. The relationships of Chiou and Youngs and Campbell and Bozorgnia were applied to estimate the depth to a shear wave velocity of 0.6 miles per second (mi/sec) and 1.6 mi/sec, respectively.

The Spudich et al. (1997) and Boore et al. (1993) attenuation relationships were used to estimate the PGA from historic earthquake events. The models were developed based on known earthquake events in western North America. The relationships are based on specific source criteria (i.e. depth of rupture, distance to epicenter, ground type, fault type, etc.), and they were selected based on their applicability to the Project and regional tectonics.

The deterministic PGA calculated for the active faults that are greater than 0.1g are presented in **Table 3.3**, and the PGAs calculated for the historical events of M_w of 5.4 or greater (**Table 2.1**) are presented in **Table 3.4**.

Table 3.3 - Deterministic PGA of Potentially Active Faults

Fault	Calculated PGA from the MCE (g)
Montana Mountains - Desert Valley	0.43
Hoppin Peaks	0.26
Eastern Bilk Creek Mountains Fault	0.44
Zone	
Santa Rosa System	0.29
Jackson Mountains Fault Zone	0.11
Background Source	0.10

Table 3.4 - Deterministic PGA of Historic Seismic Events with M_w 5.0 or Greater

Date Latitude		Longitude	Magnitude (M _w)	PGA ¹	PGA ²
10/3/1915	40.258	-117.654	6.80	0.02	0.02
2/3/1916	41.000	-117.800	5.90	0.02	0.02
8/3/1916	41.500	-116.500	5.80	0.02	0.02
8/3/1916	41.500	-116.500	5.60	0.01	0.02
8/29/1941	41.500	-118.500	5.53	0.01	0.01
7/4/1961	40.900	-118.400	5.40	0.04	0.03

Notes:

- 1. Determined following Spudich et al. (1997)
- 2. Determined following Boore et al. (1993)

These values represent the most conservative estimate of the PGA at the site from the MCE event. It should be noted that potential accelerations at the Project significantly decrease for fault sources that are greater than 25 miles and are very small for all of the historical events evaluated.

3.5 Other Seismic Hazards

Potential seismic hazards for any site include ground rupture, slope instability, seismic induced settlement, and liquefaction or strain softening of subsurface deposits. Ground rupture is not a potential hazard for the Project or associated facilities since near-surface faulting and active faults are not documented within the project site. Liquefaction, which can occur within loose, saturated granular deposits, is not expected to be a hazard for the project site due to the depth to groundwater (approximately 90 feet) and the dense conditions in the near surface overburden. Similarly, potential seismic settlement from liquefaction of saturated, deep deposits is not expected based on our understanding of the subsurface conditions.

4. RECOMMENDED DESIGN GROUND MOTIONS

Deterministic and probabilistic SHA were previously completed for the Prefeasibility Geotechnical Study Report (AMEC, 2011), but the current assessments should be used for future design purposes.

The site classification is Site Class C based on the results of the geotechnical site investigation completed in early 2019 and in accordance with the 2015 IBC and ASCE 7-16. Ground motions associated with design-level earthquakes were developed for the Project using both site-specific procedures and publically available information from the USGS. Based on a site-specific deterministic assessment of historic earthquakes and fault sources, the design seismic event would be a M_w 6.6 event on the northern section of the Eastern Bilk Creek Mountains Fault Zone at a distance of approximately 15 miles, which could produce a PGA of 0.44g at the Project. The probabilistic assessment indicated a PGA of approximately 0.09g and 0.26g for the 475-year and 2,475-year return period events, respectively. The deterministic and probabilistic SHA were used to determine an appropriate Operating Basis Earthquake (OBE) and Maximum Design Earthquake (MDE).

The Federal Guidelines for Dam Safety state that "the Operating Basis Earthquake (OBE) is an earthquake that produces ground motions at the site that can reasonably be expected to occur within the service life of the project. The associated performance requirement is that the project function with little or no damage, and without interruption of function. The purpose of the OBE is to protect against economic losses from damage or loss of service. Therefore, the return period for the OBE may be based on economic considerations" (FEMA, 2005). NewFields

considers the OBE event consistent with a 2 percent chance of exceedance in 50 years (475 year return period).

Per the Nevada Administrative Code (NAC) for dams and other obstructions, "Maximum Credible Earthquake (MCE) means a hypothetical earthquake of a magnitude determined by the United States Geological Survey as the worst-case scenario that is reasonably possible for the region in which a dam is located". Typically, the MCE is determined through a deterministic seismic hazard analysis. NewFields has completed a deterministic seismic hazard analysis by calculating the peak ground acceleration values for potential seismic sources within 62 miles of the project site.

Based on all the available information, NewFields recommends the following general design criteria for design of the TSF and waste dump(s):

- ➤ Earthen structures (such as the CTFS) should be designed considering a MCE PGA equal to 0.44g based on the most conservative results of the DSHA and a OBE of 0.09g based on the 475-year return probabilistic event. This is in compliance with the NAC guidelines; and
- ➤ Design of structures should be completed using the code based spectral response parameters listed in Table 3.1.

Attachments:

Figure 1 – Historical Seismic Events and Fault Sources

Attachment 1 – Historic Earthquake Catalogue

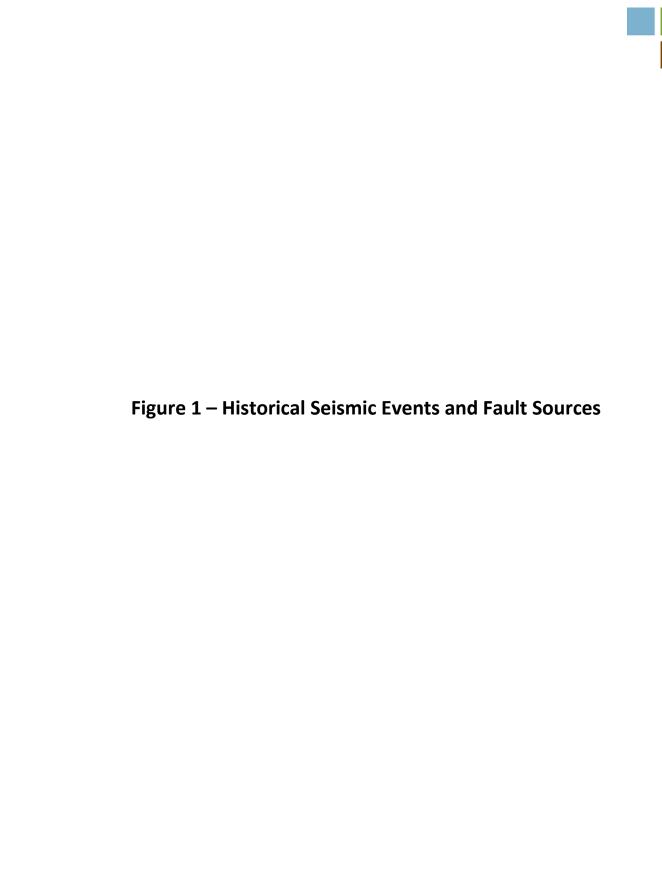
Attachment 2 – U.S. Hazard Design Map Results

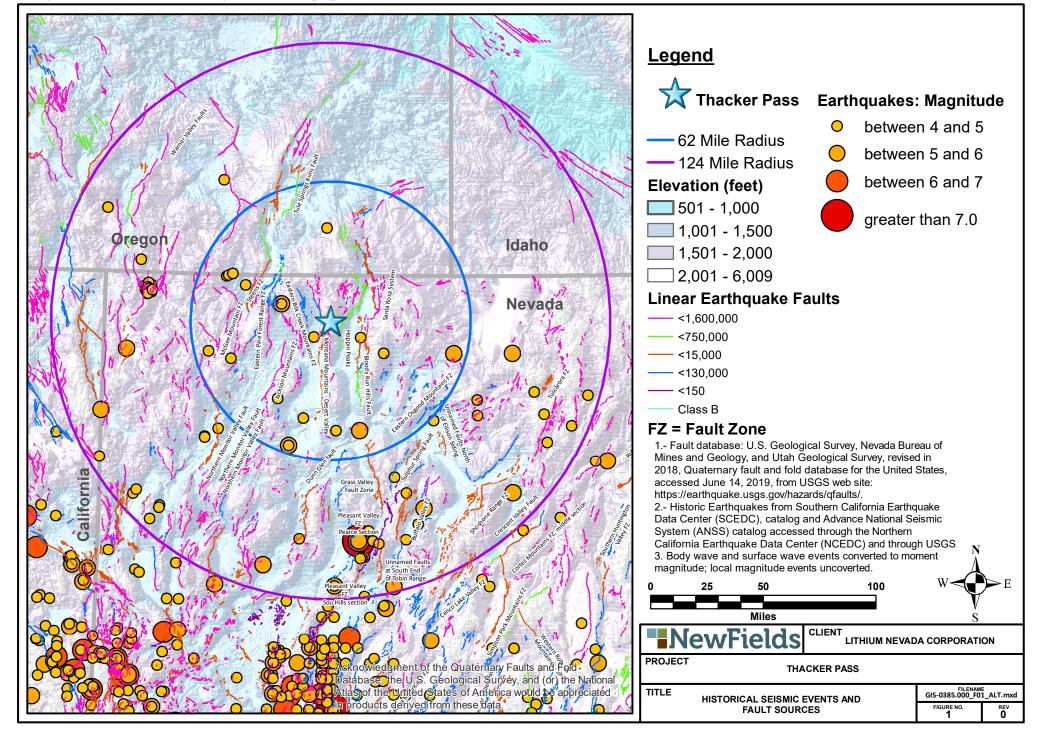
Attachment 3 – USGS Unified Hazard Tool Results

Addressee: (via e-mail)

P:\Projects\0385.000 Lithium Nevada Thacker Pass Project\J-REPORTS\Technical Memos\TM-03 Seismic Classification\TM-03 - Thacker Pass Seismic Hazard Analysis.RevA1.docx

5. REFERENCES


- Abrahamson, N., Silva, W., (2008), "Summary of the Abrahamson & Silva NGA Ground-Motion Relations," Earthquake Spectra, Vol. 24 (1).
- Advanced National Seismic System (2014), ANSS Worldwide Earthquake Catalog, https://earthquake.usgs.gov/earthquakes/search/, accessed February, 2017.
- AMEC (2011). "Western Lithium Corporation Prefeasibility Level Geotechnical Study Report, Kings Valley Lithium Project Humboldt County, Nevada". March. AMEC Project No. 10-417-00961. Conceptual Reclamation Plan and Permit Application
- ASCE-7 (2010), "Minimum Design Loads for Buildings and Other Structures (ASCE/SEI 7-10)," American Society of Civil Engineers, Reston, Virginia.
- Boore, D., M., Atkinson, G., M., (2008), "Ground-Motion Prediction Equations for the Average Horizontal Component of PGA, PGV, and 5%-Damped PSA at Spectral Periods between 0.01 s and 10.0 s," Earthquake Spectra, Vol. 24 (1).
- Boore, D. M., Joyner, W. B., Fumal, T. E., (1993), "Estimation of Response Spectra and Peak Accelerations from Western North American Earthquakes: An Interim Report," Open-File Report 93-509. U.S. Geological Survey.
- Campbell, K., W., and Bozorgnia, Y., (2007), "Campbell-Bozorgnia NGA Ground Motion Relations for the Geometric Mean Horizontal Component of Peak and Spectral Ground Motion Parameters," PEER Report No. 2007/02, Pacific Earthquake Engineering Research Center, University of California, Berkeley.
- Campbell, K., W., Bozorgnia, Y. (2008), "NGA Ground Motion Model for the Geometric Mean Horizontal Component of PGA, PGV, PGD, and 5% Damped Linear Elastic Response Spectra for Periods Ranging from 0.01 to 10 s" Earthquake Spectra, Vol. 24 (1).
- Coble, M.A. and Mahood, G.A. (2012). Initial Impingement of the Yellowstone Plume Located by Widespread Silicic Volcanism Contemporaneous with Columbia River Flood Basalts. Geology, 40(7), 655–658.
- Chiou, B. S. J., Youngs, R. R., (2008), "An NGA Model for the Average Horizontal Component of Peak Ground Motion and Response Spectra." Earthquake Spectra, Vol. 24 (1).
- dePolo, C. M., (1994), "The Maximum Background Earthquake for the Basin and Range Province, Western North America," Bulletin of the Seismological Society of America, Vol. 84 (2), 466 472.
- dePolo, D.M. and dePolo, C.M. (2012). "Earthquakes in Nevada, 1840s to 2010," Nevada Bureau of Mines and Geology, Map 179.



- FEMA (2005). "Federal Guidelines for Dam Safety, Earthquake Analysis and Design of Dams". May.
- Henry et al. (2017). "Geology and evolution of the McDermitt caldera, northern Nevada and southeastern Oregon, western USA". July.
- Idriss, I., M., (2008), "An NGA Empirical Model for Estimating the Horizontal Spectral Values Generated by Shallow Crustal Earthquakes," Earthquake Spectra, Vol. 24 (1).
- International Building Code, (2012), International Code Council.
- International Seismological Centre, (2014), "On-line Bulletin", http://www.isc.ac.uk, Internatl. Seismol. Cent., Thatcham, United Kingdom, accessed February, 2017.
- Kaklamanos, J., Baise, L., G., Boore, D., M., (2011), "Estimating Unknown Input Parameters When Implementing the NGA Ground-Motion Prediction Equations in Engineering Practice," Earthquake Spectra, Vol. 27 (4), 1219-1235.
- Lithium Nevada Corporation (2018). "Bureau of Land Management Humboldt Field Office Conceptual Mine Plan of Operations State of Nevada Bureau of Mining Regulation and Reclamation". October.
- NAC (2016). "Chapter 535 Dams and Other Obstructions". June.
- Northern California Earthquake Data Center, (2014), UC Berkeley Seismological Laboratory, Dataset, doi:10.7932/NCEDC, accessed February, 2017.
- Pederson, M.D. Et al. (2008). Documentation for the 2008 update of the united states hazard maps, USGS Open File Report 2008-112, 61p.
- Rytuba, James J. (1976), "Geology and Ore Deposits of the McDermitt Caldera, Nevada-Oregon", United States Department of the Interior Geological Survey, Melno Park, California.
- Scordilis, E.M., (2006), "Empirical global relations converting Ms and mb to moment magnitude," Journal of Seismology, Vol. 10, 225-236.
- SEAC (2019). Structural Engineers Association of California, Office of State Wide Health Planning and Decelopment, U.S. Seismic Design Maps. https://seismicmaps.org/
- Southern California Earthquake Data Center, (2017), California Institute of Technology, http://scedc.caltech.edu/, accessed February 2017.
- Spudich, P., Fletcher, J.B., Hellweg, M., Boatwright, J., Sullivan, C., Joyner, W.B., Hanks, T.C., Boore, D.M., McGarr, A., Baker, L.M., Lindh, A.G., (1997), "SEA96—A New Predictive Relation for Earthquake Ground Motions in Extensional Tectonic Regimes," Seismological Research Letters, 68(1), 190–198.
- USGS (2019). United States Geological Survey Earthquake Hazards Program, Unified Hazard Tool. https://earthquake.usgs.gov/hazards/interactive/

- USGS (2017). U.S. Quaternary Faults Interactive Map. https://earthquake.usgs.gov/cfusion/qfault/show report AB archive.cfm?fault id=1507§ion id=b
- USGS (2016a). United States Geological Survey Earthquake Hazards Program Search Earthquake Archives Tool. http://earthquake.usgs.gov/earthqukes/search.
- USGS (2016b). United States Geological Survey Worldwide Seismic "Design Maps" Web Application (Beta). https://geohazards.usgs.gov/secure/designmaps/ww/application/php.
- Wells, D. L., Coppersmith, K. J., (1994), "New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement," Bulletin of the Seismological Society of America, Vol. 84.

Attachment 1 – Historic Earthquake Catalogue

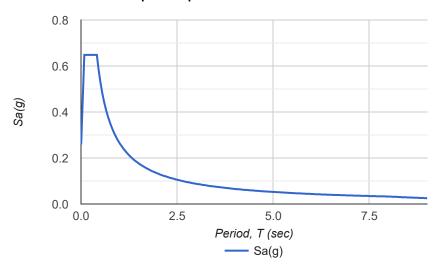
C	Data	T:	1-4		D4b			DICT to CITE (Inv.)	DICTA- CITE (!)	
Source	Date	Time	Lat	Lon	Depth	Mag	Magt	DIST to SITE (km)	DIST to SITE (mi)	Mw
dePolo and dePolo, (2012) ¹	10/3/1915	6:53:21 AM	40.26	-117.65	10	7.6	Ms	164.5	102.2	7.3
USGS	2/3/1916	5:03:04 AM	41.00	-117.80		5.9	fa	81.3	50.5	5.9
USGS	8/3/1916	2:22:38 PM	41.50	-116.50	25	5.8	ML	131.6	81.7	5.8
ISC	8/29/1941	1:09:53 PM	41.50	-118.50	35	5.5	Ms	43.2	26.8	5.5
ANSS	7/4/1961	4:56:00 AM	40.90	-118.40		5.4	ML	93.9	58.4	5.4
USGS	5/30/1968	12:36:00 AM	42.30	-119.80	24	5.1	Mb	158.4	98.4	5.4
USGS	7/6/1968	2:02:40 PM	41.10	-117.40		5.1	Mb	86.8	54.0	5.4
ISC	6/3/1968	1:27:39 PM	42.21	-119.91	8	5.0	Mb	163.4	101.5	5.3
USGS	6/18/1937	9:07:26 AM	41.25	-120.00	35	5.3	Ms	169.5	105.3	5.3
USGS	2/16/1984	11:14:58 AM	39.93	-117.76	8.3	4.8	Mb	198.6	123.4	5.1
ISC	11/13/2014	6:36:08 AM	41.92	-119.67	6.1	4.8	Mb	136.0	84.5	5.1
USGS	4/11/1917	6:59:55 PM	40.00	-118.00		5.1	ML	189.6	117.8	5.1
USGS	9/18/1945	10:39:00 PM	40.60	-116.50		5.1	ML	179.2	111.4	5.1
USGS	1/15/1946	10:31:56 PM	40.50	-117.25		5.1	Unknown	150.1	93.3	5.1
USGS	3/3/1973	3:00:03 AM	41.81	-118.46	5	4.7	Mb	35.1	21.8	5.0
ISC	2/10/1993	9:48:36 PM	40.42	-119.61	10.9	4.7	Mb	193.2	120.1	5.0
USGS	10/11/1916	5:49:09 AM	41.50	-116.50		5.0	ML	131.6	81.7	5.0
USGS	1/11/1923	4:29:00 AM	42.20	-120.30		5.0	ML	193.4	120.2	5.0
ANSS	12/20/1954	5:36:47 PM	40.00	-118.00		5.0	ML	189.6	117.8	5.0
ISC	9/14/2015	1:55:48 PM	41.86	-119.59	7.6	4.6	Mb	128.0	79.5	4.9
ISC	12/24/2015	8:30:39 PM	41.89	-119.60	10	4.6	Mb	129.5	80.5	4.9
USGS	12/15/1962	6:35:00 AM	40.70	-117.50		4.9	ML	121.1	75.3	4.9
ISC	10/22/1966	5:16:24 PM	40.58	-116.25	7	4.5	Mb	196.7	122.2	4.9
USGS	1/30/1968	3:20:06 PM	41.00	-117.40	18	4.5	Mb	95.7	59.5	4.9
USGS	5/3/1980	12:17:38 AM	41.94	-118.84	5	4.5	Mb	70.0	43.5	4.9
ISC	6/30/2004	12:21:44 PM	42.18	-120.21	5	4.5	Mb	185.6	115.3	4.9
USGS	1/28/1966	6:00:11 PM	41.60	-118.20	20	4.4	Mb	16.6	10.3	4.8
ISC	1/29/2015	11:03:20 AM	41.88	-119.65	5.3	4.4	Mb	133.2	82.8	4.8
ISC	7/27/2015	1:05:33 AM	41.82	-119.63	1.8	4.4	Mb	130.9	81.4	4.8
USGS	3/28/1917	11:16:00 AM	41.60	-117.80		4.7	Unknown	24.4	15.2	4.7
USGS	9/22/1936	10:39:07 AM	40.43	-117.28		4.7	ML	156.1	97.0	4.7
USGS	11/16/1956	8:26:10 AM	41.03	-116.45		4.7	ML	153.8	95.5	4.7
ISC	12/7/1966	8:43:59 PM	40.80	-119.98	10	4.3	Mb	189.5	117.7	4.7
ANSS	6/12/1968	1:46:22 AM	42.10	-119.89	33	4.3	Mb	157.7	98.0	4.7
ANSS	6/21/1968	8:33:28 PM	42.21	-119.65	23	4.3	Mb	143.4	89.1	4.7
USGS	4/28/1980	1:55:34 PM	41.87	-118.91	5	4.3	Mb	72.7	45.2	4.7
ISC	9/27/2015	2:44:01 AM	41.87	-119.58	0.4	4.3	Mb	127.4	79.2	4.7
USGS	9/10/1929	8:01:00 PM	41.20	-116.80		4.6	ML	119.0	73.9	4.6
USGS	5/25/1937	5:35:20 AM	41.50	-119.80		4.6	ML	146.6	91.1	4.6
USGS	9/7/1962	11:19:13 PM	41.30	-116.70	33	4.6	ML	121.7	75.7	4.6
ANSS	10/8/2001	5:37:11 AM	41.22	-115.85	0	4.6	ML	191.8	119.1	4.6
ANSS	7/22/2004	8:26:27 PM	42.19	-120.30	5	4.6	Mw	192.8	119.8	4.6
ISC	9/9/2007	1:33:24 AM	40.32	-117.12	10	4.2	Mb	172.9	107.4	4.6
ISC	2/26/2015	7:17:50 PM	41.94	-119.55	10	4.2	Mb	126.4	78.6	4.6
ANSS	3/24/1968	8:45:47 AM	41.10	-117.50	33	4.1	Mb	81.8	50.8	4.5
ISC	5/23/1978	5:47:57 AM	40.83	-117.25	10	4.1	Mb	118.7	73.8	4.5
USGS	2/13/1979	3:52:48 PM	40.83	-116.16	5	4.1	Mb	180.6	112.2	4.5
USGS	2/27/1936	12:40:00 AM	41.00	-119.00	,	4.5	ML	111.0	69.0	4.5
USGS	3/12/1958	12:40:00 AW	42.40	-119.00		4.5	ML	178.0	110.6	4.5
ANSS		8:03:46 PM	40.41	-120.00	10	4.0			102.6	4.4
	3/19/1971				10	4.0	Mb Mb	165.2	111.3	
ANSS	4/3/1979	12:08:31 PM	40.64	-119.66	5			179.1		4.4
ISC	10/29/2015	4:47:40 PM	41.89	-119.59	1.5	4.0	Mb	128.3	79.7	4.4
ISC	12/6/2015	11:13:28 AM	41.89	-119.62	1.1	4.0	Mb	130.8	81.2	4.4
USGS	2/23/1985	3:36:29 PM	41.17	-118.73	5	4.4	ML	81.8	50.8	4.4
ISC	6/18/1987	4:50:08 AM	41.94	-119.67	5	4.4	ML	136.0	84.5	4.4
ANSS	11/19/2000	12:54:50 PM	40.48	-119.49	12.92	4.4	ML	181.1	112.5	4.4
ISC	12/4/2014	5:24:52 AM	41.85	-119.67	5.5	4.4	ML	134.5	83.6	4.4
ISC	3/13/1955	8:40:23 AM	40.00	-118.00		4.3	M	189.6	117.8	4.3
ISC	12/4/2003	11:13:10 PM	41.36	-119.30	10	4.3	Mb1	110.4	68.6	4.3
ANSS	1/23/2003	9:49:47 PM	39.96	-117.86	6.25	4.2	ML	194.9	121.1	4.2
ISC	4/20/1959	12:33:44 PM	40.00	-118.00		4.2	M	189.6	117.8	4.2
USGS	8/31/1975	11:27:40 AM	40.95	-119.11	33	4.2	ML	121.7	75.6	4.2
ISC	3/25/1987	3:48:39 PM	40.14	-117.68	5	4.2	ML	177.4	110.2	4.2
ISC	6/8/2003	10:14:55 AM	41.17	-116.33	10	4.2	ML	155.5	96.6	4.2
ISC	12/10/2014	1:50:58 PM	41.89	-119.61	2.8	4.2	ML	130.2	80.9	4.2
USGS	8/13/2015	11:31:08 AM	41.89	-119.62	10.3	4.2	ML	131.2	81.5	4.2
USGS	11/19/2015	1:40:03 AM	41.87	-119.62	12.9	4.2	ML	130.7	81.2	4.2
ISC	12/28/2015	3:10:30 PM	41.40	-118.98	10	4.2	ML	83.7	52.0	4.2
ISC	5/14/2016	2:20:31 PM	40.64	-119.47	9	4.2	ML	167.2	103.9	4.2
ANSS	1/10/1956	8:37:24 AM	41.50	-119.10		4.1	ML	89.6	55.6	4.1
USGS	3/5/1987	12:30:21 AM	40.78	-116.25	5	4.1	MD	182.9	113.6	4.1
USGS	10/30/2014	3:16:33 PM	41.91	-119.62	0	4.1	ML	131.3	81.6	4.1
ISC	1/3/2016	3:35:25 PM	41.92	-119.64	7.2	4.1	ML	133.2	82.7	4.1
ANSS	9/28/2011	11:54:04 AM	39.99	-117.88	0	4.1	ML	191.7	119.1	4.1
ANSS	6/6/1956	11:50:07 PM	41.20	-118.50		4.0	ML	67.1	41.7	4.0
ANSS	1/31/1962	4:07:32 AM	40.10	-118.00		4.0	ML	178.5	110.9	4.0
ISC	2/12/1968	8:53:26 AM	41.10	-117.40	13	4.0	M	86.8	54.0	4.0
			40.94	-117.40	1.45	4.0	Mc	122.3	76.0	4.0
	1/26/1985	6:43:24 PIVI								
ANSS	1/26/1985 8/29/1997	6:43:24 PM 3:48:09 PM				4 0	MD	147.7	91.8	
	1/26/1985 8/29/1997 10/1/2014	3:48:09 PM 12:46:08 PM	41.87	-119.83 -119.68	5 2.3	4.0 4.0	MD ML	147.7 136.2	91.8 84.7	4.0

Note:

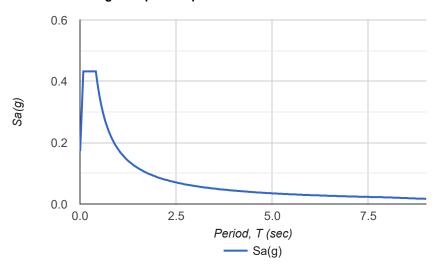
Attachment 2 – U.S. Seismic Design Map Results

Latitude, Longitude: 41.704821, -118.058406

Map data ©2019

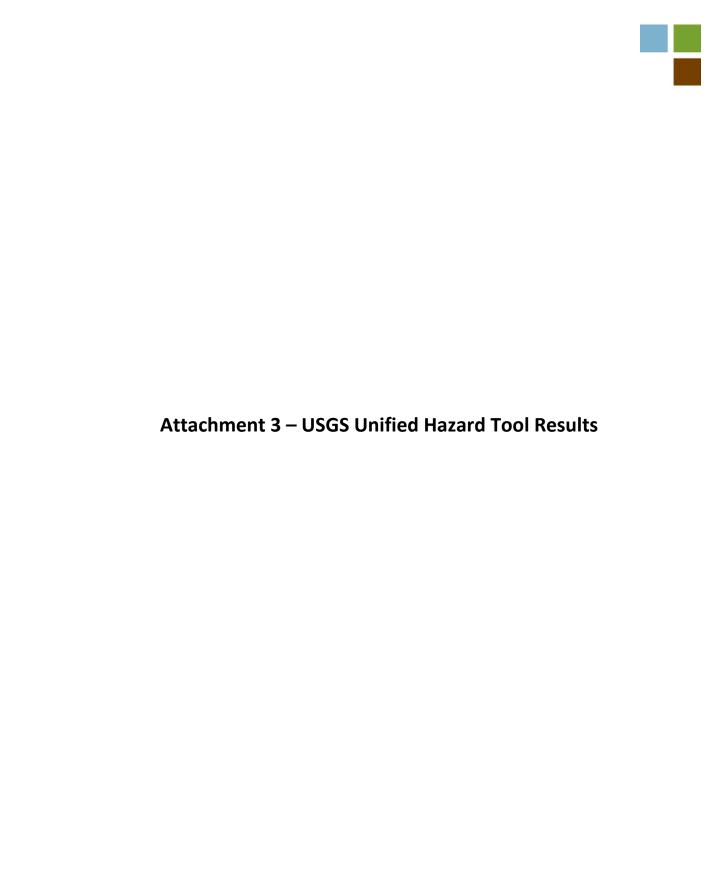

Date	6/20/2019, 1:37:39 PM
Design Code Reference Document	ASCE7-16
Risk Category	II
Site Class	C - Very Dense Soil and Soft Rock

Туре	Value	Description
S _S	0.5	MCE _R ground motion. (for 0.2 second period)
S ₁	0.177	MCE _R ground motion. (for 1.0s period)
S _{MS}	0.649	Site-modified spectral acceleration value
S _{M1}	0.265	Site-modified spectral acceleration value
S _{DS}	0.433	Numeric seismic design value at 0.2 second SA
S _{D1}	0.177	Numeric seismic design value at 1.0 second SA


SDC (Value C	Description Seismic design category
	С	Salemic decign category
F ₂		Seismic design category
а	1.3	Site amplification factor at 0.2 second
F _v	1.5	Site amplification factor at 1.0 second
PGA (0.223	MCE _G peak ground acceleration
F _{PGA}	1.2	Site amplification factor at PGA
PGA _M (0.267	Site modified peak ground acceleration
T _L 8	8	Long-period transition period in seconds
SsRT (0.5	Probabilistic risk-targeted ground motion. (0.2 second)
SsUH (0.557	Factored uniform-hazard (2% probability of exceedance in 50 years) spectral acceleration
SsD [′]	1.5	Factored deterministic acceleration value. (0.2 second)
S1RT (0.177	Probabilistic risk-targeted ground motion. (1.0 second)
S1UH (0.194	Factored uniform-hazard (2% probability of exceedance in 50 years) spectral acceleration.
S1D (0.6	Factored deterministic acceleration value. (1.0 second)
PGAd (0.5	Factored deterministic acceleration value. (Peak Ground Acceleration)
C _{RS} (0.896	Mapped value of the risk coefficient at short periods
C _{R1} (0.912	Mapped value of the risk coefficient at a period of 1 s

https://seismicmaps.org

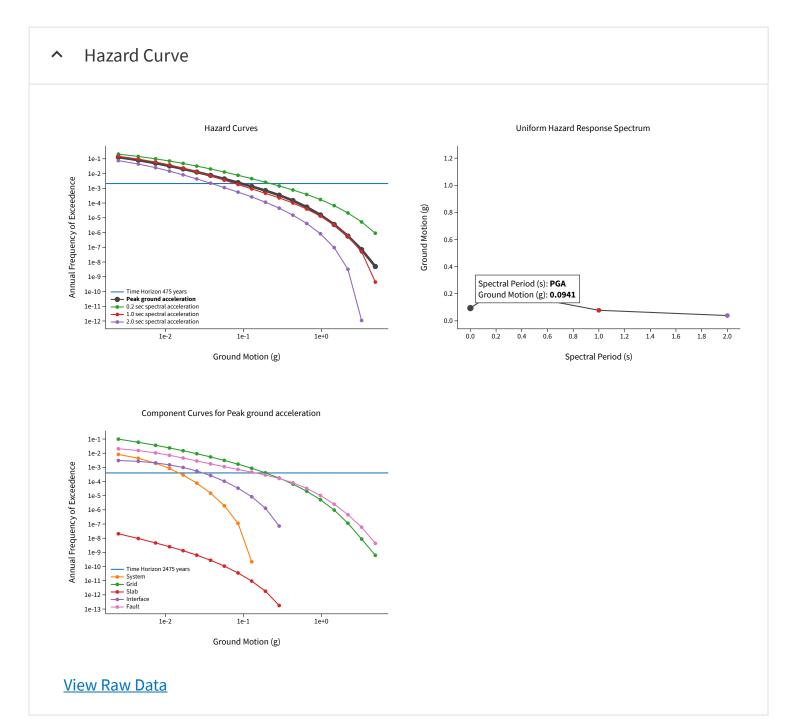
MCER Response Spectrum


Design Response Spectrum

DISCLAIMER

While the information presented on this website is believed to be correct, <u>SEAOC</u> /<u>OSHPD</u> and its sponsors and contributors assume no responsibility or liability for its accuracy. The material presented in this web application should not be used or relied upon for any specific application without competent examination and verification of its accuracy, suitability and applicability by engineers or other licensed professionals. SEAOC / OSHPD do not intend that the use of this information replace the sound judgment of such competent professionals, having experience and knowledge in the field of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the results of the seismic data provided by this website. Users of the information from this website assume all liability arising from such use. Use of the output of this website does not imply approval by the governing building code bodies responsible for building code approval and interpretation for the building site described by latitude/longitude location in the search results of this website.

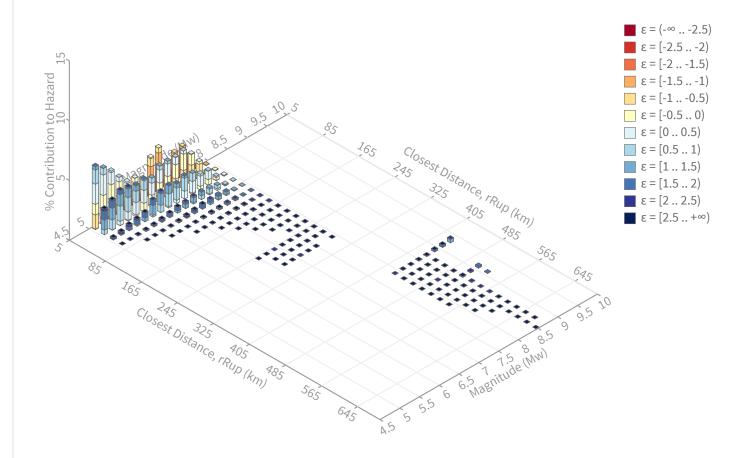
https://seismicmaps.org



U.S. Geological Survey - Earthquake Hazards Program

Unified Hazard Tool

Please do not use this tool to obtain ground motion parameter values for the design code reference documents covered by the <u>U.S. Seismic Design Maps web tools</u> (e.g., the International Building Code and the ASCE 7 or 41 Standard). The values returned by the two applications are not identical.


^ Input	
Edition Dynamics Contorminaus II S. 2014 (v4.1)	Spectral Period
Dynamic: Conterminous U.S. 2014 (v4.1. Latitude	Peak ground acceleration Time Horizon
Decimal degrees 41.704821	Return period in years 475
Longitude Decimal degrees, negative values for western longitudes	
-118.058406	
Site Class	
537 m/s (Site class C)	

Deaggregation

Component

Total

Summary statistics for, Deaggregation: Total

Deaggregation targets

Return period: 475 yrs

Exceedance rate: 0.0021052632 yr⁻¹ **PGA ground motion:** 0.094098405 g

Recovered targets

Return period: 482.84091 yrs

Exceedance rate: $0.0020710755 \text{ yr}^{-1}$

Totals

Binned: 100 % Residual: 0 % Trace: 0.38 %

Mean (for all sources)

r: 33.9 km **m:** 6.36 **ε₀:** -0.06 σ

Mode (largest r-m bin)

r: 11.7 km m: 5.1 ε₀: 0.1 σ

Contribution: 5.26 %

Mode (largest ε₀ bin)

r: 14.62 km m: 5.3 ε₀: 0.23 σ

Contribution: 1.71 %

Discretization

r: min = 0.0, max = 1000.0, Δ = 20.0 km **m:** min = 4.4, max = 9.4, Δ = 0.2 **ε:** min = -3.0, max = 3.0, Δ = 0.5 σ

Epsilon keys

ε0: [-∞ .. -2.5)

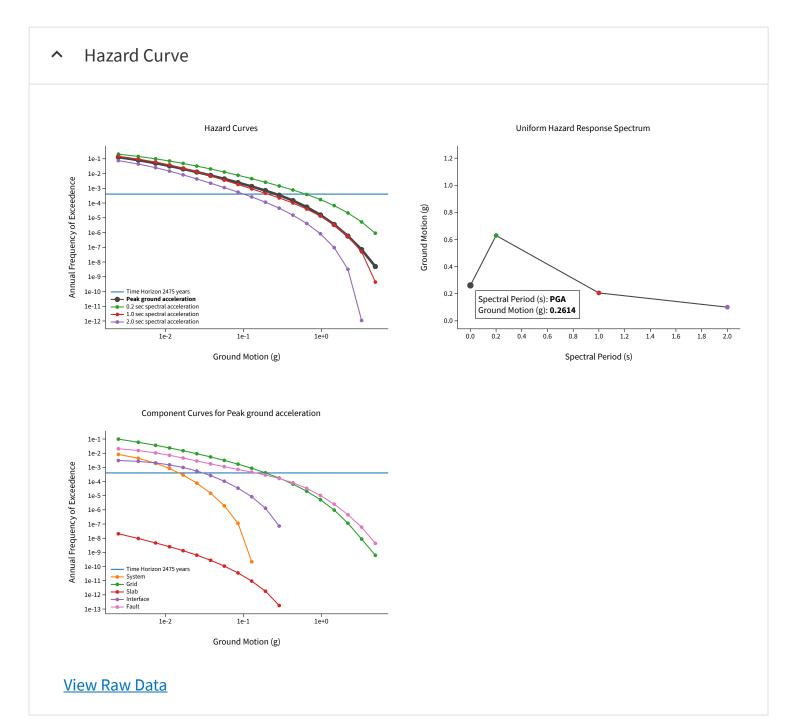
ε1: [-2.5 .. -2.0) **ε2:** [-2.0 .. -1.5) **ε3:** [-1.5 .. -1.0) **ε4:** [-1.0 .. -0.5) **ε5:** [-0.5 .. 0.0) **ε6:** [0.0 .. 0.5)

ε8: [1.0 .. 1.5) **ε9:** [1.5 .. 2.0) **ε10:** [2.0 .. 2.5)

ε7: [0.5 .. 1.0)

ε11: [2.5 .. +∞]

Deaggregation Contributors

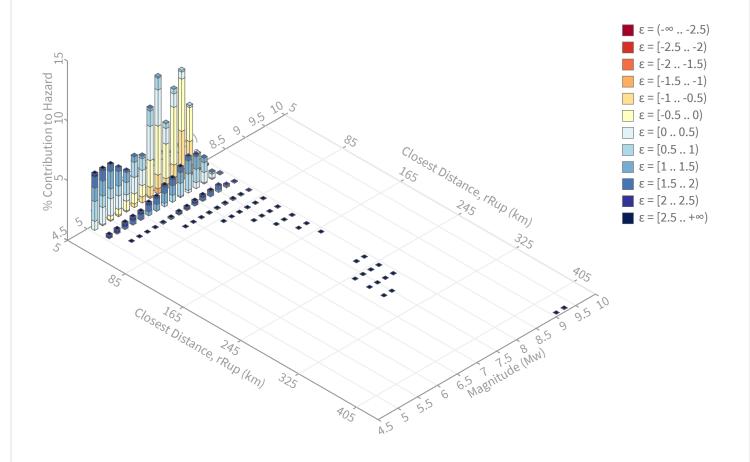

Source Set 😝 Source	Туре	r	m	ε ₀	lon	lat	az	%
EXTmap_2014_fixSm.ch.in (opt)	Grid							25.92
PointSourceFinite: -118.058, 41.808		12.21	5.66	-0.49	118.058°W	41.808°N	0.00	2.59
PointSourceFinite: -118.058, 41.817		12.98	5.70	-0.44	118.058°W	41.817°N	0.00	1.73
PointSourceFinite: -118.058, 41.916		22.13	5.94	0.17	118.058°W	41.916°N	0.00	1.53
PointSourceFinite: -118.058, 41.736		6.34	5.52	-1.24	118.058°W	41.736°N	0.00	1.34
PointSourceFinite: -118.058, 41.853		16.31	5.78	-0.16	118.058°W	41.853°N	0.00	1.22
PointSourceFinite: -118.058, 41.745		6.92	5.58	-1.19	118.058°W	41.745°N	0.00	1.21
EXTmap_2014_adSm.ch.in (opt)	Grid							15.26
PointSourceFinite: -118.058, 41.808		12.21	5.66	-0.49	118.058°W	41.808°N	0.00	1.50
Geologic Model Partial Rupture	Fault							14.02
Santa Rosa system 50		27.25	6.91	-0.53	117.738°W	41.701°N	90.89	2.78
Montana Mountains - Desert Valley 50		10.92	6.85	-1.64	118.129°W	41.714°N	279.68	1.74
Steens 50		56.17	6.99	0.80	118.756°W	41.752°N	275.44	1.48
Hoppin Peaks 50		16.74	6.87	-1.11	117.963°W	41.684°N	106.50	1.43
Santa Rosa system 35		22.65	6.90	-1.16	117.738°W	41.701°N	90.89	1.0
EXTmap_2014_fixSm.gr.in (opt)	Grid							12.0
PointSourceFinite: -118.058, 41.808		12.27	5.64	-0.47	118.058°W	41.808°N	0.00	1.27
Geologic Model Full Rupture	Fault							7.55
EXTmap_2014_adSm.gr.in (opt)	Grid							7.10
EXTmap_2014_fixSm_M8.in (opt)	Grid							4.83
EXTmap_2014_adSm_M8.in (opt)	Grid							2.87
Zeng Model Partial Rupture	Fault							2.24
Bird Model Partial Rupture	Fault							2.13
Bird Model Full Rupture	Fault							2.07
Zeng Model Full Rupture	Fault							1.22
Geologic Model Small Mag	Fault							1.09

U.S. Geological Survey - Earthquake Hazards Program

Unified Hazard Tool

Please do not use this tool to obtain ground motion parameter values for the design code reference documents covered by the <u>U.S. Seismic Design Maps web tools</u> (e.g., the International Building Code and the ASCE 7 or 41 Standard). The values returned by the two applications are not identical.

Spectral Period
Peak ground acceleration
Time Horizon
Return period in years
2475



6/26/2019 Unified Hazard Tool

Deaggregation

Component

Total

6/26/2019 Unified Hazard Tool

Summary statistics for, Deaggregation: Total

Deaggregation targets

Return period: 2475 yrs

Exceedance rate: 0.0004040404 yr⁻¹ **PGA ground motion:** 0.26144707 g

Recovered targets

Return period: 2532.8945 yrs

Exceedance rate: $0.00039480524 \text{ yr}^{-1}$

Totals

Binned: 100 % Residual: 0 % Trace: 0.18 %

Mean (for all sources)

r: 14.46 km **m:** 6.57 **εο:** 0.39 σ

Mode (largest r-m bin)

r: 10.57 km **m:** 6.71 **ε₀:** -0.08 σ

Contribution: 9.8 %

Mode (largest ε₀ bin)

r: 8.1 km m: 7.09 ε₀: -0.29 σ

Contribution: 4.82 %

Discretization

r: min = 0.0, max = 1000.0, Δ = 20.0 km **m:** min = 4.4, max = 9.4, Δ = 0.2

ε: min = -3.0, max = 3.0, Δ = 0.5 σ

Epsilon keys

ε0: [-∞ .. -2.5) **ε1:** [-2.5 .. -2.0)

ε2: [-2.0 .. -1.5)

ε3: [-1.5 .. -1.0)

ε4: [-1.0 .. -0.5)

ε5: [-0.5 .. 0.0)

ε6: [0.0 .. 0.5)

ε7: [0.5 .. 1.0)

ε8: [1.0 .. 1.5)

ε9: [1.5 .. 2.0)

ε10: [2.0 .. 2.5)

ε11: [2.5 .. +∞]

Deaggregation Contributors

Source Set 😝 Source	Type	r	m	ε ₀	lon	lat	az	%
EXTmap_2014_fixSm.ch.in (opt)	Grid							20.3
PointSourceFinite: -118.058, 41.808		11.42	5.95	0.65	118.058°W	41.808°N	0.00	3.2
PointSourceFinite: -118.058, 41.736		6.26	5.64	0.10	118.058°W	41.736°N	0.00	3.0
PointSourceFinite: -118.058, 41.745		6.74	5.75	0.12	118.058°W	41.745°N	0.00	2.6
PointSourceFinite: -118.058, 41.817		12.01	6.04	0.65	118.058°W	41.817°N	0.00	2.1
PointSourceFinite: -118.058, 41.853		14.83	6.17	0.85	118.058°W	41.853°N	0.00	1.1
Geologic Model Partial Rupture	Fault							19.6
Montana Mountains - Desert Valley 50		7.79	6.90	-0.24	118.129°W	41.714°N	279.68	4.7
Santa Rosa system 50		22.88	6.97	0.84	117.738°W	41.701°N	90.89	2.9
Hoppin Peaks 50		11.64	6.93	0.15	117.963°W	41.684°N	106.50	2.7
Santa Rosa system 35		17.27	6.95	0.04	117.738°W	41.701°N	90.89	2.1
Montana Mountains - Desert Valley 65		7.53	6.90	-0.27	118.129°W	41.714°N	279.68	1.6
Montana Mountains - Desert Valley 35		8.10	6.91	-0.21	118.129°W	41.714°N	279.68	1.5
Geologic Model Full Rupture	Fault							14.9
Montana Mountains - Desert Valley 50		5.33	7.36	-0.65	118.129°W	41.714°N	279.68	3.2
Hoppin Peaks 50		8.30	7.36	-0.33	117.963°W	41.684°N	106.50	2.7
Santa Rosa system 50		22.47	7.50	0.44	117.738°W	41.701°N	90.89	1.3
Montana Mountains - Desert Valley 65		5.33	7.36	-0.65	118.129°W	41.714°N	279.68	1.0
Montana Mountains - Desert Valley 35		5.33	7.36	-0.65	118.129°W	41.714°N	279.68	1.0
EXTmap_2014_adSm.ch.in (opt)	Grid							11.6
PointSourceFinite: -118.058, 41.808		11.41	5.95	0.64	118.058°W	41.808°N	0.00	1.9
PointSourceFinite: -118.058, 41.736		6.26	5.64	0.10	118.058°W	41.736°N	0.00	1.7
PointSourceFinite: -118.058, 41.745		6.74	5.75	0.12	118.058°W	41.745°N	0.00	1.5
PointSourceFinite: -118.058, 41.817		12.01	6.04	0.65	118.058°W	41.817°N	0.00	1.1
EXTmap_2014_fixSm.gr.in (opt)	Grid							9.1
PointSourceFinite: -118.058, 41.808		11.53	5.92	0.68	118.058°W	41.808°N	0.00	1.5
PointSourceFinite: -118.058, 41.736		6.38	5.58	0.17	118.058°W	41.736°N	0.00	1.4
PointSourceFinite: -118.058, 41.745		6.74	5.75	0.12	118.058°W	41.745°N	0.00	1.3
PointSourceFinite: -118.058, 41.817		12.01	6.04	0.65	118.058°W	41.817°N	0.00	1.0
EXTmap_2014_adSm.gr.in (opt)	Grid							5.2
Bird Model Full Rupture	Fault							3.9
Eastern Bilk Creek Mountains 50	rautt	13.00	6.76	-0.15	118.262°W	41.706°N	270.59	1.1
EXTmap_2014_fixSm_M8.in (opt)	Grid							3.8
Bird Model Partial Rupture	Fault							3.4
Zeng Model Partial Rupture	Fault							3.0
Zeng Model Full Rupture	Fault							2.3
EXTmap_2014_adSm_M8.in (opt)	Grid							2.2

APPENDIX E Hydrology and Hydraulic Calculations

CALCULATION BRIEF

9400 Station Street Suite 300 Lone Tree, CO 80124

T: 720.508.3300 F: 720.508.3339

Project: Thacker Pass Project

Project No: 475.0385.000

Subject: Stormwater Calculation Package

Date: 31 March 2020

1.0 STORMWATER MANAGEMENT PLAN OVERVIEW

The Thacker Pass Stormwater Management Plan for the Plan of Operations (POO) project area includes the facilities for the immediate production plan as well as the future expansion area. Areas of disturbance, including the Coarse Gangue Stockpile (CGS), East and West Waste Rock Storage Facilities (WRFs), and the Clay Tailings Filter Stack (CTFS) were studied specifically as these areas have the most potential to affect the runoff quantity and quality. The goals of the Stormwater Management Plan are to:

- Divert stormwater around the mine facilities and discharge to downstream natural drainageways
- Convey sediment-laden stormwater runoff to stormwater ponds for settling and gradual release.

The Thacker Pass Project is located approximately 20 miles west-northwest of Orovada, 62 miles north-northwest of Winnemucca, between the Kings River Valley to the west, the Quinn River Valley to the east, the Montana Mountains to the north, and the Double H Mountains to the south in an area known as Thacker Pass. The elevation in the Project area ranges from approximately 4,200 to 5,650 feet above mean sea level (amsl).

The project uses existing and natural drainageways in the stormwater management plan wherever practicable (see the figures in Appendix E.2.1). Figure 1 shows the project area straddling the Quinn and King River Valley Hydrographic basins. Site runoff flows north to southeast within the Quinn Basin and north to southwest in the King River Basin. Much of the site runoff drains into an existing natural drainageway running roughly parallel to SR 293 at the southern border of the boundary; this drainageway exists on both sides of the hydrographic boundary and is divided at the high point south of the pit. Flow east of this point discharges into Crowley Creek. Site runoff from within Kings River Basin flows into Thacker Creek.

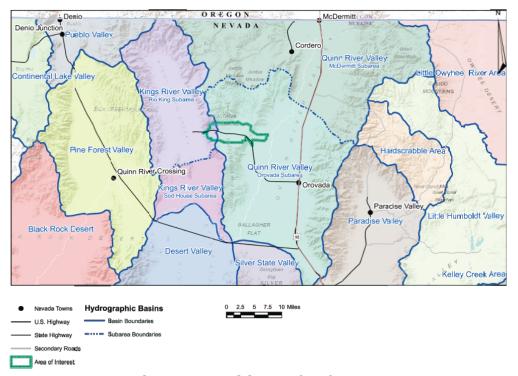


FIGURE 1. HYDROGRAPHIC BASIN MAP

Figure 2 breaks the project area and upstream watersheds into subareas that impact the proposed facilities. Table 1 identifies the watershed subarea(s) associated with the major mine facilities included in this stormwater plan (see Figure 000 in Appendix E.2.1). The area within the CTFS is not included in the watersheds shown; stormwater generated within this area will be captured and treated separately from stormwater external to the CTFS within the Reclaim Pond (see Reclaim Pond filling curve in Appendices attached).

TABLE 1. FACILITY AND SUBAREAS

Facility	Subarea				
West WRSF	6				
East WRSF	3C				
CGS	4B				
CTFS West	4, Subcatchment B and C				
CTFS North	CTFS North Subareas A and B				

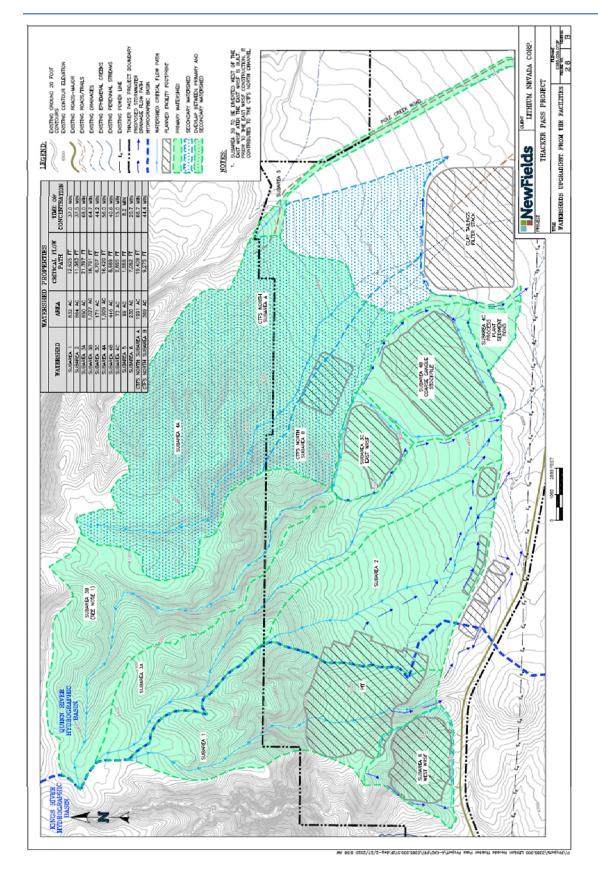


FIGURE 2. HYDROGRAPHIC BASIN MAP

1.1 Subareas 1 and 6

Subareas 1 and 6 (West WRSF) are located within the Kings River Hydrographic Basin and runoff generally flows to the southwest. Subarea 1 has an area of 832 acres, an average watershed slope of 23.9%, and is thinly vegetated with desert flora. There is natural drainageway spanning the basin from the northeast to the south, where it crosses the haul road and SR 293 and discharges into the southern drainageway. After the pit has been constructed, the runoff from the watershed north of the pit will be diverted west into a natural drainage that continues off-site and into Thacker Creek.

A ridge on the southeastern border of Subarea 1 separates its drainage basin from Subarea 6, on which the West WRSF will be constructed. Subarea 6 has an area of 230 acres and an average watershed slope of 21.9%. Runoff from the watershed currently flows southwest, across SR 293, and into Thacker Creek.

1.2 Subarea 2

Subarea 2 is located east of Subarea 1 and south of Subarea 3A. It has an area of 864 acres, and average watershed slope of 9.5%, and is currently sparsely vegetated. There is a natural drainageway that begins at the toe of a ridge at the northern tip of the basin, continues south and currently discharges into the southern drainageway. Eventually the pit will expand across this basin; the ultimate footprint will leave approximately 63 acres north of the pit. This stormwater will need to be captured or diverted east to Subarea 3.

1.3 Subarea 3

Subarea 3 was sub-divided into three watersheds. All will discharge to the proposed culvert southwest of the CGS and east of the growth media stockpiles. Subareas 3A and 3B extend north of the project boundary and discharge into natural drainages traversing the project site; both are primarily covered by desert vegetation and will remain so during mine operation.

Subarea 3A has an area of 850 acres and an average watershed slope of 16.7%. At full expansion of the pit, the Subarea 3A channel will need to be routed around the eastern pit boundary.

Subarea 3B has an area of 1,027 acres and an average watershed slope of 24.8%. There is a ridge at the watersheds outlet of Subarea 3B that has the potential to split the channelized flow; most stormwater continues east, where it merges with the natural drainageway within Subarea 4A. However, when the East WRSF is constructed runoff from Subarea 3B will be diverted to the west, where it will discharge to the natural channel in the lower portion of Subarea 3A.

Subarea 3C includes the area that will be the East WRSF. It has an area of 171 acres and average watershed slope of 6.0%. Prior to mine construction, runoff flows from the northwest to the southeast and does not form or enter into any major channels within the watershed. Runoff starts to channelize within Subarea 4B and eventually discharges into Crowley Creek. However, once the East WRSF is operational the runoff will be directed to the respective sediment basin before releasing over time into Subarea 3A. A mine road and stormwater channel is planned between Subareas 3C and 4B, diverting runoff from Subarea 3C to the west, where it will be discharged into the Subarea 3A drainageway.

1.4 Subareas 4 and 5

Subareas 4 and 5 generate runoff that naturally flows through the CTFS area or along its boundary. Subarea 4 is divided into 3 watersheds. Subarea 4A lies north of the CTFS and has an area of 1,875 acres and average watershed slope of 18.7%. Its runoff flows into a natural drainageway that bisects the CTFS from northwest to south. Subarea 4B is the area that will be the ultimate footprint of the CGS; it has an area of 446 acres and an average watershed slope of 6.1%. Its stormwater naturally channelizes on the eastern side of the basin and discharges into the southern drainageway. During mine operation, the stormwater will follow roughly the same drainage pattern, but will be collected into the CTFS perimeter stormwater channel prior to discharge to the drainageway.

Subarea 4C includes the Process Plant area and upstream of the southwestern-most point of the CTFS. The majority of the subarea is downstream (south) of the CGS; however, there is a sliver of watershed that lies between the eastern CGS boundary and the western CTFS boundary. Subarea 4C has an area of 73 acres and average watershed slope of 4.8%.

Subarea 5 is the area which contributes stormwater to the eastern CTFS boundary. It extends to a ridge just north of the project boundary and includes a long sliver of area east of the CTFS. This section of the Quinn River hydrographic basin upstream of the proposed facilities flows to the southeast; the area east of the CTFS in Subarea 5 does not intersect the CTFS stormwater diversion channel along its boundary until the potential future CTFS limits. Subarea 5 has an area of 99 acres and an average watershed slope of 4.81%.

1.5 Process Plant Facility Culvert Watersheds

A separate HEC-HMS model was created to analyze the flow reporting to the culverts under the mine entrance roads, south of the Process Plant Facilities, and generated within the parking lot, located west of the Plant buildings. Two mine entrance roadways – one for reagent trucks and

one for general entry – are currently incorporated in the mine plan. These cross the major natural drainageway to which most of the project area drains. The tributary area includes Subareas 2 and 3, which are discussed in sections 1.2 and 1.3 respectively. Subarea 1 drains west and Subarea 4 discharges to the drainageway east of the roadway crossing. Two additional watersheds extending south of SR293 contribute runoff to the entrance road drainage crossings.

Watershed South Drainage 1 (reference figure 007 in Appendix E.2.1) has an area of 3,997 acres, an average watershed slope of 14.1%, and is covered by sparse desert vegetation. It extends from the south mine road, which is the southern boundary of Subareas 1, 2 and 3A, to the ridge that runs approximately 3 miles south of SR 293. Runoff within the watershed will drain to the northeast and enter the existing channel. Eight CMP culverts, ranging in size between 24" and 30" diameter, cross the highway between mile posts 20.7 and 18.3. Watershed South Drainage 2 is located east of South Drainage 1 and south of SR 294. It has an area of 108 acres, and average watershed slope of 3.9%, and also has sparse desert vegetation. It drains to the northeast to the area between the two entrance roadways. The area between the entrance roads and north of SR 293 is the Guard Shack Watershed, as the guard shack will be located directly north of the watershed. It has an area of 18.7 acres and an average watershed slope of 6.5%.

Roads in the Process Plant Facilities area will be designed by others; however, it was assumed for the watershed delineation that stormwater upstream of the Process Plant Facilities parking lot perimeter road would be diverted along a roadside ditch to the main channel. The Parking Lot watershed comprises of the parking lot area only and has an area of 7.8 acres and an average watershed slope of 5%. Runoff flows to the southeast and currently discharges into the existing main channel.

The existing drainageway in the vicinity of the mine entryway crossing has a wide and shallow geometry. It has a channel bottom width of approximately 290 feet and side slopes of approximately 3.5H:1V on the north bank and 15H:1V on the south bank. During the 100-year 24-hour peak flow, the channel flows approximately 2 feet deep.

2.0 SUMMARY OF METHODOLOGY

This stormwater management plan pertains to the planned facility layout and runoff generated during the initial operation, with the exception of the CTFS East and West stormwater diversion channels, which are designed for the ultimate CTFS configuration.

Hydrologic and hydraulic analyses were conducted to determine the flow rates to each of the stormwater facilities, find the required channel and pond capacities, culvert sizing and calculate the riprap and other channel and pond protection requirements.

2.1 Hydrology

HEC-HMS was used to determine the peak flow rates and total runoff volumes from various design storms. Point precipitation estimates were obtained from NOAA precipitation estimates for the Orovada, NV (41.696° latitude, -118.0206° longitude) and were assumed to have an SCS Type 2 design storm distribution. Table 2 shows the point precipitation depths for the storm events included in this design and the facilities for which they were applied.

TABLE 2: POINT PRECIPITATION ESTIMATES

Design Storm	Precipitation	Facility Design			
2 year – 24 hour 1.13 inches		Sediment Ponds			
25 year – 24 hour 1.96 inches		Sediment Ponds; Culverts			
100 year 24 hour	2.48 inches	Pond Spillways; Stormwater Channels;			
100 year – 24 hour	2.40 11101165	CTFS Conveyer Corridor Culverts			
500 year – 24 hour	3.12 inches	Stormwater Channels			

The project site is nearly entirely composed of type D soils and it is assumed for the hydrologic analysis that all natural ground areas are characterized by type D soil with a poor covering of sagebrush and grass (CN=85). All disturbed areas are assumed to have runoff properties of gravel roads in type D soil. A HEC-HMS model was run for both the ultimate facility layout and the intermediate (phase 1) facility layout. Hydrologic assumptions, inputs, and model results for each are located in section Appendix E.2.

2.2 Channel Sizing

FlowMaster was used to determine the required channel depths for the CTFS stormwater diversion channels and the minimum spillway depths of the sediment ponds. These structures were sized to convey the 100 year-24 hour peak flow with one foot of freeboard. The stormwater diversion channels were also sized to convey the 500 year-24 hour peak runoff within the full channel depth for stormwater diversions that will operate into closure (100-year peak flow depth and freeboard).

Riprap was sized according to the procedure established by Hydraulic Engineering Circular No. 15: Design of Roadside Channels with Flexible Linings (USDOT 2005). As riprap requirements were determined, Flowmaster was updated with the HEC-15 manning's roughness coefficient estimate. Channel and riprap sizing calculations are arranged by channel in Appendix E.3. A summary of the channel requirements is included in Appendix E.1.

2.3 Pond Sizing

Sediment ponds were sized to fully contain the runoff volume generated by the 2-year 24-hr storm event and to fully discharge both the 2-year and 25-year events within 48-72 hours through a riser pipe. The vertical riser pipe outlet has perforations along its circumference to allow for a gradual release from the pond until the water surface rises above the top of pipe elevation. Water above this elevation flows through the open end of the pipe (protected by a steel grate). As the ponded water depth increases, the head on the perforations and the orifice increase, yielding greater flow rates through the outlet.

CAD-generated sediment pond filling curves are included in Appendix E.3.8. Appendix E.3.9 contains the riser pipe sizing calculations and results. Each pond was sizing by inputting the HEC-HMS inflow hydrograph, the pond filling curve, and the riser pipe elevation-discharge curve into an iterative pond balance that calculated the resulting maximum water surface elevation and drain time. The riser pipe height and perforation schedule, or the pond dimensions were modified as necessary to fulfill the design requirements.

2.4 Culvert Sizing

Culverts, including those at road and conveyor crossings across the CTFS West channel and the sediment pond riser pipe outlets, were sized using CulvertMaster. Pipe end elevations, lengths, slopes, and available headwater depths were obtained from CAD-generated cross sections. The CTFS stormwater culverts were sized to convey the 100 year-24 hour peak runoff, as the conveyor corridors and lithium process area are critical areas. Sediment pond pipe outlets were verified to have a minimum capacity of the riser pipe peak inflow.

The entrance road (guard shack) culverts are sized to convey the 25 year – 24 hour peak runoff. Runoff from larger storms may overtop roadways but will flow away from the process facilities. The culverts were also sized using CulvertMaster. These were assumed to have invert elevations matching the existing ground and a minimum roadway cover of 4 feet above the tops of the pipe. It was assumed that stormwater generated south the SR 293 will be conveyed along the roadway and will not contribute to the process plant stormwater.

2.5 Stormwater Controls By Others

The Mine Shop, ROM stockpile, growth media stockpile, haul road diversions, associated culverts and sediment basins were performed by North American Coal. The supporting calculations reviewed and approved by NewFields are included within this Appendix. The associated drawings to support the design elements may be found in the Issued for Construction Drawings included with the Engineering Design Report. These documents follow the same approach, standards, and

design criteria for sizing as NewFields performed for the other stormwater controls discussed within this calculation brief.

3.0 STORMWATER FACILITIES

3.1 Clay Tailings Filter Stack (CTFS) Stormwater Diversion Channel

The analysis and design of the CTFS diversion channel was broken out by project phase (initial and ultimate), and by diversion path along the facility (west and east/north). The downstream portion of the West CTFS diversion channel will be built to the ultimate facility requirement. It will be extended to the north along the facility boundary when the CTFS is expanded to its ultimate footprint. The North CTFS channel follows the north initial facility boundary and will be covered during construction of the ultimate facility. The East CTFS stormwater channel will be built when the facility is expanded to its ultimate layout.

3.1.1 West CTFS Channel

The West CTFS channel is designed for the 100yr-24hr peak flow rate from the ultimate facility tributary watershed (2320 ac). The West channel is adjacent to and follows the stationing of the CTFS perimeter haul road between sta. 96+00 and sta. 179+35. Downstream of 96+00, the channel continues south and discharges into the Quinn River. This section of channel is referred to as the CTFS West Outlet channel in the design. During the initial construction, the CTFS west diversion channel upstream of the CTFS West Outlet channel will only be built from station 96+00 to 105+00 (sta. 69+85 to 80+40 of the initial perimeter haul road alignment) and will have a tributary area of 107 ac. The 100-year 24-hour peak flow rate to the downstream channel, including discharge from the CGS sediment pond, is 468 cfs during the initial project phase and 1,348 cfs during at its ultimate construction.

The minimum channel depth is 6 feet from the top of riprap to the top of channel and includes a foot of freeboard above the 100yr-24hr peak flow rate. The freeboard provides additional channel capacity for the 500yr-24hr peak flow rate. The CTFS West Outlet channel is intersected by the haul road intersection at sta.27+50, the tailings conveyor crossing at sta. 19+35, and the salt conveyor corridor at sta. 14+30. CMP culverts will be installed under the crossings at these locations. To convey the 100-year peak flow, five (5) 60-inch culverts are required under the haul road crossing and six (6) 60-inch culverts are required under each of the conveyor corridors. Reference Appendix E.3.3 for the channel and riprap sizing supporting calculations.

3.1.2 North CTFS Channel

The North CTFS channel is temporary and will be covered by the ultimate CTFS facility. It flows adjacent to the initial CTFS northern boundary and discharges on the facility's east side into a natural drainageway. Although the West CTFS channel will be built with the capacity to convey the ultimate facility peak stormwater flows, the majority of the CTFS west tributary area (2213 ac) will contribute to the North CTFS channel during the initial project phase. The North CTFS channel will also receive the runoff from watershed Subarea 3B (1027 ac) until the East WRSF is constructed to its ultimate arrangement.

At its discharge point, the peak discharge is 13,339 cfs during the 100yr-24hr storm event. This peak flow takes into account upstream channel losses from the natural drainageway adjacent to the northern East WRSF boundary and from the initial 1400 feet of the North CTFS channel.

Because it traverses CTFS roughly perpendicular to the natural drainage path, the longitudinal slope is mild in comparison with the West CTFS channel. Nevertheless, due to the high flow rate, an 80 foot bottom width is required to avoid the use of riprap in the majority of the channel. At station 44+00 the channel steepens and riprap is required from this point to the outlet. Reference Appendix E.3.1 for the channel and riprap sizing supporting calculations.

3.1.3 East CTFS Channel

The East CTFS channel will be constructed during the ultimate phase of the CTFS facility. It receives stormwater from Subarea 5, which generates a peak flow rate of 137 cfs during the 100yr-24hr storm event. The channel has a bottom width of 12 feet and minimum required depth of 3.3 feet, including a foot of freeboard. Reference Appendix E.3.2 for the channel and riprap sizing supporting calculations.

3.2 Process Plant Sediment Pond

The Process Plant Sediment Pond is located east of the Lithium process plant facilities and west of the CTFS. It straddles a natural drainageway and utilizes the natural slope for detention. The pond design consists of an earthen embankment across the gully, excavation of the spillway channel, and the installment of the riser pipe outlet and protection. The pond has a small tributary area (approximately 73 acres), and has a 25-year 24-hr peak inflow rate of 76 cfs and 2-year 24-hr total runoff volume of 2.7 ac-ft.

Table 3 summarizes the critical pond volumes and elevations. A 24-inch diameter riser pipe with a perforation height of 4.5 feet is required. The downstream outlet will be protected by D50 =

12" riprap. At maximum pond capacity, the riser pipe as a peak discharge of 30 cfs. Provided optimum operating conditions, the 2-year storm will be fully discharged from the pond in approximately 55 hours and the 25-year storm will be fully discharged in 58.5 hours.

3.3 Coarse Gangue Stockpile (CGS) Sediment Pond

The CGS Sediment Pond is located southeast of the CGS facility, south of the haul road. Stormwater from the CGS will be diverted around the stockpile and though a culvert under the road and into the sediment pond. Stormwater from between the process plant area and the CGS facility will be collected in a diversion ditch and will enter the pond from the northwest. The pond embankment will be protected by riprap at both of these main inflow areas. The riser pipe is located at the southeast corner of the pond and the spillway is placed along the eastern pond embankment. Rip-rap protected channels will convey outflow from the riser pipe outlet and the spillway into the CTFS West Outlet channel, at approximately station 25+00. The 25-year peak inflow rate to the pond is 255.4 cfs and the 2-year 24-hr total runoff volume is 16.8 ac-ft.

See Table 3 for critical pond volumes and elevations. A 42-inch diameter pipe is required for the riser pipe, with a perforation height of 6 feet. At the maximum pond capacity, the riser pipe will have a peak discharge of 136.9 cfs. Given optimum operating conditions, the 2-year and 25-year storms will be fully discharged from the pond in approximately 58.3 hours and 64.8 hours, respectively.

3.4 East Waste Rock Storage Facility (East WRSF) Sediment Pond

The East WRSF Sediment Pond is located at the southwestern corner of the East WRSF facility, north of the haul road intersection. As the natural drainage tends to go uniformly southeast, fill will be placed as necessary to divert runoff from the facility into the pond. Stormwater from the north will be diverted along a constructed berm and into the pond. Riprap will be used to protect the pond embankment at the two main inflow locations, at the northwest and southeast corners of the pond. The riser pipe is located in the southwest corner of the sediment pond. The outlet pipe from the riser will be extended under the haul road intersection and will discharge to the Subarea 3A drainageway. The 25-year 24-hr storm will generative a peak flow of 92 cfs to the pond, and the 2-year 24-hr storm will have a total volume of 6.4 ac-ft reporting to the pond.

Table 3 summarizes the critical pond volumes and elevations. A 36-inch diameter riser pipe with a perforation height of 2 feet is required. At the maximum pond capacity, the riser pipe will have a peak discharge of approximately 77 cfs. Given optimum operating conditions, the 2-year 24-hr

storm will have a drain time of approximately 60.3 hours. The 25-year 24-hr storm will have a drain time of approximately 63.3 hours.

3.5 West Waste Rock Storage Facility (West WRSF) Sediment Pond

Runoff generated within the West WRSF by storms equivalent to or smaller than the 100yr-24hr event (30.4 ac-ft) will be contained within the West WRSF sediment basin retention pond. This pond does not have an outlet and will thus need to be pumped after each storm event to ensure adequate capacity during subsequent storms. The pond spillway is designed to convey the 500-year 24-hour peak runoff rate with 1 foot of freeboard. Discharge from the spillway will flow into a natural drainageway to the west of the facility.

TABLE 3: SUMMARY OF SEDIMENT POND CRITICAL ELEVATIONS AND VOLUMES

	Process Plant Sediment Pond	CGS Sediment Pond	East WRSF Sediment Pond	West WRSF Sediment Pond
Sediment Storage	4675.0 ft	4733.0 ft	5001.5 ft	4702.0 ft
Sediment Storage	(34 CY)	(4,953 CY)	(2,023 CY)	(6,550 CY)
Ton of Discus Disco	4679.5 ft	4739.0 ft	5003.5 ft	not applicable
Top of Riser Pipe	(0.6 Mgal)	(3.64 Mgal)	(0.95 Mgal)	not applicable
Spillway	4681.0 ft	4742 ft	5005.5 ft	4709.0 ft
Spillway	(1.32 Mgal)	(5.83 Mgal)	(1.99 Mgal)	(10.1 Mgal)
Pond Crest	4683.0 ft	4745.0 ft	5008.0 ft	4712.0 ft
Poliu Crest	(3.08 Mgal)	(8.29 Mgal)	(3.40 Mgal)	(15.1 Mgal)

3.6 Process Plant Facility Culverts

The stormwater design plan includes four culvert sites within the Process Plant Facility and entry way areas. Stormwater generated within the parking lot will have a 25-year 24-hr peak flow of 10 cfs. AN 18-inch diameter CMP culvert will convey stormwater from the northern half of the parking lot to a constructed channel along the southern boundary of the process plant facilities and into the Process Plant Sediment Pond for sediment settling and slow release. The southern half of the parking lot will drain to the southeast corner of the lot, where a 12-inch CMP culvert will allow the stormwater to exit the lot and discharge into the existing drainageway.

In the 25-year 24-hour storm, a peak flow of 1,882 cfs will report the reagent truck entrance road at the channel crossing. A peak flow of 1,914 cfs will report to the eastern entry road where it

crosses the drainageway. Six (6) 60" diameter CMP culverts are required at each crossing and both culvert crossings are outlet-controlled and require and a roadway embankment height of approximately 18 feet. Because the existing drainageway is very wide in this area, adequate spacing of the culverts will be available without additional fill or cut into the drainageway.

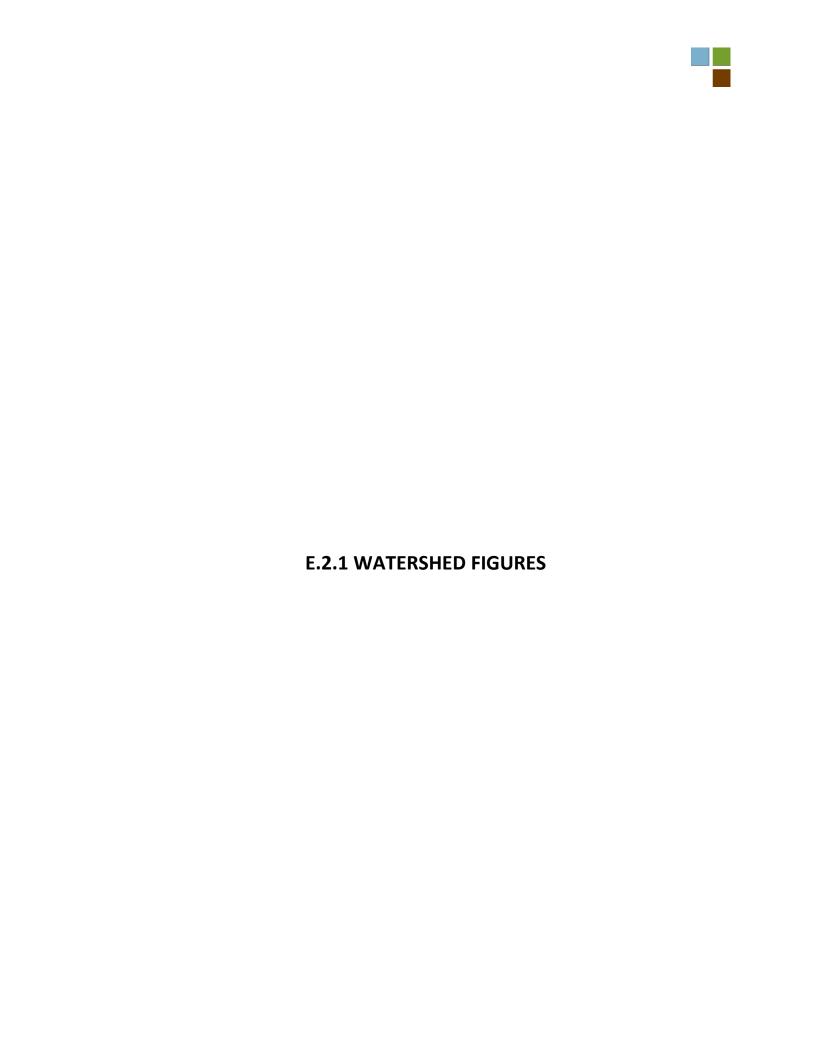
4.0 REFERENCES

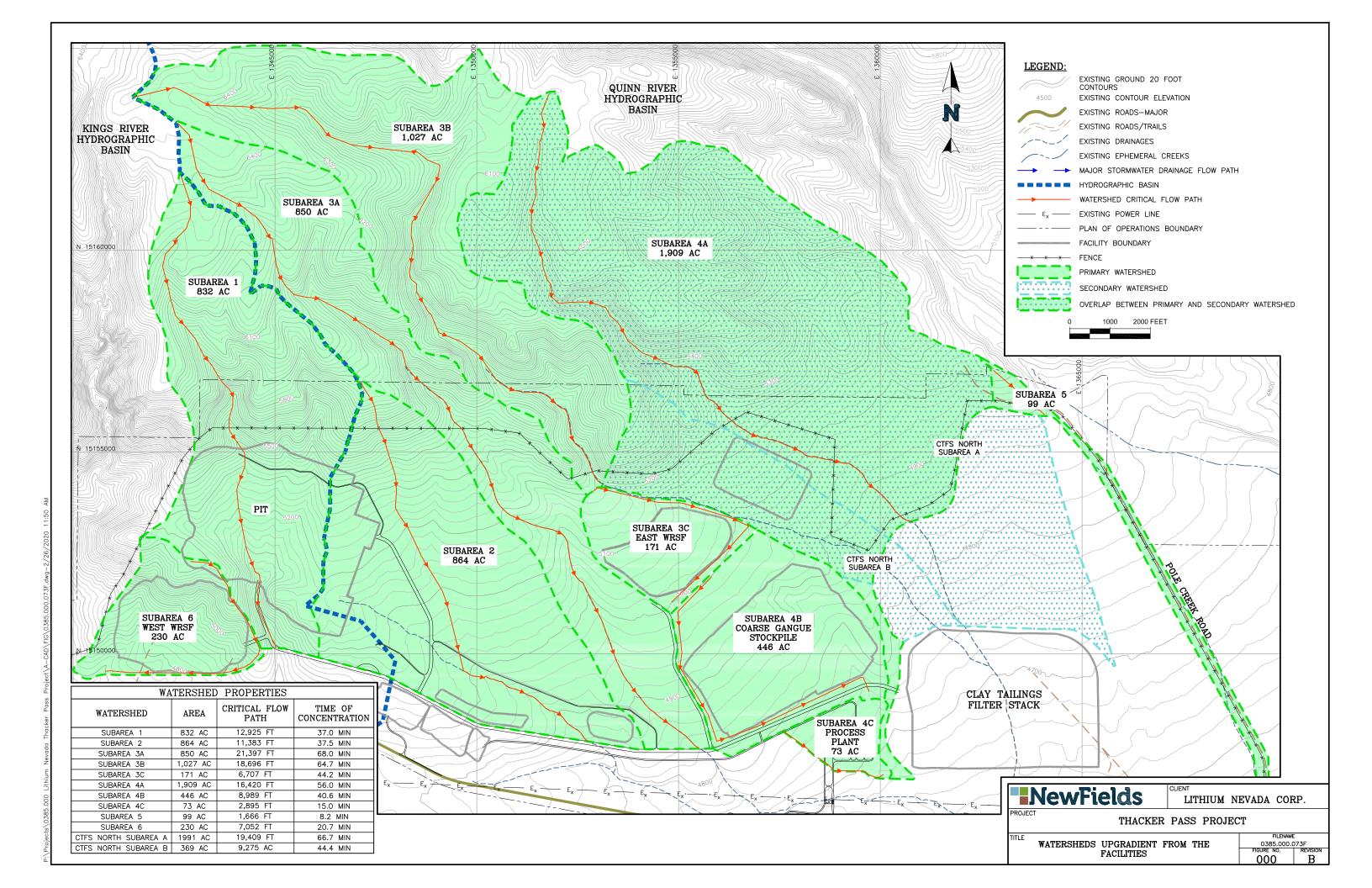
Bentley Systems (2009). Bentley FlowMaster (V8i-SLELECTseries 1) [Software]. Available from http://www.bentley.com

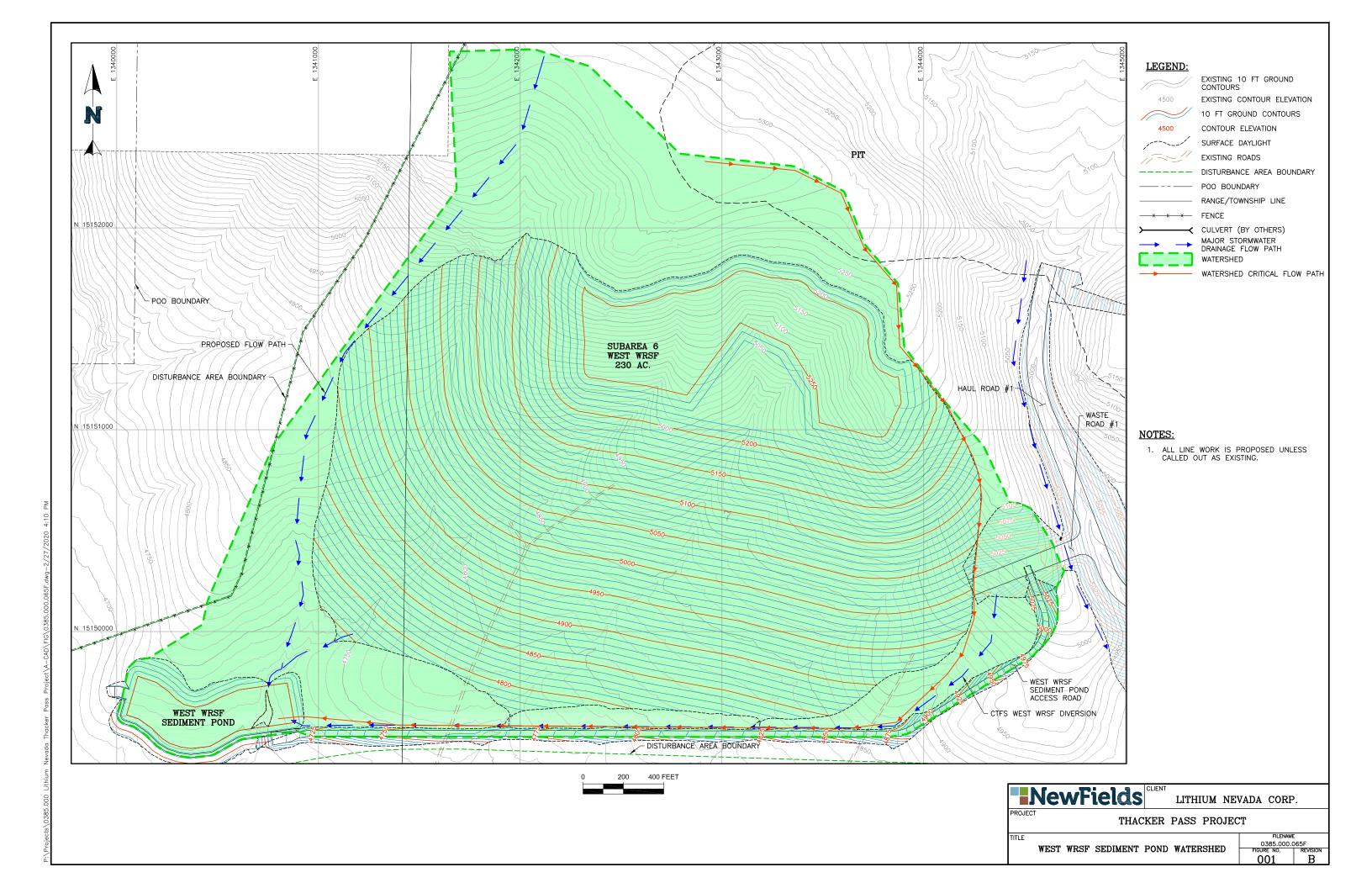
APPENDIX E.1 Channel and Culvert Design Summary

Lithium Nevada Corporation Thacker Pass Project Project Site Stormwater Facilities Flow Summary and Channel Design

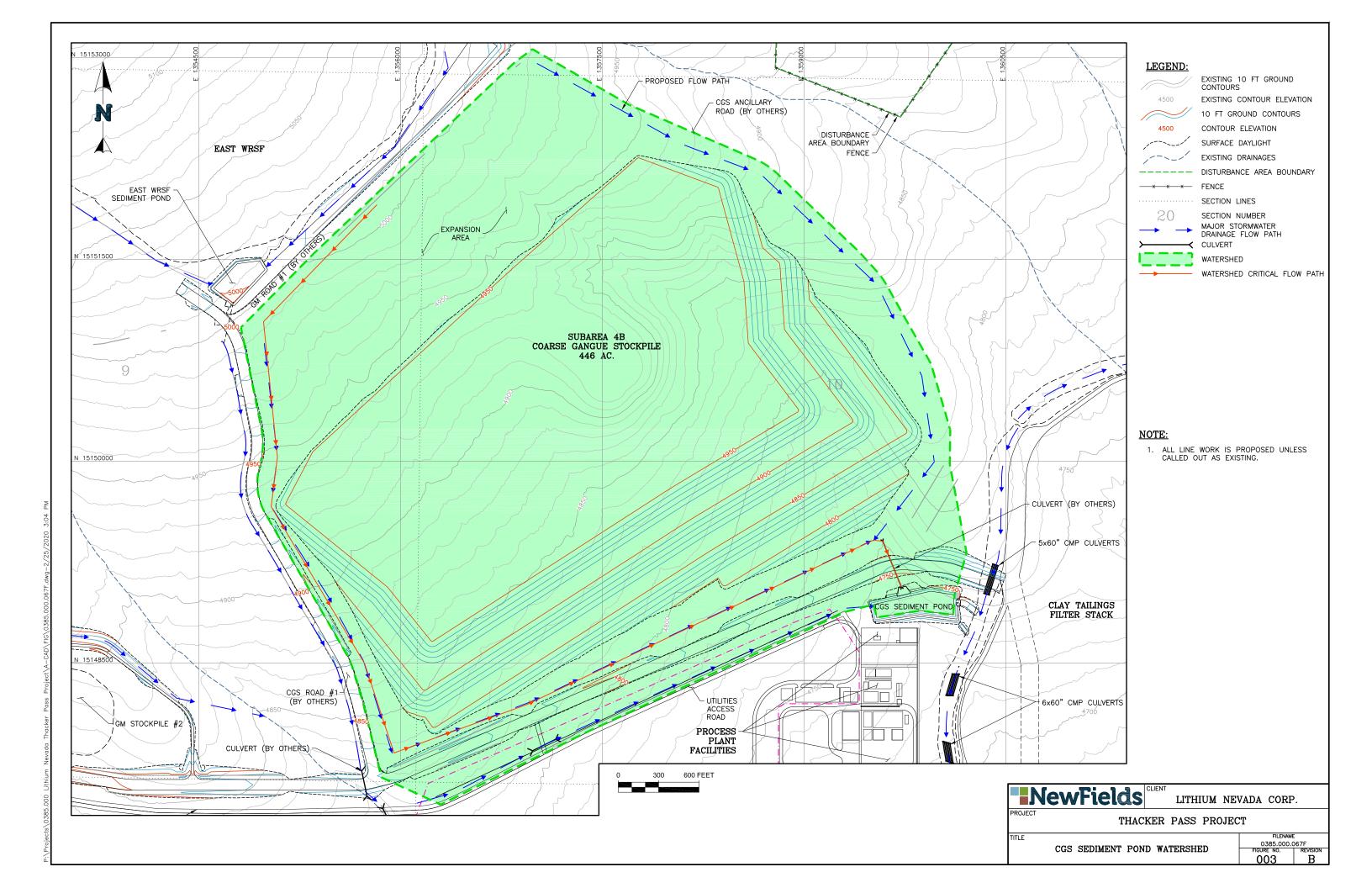
Design Element			Percent of Watershed Area Contributing	Slope (ft/ft)	Riprap Design Flow 100yr, 24h (cfs)	500yr, 24hr Flow at Closure (cfs)	Erosion Protection (D ₅₀ , in)	Roughness Coefficient		Channel Side Slopes (X:1)	Velocity (ft/s)	Froude Number	100yr Flow Depth (ft)	500yr Flow Depth (ft)	Design Depth Including Freeboard (ft)	Notes
						ı	hase 1									
Subarea 6	Descr	iption			295	403.2										
West WRSF East Diversion	Тур	ical	20.8%	0.22	61.40	83.92		0.035	2	3.5-21.7	9.91	2.94	0.54	0.64	2	
West WRSF South Diversion	Тур	ical	65.8%	0.045	194.1	265.27	9	0.035	1	2.5 -19	3.90	0.72	1.48	2.24	3	
West WRSF West Natural Diversion	Тур	ical	34.2%	0.11	100.9	137.93		0.035	1	3.5-7	12.05	2.66	1.02	1.19	3	
Subarea 3C					130	178.1										
East WRSF East Natural Diversion	Mini	mum	29.4%	0.055	38.16	52.28		0.035	2	2.5-6	10.54	3.33	0.48	0.55	2	
East WRSF South Diversion	Тур	ical	67.9%	0.005	88.2	120.90		0.035	1	200-1000	1.08	0.41	0.38	0.43	2	
East WRSF West Natural Diversion	Mini	mum	32.1%	0.04	41.8	57.20		0.035	1	2.5-40	4.49	1.27	0.66	0.75	2	
Subarea 4B					361	493.3										
CGS East Natural Diversion	Mini	mum	39.4%	0.033	142.16	194.26		0.035	1	3.5-40	5.64	1.25	1.1	1.24	3	
CGS South Natural Diversion	Mini	mum	60.3%	0.015	217.8	297.63		0.035	1	2.5-25	5.23	0.91	1.77	2	3	
CGS West Natural Diversion	Mini	mum	26.4%	0.042	95.2	130.06		0.035	2	2.5-1000	2.56	1.13	0.28	0.32	2	
Subarea 3B & CTFS North Subareas A & B	Statio	oning			1344.3											
Phase 1 CTFS North Channel	0+00	14+00	41%	0.01	540.7			0.035	80	2.5	4.93	0.77	1.31	NA	2.5	Accounts for channel
Phase 1 CTFS North Channel	14+00	44+00	100%	0.01	1344.3			0.035	80	2.5	6.95	0.84	2.25	NA	3.5	loss in Reach-1 and
Phase 1 CTFS North Channel	44+00	55+91	100%	0.015	1344.3		6	0.052	80	2.5	7.89	1.01	2.0	NA	3	CTFS North Channel A
Subareas 4B and 4C	Statio	oning														
Phase 1 CTFS West Channel Outlet	0+00	13+75	100.0%	0.04	468.1		9	0.067	30	2.5	6.69	0.86	2.18	NA	4	
Phase 1 CTFS West Channel Outlet	13+75	20+40	94.7%	0.01	407.1		4	0.046	30	2.5	5.09	0.63	2.35	NA	4	
Phase 1 CTFS West Channel Outlet	20+40	25+00	91.9%	0.084	392.1		12	0.057	30	2.5	8.73	1.37	1.4	NA	3	
Phase 1 CTFS West Channel Outlet	25+00	27+00	42.6%	0.084	45.6		6	0.065	30	2.5	3.57	1	0.41	NA	2	
Phase 1 CTFS West Channel Outlet	27+00	28+00	27.9%	0.053	29.9		4	0.082	30	2.5	2.29	0.63	0.42	NA	2	
Phase 1 CTFS West Channel	71+35	80+40	27.9%	0.006	29.9			0.032	30	2.5	2.08	0.55	0.5	NA	2	

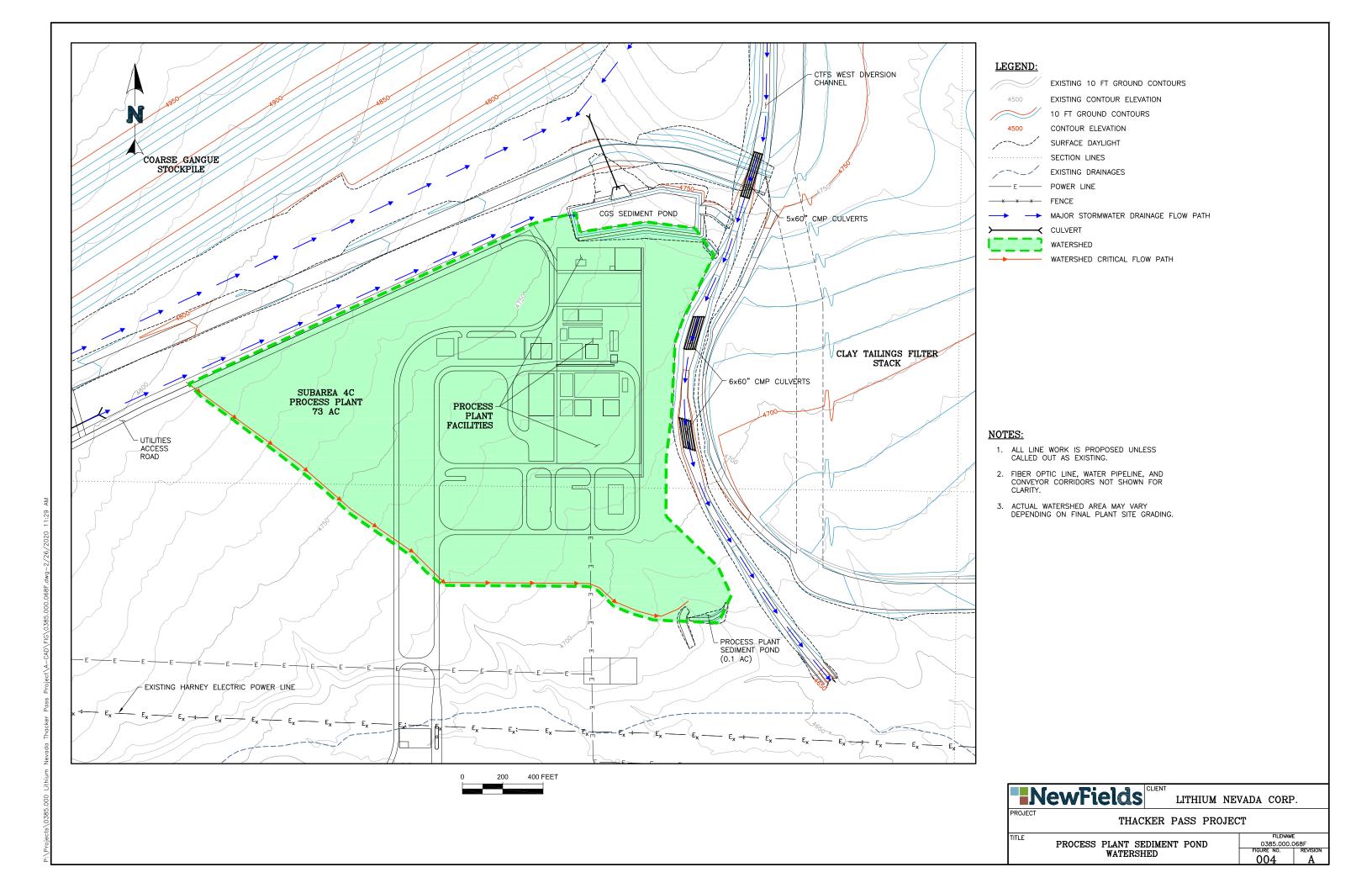

Lithium Nevada Corporation Thacker Pass Project Project Site Stormwater Facilities Flow Summary and Channel Design

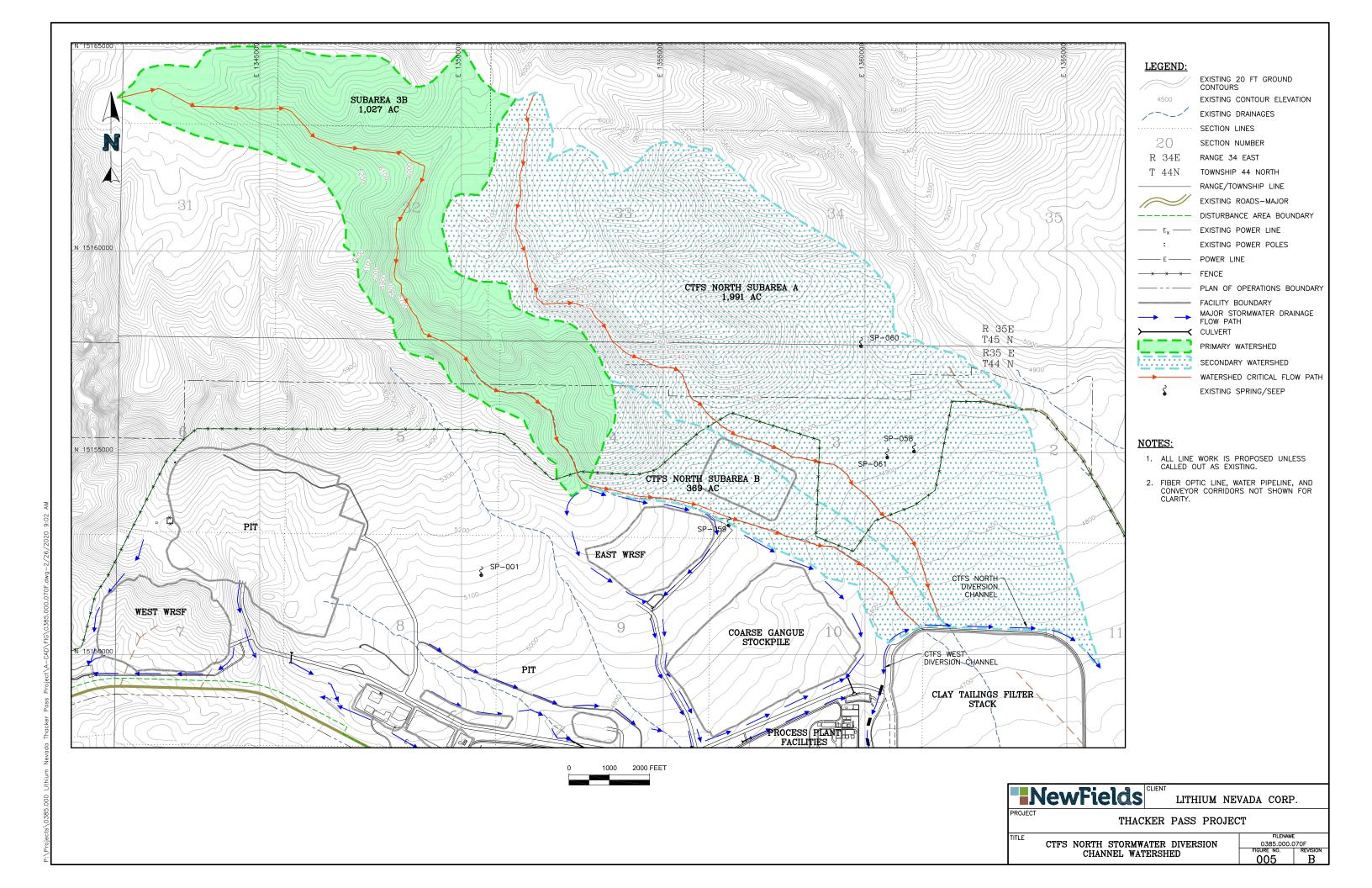

Design Element			Percent of Watershed Area Contributing	Slope (ft/ft)	Riprap Design Flow 100yr, 24h (cfs)	500yr, 24hr Flow at Closure (cfs)	Erosion Protection (D ₅₀ , in)	Roughness Coefficient	Channel Width (ft)	Channel Side Slopes (X:1)	Velocity (ft/s)	Froude Number	100yr Flow Depth (ft)	500yr Flow Depth (ft)	Design Depth Including Freeboard (ft)	Notes
						ι	lltimate									
Subareas 4A, 4B and 4C	Statio	oning														
Phase 1 CTFS West Channel Outlet	0+00	13+75	100.0%	0.04	1348.0	1937.7	12	0.066	30	2.5	9.28	0.94	3.78	4.61	5	
Phase 1 CTFS West Channel Outlet	13+75	20+40	42.3%	0.01	1286.2	1853.7	9	0.055	30	2.5	6.37	0.58	4.82	5.87	6	
Phase 1 CTFS West Channel Outlet	20+40	25+00	27.8%	0.084	1270.7	1832.6	24	0.068	30	2.5	11.41	1.28	2.97	3.65	4	
Phase 1 CTFS West Channel Outlet	25+00	27+00	27.8%	0.084	909.7	1339.3	EX	0.091	30	2.5	8.41	0.95	2.90	3.60	4	
Phase 1 CTFS West Channel Outlet	27+00	28+00	20.8%	0.053	902.2	1329.0	12	0.072	30	2.5	8.40	0.95	2.87	3.57	4	
Phase 1 CTFS West Channel	96+00	106+00	18.7%	0.006	900.0	1326.0	4	0.043	30	2.5	5.66	0.56	3.96	4.89	5	
Phase 1 CTFS West Channel	106+00	112+73	14.1%	0.042	895.0	1319.3	12	0.070	30	2.5	7.88	0.88	3.00	3.73	4	
Phase 1 CTFS West Channel	112+73	116+00	9.2%	0.022	889.7	1312.1	9	0.060	30	2.5	7.00	0.75	3.28	4.08	5	
Phase 1 CTFS West Channel	116+00	123+50	7.5%	0.042	887.9	1309.6	12	0.070	30	2.5	7.85	0.88	2.98	3.71	4	
Phase 1 CTFS West Channel	123+50	126+00	0.0%	0.042	879.9	1298.7	12	0.070	30	2.5	7.82	0.88	3.34	3.68	5	
Phase 1 CTFS West Channel	126+00	132+65	99.7%	0.02	877.2	1294.8	9	0.060	30	2.5	6.74	0.72	3.34	4.15	5.00	
Phase 1 CTFS West Channel	132+65	167+50	82.6%	0.011	727.2	1073.3	6	0.051	30	2.5	5.82	0.62	3.27	4.07	5	
Phase 1 CTFS West Channel	167+50	179+35	3.9%	0.014	34.2	50.5		0.041	30	2.5	2.45	0.66	0.45	0.57	2	•
Subarea 5																
CTFS East Diversion	Min S	Slope	100%	0.027	136.8	200.6	9	0.073	12	2.5	4.26	0.62	1.91	2.35	3	
CTFS East Diversion	Max	Slope	100%	0.040	136.8	200.6	9	0.076	12	2.5	4.75	0.71	1.76	2.16	3	

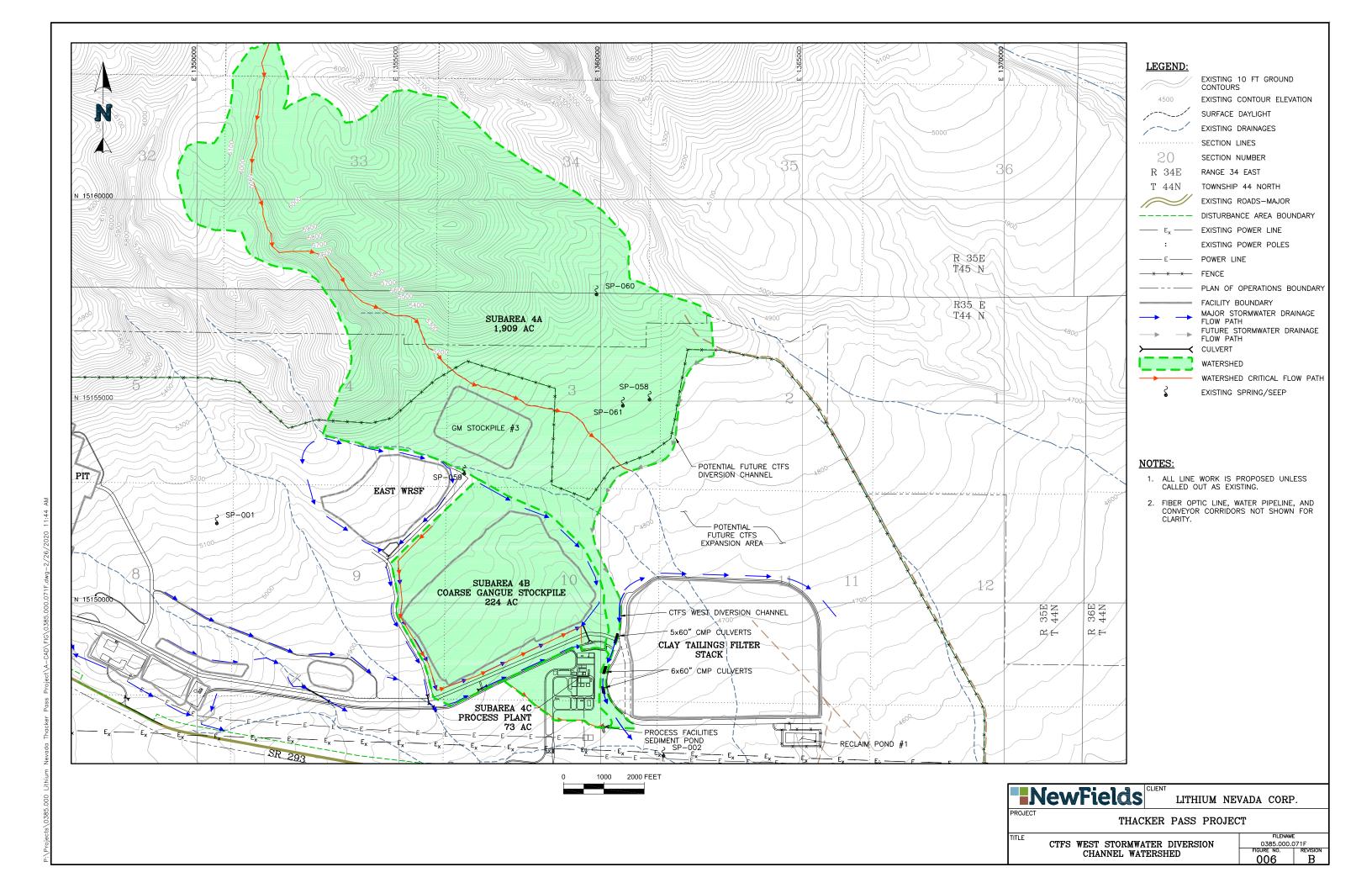

Lithium Nevada Corporation Thacker Pass Project Phase 1 and Ultimate Project Site Stormwater Facilities CMP Flow Summary and Culvert Design

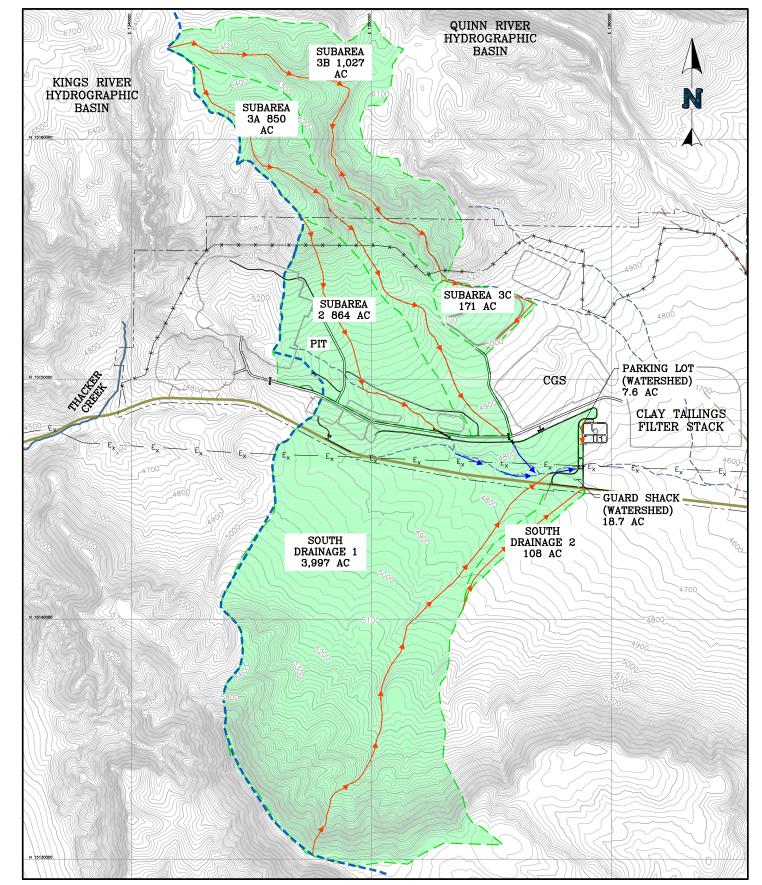

CULVERTS	Slope (ft/ft)	Design Flow 100yr, 24h (cfs)	Number of Culverts	Pipe Inner Dia. (in)	Roughness Coefficient	Velocity (ft/s)	100yr Flow Depth (ft)	Design Depth Including Freeboard (ft)	Headwater Depth (ft)		
		CTFS Culv	erts - Ultimat	e Facility (Bu	uilt in Phase						
HAUL ROAD FROM CGS											
	0.055	1,194	5	60	0.024	18.27	3.12	4.1	10.6		
SALT CONVEYOR CORRIDOR											
	0.011	1,194	6	60	0.024	11.65	4.00	5.0	8.4		
TAILINGS CONVEYOR CORRIDOR											
	0.010	1,194	6	60	0.024	11.65	4.00	5.0	8.4		
		CG	S Inlet Culver	ts - Phase 1	Facilit						
HAUL ROAD FROM CGS											
	0.015	346	2	54	0.024	12.35	3.89	4.9	9.1		
		Process Plant	Facility Culv	erts (25yr-24	hr Design Sto	rn					
PARKING LOT CULVERT											
Total Flow	0.059	10	1	18	0.024	8.56	0.94	1.9	2.5		
North	0.010	6.9	1	18	0.024	5.41	1.02	2.0	1.9		
South	0.073	3.1	1	12	0.024	6.93	0.55	1.6	1.5		
ENTRANCE ROAD CULVERTS	_					_	_				
*25-YR 24-HR FLOW RATE	0.010	1,914	7	60	0.024	14.56	4.55	5.6	13.3		


APPENDIX E.2 Hydrology









LEGEND:

4500

EXISTING GROUND 20 FOOT CONTOURS

EXISTING CONTOUR ELEVATION

EXISTING ROADS-MAJOR

EXISTING ROADS/TRAILS

EXISTING DRAINAGES

EXISTING EPHEMERAL CREEKS

MAJOR STORMWATER DRAINAGE FLOW PATH

HYDROGRAPHIC BASIN

EXISTING POWER LINE

PLAN OF OPERATIONS BOUNDARY

FACILITY BOUNDARY

× × × FENCE

PRIMARY WATERSHED

WATERSHED CRITICAL FLOW PATH

CULVERT UPSTREAM OF PROCESS PLANT FACILITIES

PROCESS PLANT FACILITY CULVERT

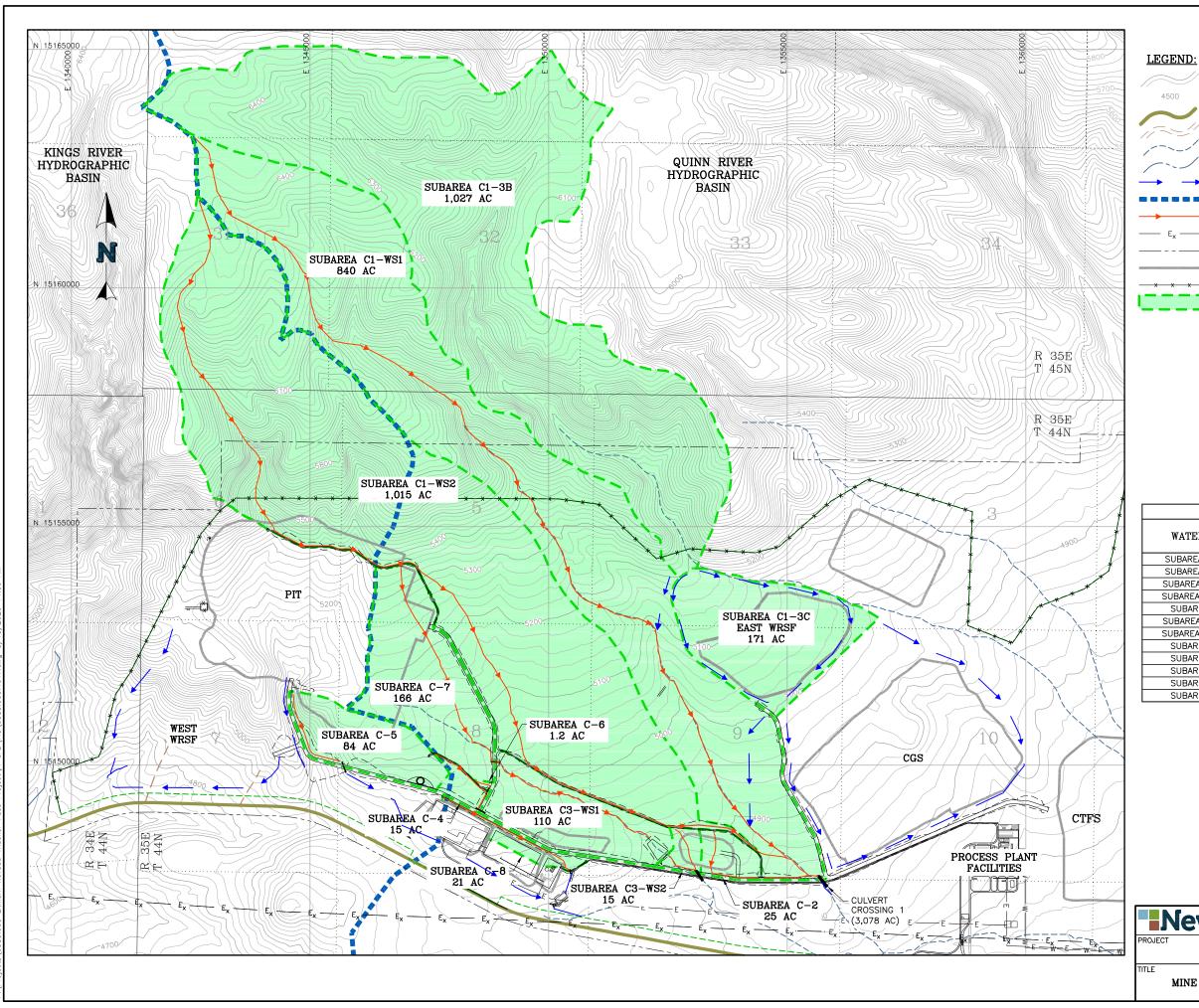
1000 2000 FEET

NOTES:

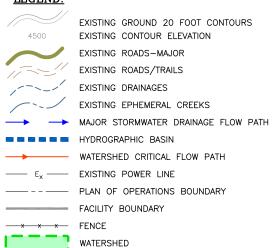
- 1. ALL LINE WORK IS PROPOSED UNLESS CALLED OUT AS EXISTING.
- 2. FIBER OPTIC LINE, WATER PIPELINE, AND CONVEYOR CORRIDORS NOT SHOWN FOR CLARITY.
- 3. ACTUAL WATERSHED AREA MAY VARY DEPENDING ON FINAL PLANT SITE GRADING.

WA	TERSHED	PROPERTIES	
WATERSHED	AREA	CRITICAL FLOW PATH	TIME OF CONCENTRATION
PARKING LOT	7.6 AC	1,106 FT	8.7 MIN
SUBAREA 2	864 AC	11,383 FT	37.5 MIN
SUBAREA 3A	850 AC	21,397 FT	68.0 MIN
SUBAREA 3B	1,027 AC	18,696 FT	64.7 MIN
SUBAREA 3C	171 AC	6,707 FT	44.2 MIN
SOUTH DRAINAGE 1	3,998 AC	20,780 FT	64.4 MIN
SOUTH DRAINAGE 2	108.2 AC	7,287 FT	72.9 MIN
GUARD SHACK	18.7 AC	1,362 FT	10.8 MIN

NewFields

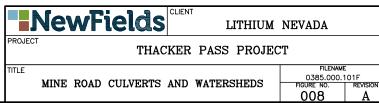

LITHIUM NEVADA CORP.

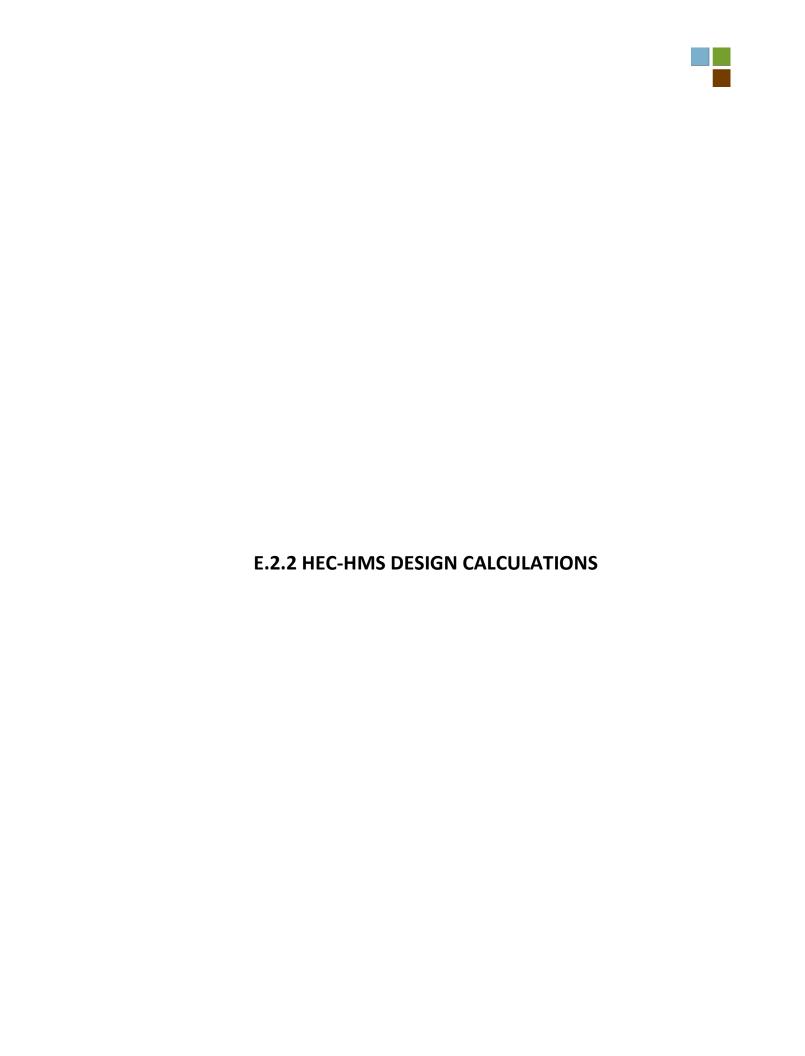
THACKER PASS PROJECT


PROCESS PLANT FACILITY CULVERTS
CONTRIBUTING WATERSHEDS

FILENAME
0385.000.100F
FIGURE NO. REVISION
007 A

)00 Lithium Nevada Thacker Pass Project\A—CAD\FIG\0385.000.100F.dwg—3/2/2020 12:11 F





WA	TERSHED	PROPERTIES	
WATERSHED	AREA	CRITICAL FLOW PATH	TIME OF CONCENTRATION
SUBAREA C1-3B	1,027 AC	18,696 FT	64.7 MIN
SUBAREA C1-3C	171 AC	6,707 FT	44.2 MIN
SUBAREA C1-WS1	840 AC	21,725 FT	71.8 MIN
SUBAREA C1-WS2	1,015 AC	21,185 FT	81.4 MIN
SUBAREA C-2	25 AC	1,825 FT	10.4 MIN
SUBAREA C3-WS1	110 AC	4,145 FT	16.8 MIN
SUBAREA C3-WS2	15 AC	975 FT	3.7 MIN
SUBAREA C-4	15 AC	1,750 FT	5.2 MIN
SUBAREA C-5	84 AC	2,050 FT	23.0 MIN
SUBAREA C-6	1.2 AC	375 FT	0.2 MIN
SUBAREA C-7	166 AC	4,475 FT	14.3 MIN
SUBAREA C-8	21 AC	3,120 FT	8.6 MIN

1000 2000 FEET

	NewFields	CALCULATION COVER SHEET					
Client	Lithium Nevada Corporation	Preparer:	S. Breidt	02/10/20			
Project	Thacker Pass Project	Checked:	M. Haley				
Title	Stormwater Management Calculations	Revision	С				

CALCULATION OBJECTIVE

- 1. Estimate the peak runoff from upstream watersheds to design the stormwater diversion channels and sediment ponds.
- 2. Determine the required size of the diversion channels and erosion protection (if necessary)

ASSUMPTIONS

- 1. Intial flow rates were calculated using a Manning's n of 0.05 for all riprap-lined channels, and 0.03 for all unlined channels. Actual Manning's n values were then estimated using the Hec-15-Riprap Design Calcs as applicable.
- 3. Composite SCS Curve numbers are calculated based on ground type.
- 4. Storm events will be sized according to previous meteorological studies

2-Year	1.13	inches
10-Year	1.64	inches
25-Year	1.96	inches
100-Year	2.48	inches
500-Year	3.12	inches

METHODOLOGY

- 1. Area and length measurements were determined using AutoCAD Civil 3D.
- 2. SCS Type II Storm event was modeled.
- 3. HEC-HMS was used to model the storm events
- 4. Bentley Flow Master was used to calculate the flow depths for unlined channels
- 5. HEC-15 Riprap Design calcs were used to calculate flow depths for lined channels

REFERENCES

- 1. AutoCAD Civil 3D version 2018.
- 2. United States Department of Agriculture Natural Resources Conservation Service (NRCS). (1986). "Urban Hydrology for Small Watersheds, Technical Release 55 Second Edition," June
- 3. U.S. Department of Agriculture (USDA), Natural Resources Conservation Service (NRCS). "Part 630 Hydrology National Engineering Handbook." 210-vi, NEH, May 2010.
- 4. United Stated Department of Commerce, National Oceanic and Atmospheric Administration. (reprinted 1984). "Hydrometeorological Report No. 49, Probably Maximum Precipitation Estimates, Colorado River and Great Basin Drainages," (HRM 49)
- 5. United States Army Corps of Engineers. Hydrologic Modeling System (HEC-HMS) Version 4.2, Computer Program (August 2016)

CONCLUSIONS

1. See attached tables for channel sizing.

Filename:

P:\Projects\0385.000 Lithium Nevada Thacker Pass Project\H-CALCULATIONS\Hydrology\[Hydrology - 2020.02.26.xlsx]Hec Calc Cover

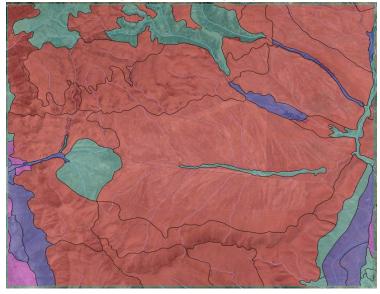

Thacker Pass Project Tailings Storage Facility Stormwater Diversion Channels Watershed Characteristics

Table 2-2d Runoff curve numbers for arid and semiarid rangelands 1/

Cover description		Curve numbers for hydrologic soil group						
Cover type	Hydrologic condition ² /	A 3/	В	С	D			
Herbaceous—mixture of grass, weeds, and	Poor		80	87	93			
low-growing brush, with brush the	Fair		71	81	89			
minor element.	Good		62	74	85			
Oak-aspen—mountain brush mixture of oak brush,	Poor		66	74	79			
aspen, mountain mahogany, bitter brush, maple,	Fair		48	57	63			
and other brush.	Good		30	41	48			
Pinyon-juniper—pinyon, juniper, or both;	Poor		75	85	89			
grass understory.	Fair		58	73	80			
	Good		41	61	71			
Sagebrush with grass understory.	Poor		67	80	85			
	Fair		51	63	70			
	Good		35	47	55			
Desert shrub—major plants include saltbush,	Poor	63	77	85	88			
greasewood, creosotebush, blackbrush, bursage,	Fair	55	72	81	86			
palo verde, mesquite, and cactus.	Good	49	68	79	84			

- Average runoff condition, and I_a = 0.2S. For range in humid regions, use table 2-2c.
- Poor: <30% ground cover (litter, grass, and brush overstory).</p>
 Fair: 30 to 70% ground cover.
- Good: > 70% ground cover.

 3 Curve numbers for group A have been developed only for desert shrub

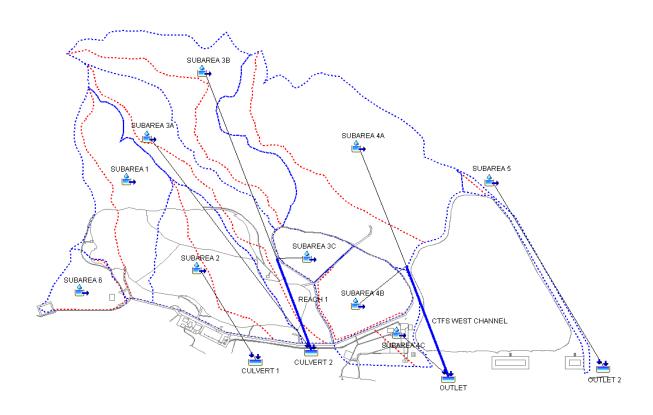
Group Asoils have low runoff potential and high infiltration rates even when thoroughly wetted. They consist chiefly of deep, well to excessively drained sand or gravel and have a high rate of water transmission (greater than 0.30 in/hr).

Group Bsoils have moderate infiltration rates when thoroughly wetted and consist chiefly of moderately deep to deep, moderately well to well drained soils with moderately fine to moderately coarse textures. These soils have a moderate rate of water transmission (0.15-0.30 in/hr).

Group Csoils have low infiltration rates when thoroughly wetted and consist chiefly of soils with a layer that impedes downward movement of water and soils with moderately fine to fine texture. These soils have a low rate of water transmission (0.05-0.15 in/hr).

Group Dsoils have high runoff potential. They have very low infiltration rates when thoroughly wetted and consist chiefly of clay soils with a high swelling potential, soils with a permanent high water table, soils with a claypan or clay layer at or near the surface, and shallow soils over nearly impervious material. These soils have a very low rate of water transmission (0-0.05 in/hr).

In exhibit A-1, some of the listed soils have an added modifier; for example, "Abrazo, gravelly." This refers to a gravelly phase of the Abrazo series that is found in SCS soil map legends.


For runoff from roads:

 $\textbf{Table 9-1} \qquad \text{Runoff curve numbers for agricultural lands $^{1/}$--- Continued}$

Co			CN for hydrologic soil group			
covertype	treatment2/	hydrologic condition ^{2/}	A	В	С	D
Pasture, grassland, or range-		Poor	68	79	86	89
continuous forage for		Fair	49	69	79	84
grazing⁴		Good	39	61	74	80
Meadow-continuous grass, protected from grazing and generally mowed for hay		Good	30	58	71	78
Brush-brush-forbs-grass		Poor	48	67	77	83
mixture with brush the		Fair	35	56	70	77
major element ^{E/}		Good	30≝	48	65	73
Woods-grass combination		Poor	57	73	82	86
(orchard or tree farm) ^{IJ}		Fair	43	65	76	82
		Good	32	58	72	79
Woods ⁸ /		Poor	45	66	77	83
		Fair	36	60	73	79
		Good	30	55	70	77
Farmstead–buildings, lanes, driveways, and surrounding lots			50	74	82	86
Roads (including right-of-way):						
Dirt			72	82	87	89
Gravel			76	85	89	91

Lithium Nevada Corporation Thacker Pass Project Ultimate Project Site Stormwater Facilities Hec-HMS Overall View

Lithium Nevada Corporation Thacker Pass Project Ultimate Project Site Stormwater Facilities Lag Time Calculation

$$t_p = \frac{l^{0.8}(S+1)^{0.7}}{1900y^{0.5}}$$

t_p Lag Time (hr.)

I Length to Divide (ft)

y Avg. Watershed Slope (%)

CN Composite Curve Number

S 1000/CN-10 (in.)

la Initial Abstraction (0.2*S)

Input Values

Lag Time and Watershed Characteristics										
Watershed	Area (mi²)	l (ft)	CN	У	S	t _p (hr)	t _p (min)	la		
SUBAREA 1	1.2992	12,925	85	11.4%	1.76	0.62	37.0	0.35		
SUBAREA 2	1.3505	11,383	85	9.1%	1.76	0.62	37.5	0.35		
SUBAREA 3A	1.3284	21,397	85	7.6%	1.76	1.13	68.0	0.35		
SUBAREA 3B	1.6053	18,696	85	6.8%	1.76	1.08	64.7	0.35		
SUBAREA 3C (EAST WRSF)	0.2671	6,707	91	1.8%	0.99	0.74	44.2	0.20		
SUBAREA 4A	2.9822	16,420	85	7.3%	1.76	0.93	56.0	0.35		
SUBAREA 4B (CGS)	0.6975	8,989	91	3.4%	0.99	0.68	40.6	0.20		
SUBAREA 4C	0.1145	2,895	91	4.0%	0.99	0.25	15.0	0.20		
SUBAREA 5	0.1552	1,666	85	8.9%	1.76	0.14	8.2	0.35		
SUBAREA 6 (WEST WRSF)	0.3587	6,739	91	9.2%	0.99	0.32	19.5	0.20		

Reach Characteristics									
Reach	L (ft)	BW	Side Slope	Long. S	Depth (ft)	n			
Reach 1	7230	35	27.4	4.43%	14.70	0.035			
CTFS West Channel	2834	30	27.4	3.35%	6.00	0.070			

Lithium Nevada Corporation Thacker Pass Project Ultimate Project Site Stormwater Facilities

2 Year-24 Hour Hec-HMS Results

Hydraulic Element	Drainage Area (Mi²)	Peak Discharge (ft ³ /s)	Volume (acre-ft)
SUBAREA 3C	0.2671	35.3	6.4
SUBAREA 4B	0.6975	97.8	16.8
SUBAREA 6	0.3587	80.8	8.62

25 Year-24 Hour Hec-HMS Results

Hydraulic Element	Drainage Area (Mi²)	Peak Discharge (ft ³ /s)	Volume (acre-ft)
SUBAREA 3C	0.2671	92	16.1
SUBAREA 4B	0.6975	255.4	41.9
SUBAREA 6	0.3587	208.6	21.56

100 Year-24 Hour Hec-HMS Results

Hydraulic Element	Drainage Area (Mi²)	Peak Discharge (ft³/s)	Volume (acre-ft)
CTFS WEST CHANNEL	3.6797	1193.9	244.4
CULVERT 1	1.3505	529.6	83.9
CULVERT 2	3.2008	870.2	204.6
OUTLET	3.7942	1211.8	254.1
OUTLET 2	0.1552	136.8	9.6
REACH 1	1.8724	529.8	122.1
SUBAREA 1	1.2992	514.8	80.7
SUBAREA 2	1.3505	529.6	83.9
SUBAREA 3A	1.3284	340.4	82.5
SUBAREA 3B	1.6053	426.4	99.7
SUBAREA 3C	0.2671	130	22.7
SUBAREA 4A	2.9822	879.9	185.3
SUBAREA 4B	0.6975	361.0	59.2
SUBAREA 4C	0.1145	107.1	9.7
SUBAREA 5	0.1552	136.8	9.6
SUBAREA 6	0.3587	295	30.4


Lithium Nevada Corporation Thacker Pass Project Ultimate Project Site Stormwater Facilities

500 Year-24 Hour Hec-HMS Results

Hydraulic Element	Drainage Area (Mi²)	Peak Discharge (ft ³ /s)	Volume (acre-ft)
CTFS WEST CHANNEL	3.6797	1726.5	350.2
CULVERT 1	1.3505	781.1	121.9
CULVERT 2	3.2008	1274	295.5
OUTLET	3.7942	1750.3	363.5
OUTLET 2	0.1552	200.6	14.0
REACH 1	1.8724	772	175.6
SUBAREA 1	1.2992	758.9	117.2
SUBAREA 2	1.3505	781.1	121.9
SUBAREA 3A	1.3284	502	119.9
SUBAREA 3B	1.6053	629.3	144.9
SUBAREA 3C	0.2671	178.1	31.1
SUBAREA 4A	2.9822	1298.7	269.1
SUBAREA 4B	0.6975	493.3	81.1
SUBAREA 4C	0.1145	145.7	13.3
SUBAREA 5	0.1552	200.6	14.0
SUBAREA 6	0.3587	403.2	41.7

Lithium Nevada Corporation Thacker Pass Project Phase 1 CTFS Facilities Hec-HMS Overall View

Lithium Nevada Corporation Thacker Pass Project Phase 1 CTFS Facilities Lag Time Calculation

$$t_p = \frac{l^{0.8}(S+1)^{0.7}}{1900y^{0.5}}$$

t_p Lag Time (hr.)

I Length to Divide (ft)

y Avg. Watershed Slope (%)

CN Composite Curve Number

S 1000/CN-10 (in.)

Ia Initial Abstraction (0.2*S)

Input Values

Lag Time and Watershed Characteristics									
Watershed	Area (mi²)	l (ft)	CN	у	S	t _p (hr)	t _p (min)	la	
CTFS NORTH A	3.1110	19,409	85	6.8%	1.76	1.11	66.7	0.35	
CTFS NORTH B	0.5770	9,275	85	4.7%	1.76	0.74	44.4	0.35	
SUBAREA 3B	1.6053	18,696	85	6.8%	1.76	1.08	64.7	0.35	
RECLAIM POND	0.6429	7,029	91	2.2%	0.99	0.69	41.1	0.20	
SUBAREA 4C	0.1145	2,895	91	4.0%	0.99	0.25	15.0	0.20	

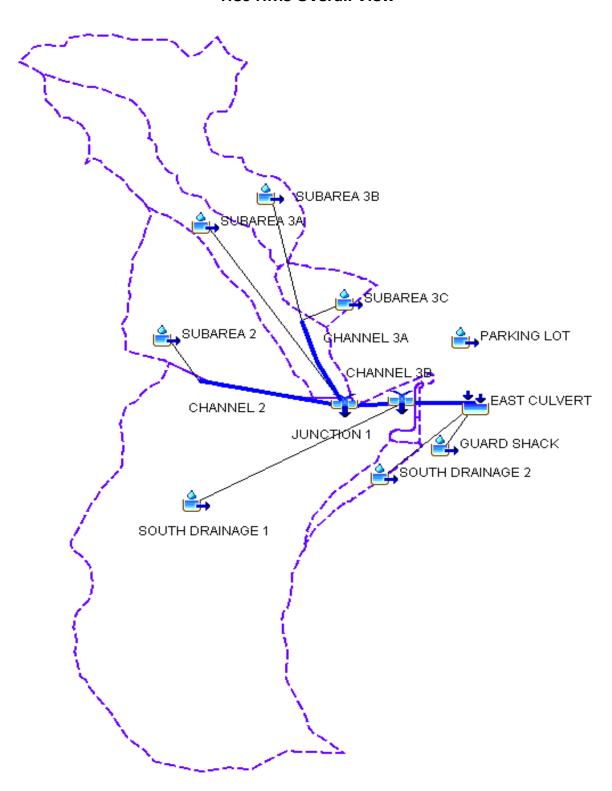
Reach Characteristics									
Reach	L (ft)	BW	Side Slope	Long. S	Depth (ft)	n			
Reach 1	9275	30	34.5	4.65%	14.70	0.035			
CTFS North Channel A	600	80	2.5	1%	3	0.035			

Lithium Nevada Corporation Thacker Pass Project Phase 1 CTFS Facilities

2 Year-24 Hour Hec-HMS Results

Hydraulic Element	Drainage Area (Mi²)	Peak Discharge (ft³/s)	Volume (acre-ft)
CTFS NORTH A	3.1110	135.2	39.7
SUBAREA 3B (PHASE1)	1.6053	70.9	20.5
Reach-1	1.6053	70.7	20.4
CTFS NORTH B	0.5770	33.4	7.4
CTFS NORTH CHANNEL A	2.1823	87.9	27.7
north outlet	5.2933	216.0	67.4
10YR RECLAIM POND	0.6429	89.3	15.5
SUBAREA 4C	0.1145	30	2.8

25 Year-24 Hour Hec-HMS Results


Hydraulic Element	Drainage Area (Mi²)	Peak Discharge (ft ³ /s)	Volume (acre-ft)
CTFS NORTH A	3.1110	518	127.4
SUBAREA 3B (PHASE1)	1.6053	271.8	65.8
Reach-1	1.6053	271.3	65.5
CTFS NORTH B	0.5770	129.2	23.6
CTFS NORTH CHANNEL A	2.1823	343.6	89.2
north outlet	5.2933	856.5	216.6
10YR RECLAIM POND	0.6429	233.5	38.6
SUBAREA 4C	0.1145	76.4	6.9

100 Year-24 Hour Hec-HMS Results

Hydraulic Element	Drainage Area (Mi²)	Peak Discharge (ft ³ /s)	Volume (acre-ft)
CTFS NORTH A	3.1110	808.5	193.3
SUBAREA 3B (PHASE1)	1.6053	423.7	99.7
Reach-1	1.6053	423.3	99.3
CTFS NORTH B	0.5770	201.4	35.8
CTFS NORTH CHANNEL A	2.1823	540.7	135.2
north outlet	5.2933	1344.3	328.4
10YR RECLAIM POND	0.6429	330.2	54.5
SUBAREA 4C	0.1145	107.1	9.7

Lithium Nevada Corporation Thacker Pass Project Process Plant Facility Culverts Hec-HMS Overall View

Lithium Nevada Corporation Thacker Pass Project Process Plant Facility Culverts Lag Time Calculation

$$t_p = \frac{l^{0.8}(S+1)^{0.7}}{1900y^{0.5}}$$

t_p Lag Time (hr.)

I Length to Divide (ft)

y Avg. Watershed Slope (%)

CN Composite Curve Number

S 1000/CN-10 (in.)

la Initial Abstraction (0.2*S)

Input Values

Lag Time and Watershed Characteristics									
Watershed	Area (mi²)	l (ft)	CN	у	S	t _p (hr)	t _p (min)	la	
Parking Lot	0.0119	1,106	91	2.5%	0.99	0.15	8.7	0.20	
Guard Shack	0.0293	1,362	85	3.7%	1.76	0.18	10.8	0.35	
South Drainage 1	6.2460	20,780	85	8.1%	1.76	1.07	64.4	0.35	
South Drainage 2	0.1691	7,287	85	3.4%	1.76	0.72	42.9	0.35	
SUBAREA 2	1.3505	11,383	85	9.1%	1.76	0.62	37.5	0.35	
SUBAREA 3A	1.3284	21,397	85	7.6%	1.76	1.13	68.0	0.35	
SUBAREA 3B	1.6053	18,696	85	6.8%	1.76	1.08	64.7	0.35	
SUBAREA 3C (EAST WRSF)	0.2671	6,707	91	1.8%	0.99	0.74	44.2	0.20	

Reach Characteristics						
Reach	L (ft)	BW	Side Slope	Long. S	Depth (ft)	n
Channel 2	3,989	3.5	3.7	2.8%	15.00	0.035
Channel 3A	4,142	8.3	11.6	4.2%	9.70	0.035
Channel 3B	1,675	16.3	3.2	3.3%	14.3	0.035
Channel 3C	1,588	12.4	11.5	1.9%	11.2	0.035
Between Culverts	165	19	8.6	2.0%	3	0.035

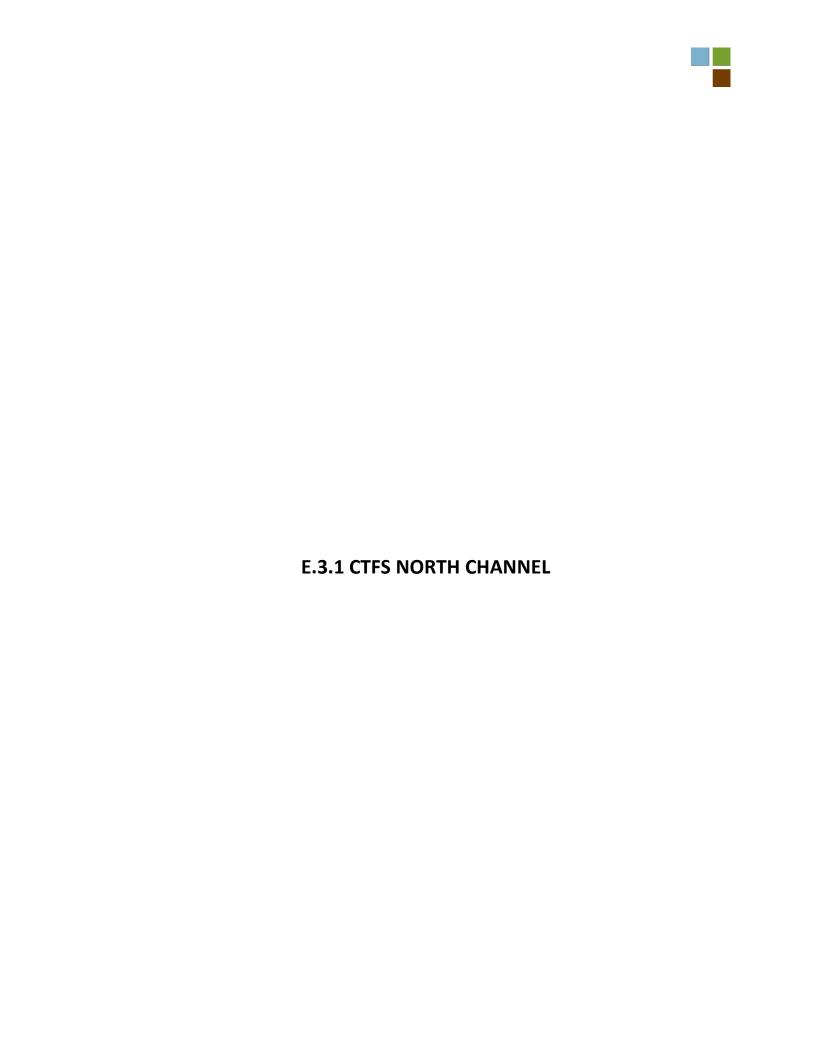
Lithium Nevada Corporation Thacker Pass Project Process Plant Facility Culverts

10 Year-24 Hour Hec-HMS Results

Hydraulic Element	Drainage Area (Mi²)	Peak Discharge (ft ³ /s)	Volume (acre-ft)
PARKING LOT	0.0119	7.4	0.54
SOUTH DRAINAGE 1	6.2460	720.3	179.26
SUBAREA 3B	1.6053	184.5	46.07
SUBAREA 3C	0.2671	68.6	12.04
CHANNEL 3A	1.8724	237.9	58.07
CHANNEL 3B	1.8724	237.7	58.05
SUBAREA 2	1.3505	229.3	38.76
CHANNEL 2	1.3505	228.7	38.72
SUBAREA 3A	1.3284	147.1	38.12
JUNCTION 1	4.5513	563.1	134.89
CHANNEL 3C	4.5513	561.5	134.85
WEST CULVERT	10.7973	1275.6	314.11
BETWEEN CULVERTS	10.7973	1275	314.13
SOUTH DRAINAGE 2	0.1691	26.2	4.85
GUARD SHACK	0.0293	10.6	0.84
EAST CULVERT	10.9957	1297.3	319.82

25 Year-24 Hour Hec-HMS Results

Hydraulic Element	Drainage Area (Mi²)	Peak Discharge (ft ³ /s)	Volume (acre-ft)
PARKING LOT	0.0119	10	0.72
SOUTH DRAINAGE 1	6.2460	1066	255.87
SUBAREA 3B	1.6053	273.2	65.76
SUBAREA 3C	0.2671	92	16.05
CHANNEL 3A	1.8724	345.9	81.77
CHANNEL 3B	1.8724	345.4	81.76
SUBAREA 2	1.3505	338.8	55.32
CHANNEL 2	1.3505	338	55.3
SUBAREA 3A	1.3284	217.8	54.42
JUNCTION 1	4.5513	827.6	191.48
CHANNEL 3C	4.5513	826.6	191.43
WEST CULVERT	10.7973	1882.2	447.3
BETWEEN CULVERTS	10.7973	1881.8	447.33
SOUTH DRAINAGE 2	0.1691	38.7	6.93
GUARD SHACK	0.0293	15.5	1.2
EAST CULVERT	10.9957	1914	455.45



Lithium Nevada Corporation Thacker Pass Project Process Plant Facility Culverts

100 Year-24 Hour Hec-HMS Results

Hydraulic Element	Drainage Area (Mi²)	Peak Discharge (ft ³ /s)	Volume (acre-ft)
PARKING LOT	0.0119	14	1.01
SOUTH DRAINAGE 1	6.2460	1665.2	388.05
SUBAREA 3B	1.6053	426.4	99.73
SUBAREA 3C	0.2671	130	22.65
CHANNEL 3A	1.8724	531.2	122.36
CHANNEL 3B	1.8724	529.5	122.36
SUBAREA 2	1.3505	529.6	83.9
CHANNEL 2	1.3505	528.5	83.89
SUBAREA 3A	1.3284	340.4	82.53
JUNCTION 1	4.5513	1284.9	288.78
CHANNEL 3C	4.5513	1278.6	288.77
WEST CULVERT	10.7973	2924.2	676.81
BETWEEN CULVERTS	10.7973	2922.6	676.85
SOUTH DRAINAGE 2	0.1691	60.3	10.51
GUARD SHACK	0.0293	23.8	1.82
EAST CULVERT	10.9957	2976.5	689.2

APPENDIX E.3 Hydraulics

CTFS North PH1 100YR STA 0+00 - 14+00

Friction Method Manning Formula
Solve For Normal Depth

Input Data

0.035 Roughness Coefficient 0.01000 Channel Slope ft/ft Left Side Slope 2.50 ft/ft (H:V) Right Side Slope 2.50 ft/ft (H:V) Bottom Width 80.00 535.60 Discharge ft3/s

Results

Normal Depth 1.31 ft Flow Area 108.73 ft2 Wetted Perimeter 87.03 ft Hydraulic Radius 1.25 ft Top Width 86.53 ft Critical Depth 1.10 ft Critical Slope 0.01758 ft/ft 4.93 Velocity ft/s Velocity Head 0.38 ft Specific Energy 1.68 ft Froude Number 0.77 Flow Type Subcritical

GVF Input Data

Downstream Depth 0.00 ft
Length 0.00 ft
Number Of Steps 0

GVF Output Data

Upstream Depth

Profile Description Profile Headloss 0.00 ft Downstream Velocity Infinity ft/s **Upstream Velocity** Infinity ft/s 1.31 Normal Depth ft Critical Depth 1.10 ft Channel Slope 0.01000 ft/ft

CTFS North PH1 100YR STA 14+00 - 44+00

Pro	iect	Descri	ption

Friction Method Manning Formula Solve For Normal Depth

Input Data

0.035 Roughness Coefficient 0.01000 Channel Slope ft/ft 2.50 Left Side Slope ft/ft (H:V) Right Side Slope 2.50 ft/ft (H:V) Bottom Width 80.00 1338.50 Discharge ft3/s

Results

Normal Depth 2.25 ft Flow Area 192.71 ft2 Wetted Perimeter 92.12 ft Hydraulic Radius 2.09 ft Top Width 91.25 ft Critical Depth 2.01 ft Critical Slope 0.01458 ft/ft 6.95 ft/s Velocity Velocity Head 0.75 ft Specific Energy 3.00 ft Froude Number 0.84 Flow Type Subcritical

GVF Input Data

Downstream Depth 0.00 ft
Length 0.00 ft
Number Of Steps 0

GVF Output Data

Upstream Depth

Profile Description Profile Headloss 0.00 ft Downstream Velocity Infinity ft/s **Upstream Velocity** Infinity ft/s 2.25 Normal Depth ft 2.01 Critical Depth ft Channel Slope 0.01000 ft/ft

CTFS North PH1 100YR STA 44+00 - 55+91

Pro	iect	Descri	ption

Friction Method Manning Formula Solve For Normal Depth

Input Data

0.035 Roughness Coefficient 0.01500 Channel Slope ft/ft 2.50 Left Side Slope ft/ft (H:V) Right Side Slope 2.50 ft/ft (H:V) Bottom Width 80.00 1338.50 Discharge ft3/s

Results

Normal Depth 2.00 ft Flow Area 169.66 ft2 Wetted Perimeter 90.75 ft Hydraulic Radius 1.87 ft Top Width 89.98 ft Critical Depth 2.01 ft Critical Slope 0.01458 ft/ft 7.89 ft/s Velocity Velocity Head 0.97 ft Specific Energy 2.96 ft Froude Number 1.01 Flow Type Supercritical

GVF Input Data

Downstream Depth 0.00 ft
Length 0.00 ft
Number Of Steps 0

GVF Output Data

Upstream Depth

Profile Description Profile Headloss 0.00 ft Downstream Velocity Infinity ft/s **Upstream Velocity** Infinity ft/s 2.00 Normal Depth ft 2.01 Critical Depth ft Channel Slope 0.01500 ft/ft

1.68

1

Lithium Nevada Corporation Thacker Pass Project CTFS North Ph 1 100yr, 24hr storm

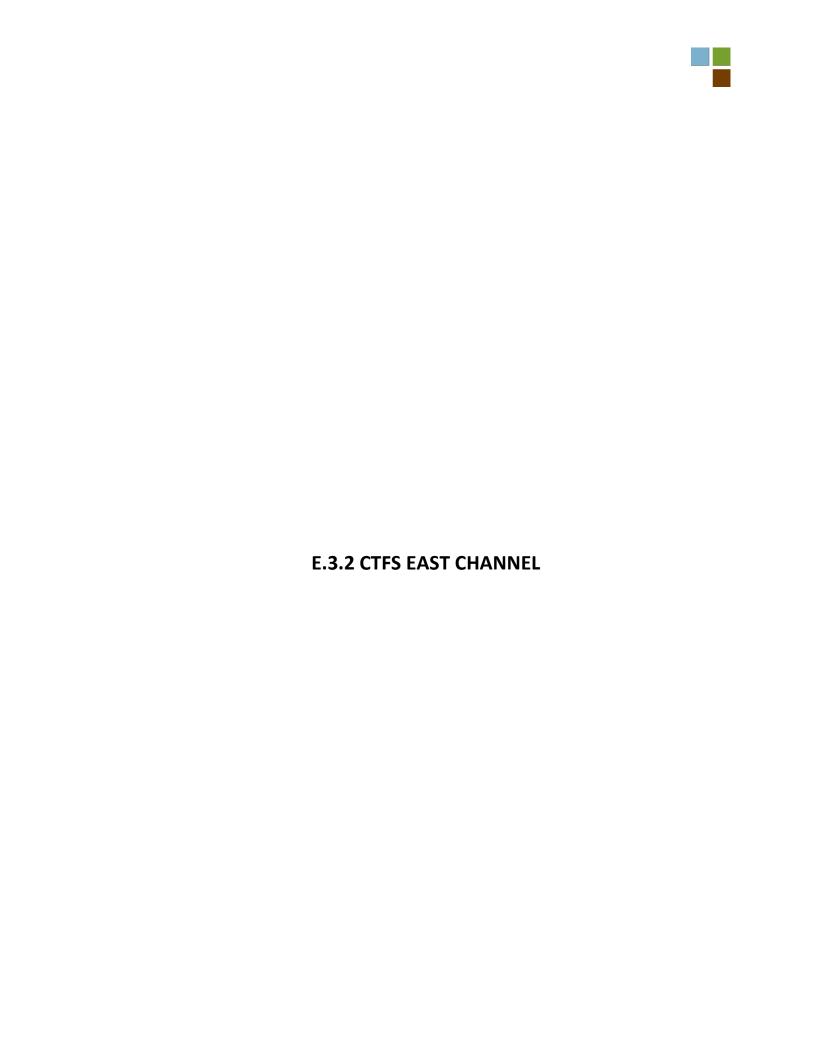
NOTE: Gray boxes require input, Orange boxes require specific values, Red boxes are calculated

	Step 1: Channel Design Paramet	ers			
Bottom Width	В	80	ft	135	80
Side Slope	Z	2.5	x:1		
Longitudinal Slope	S	0.015	ft/ft	0.02	0.0135
Flow	Q	1338.5	ft ³ /s		

Step 2	: Initial Riprap sizing				
Median Stone Size	D ₅₀	0.5	ft	0.3	0.5
Stone Unit Weight	Ys	165	pcf		
	D ₁₀₀	10.00	inch		
	D ₇₅	7.50	inch		
Riprap Calculation Gradation	D ₅₀	6.00	inch		
Thip calculation or addition	D ₃₀	4.00	inch		
	D ₁₅	3.00	inch		
	D ₁₀	2.00	inch		

Step 3: Estimate the Flow Depth					
Initial Flow Depth Estimate	D _i	2.5	ft	1.14	
Area of Channel	Α	215.63	ft ²		
Wetted Perimeter	Р	93.46 1	ft		
Hydraulic Radius	R	2.31	ft		
Wetted Top Width	Т	92.50	ft		
Calculated Average Flow Depth	D_a	2.33 1	ft		

Step 4: Estimate Manning's n and the Implied Discharge						
D_a/D_{50}		4.662				
For 1.5 < D _a /D ₅₀ < 185	n	0.052				
Q from mannings	Qi	1308.67	ft ³ /s			
% Difference from Design Discharge		-2.23%				
For $0.3 < D_a/D_{50} < 1.5$	n	0.053				
function(Froude number)	f(Fr)	0.827				
Froude number	Fr	0.716				
Velocity of flow	V	6.208				
effective roughness concrentration	b	0.375				
Roughness element geometry	f(REG)	27.252				
Channel geometry	f(CG)	0.251				
Q from mannings	Qi	1287.39	ft ³ /s			
% Difference from Design Discharge		-3.82%				


Step 5:		
If % difference is > 5%, estimate a new depth in Step 3	FALSE	Proceed to Step 6
For $0.3 < D_a/D_{50} < 1.5$	FALSE	
If false, proceed to step 6		

Step 6: Calculate Reynolds and Determine Appropriate Shields Parameter & Safety Factor					
Shear Velocity	V*	1.099			
Reynolds number	R_{e}	4.51E+04			
Gravity	g	32.2	ft/s ²		
Kinematic Viscosity	V	1.22E-05	ft ² /s	(1.217e-5 for 60 °F)	
From Table 6.1	F*	0.050			
From Table 6.1	SF	1.016			
Specific Gravity of Stone	SG	2.64			
For S < 5%	D ₅₀	0.46	ft		

Table 6.1. Selection of Shields' Parameter and Safety Factor				
Reynolds number	F*	SF		
≤ 4x10 ⁴	0.047	1		
4x10 ⁴ <re<2x10<sup>5</re<2x10<sup>	0.050	1.016	(Linear Interpolation)	
≥ 2x10 ⁵	0.15	1.5		

Step 7: Iterate Solution till Calculated D50 is Acceptably Smaller then Chosen D50					
Difference to Chosen Riprap 92.12% < 100% TRUE					
IF FALSE GOTO STEP 2, ADJUST RIPRAP SIZE					

Step 8. Side Slope Assessment					
Stone Angle of Repose	ф	42	۰		
For 1.5 < Z < 5	K1	0.835			
	θ	21.80	•		
	K2	0.83			
Stable D ₅₀	D _{50,s}	0.46			
Difference to Chosen Riprap		92.47%	<	100%	TRUE

Worksheet for CTFS-East UIt 100 YR Max Slope

Project Descr	ption
---------------	-------

Friction Method Manning Formula
Solve For Normal Depth

Input Data

Roughness Coefficient	0.076	
Channel Slope	0.04000	ft/ft
Left Side Slope	2.50	ft/ft (H:V)
Right Side Slope	2.50	ft/ft (H:V)
Bottom Width	12.00	ft
Discharge	136.80	ft³/s

Results

Normal Depth		1.76	ft
Flow Area		28.77	ft²
Wetted Perimeter		21.45	ft
Hydraulic Radius		1.34	ft
Top Width		20.78	ft
Critical Depth		1.43	ft
Critical Slope		0.08306	ft/ft
Velocity		4.75	ft/s
Velocity Head		0.35	ft
Specific Energy		2.11	ft
Froude Number		0.71	
Flow Type	Subcritical		

GVF Input Data

Downstream Depth	0.00	ft
Length	0.00	ft
Number Of Steps	0	

GVF Output Data

Upstream Depth

-1		
Profile Description		
Profile Headloss	0.00	ft
Downstream Velocity	Infinity	ft/s
Upstream Velocity	Infinity	ft/s
Normal Depth	1.76	ft
Critical Depth	1.43	ft
Channel Slope	0.04000	ft/ft

Worksheet for CTFS-East UIt 100 YR Max Slope

GVF Output Data

Critical Slope 0.08306 ft/ft

Messages

Notes

PHASE 1 ONLY WEST CHANNEL (BOTTOM RAISED FOR REDUCED FLOW)

REMAINING CTFS WS FLOW = 100 CFS + 100YR CGS POND FLOW = 300 CFS + 100YR PPF POND FLOW = 240 = 640 CFS TOTAL

35' BOTTOM WIDTH = 2' ABOVE ULTIMATE CHANNEL THALWEG

Lithium Nevada Corporation
Thacker Pass Project
CTFS East Max Slope 100yr, 24hr storm

NOTE: Gray boxes require input, Orange boxes require specific values, Red boxes are calculated

Step 1: Channel Design Parameters					
Bottom Width	В	12	ft		
Side Slope	Z	2.5	x:1		
Longitudinal Slope	S	0.04	ft/ft		
Flow	Q	136.8	ft ³ /s		

Step 2: Initial Riprap sizing				
Median Stone Size	D ₅₀	0.75	ft	
Stone Unit Weight	Ys	165	pcf	
Riprap Calculation Gradation	D ₁₀₀	15.00	inch	
	D ₇₅	11.25	inch	
	D ₅₀	9.00	inch	
This ap calculation Gradation	D ₃₀	6.00	inch	
	D ₁₅	4.50	inch	
	D ₁₀	3.00	inch	

Step 3: Estimate the Flow Depth				
Initial Flow Depth Estimate	D _i	1.75	ft	
Area of Channel	Α	28.66	ft ²	
Wetted Perimeter	Р	21.42	ft	
Hydraulic Radius	R	1.34	ft	
Wetted Top Width	T	20.75	ft	
Calculated Average Flow Depth	D_a	1.38	ft	

Step 4: Estimate Manning's n and the Implied Discharge					
D_a/D_{50}		1.841			
For 1.5 < D _a /D ₅₀ < 185	n	0.076			
Q from mannings	Qi	136.36	ft ³ /s		
% Difference from Design Discharge		-0.32%			
For 0.3 < D _a /D ₅₀ < 1.5	n	0.057			
function(Froude number)	f(Fr)	0.828			
Froude number	Fr	0.716			
Velocity of flow	V	4.774			
effective roughness concrentration	b	0.416			
Roughness element geometry	f(REG)	18.223			
Channel geometry	f(CG)	0.324			
Q from mannings	Qi	182.62	ft ³ /s		
% Difference from Design Discharge		33.49%			

Step 5:				
If % difference is > 5%, estimate a new depth in Step 3	FALSE	Proceed to Step 6		
For $0.3 < D_a/D_{50} < 1.5$	TRUE			
If false, proceed to step 6				

Step 6: Calculate Reynolds and Determine Appropriate Shields Parameter & Safety Factor					
Shear Velocity	V*	1.501			
Reynolds number	R_{e}	9.25E+04			
Gravity	g	32.2	ft/s ²		
Kinematic Viscosity	V	1.22E-05	ft ² /s	(1.217e-5 for 60 °F)	
From Table 6.1	F*	0.081			
From Table 6.1	SF	1.164			
Specific Gravity of Stone	SG	2.64			
For S < 5%	D ₅₀	0.61	ft		

Table 6.1. Selection of Shields' Parameter and Safety Factor				
Reynolds number	F*	SF		
≤ 4x10 ⁴	0.047	1		
4x10 ⁴ <re<2x10<sup>5</re<2x10<sup>	0.081	1.164	(Linear Interpolation)	
≥ 2x10 ⁵	0.15	1.5		

Step 7: Iterate Solution till Calculated D50 is Acceptably Smaller then Chosen D50				
Difference to Chosen Riprap 81.77% < 100% TRUE				
IF FALSE GOTO STEP 2, ADJUST RIPRAP SIZE				

Step 8. Side Slope Assessment					
Stone Angle of Repose	ф	42	•		
For 1.5 < Z < 5	K1	0.835			
	Θ	21.80	0		
	K2	0.83			
Stable D ₅₀	D _{50,s}	0.62			
Difference to Chosen Riprap		82.08%	<	100%	TRUE

Worksheet for CTFS-East Ult 100 YR Min Slope

Project Descr	ption
---------------	-------

Friction Method Manning Formula
Solve For Normal Depth

Input Data

Roughness Coefficient	0.073	
Channel Slope	0.02700	ft/ft
Left Side Slope	2.50	ft/ft (H:V)
Right Side Slope	2.50	ft/ft (H:V)
Bottom Width	12.00	ft
Discharge	136.80	ft³/s

Results

Normal Depth		1.91	ft
Flow Area		32.09	ft²
Wetted Perimeter		22.30	ft
Hydraulic Radius		1.44	ft
Top Width		21.56	ft
Critical Depth		1.43	ft
Critical Slope		0.07664	ft/ft
Velocity		4.26	ft/s
Velocity Head		0.28	ft
Specific Energy		2.19	ft
Froude Number		0.62	
Flow Type	Subcritical		

GVF Input Data

Downstream Depth	0.00	ft
Length	0.00	ft
Number Of Steps	0	

GVF Output Data

Upstream Depth	0.00	ft
Profile Description		
Profile Headloss	0.00	ft
Downstream Velocity	Infinity	ft/s
Upstream Velocity	Infinity	ft/s
Normal Depth	1.91	ft
Critical Depth	1.43	ft
Channel Slope	0.02700	ft/ft

Worksheet for CTFS-East Ult 100 YR Min Slope

GVF Output Data

Critical Slope 0.07664 ft/ft

Messages

Notes

PHASE 1 ONLY WEST CHANNEL (BOTTOM RAISED FOR REDUCED FLOW)

REMAINING CTFS WS FLOW = 100 CFS + 100YR CGS POND FLOW = 300 CFS + 100YR PPF POND FLOW = 240 = 640 CFS TOTAL

35' BOTTOM WIDTH = 2' ABOVE ULTIMATE CHANNEL THALWEG

Lithium Nevada Corporation Thacker Pass Project CTFS East Min Slope 100yr, 24hr storm

NOTE: Gray boxes require input, Orange boxes require specific values, Red boxes are calculated

Step 1: Channel Design Parameters						
Bottom Width	m Width B 12 ft					
Side Slope	Z	2.5	x:1			
Longitudinal Slope	S	0.027	ft/ft			
Flow	Q	136.8	ft ³ /s			

Step 2: Initial Riprap sizing				
Median Stone Size	D ₅₀	0.75	ft	
Stone Unit Weight	Ys	165	pcf	
Riprap Calculation Gradation	D ₁₀₀	15.00	inch	
	D ₇₅	11.25	inch	
	D ₅₀	9.00	inch	
	D ₃₀	6.00	inch	
	D ₁₅	4.50	inch	
	D ₁₀	3.00	inch	

Step 3: Estim	ate the Flow Dept	·h	
Initial Flow Depth Estimate	D _i	1.92	ft
Area of Channel	Α	32.26	ft^2
Wetted Perimeter	Р	22.34	ft
Hydraulic Radius	R	1.44	ft
Wetted Top Width	Т	21.60	ft
Calculated Average Flow Depth	D_a	1.49	ft

Step 4: Estimate Manning's n and the Implied Discharge				
D_a/D_{50}		1.991		
For 1.5 < D _a /D ₅₀ < 185	n	0.073		
Q from mannings	Qi	137.38	ft ³ /s	
% Difference from Design Discharge		0.42%		
For $0.3 < D_a/D_{50} < 1.5$	n	0.057		
function(Froude number)	f(Fr)	0.800		
Froude number	Fr	0.612		
Velocity of flow	V	4.241		
effective roughness concrentration	b	0.436		
Roughness element geometry	f(REG)	19.794		
Channel geometry	f(CG)	0.312		
Q from mannings	Qi	177.68	ft ³ /s	
% Difference from Design Discharge		29.88%		

Step 5:		
If % difference is > 5%, estimate a new depth in Step 3	FALSE	Proceed to Step 6
For $0.3 < D_a/D_{50} < 1.5$	TRUE	
If false, proceed to step 6		

Step 6: Calculate Reynolds and	Determine App	ropriate Shields	Parameter	^r & Safety Factor
Shear Velocity	V*	1.292		
Reynolds number	R_{e}	7.96E+04		
Gravity	g	32.2	ft/s ²	
Kinematic Viscosity	V	1.22E-05	ft ² /s	(1.217e-5 for 60 °F)
From Table 6.1	F*	0.073		
From Table 6.1	SF	1.124		
Specific Gravity of Stone	SG	2.64		
For S < 5%	D ₅₀	0.49	ft	

<u>Table 6.1. Selection</u>	on of Shields'	Parameter and S	Safety Factor
Reynolds number	F*	SF	
≤ 4x10 ⁴	0.047	1	
4x10 ⁴ <re<2x10<sup>5</re<2x10<sup>	0.073	1.124	(Linear Interpolation)
≥ 2x10 ⁵	0.15	1.5	

Step 7: Iterate Solution till Calculated D50 is Acceptably Smaller then Chosen D50				
Difference to Chosen Riprap	65.16%	<	100%	TRUE
IF FALSE GOTO STEP 2, ADJUST RIPRAP SIZE				

Step 8. Side Slope Assessment					
Stone Angle of Repose	ф	42	0		
For 1.5 < Z < 5	K1	0.835			
	Θ	21.80	•		
	K2	0.83			
Stable D ₅₀	D _{50,s}	0.49			
Difference to Chosen Riprap		65.41%	<	100%	TRUE

Worksheet for CTFS East UIt 500 YR Max Slope

Project Descr	ption
---------------	-------

Friction Method Manning Formula
Solve For Normal Depth

Input Data

Roughness Coefficient	0.076	
Channel Slope	0.04000	ft/ft
Left Side Slope	2.50	ft/ft (H:V)
Right Side Slope	2.50	ft/ft (H:V)
Bottom Width	12.00	ft
Discharge	200.60	ft³/s

Results

Name of Danth		0.40	
Normal Depth		2.16	ft
Flow Area		37.64	ft²
Wetted Perimeter		23.64	ft
Hydraulic Radius		1.59	ft
Top Width		22.81	ft
Critical Depth		1.80	ft
Critical Slope		0.07829	ft/ft
Velocity		5.33	ft/s
Velocity Head		0.44	ft
Specific Energy		2.60	ft
Froude Number		0.73	
Flow Type	Subcritical		

GVF Input Data

Downstream Depth	0.00	ft
Length	0.00	ft
Number Of Steps	0	

GVF Output Data

Upstream Depth

- p		
Profile Description		
Profile Headloss	0.00	ft
Downstream Velocity	Infinity	ft/s
Upstream Velocity	Infinity	ft/s
Normal Depth	2.16	ft
Critical Depth	1.80	ft
Channel Slope	0.04000	ft/ft

Worksheet for CTFS East UIt 500 YR Max Slope

GVF Output Data

Critical Slope 0.07829 ft/ft

Messages

Notes

PHASE 1 ONLY WEST CHANNEL (BOTTOM RAISED FOR REDUCED FLOW)

REMAINING CTFS WS FLOW = 100 CFS + 100YR CGS POND FLOW = 300 CFS + 100YR PPF POND FLOW = 240 = 640 CFS TOTAL

35' BOTTOM WIDTH = 2' ABOVE ULTIMATE CHANNEL THALWEG

Worksheet for CTFS East UIt 500 YR Min Slope

I TOICOL DOSCIPLION	Pro	ect	Descr	iptior
---------------------	-----	-----	-------	--------

Friction Method Manning Formula
Solve For Normal Depth

Input Data

Roughness Coefficient	0.073	
Channel Slope	0.02700	ft/ft
Left Side Slope	2.50	ft/ft (H:V)
Right Side Slope	2.50	ft/ft (H:V)
Bottom Width	12.00	ft
Discharge	200.60	ft³/s

Results

Normal Depth		2.35	ft
Flow Area		42.03	ft²
Wetted Perimeter		24.66	ft
Hydraulic Radius		1.70	ft
Top Width		23.75	ft
Critical Depth		1.80	ft
Critical Slope		0.07223	ft/ft
Velocity		4.77	ft/s
Velocity Head		0.35	ft
Specific Energy		2.71	ft
Froude Number		0.63	
Flow Type	Subcritical		

GVF Input Data

Downstream Depth	0.00	ft
Length	0.00	ft
Number Of Steps	0	

GVF Output Data

Upstream Depth

•		
Profile Description		
Profile Headloss	0.00	ft
Downstream Velocity	Infinity	ft/s
Upstream Velocity	Infinity	ft/s
Normal Depth	2.35	ft
Critical Depth	1.80	ft
Channel Slope	0.02700	ft/ft

Worksheet for CTFS East UIt 500 YR Min Slope

GVF Output Data

Critical Slope 0.07223 ft/ft

Messages

Notes

PHASE 1 ONLY WEST CHANNEL (BOTTOM RAISED FOR REDUCED FLOW)

REMAINING CTFS WS FLOW = 100 CFS + 100YR CGS POND FLOW = 300 CFS + 100YR PPF POND FLOW = 240 = 640 CFS TOTAL

35' BOTTOM WIDTH = 2' ABOVE ULTIMATE CHANNEL THALWEG

Worksheet for CTFS West PH1 STA 0+00 - 13+75

		Desc		
Dra	-	11000	rini	tion.
		1755		
	~~.		,, , p	

Friction Method Manning Formula
Solve For Normal Depth

Input Data

0.067 Roughness Coefficient 0.04000 Channel Slope ft/ft Left Side Slope 2.50 ft/ft (H:V) Right Side Slope 2.50 ft/ft (H:V) **Bottom Width** 30.00 518.00 ft³/s Discharge

Results

Normal Depth 2.18 ft Flow Area 77.39 ft² Wetted Perimeter 41.75 ft Hydraulic Radius 1.85 ft Top Width 40.91 ft Critical Depth 1.98 ft Critical Slope 0.05582 ft/ft 6.69 ft/s Velocity Velocity Head 0.70 ft Specific Energy ft 2.88 Froude Number 0.86 Flow Type Subcritical

GVF Input Data

Downstream Depth 0.00 ft
Length 0.00 ft
Number Of Steps 0

GVF Output Data

Upstream Depth

Profile Description Profile Headloss 0.00 ft Infinity Downstream Velocity ft/s **Upstream Velocity** Infinity ft/s 2.18 ft Normal Depth Critical Depth 1.98 ft Channel Slope 0.04000 ft/ft

Lithium Nevada Corporation Thacker Pass Project CTFS West Ph 1 0+00-13+75 100yr, 24hr storm

NOTE: Gray boxes require input, Orange boxes require specific values, Red boxes are calculated

Step 1: Channel Design Parameters				
Bottom Width	В	30	ft	
Side Slope	Z	2.5	x:1	
Longitudinal Slope	S	0.04	ft/ft	
Flow	Q	518	ft ³ /s	

Step 2: Initial Riprap sizing				
Median Stone Size	D ₅₀	0.75	ft	
Stone Unit Weight	Ys	165	pcf	
	D ₁₀₀	15.00	inch	
	D ₇₅	11.25	inch	
Riprap Calculation Gradation	D ₅₀	9.00	inch	
	D ₃₀	6.00	inch	
	D ₁₅	4.50	inch	
	D ₁₀	3.00	inch	

Step 3: Estimate the Flow Depth				
Initial Flow Depth Estimate	D_i	2.2	ft	
Area of Channel	Α	78.10	ft ²	
Wetted Perimeter	Р	41.85	ft	
Hydraulic Radius	R	1.87	ft	
Wetted Top Width	T	41.00	ft	
Calculated Average Flow Depth	D_a	1.90	ft	

Step 4: Estimate Manning's n and the Implied Discharge				
D_a/D_{50}		2.540		
For 1.5 < D _a /D ₅₀ < 185	n	0.067		
Q from mannings	Qi	528.17 ft ³ /s		
% Difference from Design Discharge		1.96%		
For 0.3 < D _a /D ₅₀ < 1.5	n	0.054		
function(Froude number)	f(Fr)	0.866		
Froude number	Fr	0.847		
Velocity of flow	V	6.633		
effective roughness concrentration	b	0.397		
Roughness element geometry	f(REG)	21.110		
Channel geometry	f(CG)	0.295		
Q from mannings	Qi	651.48 ft ³ /s		
% Difference from Design Discharge		25.77%		

Step 5:		
If % difference is > 5%, estimate a new depth in Step 3	FALSE	Proceed to Step 6
For 0.3 < D _a /D ₅₀ < 1.5	TRUE	
If false, proceed to step 6		

Step 6: Calculate Reynolds and Determine Appropriate Shields Parameter & Safety Factor				
Shear Velocity	V*	1.683		
Reynolds number	R_{e}	1.04E+05		
Gravity	g	32.2	ft/s ²	
Kinematic Viscosity	V	1.22E-05	ft ² /s	(1.217e-5 for 60 °F)
From Table 6.1	F*	0.088		
From Table 6.1	SF	1.199		
Specific Gravity of Stone	SG	2.64		
For S < 5%	D ₅₀	0.73	ft	

Table 6.1. Selection of Shields' Parameter and Safety Factor					
Reynolds number	F*	SF			
≤ 4x10 ⁴	0.047	1			
4x10 ⁴ <re<2x10<sup>5</re<2x10<sup>	0.088	1.199	(Linear Interpolation)		
≥ 2x10 ⁵	0.15	1.5			

Step 7: Iterate Solution till Calculated D50 is Acceptably Smaller then Chosen D50				
Difference to Chosen Riprap	97.21%	<	100%	TRUE
IF FALSE GOTO STEP 2, ADJUST RIPRAP SIZE				

Step 8. Side Slope Assessment					
Stone Angle of Repose	ф	42	۰		
For 1.5 < Z < 5	K1	0.835			
	θ	21.80	•		
	K2	0.83			
Stable D ₅₀	D _{50,s}	0.73			
Difference to Chosen Riprap		97.58%	<	100%	TRUE

Worksheet for CTFS West PH1 STA 13+75 - 20+40

		Desc		
Dra	-	11000	rini	tion.
		1755		
	~~.		,, , p	

Friction Method Manning Formula
Solve For Normal Depth

Input Data

0.046 Roughness Coefficient 0.01000 Channel Slope ft/ft Left Side Slope 2.50 ft/ft (H:V) Right Side Slope 2.50 ft/ft (H:V) **Bottom Width** 30.00 428.20 ft³/s Discharge

Results

Normal Depth 2.35 ft Flow Area 84.21 ft² Wetted Perimeter 42.64 ft Hydraulic Radius 1.97 ft Top Width 41.74 ft Critical Depth 1.76 ft Critical Slope 0.02721 ft/ft 5.09 ft/s Velocity Velocity Head 0.40 ft Specific Energy 2.75 ft Froude Number 0.63 Flow Type Subcritical

GVF Input Data

Downstream Depth 0.00 ft
Length 0.00 ft
Number Of Steps 0

GVF Output Data

0.00 ft Upstream Depth Profile Description Profile Headloss 0.00 ft Infinity Downstream Velocity ft/s **Upstream Velocity** Infinity ft/s 2.35 Normal Depth ft 1.76 Critical Depth ft Channel Slope 0.01000 ft/ft

Lithium Nevada Corporation Thacker Pass Project CTFS West Ph 1 13+75-20+40 100yr, 24hr storm

NOTE: Gray boxes require input, Orange boxes require specific values, Red boxes are calculated

Step 1: Channel Design Parameters						
Bottom Width B 30 ft						
Side Slope	Z	2.5	x:1			
Longitudinal Slope	S	0.01	ft/ft			
Flow	Q	428.2	ft ³ /s			

Step 2: Initial Riprap sizing					
Median Stone Size	D ₅₀	0.33	ft		
Stone Unit Weight	Ys	165	pcf		
	D ₁₀₀	6.60	inch		
	D ₇₅	4.95	inch		
Riprap Calculation Gradation	D ₅₀	3.96	inch		
inprap Calculation Gradation	D ₃₀	2.64	inch		
	D ₁₅	1.98	inch		
	D ₁₀	1.32	inch		

Step 3: Estimate the Flow Depth					
Initial Flow Depth Estimate	D_i	2.3	ft		
Area of Channel	Α	82.23	ft ²		
Wetted Perimeter	Р	42.39	ft		
Hydraulic Radius	R	1.94	ft		
Wetted Top Width	Т	41.50	ft		
Calculated Average Flow Depth	D_a	1.98	ft		

Step 4: Estimate Manning's n and the Implied Discharge					
D_a/D_{50}		6.004			
For 1.5 < D _a /D ₅₀ < 185	n	0.046			
Q from mannings	Qi	410.26	ft ³ /s		
% Difference from Design Discharge		-4.19%			
For 0.3 < D _a /D ₅₀ < 1.5	n	0.037			
function(Froude number)	f(Fr)	0.859			
Froude number	Fr	0.652			
Velocity of flow	V	5.208			
effective roughness concrentration	b	0.549			
Roughness element geometry	f(REG)	48.838			
Channel geometry	f(CG)	0.188			
Q from mannings	Qi	511.38	ft ³ /s		
% Difference from Design Discharge		19.42%			

Step 5:		
If % difference is > 5%, estimate a new depth in Step 3	FALSE	Proceed to Step 6
For 0.3 < D _a /D ₅₀ < 1.5	TRUE	
If false, proceed to step 6		

Step 6: Calculate Reynolds and Determine Appropriate Shields Parameter & Safety Factor					
Shear Velocity	V*	0.861			
Reynolds number	$R_{\rm e}$	2.33E+04			
Gravity	g	32.2	ft/s ²		
Kinematic Viscosity	V	1.22E-05	ft ² /s	(1.217e-5 for 60 °F)	
From Table 6.1	F*	0.047			
From Table 6.1	SF	1.000			
Specific Gravity of Stone	SG	2.64			
For S < 5%	D ₅₀	0.30	ft		

Table 6.1. Selection of Shields' Parameter and Safety Factor						
Reynolds number F* SF						
≤ 4x10 ⁴	0.047	1				
4x10 ⁴ <re<2x10<sup>5</re<2x10<sup>	0.036	0.948	(Linear Interpolation)			
≥ 2x10 ⁵	0.15	1.5				

Step 7: Iterate Solution till Calculated D50 is Acceptably Smaller then Chosen D50					
Difference to Chosen Riprap 90.19% < 100% TRUE					
IF FALSE GOTO STEP 2, ADJUST RIPRAP SIZE					

Step 8. Side Slope Assessment					
Stone Angle of Repose	ф	42	•		
For 1.5 < Z < 5	K1	0.835			
	θ	21.80	•		
	K2	0.83			
Stable D ₅₀	D _{50,s}	0.30			
Difference to Chosen Riprap		90.53%	<	100%	TRUE

Worksheet for CTFS West PH1 STA 20+40 - 25+00

		_		
Dra	100	Desc	rini	ti an
-10	16.1	1755	. 1111	
	,		,, , b	

Friction Method Manning Formula
Solve For Normal Depth

Input Data

0.057 Roughness Coefficient 0.08400 Channel Slope ft/ft Left Side Slope 2.50 ft/ft (H:V) Right Side Slope 2.50 ft/ft (H:V) **Bottom Width** 30.00 406.30 ft³/s Discharge

Results

Normal Depth 1.39 ft Flow Area 46.54 ft² Wetted Perimeter 37.49 ft Hydraulic Radius 1.24 ft Top Width 36.95 ft Critical Depth 1.70 ft Critical Slope 0.04218 ft/ft 8.73 ft/s Velocity Velocity Head 1.18 ft Specific Energy ft 2.57 Froude Number 1.37 Flow Type Supercritical

GVF Input Data

Downstream Depth 0.00 ft
Length 0.00 ft
Number Of Steps 0

GVF Output Data

Upstream Depth

Profile Description Profile Headloss 0.00 ft Infinity Downstream Velocity ft/s **Upstream Velocity** Infinity ft/s 1.39 ft Normal Depth 1.70 Critical Depth ft Channel Slope 0.08400 ft/ft

0.00 ft

Lithium Nevada Corporation Thacker Pass Project CTFS West Ph 1 20+40-25+00 100yr, 24hr storm

NOTE: Gray boxes require input, Orange boxes require specific values, Red boxes are calculated

Step 1: Channel Design Parameters					
Bottom Width B 30 ft					
Side Slope	Z	2.5	x:1		
Longitudinal Slope	S	0.084	ft/ft		
Flow	Q	406.3	ft ³ /s		

Step 2: Initial Riprap sizing					
Median Stone Size	D ₅₀	1	ft		
Stone Unit Weight	Ys	165	pcf		
	D ₁₀₀	20.00	inch		
	D ₇₅	15.00	inch		
Riprap Calculation Gradation	D ₅₀	12.00	inch		
inprap calculation dradation	D ₃₀	8.00	inch		
	D ₁₅	6.00	inch		
	D ₁₀	4.00	inch		

Step 3: Estimate the Flow Depth						
Initial Flow Depth Estimate	D_{i}	1.4	ft			
Area of Channel	Α	46.90	ft ²			
Wetted Perimeter	Р	37.54	ft			
Hydraulic Radius	R	1.25	ft			
Wetted Top Width	Т	37.00	ft			
Calculated Average Flow Depth	D_a	1.27	ft			

Step 4: Estimate Manning's n and the Implied Discharge					
D_a/D_{50}		1.268			
For 1.5 < D _a /D ₅₀ < 185	n	0.098			
Q from mannings	Qi	240.36	ft ³ /s		
% Difference from Design Discharge		-40.84%			
For $0.3 < D_a/D_{50} < 1.5$	n	0.057			
function(Froude number)	f(Fr)	1.166			
Froude number	Fr	1.356			
Velocity of flow	V	8.663			
effective roughness concrentration	b	0.269			
Roughness element geometry	f(REG)	10.131			
Channel geometry	f(CG)	0.403			
Q from mannings	Qi	409.49	ft ³ /s		
% Difference from Design Discharge		0.78%			

Step 5:				
If % difference is > 5%, estimate a new depth in Step 3	TRUE			
For $0.3 < D_a/D_{50} < 1.5$	FALSE	Proceed to Step 6		
If false, proceed to step 6				

Step 6: Calculate Reynolds and Determine Appropriate Shields Parameter & Safety Factor						
Shear Velocity	V _*	1.946				
Reynolds number	R_{e}	1.60E+05				
Gravity	g	32.2	ft/s ²			
Kinematic Viscosity	V	1.22E-05	ft ² /s	(1.217e-5 for 60 °F)		
From Table 6.1	F*	0.124				
From Table 6.1	SF	1.375				
Specific Gravity of Stone	SG	2.64				
For S < 5%	D ₅₀	0.79	ft			

Table 6.1. Selection of Shields' Parameter and Safety Factor					
Reynolds number	F*	SF			
≤ 4x10 ⁴	0.047	1			
4x10 ⁴ <re<2x10<sup>5</re<2x10<sup>	0.124	1.375	(Linear Interpolation)		
≥ 2x10 ⁵	0.15	1.5			

Step 7: Iterate Solution till Calculated D50 is Acceptably Smaller then Chosen D50						
Difference to Chosen Riprap 79.17% < 100% TRUE						
IF FALSE GOTO STEP 2, ADJUST RIPRAP SIZE						

Step 8. Side Slope Assessment					
Stone Angle of Repose	ф	42	۰		
For 1.5 < Z < 5	K1	0.835			
	θ	21.80	•		
	K2	0.83			
Stable D ₅₀	D _{50,s}	0.79			
Difference to Chosen Riprap		79.48%	<	100%	TRUE

Worksheet for CTFS West PH1 STA 25+00 - 27+00

		_		
Pro	00+	\Box	orin	tion
	– C.1	1 145	CHID	110)1 1

Friction Method Manning Formula
Solve For Normal Depth

Input Data

0.065 Roughness Coefficient 0.08400 Channel Slope ft/ft Left Side Slope 2.50 ft/ft (H:V) Right Side Slope 2.50 ft/ft (H:V) **Bottom Width** 30.00 45.60 ft³/s Discharge

Results

Normal Depth 0.41 ft Flow Area 12.77 ft² Wetted Perimeter 32.22 ft Hydraulic Radius 0.40 ft Top Width 32.06 ft Critical Depth 0.41 ft Critical Slope 0.08427 ft/ft 3.57 ft/s Velocity Velocity Head 0.20 ft Specific Energy 0.61 ft Froude Number 1.00 Flow Type Subcritical

GVF Input Data

Downstream Depth $0.00\,$ ft Length $0.00\,$ ft Number Of Steps $0\,$

GVF Output Data

0.00 ft Upstream Depth Profile Description Profile Headloss 0.00 ft Infinity Downstream Velocity ft/s **Upstream Velocity** Infinity ft/s 0.41 ft Normal Depth Critical Depth 0.41 ft Channel Slope 0.08400 ft/ft

Lithium Nevada Corporation Thacker Pass Project CTFS West Ph 1 25+00-27+00 100yr, 24hr storm

NOTE: Gray boxes require input, Orange boxes require specific values, Red boxes are calculated

Step 1: Channel Design Parameters						
Bottom Width B 30 ft						
Side Slope	Z	2.5	x:1			
Longitudinal Slope	S	0.084	ft/ft			
Flow	Q	45.6	ft ³ /s			

Step 2: Initial Riprap sizing					
Median Stone Size	D ₅₀	0.5	ft		
Stone Unit Weight	Ys	165	pcf		
	D ₁₀₀	10.00	inch		
	D ₇₅	7.50	inch		
Riprap Calculation Gradation	D ₅₀	6.00	inch		
mprap calculation drauation	D ₃₀	4.00	inch		
	D ₁₅	3.00	inch		
	D ₁₀	2.00	inch		

Step 3: Estimate the Flow Depth						
Initial Flow Depth Estimate	D_i	0.41	ft			
Area of Channel	Α	12.72	ft ²			
Wetted Perimeter	Р	32.21	ft			
Hydraulic Radius	R	0.39	ft			
Wetted Top Width	Т	32.05	ft			
Calculated Average Flow Depth	D_a	0.40	ft			

Step 4: Estimate Manning's n and the Implied Discharge					
D_a/D_{50}		0.794			
For 1.5 < D _a /D ₅₀ < 185	n	0.130			
Q from mannings	Qi	22.72	ft ³ /s		
% Difference from Design Discharge		-50.18%			
For $0.3 < D_a/D_{50} < 1.5$	n	0.065			
function(Froude number)	f(Fr)	1.623			
Froude number	Fr	1.003			
Velocity of flow	V	3.585			
effective roughness concrentration	b	0.143			
Roughness element geometry	f(REG)	4.027			
Channel geometry	f(CG)	0.533			
Q from mannings	Qi	45.73	ft ³ /s		
% Difference from Design Discharge		0.28%			

Step 5:				
If % difference is > 5%, estimate a new depth in Step 3	TRUE			
For $0.3 < D_a/D_{50} < 1.5$	FALSE	Proceed to Step 6		
If false, proceed to step 6				

Step 6: Calculate Reynolds and Determine Appropriate Shields Parameter & Safety Factor					
Shear Velocity	V*	1.053			
Reynolds number	R_{e}	4.33E+04			
Gravity	g	32.2	ft/s ²		
Kinematic Viscosity	V	1.22E-05	ft ² /s	(1.217e-5 for 60 °F)	
From Table 6.1	F*	0.049			
From Table 6.1	SF	1.010			
Specific Gravity of Stone	SG	2.64			
For S < 5%	D ₅₀	0.43	ft		

Table 6.1. Selection of Shields' Parameter and Safety Factor				
Reynolds number	F*	SF		
≤ 4x10 ⁴	0.047	1		
4x10 ⁴ <re<2x10<sup>5</re<2x10<sup>	0.049	1.010	(Linear Interpolation)	
≥ 2x10 ⁵	0.15	1.5		

Step 7: Iterate Solution till Calculated D50 is Acceptably Smaller then Chosen D50					
Difference to Chosen Riprap 86.19% < 100% TRUE					
IF FALSE GOTO STEP 2, ADJUST RIPRAP SIZE					

Step 8. Side Slope Assessment					
Stone Angle of Repose	ф	42	•		
For 1.5 < Z < 5	K1	0.835			
	Θ	21.80	•		
	K2	0.83			
Stable D ₅₀	D _{50,s}	0.43			
Difference to Chosen Riprap		86.52%	<	100%	TRUE

Worksheet for CTFS West PH1 STA 27+00 - 29+64

Project Description		
Friction Method	Manning Formula	
Solve For	Normal Depth	
Input Data		
Roughness Coefficient	0.082	
Channel Slope	0.05300	ft/ft
Left Side Slope	2.50	ft/ft (H:V)
Right Side Slope	2.50	ft/ft (H:V)
Bottom Width	30.00	ft
Discharge	29.90	ft³/s
Results		
Normal Depth	0.42	ft
Flow Area	13.08	ft²
Wetted Perimeter	32.27	ft
Hydraulic Radius	0.41	ft
Top Width	32.11	ft
Critical Depth	0.31	ft
Critical Slope	0.14657	ft/ft
Velocity	2.29	ft/s
Velocity Head	0.08	ft
Specific Energy	0.50	ft
Froude Number	0.63	
Flow Type	Subcritical	
GVF Input Data		

GVF	Innut	Data
\cup_{V}	IIIDUL	Data

Downstream Depth	0.00	ft
Length	0.00	ft
Number Of Steps	0	

GVF Output Data

Upstream Depth

•		
Profile Description		
Profile Headloss	0.00	ft
Downstream Velocity	Infinity	ft/s
Upstream Velocity	Infinity	ft/s
Normal Depth	0.42	ft
Critical Depth	0.31	ft
Channel Slope	0.05300	ft/ft

0.00 ft

Lithium Nevada Corporation Thacker Pass Project CTFS West Ph 1 27+00-29+64 100yr, 24hr storm

NOTE: Gray boxes require input, Orange boxes require specific values, Red boxes are calculated

Step 1: Channel Design Parameters					
Bottom Width	В	30	ft		
Side Slope	Z	2.5	x:1		
Longitudinal Slope	S	0.053	ft/ft		
Flow	Q	29.9	ft ³ /s		

Step 2: Initial Riprap sizing				
Median Stone Size	D ₅₀	0.33	ft	
Stone Unit Weight	Ys	165	pcf	
Riprap Calculation Gradation	D ₁₀₀	6.60	inch	
	D ₇₅	4.95	inch	
	D ₅₀	3.96	inch	
	D ₃₀	2.64	inch	
	D ₁₅	1.98	inch	
	D ₁₀	1.32	inch	

Step 3: Estimate the Flow Depth				
Initial Flow Depth Estimate	D _i	0.42	ft	
Area of Channel	Α	13.04	ft ²	
Wetted Perimeter	Р	32.26	ft	
Hydraulic Radius	R	0.40	ft	
Wetted Top Width	Т	32.10	ft	
Calculated Average Flow Depth	D_a	0.41	ft	

Step 4: Estimate Manning's n and the Implied Discharge					
D_a/D_{50}		1.231			
For 1.5 < D _a /D ₅₀ < 185	n	0.083			
Q from mannings	Qi	29.53	ft ³ /s		
% Difference from Design Discharge		-1.25%			
For 0.3 < D _a /D ₅₀ < 1.5	n	0.082			
function(Froude number)	f(Fr)	1.029			
Froude number	Fr	0.634			
Velocity of flow	V	2.293			
effective roughness concrentration	b	0.170			
Roughness element geometry	f(REG)	5.642			
Channel geometry	f(CG)	0.476			
Q from mannings	Qi	29.93	ft ³ /s		
% Difference from Design Discharge		0.11%			

Step 5:				
If % difference is > 5%, estimate a new depth in Step 3	FALSE			
For $0.3 < D_a/D_{50} < 1.5$	FALSE	Proceed to Step 6		
If false, proceed to step 6				

Step 6: Calculate Reynolds and Determine Appropriate Shields Parameter & Safety Factor				
Shear Velocity	V*	0.847		
Reynolds number	R_{e}	2.30E+04		
Gravity	g	32.2	ft/s ²	
Kinematic Viscosity	V	1.22E-05	ft ² /s	(1.217e-5 for 60 °F)
From Table 6.1	F*	0.047		
From Table 6.1	SF	1.000		
Specific Gravity of Stone	SG	2.64		
For S < 5%	D ₅₀	0.29	ft	

Table 6.1. Selection of Shields' Parameter and Safety Factor				
Reynolds number	F*	SF		
≤ 4x10 ⁴	0.047	1		
4x10 ⁴ <re<2x10<sup>5</re<2x10<sup>	0.036	0.947	(Linear Interpolation)	
≥ 2x10 ⁵	0.15	1.5		

Step 7: Iterate Solution till Calculated D50 is Acceptably Smaller then Chosen D50				
Difference to Chosen Riprap 87.29% < 100% TRUE				
IF FALSE GOTO STEP 2, ADJUST RIPRAP SIZE				

Step 8. Side Slope Assessment					
Stone Angle of Repose	ф	42	•		
For 1.5 < Z < 5	K1	0.835			
	θ	21.80	•		
	K2	0.83			
Stable D ₅₀	D _{50,s}	0.29			
Difference to Chosen Riprap		87.62%	<	100%	TRUE

Worksheet for CTFS West PH1 STA 29+64 - 38+69

Project Description	
Friction Method	Manning Formula

Solve For Normal Depth

Input Data

Roughness Coefficient	0.032	
Channel Slope	0.00600	ft/ft
Left Side Slope	2.50	ft/ft (H:V)
Right Side Slope	2.50	ft/ft (H:V)
Bottom Width	30.00	ft
Discharge	29.90	ft³/s

Results

Normal Depth		0.46	ft
Flow Area		14.34	ft²
Wetted Perimeter		32.48	ft
Hydraulic Radius		0.44	ft
Top Width		32.30	ft
Critical Depth		0.31	ft
Critical Slope		0.02232	ft/ft
Velocity		2.08	ft/s
Velocity Head		0.07	ft
Specific Energy		0.53	ft
Froude Number		0.55	
Flow Type	Subcritical		

GVF Input Data

Downstream Depth	0.00	ft
Length	0.00	ft
Number Of Steps	0	

GVF Output Data

Upstream Depth

-1		
Profile Description		
Profile Headloss	0.00	ft
Downstream Velocity	Infinity	ft/s
Upstream Velocity	Infinity	ft/s
Normal Depth	0.46	ft
Critical Depth	0.31	ft
Channel Slope	0.00600	ft/ft

0.00 ft

Lithium Nevada Corporation Thacker Pass Project CTFS West Ph 1 29+64-38+69 100yr, 24hr storm

NOTE: Gray boxes require input, Orange boxes require specific values, Red boxes are calculated

Step 1: Channel Design Parameters					
Bottom Width	В	30	ft		
Side Slope	Z	2.5	x:1		
Longitudinal Slope	S	0.006	ft/ft		
Flow	Q	29.9	ft ³ /s		

Step 2: Initial Riprap sizing						
Median Stone Size	D ₅₀	0.05	ft			
Stone Unit Weight	Ys	165	pcf			
Riprap Calculation Gradation	D ₁₀₀	1.00	inch			
	D ₇₅	0.75	inch			
	D ₅₀	0.60	inch			
	D ₃₀	0.40	inch			
	D ₁₅	0.30	inch			
	D ₁₀	0.20	inch			

Step 3: Estimate the Flow Depth						
Initial Flow Depth Estimate D _i 0.46 ft						
Area of Channel	Α	14.33	ft ²			
Wetted Perimeter	Р	32.48	ft			
Hydraulic Radius	R	0.44	ft			
Wetted Top Width	Т	32.30	ft			
Calculated Average Flow Depth	D_a	0.44	ft			

Step 4: Estimate Manning's n and the Implied Discharge						
D_a/D_{50}		8.872				
For 1.5 < D _a /D ₅₀ < 185	n	0.032				
Q from mannings	Qi	30.19 ft ³ /s				
% Difference from Design Discharge		0.99%				
For 0.3 < D _a /D ₅₀ < 1.5	n	0.041				
function(Froude number)	f(Fr)	0.762				
Froude number	Fr	0.552				
Velocity of flow	V	2.087				
effective roughness concrentration	b	0.359				
Roughness element geometry	f(REG)	34.144				
Channel geometry	f(CG)	0.214				
Q from mannings	Qi	23.28 ft ³ /s				
% Difference from Design Discharge		-22.12%				

Step 5:		
If % difference is > 5%, estimate a new depth in Step 3	FALSE	Proceed to Step 6
For $0.3 < D_a/D_{50} < 1.5$	TRUE	
If false, proceed to step 6		

Step 6: Calculate Reynolds and Determine Appropriate Shields Parameter & Safety Factor						
Shear Velocity	V_*	0.298				
Reynolds number	R_{e}	1.22E+03				
Gravity	g	32.2	ft/s ²			
Kinematic Viscosity	V	1.22E-05	ft ² /s	(1.217e-5 for 60 °F)		
From Table 6.1	F*	0.047				
From Table 6.1	SF	1.000				
Specific Gravity of Stone	SG	2.64				
For S < 5%	D ₅₀	0.04	ft			

Table 6.1. Selection of Shields' Parameter and Safety Factor					
Reynolds number	F*	SF			
≤ 4x10 ⁴	0.047	1			
4x10 ⁴ <re<2x10<sup>5</re<2x10<sup>	0.022	0.879	(Linear Interpolation)		
≥ 2x10 ⁵	0.15	1.5			

Step 7: Iterate Solution till Calculated D50 is Acceptably Smaller then Chosen D50						
Difference to Chosen Riprap 71.43% < 100% TRUE						
IF FALSE GOTO STEP 2, ADJUST RIPRAP SIZE						

Step 8. Side Slope Assessment					
Stone Angle of Repose	ф	42	0		
For 1.5 < Z < 5	K1	0.835			
	θ	21.80	•		
	K2	0.83			
Stable D ₅₀	D _{50,s}	0.04			
Difference to Chosen Riprap		71.70%	<	100%	TRUE

Worksheet for CTFS West Outlet 0+00 - 13+75

Proi	iect	Desci	ripti	ion
			100	\sim \sim \sim

Friction Method Manning Formula
Solve For Normal Depth

Input Data

0.066 Roughness Coefficient 0.04000 Channel Slope ft/ft Left Side Slope 2.50 ft/ft (H:V) Right Side Slope 2.50 ft/ft (H:V) **Bottom Width** 30.00 1381.70 ft³/s Discharge

Results

Normal Depth 3.78 ft Flow Area 148.90 ft² Wetted Perimeter 50.33 ft Hydraulic Radius 2.96 ft Top Width 48.88 ft Critical Depth 3.63 ft Critical Slope 0.04600 ft/ft 9.28 ft/s Velocity Velocity Head 1.34 ft Specific Energy ft 5.11 Froude Number 0.94

Flow Type Subcritical

GVF Input Data

Downstream Depth 0.00 ft Length 0.00 ft Number Of Steps 0 0

GVF Output Data

Upstream Depth

Profile Description Profile Headloss 0.00 ft **Downstream Velocity** Infinity ft/s **Upstream Velocity** Infinity ft/s 3.78 Normal Depth ft Critical Depth 3.63 ft Channel Slope 0.04000 ft/ft

0.00 ft

Lithium Nevada Corporation
Thacker Pass Project
CTFS West Ult 0+00-13+75 100yr, 24hr storm

NOTE: Gray boxes require input, Orange boxes require specific values, Red boxes are calculated

Step 1: Channel Design Parameters						
Bottom Width B 30 ft						
Side Slope	Z	2.5	x:1			
Longitudinal Slope	S	0.04	ft/ft			
Flow	Q	1382	ft ³ /s			

Step 2: Initial Riprap sizing						
Median Stone Size D ₅₀ 1 ft						
Stone Unit Weight	Ys	165	pcf			
Riprap Calculation Gradation	D ₁₀₀	20.00	inch			
	D ₇₅	15.00	inch			
	D ₅₀	12.00	inch			
	D ₃₀	8.00	inch			
	D ₁₅	6.00	inch			
	D ₁₀	4.00	inch			

Step 3: Estimate the Flow Depth						
Initial Flow Depth Estimate	D _i	3.8	ft			
Area of Channel	Α	150.10	ft ²			
Wetted Perimeter	Р	50.46	ft			
Hydraulic Radius	R	2.97	ft			
Wetted Top Width	Т	49.00	ft			
Calculated Average Flow Depth	D_a	3.06	ft			

Step 4: Estimate Manning's n and the Implied Discharge					
D_a/D_{50}		3.063			
For 1.5 < D _a /D ₅₀ < 185	n	0.066			
Q from mannings	Qi	1404.27 ft ³ /s			
% Difference from Design Discharge		1.61%			
For 0.3 < D _a /D ₅₀ < 1.5	n	0.049			
function(Froude number)	f(Fr)	0.887			
Froude number	Fr	0.927			
Velocity of flow	V	9.207			
effective roughness concrentration	b	0.486			
Roughness element geometry	f(REG)	28.311			
Channel geometry	f(CG)	0.260			
Q from mannings	Qi	1906.13 ft ³ /s			
% Difference from Design Discharge		37.93%			

Step 5:					
If % difference is > 5%, estimate a new depth in Step 3	FALSE	Proceed to Step 6			
For $0.3 < D_a/D_{50} < 1.5$	TRUE				
If false, proceed to step 6					

Step 6: Calculate Reynolds and Determine Appropriate Shields Parameter & Safety Factor					
Shear Velocity	V*	2.212			
Reynolds number	R_{e}	1.82E+05			
Gravity	g	32.2	ft/s ²		
Kinematic Viscosity	V	1.22E-05	ft ² /s	(1.217e-5 for 60 °F)	
From Table 6.1	F*	0.138			
From Table 6.1	SF	1.443			
Specific Gravity of Stone	SG	2.64			
For S < 5%	D ₅₀	0.96	ft		

Table 6.1. Selection of Shields' Parameter and Safety Factor					
Reynolds number	F*	SF			
≤ 4x10 ⁴	0.047	1			
4x10 ⁴ <re<2x10<sup>5</re<2x10<sup>	0.138	1.443	(Linear Interpolation)		
≥ 2x10 ⁵	0.15	1.5			

Step 7: Iterate Solution till Calculated D50 is Acceptably Smaller then Chosen D50					
Difference to Chosen Riprap 96.48% < 100% TRUE					
IF FALSE GOTO STEP 2, ADJUST RIPRAP SIZE					

Step 8. Side Slope Assessment					
Stone Angle of Repose	ф	42	•		
For 1.5 < Z < 5	K1	0.835			
	θ	21.80	0		
	K2	0.83			
Stable D ₅₀	D _{50,s}	0.97			
Difference to Chosen Riprap		96.85%	<	100%	TRUE

Worksheet for CTFS West 106+00 - 112+73

D :	1	D	:	1:
Pro	ואכד	Desc	٠rın	บกก
1 10			,,,,,	uon

Friction Method Manning Formula
Solve For Normal Depth

Input Data

0.070 Roughness Coefficient 0.04200 Channel Slope ft/ft Left Side Slope 2.50 ft/ft (H:V) Right Side Slope 2.50 ft/ft (H:V) **Bottom Width** 30.00 886.50 ft³/s Discharge

Results

Normal Depth 3.00 ft Flow Area 112.51 ft² Wetted Perimeter 46.16 ft Hydraulic Radius 2.44 ft Top Width 45.00 ft Critical Depth 2.77 ft Critical Slope 0.05559 ft/ft 7.88 ft/s Velocity Velocity Head 0.96 ft Specific Energy ft 3.97 Froude Number 0.88 Flow Type Subcritical

GVF Input Data

Downstream Depth 0.00 ft
Length 0.00 ft
Number Of Steps 0

GVF Output Data

Upstream Depth

Profile Description Profile Headloss 0.00 ft **Downstream Velocity** Infinity ft/s **Upstream Velocity** Infinity ft/s 3.00 ft Normal Depth 2.77 Critical Depth ft Channel Slope 0.04200 ft/ft

0.00 ft

Lithium Nevada Corporation
Thacker Pass Project
CTFS West Ult 106+00-112+73, 100yr 24hr storm

NOTE: Gray boxes require input, Orange boxes require specific values, Red boxes are calculated

Step 1: Channel Design Parameters						
Bottom Width B 30 ft						
Side Slope	Z	2.5	x:1			
Longitudinal Slope	S	0.042	ft/ft			
Flow	Q	886.5	ft ³ /s			

Step 2: Initial Riprap sizing					
Median Stone Size	D ₅₀	1	ft		
Stone Unit Weight	Ys	165	pcf		
Riprap Calculation Gradation	D ₁₀₀	20.00	inch		
	D ₇₅	15.00	inch		
	D ₅₀	12.00	inch		
	D ₃₀	8.00	inch		
	D ₁₅	6.00	inch		
	D ₁₀	4.00	inch		

Step 3: Estimate the Flow Depth					
Initial Flow Depth Estimate	D _i	3	ft		
Area of Channel	Α	112.50	ft^2		
Wetted Perimeter	Р	46.16	ft		
Hydraulic Radius	R	2.44	ft		
Wetted Top Width	T	45.00	ft		
Calculated Average Flow Depth	D_a	2.50	ft		

Step 4: Estimate Manning's n and the Implied Discharge					
D_a/D_{50}		2.500			
For 1.5 < D _a /D ₅₀ < 185	n	0.070			
Q from mannings	Qi	882.88 ft ³ /	S		
% Difference from Design Discharge		-0.41%			
For 0.3 < D _a /D ₅₀ < 1.5	n	0.054			
function(Froude number)	f(Fr)	0.872			
Froude number	Fr	0.878			
Velocity of flow	V	7.880			
effective roughness concrentration	b	0.428			
Roughness element geometry	f(REG)	22.407			
Channel geometry	f(CG)	0.290			
Q from mannings	Qi	1152.22 ft ³ /	S		
% Difference from Design Discharge		29.97%			

Step 5:		
If % difference is > 5%, estimate a new depth in Step 3	FALSE	Proceed to Step 6
For $0.3 < D_a/D_{50} < 1.5$	TRUE	
If false, proceed to step 6		

Step 6: Calculate Reynolds and Determine Appropriate Shields Parameter & Safety Factor					
Shear Velocity	V*	2.014			
Reynolds number	R_{e}	1.66E+05			
Gravity	g	32.2	ft/s ²		
Kinematic Viscosity	V	1.22E-05	ft²/s	(1.217e-5 for 60 °F)	
From Table 6.1	F*	0.128			
From Table 6.1	SF	1.392			
Specific Gravity of Stone	SG	2.64			
For S < 5%	D ₅₀	0.83	ft		

Table 6.1. Selection of Shields' Parameter and Safety Factor					
Reynolds number	F*	SF			
≤ 4x10 ⁴	0.047	1			
4x10 ⁴ <re<2x10<sup>5</re<2x10<sup>	0.128	1.392	(Linear Interpolation)		
≥ 2x10 ⁵	0.15	1.5			

Step 7: Iterate Solution till Calculated D50 is Acceptably Smaller then Chosen D50					
Difference to Chosen Riprap	83.48%	<	100%	TRUE	
IF FALSE GOTO STEP 2, ADJUST RIPRAP SIZE					

Step 8. Side Slope Assessment					
Stone Angle of Repose	ф	42	۰		
For 1.5 < Z < 5	K1	0.835			
	θ	21.80	•		
	K2	0.83			
Stable D ₅₀	D _{50,s}	0.84			
Difference to Chosen Riprap		83.80%	<	100%	TRUE

Worksheet for CTFS West 112+73 - 116+00

_		_	
ν_{ro}	IDCT.	1 1000	ription
1 10	ICCL	Desc	110001

Friction Method Manning Formula
Solve For Normal Depth

Input Data

Roughness Coefficient	0.060	
Channel Slope	0.02200	ft/ft
Left Side Slope	2.50	ft/ft (H:V)
Right Side Slope	2.50	ft/ft (H:V)
Bottom Width	30.00	ft
Discharge	878.70	ft³/s

Results

Normal Depth		3.28	ft
Flow Area		125.50	ft²
Wetted Perimeter		47.69	ft
Hydraulic Radius		2.63	ft
Top Width		46.42	ft
Critical Depth		2.76	ft
Critical Slope		0.04090	ft/ft
Velocity		7.00	ft/s
Velocity Head		0.76	ft
Specific Energy		4.05	ft
Froude Number		0.75	
Flow Type	Subcritical		

GVF Input Data

Downstream Depth	0.00	ft
Length	0.00	ft
Number Of Steps	0	

GVF Output Data

Upstream Depth	0.00	ft
Profile Description		
Profile Headloss	0.00	ft
Downstream Velocity	Infinity	ft/s
Upstream Velocity	Infinity	ft/s
Normal Depth	3.28	ft
Critical Depth	2.76	ft
Channel Slope	0.02200	ft/ft

Lithium Nevada Corporation Thacker Pass Project CTFS West Ult 112+73-116+00, 100yr 24hr storm

NOTE: Gray boxes require input, Orange boxes require specific values, Red boxes are calculated

Step 1: Channel Design Parameters					
Bottom Width	В	30	ft		
Side Slope	Z	2.5	x:1		
Longitudinal Slope	S	0.022	ft/ft		
Flow	Q	878.7	ft ³ /s		

Step 2: Initial Riprap sizing				
Median Stone Size	D ₅₀	0.75	ft	
Stone Unit Weight	Ys	165	pcf	
Riprap Calculation Gradation	D ₁₀₀	15.00	inch	
	D ₇₅	11.25	inch	
	D ₅₀	9.00	inch	
	D ₃₀	6.00	inch	
	D ₁₅	4.50	inch	
	D ₁₀	3.00	inch	

Step 3: Estimate the Flow Depth				
Initial Flow Depth Estimate	D _i	3.3	ft	
Area of Channel	Α	126.23	ft ²	
Wetted Perimeter	Р	47.77	ft	
Hydraulic Radius	R	2.64	ft	
Wetted Top Width	Т	46.50	ft	
Calculated Average Flow Depth	D_a	2.71	ft	

Step 4: Estimate Manning's n and the Implied Discharge					
D_a/D_{50}		3.619			
For 1.5 < D _a /D ₅₀ < 185	n	0.060			
Q from mannings	Qi	891.06	ft ³ /s		
% Difference from Design Discharge		1.41%			
For $0.3 < D_a/D_{50} < 1.5$	n	0.047			
function(Froude number)	f(Fr)	0.855			
Froude number	Fr	0.745			
Velocity of flow	V	6.961			
effective roughness concrentration	b	0.501			
Roughness element geometry	f(REG)	32.292			
Channel geometry	f(CG)	0.241			
Q from mannings	Qi	1144.66	ft ³ /s		
% Difference from Design Discharge		30.27%			

Step 5:		
If % difference is > 5%, estimate a new depth in Step 3	FALSE	Proceed to Step 6
For $0.3 < D_a/D_{50} < 1.5$	TRUE	
If false, proceed to step 6		

Step 6: Calculate Reynolds and Determine Appropriate Shields Parameter & Safety Factor					
Shear Velocity	V*	1.529			
Reynolds number	R_{e}	9.42E+04			
Gravity	g	32.2	ft/s ²		
Kinematic Viscosity	V	1.22E-05	ft²/s	(1.217e-5 for 60 °F)	
From Table 6.1	F*	0.082			
From Table 6.1	SF	1.169			
Specific Gravity of Stone	SG	2.64			
For S < 5%	D ₅₀	0.63	ft		

Table 6.1. Selection of Shields' Parameter and Safety Factor					
Reynolds number	F*	SF			
≤ 4x10 ⁴	0.047	1			
4x10 ⁴ <re<2x10<sup>5</re<2x10<sup>	0.082	1.169	(Linear Interpolation)		
≥ 2x10 ⁵	0.15	1.5			

Step 7: Iterate Solution till Calculated D50 is Acceptably Smaller then Chosen D50					
Difference to Chosen Riprap	84.06%	<	100%	TRUE	
IF FALSE GOTO STEP 2, ADJUST RIPRAP SIZE					

Step 8. Side Slope Assessment					
Stone Angle of Repose	ф	42	۰		
For 1.5 < Z < 5	K1	0.835			
	Θ	21.80	•		
	K2	0.83			
Stable D ₅₀	D _{50,s}	0.63			
Difference to Chosen Riprap		84.38%	<	100%	TRUE

Worksheet for CTFS West 116+00 - 123+50

Pro	iect	Descri	ption

Friction Method Manning Formula
Solve For Normal Depth

Input Data

Roughness Coefficient	0.070	
Channel Slope	0.04200	ft/ft
Left Side Slope	2.50	ft/ft (H:V)
Right Side Slope	2.50	ft/ft (H:V)
Bottom Width	30.00	ft
Discharge	876.10	ft³/s

Results

Normal Depth		2.98	ft
Flow Area		111.61	ft²
Wetted Perimeter		46.05	ft
Hydraulic Radius		2.42	ft
Top Width		44.90	ft
Critical Depth		2.75	ft
Critical Slope		0.05570	ft/ft
Velocity		7.85	ft/s
Velocity Head		0.96	ft
Specific Energy		3.94	ft
Froude Number		0.88	
Flow Type	Subcritical		

GVF Input Data

Downstream Depth	0.00	ft
Length	0.00	ft
Number Of Steps	0	

GVF Output Data

Upstream Depth	0.00	ft
Profile Description		
Profile Headloss	0.00	ft
Downstream Velocity	Infinity	ft/s
Upstream Velocity	Infinity	ft/s
Normal Depth	2.98	ft
Critical Depth	2.75	ft
Channel Slope	0.04200	ft/ft

Lithium Nevada Corporation
Thacker Pass Project
CTFS West Ult 116+00-123+50, 100yr 24hr storm

NOTE: Gray boxes require input, Orange boxes require specific values, Red boxes are calculated

Step 1: Channel Design Parameters				
Bottom Width	В	30	ft	
Side Slope	Z	2.5	x:1	
Longitudinal Slope	S	0.042	ft/ft	
Flow	Q	876.1	ft ³ /s	

Step 2: Initial Riprap sizing				
Median Stone Size	D ₅₀	1	ft	
Stone Unit Weight	Ys	165	pcf	
Riprap Calculation Gradation	D ₁₀₀	20.00	inch	
	D ₇₅	15.00	inch	
	D ₅₀	12.00	inch	
	D ₃₀	8.00	inch	
	D ₁₅	6.00	inch	
	D ₁₀	4.00	inch	

Step 3: Estimate the Flow Depth				
Initial Flow Depth Estimate	D _i	3	ft	
Area of Channel	Α	112.50	ft ²	
Wetted Perimeter	Р	46.16	ft	
Hydraulic Radius	R	2.44	ft	
Wetted Top Width	Т	45.00	ft	
Calculated Average Flow Depth	D_a	2.50	ft	

Step 4: Estimate Manning's n and the Implied Discharge					
D_a/D_{50}		2.500			
For 1.5 < D _a /D ₅₀ < 185	n	0.070			
Q from mannings	Qi	882.88 ft ³ /s	s		
% Difference from Design Discharge		0.77%			
For 0.3 < D _a /D ₅₀ < 1.5	n	0.054			
function(Froude number)	f(Fr)	0.870			
Froude number	Fr	0.868			
Velocity of flow	V	7.788			
effective roughness concrentration	b	0.428			
Roughness element geometry	f(REG)	22.407			
Channel geometry	f(CG)	0.290			
Q from mannings	Qi	1148.88 ft ³ /s	s		
% Difference from Design Discharge		31.14%			

Step 5:		
If % difference is > 5%, estimate a new depth in Step 3	FALSE	Proceed to Step 6
For $0.3 < D_a/D_{50} < 1.5$	TRUE	
If false, proceed to step 6		

Step 6: Calculate Reynolds and Determine Appropriate Shields Parameter & Safety Factor				
Shear Velocity	V*	2.014		
Reynolds number	R_{e}	1.66E+05		
Gravity	g	32.2	ft/s ²	
Kinematic Viscosity	V	1.22E-05	ft²/s	(1.217e-5 for 60 °F)
From Table 6.1	F*	0.128		
From Table 6.1	SF	1.392		
Specific Gravity of Stone	SG	2.64		
For S < 5%	D ₅₀	0.83	ft	

Table 6.1. Selection of Shields' Parameter and Safety Factor					
Reynolds number	F*	SF			
≤ 4x10 ⁴	0.047	1			
4x10 ⁴ <re<2x10<sup>5</re<2x10<sup>	0.128	1.392	(Linear Interpolation)		
≥ 2x10 ⁵	0.15	1.5			

Step 7: Iterate Solution till Calculated D50 is Acceptably Smaller then Chosen D50				
Difference to Chosen Riprap	83.48%	<	100%	TRUE
IF FALSE GOTO STEP 2, ADJUST RIPRAP SIZE				

Step 8. Side Slope Assessment					
Stone Angle of Repose	ф	42	۰		
For 1.5 < Z < 5	K1	0.835			
	θ	21.80	•		
	K2	0.83			
Stable D ₅₀	D _{50,s}	0.84			
Difference to Chosen Riprap		83.80%	<	100%	TRUE

Worksheet for CTFS West 132+65 - 167+50

D :	1	D	:	1:
Pro	ואכד	Desc	٠rın	บกก
1 10			,,,,,	uon

Friction Method Manning Formula
Solve For Normal Depth

Input Data

Roughness Coefficient	0.051	
Channel Slope	0.01100	ft/ft
Left Side Slope	2.50	ft/ft (H:V)
Right Side Slope	2.50	ft/ft (H:V)
Bottom Width	30.00	ft
Discharge	727.20	ft³/s

Results

Normal Depth		3.27	ft
Flow Area		125.05	ft²
Wetted Perimeter		47.63	ft
Hydraulic Radius		2.63	ft
Top Width		46.37	ft
Critical Depth		2.45	ft
Critical Slope		0.03050	ft/ft
Velocity		5.82	ft/s
Velocity Head		0.53	ft
Specific Energy		3.80	ft
Froude Number		0.62	
Flow Type	Subcritical		

GVF Input Data

Downstream Depth	0.00	ft
Length	0.00	ft
Number Of Steps	0	

GVF Output Data

Upstream Depth	0.00	ft
Profile Description		
Profile Headloss	0.00	ft
Downstream Velocity	Infinity	ft/s
Upstream Velocity	Infinity	ft/s
Normal Depth	3.27	ft
Critical Depth	2.45	ft
Channel Slope	0.01100	ft/ft

Lithium Nevada Corporation
Thacker Pass Project
CTFS West Ult 123+50-126+00, 100yr 24hr storm

NOTE: Gray boxes require input, Orange boxes require specific values, Red boxes are calculated

Step 1: Channel Design Parameters						
Bottom Width	В	30	ft			
Side Slope	Z	2.5	x:1			
Longitudinal Slope	S	0.042	ft/ft			
Flow	Q	864.1	ft ³ /s			

Step 2: Initial Riprap sizing						
Median Stone Size	D ₅₀	1	ft			
Stone Unit Weight	Ys	165	pcf			
	D ₁₀₀	20.00	inch			
	D ₇₅	15.00	inch			
Riprap Calculation Gradation	D ₅₀	12.00	inch			
Niprap Calculation Gradation	D ₃₀	8.00	inch			
	D ₁₅	6.00	inch			
	D ₁₀	4.00	inch			

Step 3: Estimate the Flow Depth						
Initial Flow Depth Estimate	D _i	3	ft			
Area of Channel	Α	112.50	ft ²			
Wetted Perimeter	Р	46.16	ft			
Hydraulic Radius	R	2.44	ft			
Wetted Top Width	Т	45.00	ft			
Calculated Average Flow Depth	D_a	2.50	ft			

Step 4: Estimate Manning's n and the Implied Discharge						
D_a/D_{50}		2.500				
For 1.5 < D _a /D ₅₀ < 185	n	0.070				
Q from mannings	Qi	882.88	ft ³ /s			
% Difference from Design Discharge		2.17%				
For 0.3 < D _a /D ₅₀ < 1.5	n	0.054				
function(Froude number)	f(Fr)	0.867				
Froude number	Fr	0.856				
Velocity of flow	V	7.681				
effective roughness concrentration	b	0.428				
Roughness element geometry	f(REG)	22.407				
Channel geometry	f(CG)	0.290				
Q from mannings	Qi	1144.99	ft ³ /s			
% Difference from Design Discharge		32.51%				

Step 5:				
If % difference is > 5%, estimate a new depth in Step 3	FALSE	Proceed to Step 6		
For $0.3 < D_a/D_{50} < 1.5$	TRUE			
If false, proceed to step 6				

Step 6: Calculate Reynolds and Determine Appropriate Shields Parameter & Safety Factor					
Shear Velocity	V*	2.014			
Reynolds number	R_{e}	1.66E+05			
Gravity	g	32.2	ft/s ²		
Kinematic Viscosity	V	1.22E-05	ft²/s	(1.217e-5 for 60 °F)	
From Table 6.1	F*	0.128			
From Table 6.1	SF	1.392			
Specific Gravity of Stone	SG	2.64			
For S < 5%	D ₅₀	0.83	ft		

Table 6.1. Selection of Shields' Parameter and Safety Factor					
Reynolds number	F*	SF			
≤ 4x10 ⁴	0.047	1			
4x10 ⁴ <re<2x10<sup>5</re<2x10<sup>	0.128	1.392	(Linear Interpolation)		
≥ 2x10 ⁵	0.15	1.5			

Step 7: Iterate Solution till Calculated D50 is Acceptably Smaller then Chosen D50					
Difference to Chosen Riprap	83.48%	<	100%	TRUE	
IF FALSE GOTO STEP 2, ADJUST RIPRAP SIZE					

Step 8. Side Slope Assessment					
Stone Angle of Repose	ф	42	۰		
For 1.5 < Z < 5	K1	0.835			
	θ	21.80	•		
	K2	0.83			
Stable D ₅₀	D _{50,s}	0.84			
Difference to Chosen Riprap		83.80%	<	100%	TRUE

Worksheet for CTFS West 126+00 - 132+65

Project	Description
---------	-------------

Friction Method Manning Formula
Solve For Normal Depth

Input Data

0.060 Roughness Coefficient 0.02000 Channel Slope ft/ft Left Side Slope 2.50 ft/ft (H:V) Right Side Slope 2.50 ft/ft (H:V) **Bottom Width** 30.00 861.70 ft³/s Discharge

Results

Normal Depth 3.34 ft Flow Area 127.93 ft² Wetted Perimeter 47.97 ft Hydraulic Radius 2.67 ft Top Width 46.68 ft Critical Depth 2.72 ft Critical Slope 0.04103 ft/ft 6.74 ft/s Velocity Velocity Head 0.71 ft Specific Energy ft 4.04 Froude Number 0.72 Flow Type Subcritical

GVF Input Data

Downstream Depth 0.00 ft
Length 0.00 ft
Number Of Steps 0

GVF Output Data

Upstream Depth

Profile Description Profile Headloss 0.00 ft **Downstream Velocity** Infinity ft/s **Upstream Velocity** Infinity ft/s 3.34 ft Normal Depth 2.72 Critical Depth ft Channel Slope 0.02000 ft/ft

0.00 ft

Lithium Nevada Corporation
Thacker Pass Project
CTFS West Ult 126+00-132+65, 100yr 24hr storm

NOTE: Gray boxes require input, Orange boxes require specific values, Red boxes are calculated

Step 1: Channel Design Parameters						
Bottom Width	В	30	ft			
Side Slope	Z	2.5	x:1			
Longitudinal Slope	S	0.02	ft/ft			
Flow	Q	861.7	ft ³ /s			

Step 2: Initial Riprap sizing					
Median Stone Size	D ₅₀	0.75	ft		
Stone Unit Weight	Ys	165	pcf		
Riprap Calculation Gradation	D ₁₀₀	15.00	inch		
	D ₇₅	11.25	inch		
	D ₅₀	9.00	inch		
	D ₃₀	6.00	inch		
	D ₁₅	4.50	inch		
	D ₁₀	3.00	inch		

Step 3: Estimate the Flow Depth					
Initial Flow Depth Estimate	D _i	3.35	ft		
Area of Channel	Α	128.56	ft^2		
Wetted Perimeter	Р	48.04	ft		
Hydraulic Radius	R	2.68	ft		
Wetted Top Width	Т	46.75	ft		
Calculated Average Flow Depth	D_a	2.75	ft		

Step 4: Estimate Manning's n and the Implied Discharge						
D_a/D_{50}		3.666				
For 1.5 < D _a /D ₅₀ < 185	n	0.060				
Q from mannings	Qi	875.70	ft ³ /s			
% Difference from Design Discharge		1.62%				
For $0.3 < D_a/D_{50} < 1.5$	n	0.047				
function(Froude number)	f(Fr)	0.850				
Froude number	Fr	0.712				
Velocity of flow	V	6.703				
effective roughness concrentration	b	0.505				
Roughness element geometry	f(REG)	32.794				
Channel geometry	f(CG)	0.239				
Q from mannings	Qi	1120.37	ft ³ /s			
% Difference from Design Discharge		30.02%				

Step 5:		
If % difference is > 5%, estimate a new depth in Step 3	FALSE	Proceed to Step 6
For $0.3 < D_a/D_{50} < 1.5$	TRUE	
If false, proceed to step 6		

Step 6: Calculate Reynolds and Determine Appropriate Shields Parameter & Safety Factor					
Shear Velocity	V*	1.469			
Reynolds number	R_{e}	9.05E+04			
Gravity	g	32.2	ft/s ²		
Kinematic Viscosity	V	1.22E-05	ft ² /s	(1.217e-5 for 60 °F)	
From Table 6.1	F*	0.080			
From Table 6.1	SF	1.158			
Specific Gravity of Stone	SG	2.64			
For S < 5%	D ₅₀	0.59	ft		

Table 6.1. Selection of Shields' Parameter and Safety Factor					
Reynolds number	F*	SF			
≤ 4x10 ⁴	0.047	1			
4x10 ⁴ <re<2x10<sup>5</re<2x10<sup>	0.080	1.158	(Linear Interpolation)		
≥ 2x10 ⁵	0.15	1.5			

Step 7: Iterate Solution till Calculated D50 is Acceptably Smaller then Chosen D50					
Difference to Chosen Riprap	79.11%	<	100%	TRUE	
IF FALSE GOTO STEP 2, ADJUST RIPRAP SIZE					

Step 8. Side Slope Assessment					
Stone Angle of Repose	ф	42	0		
For 1.5 < Z < 5	K1	0.835			
	Θ	21.80	0		
	K2	0.83			
Stable D ₅₀	D _{50,s}	0.60			
Difference to Chosen Riprap		79.41%	<	100%	TRUE

Worksheet for CTFS West Outlet 13+75 - 20+40

Project Descr	ption
---------------	-------

Friction Method Manning Formula
Solve For Normal Depth

Input Data

0.055 Roughness Coefficient 0.01000 Channel Slope ft/ft Left Side Slope 2.50 ft/ft (H:V) Right Side Slope 2.50 ft/ft (H:V) **Bottom Width** 30.00 1291.50 ft³/s Discharge

Results

Normal Depth 4.82 ft Flow Area 202.68 ft² Wetted Perimeter 55.96 ft Hydraulic Radius 3.62 ft Top Width 54.10 ft Critical Depth 3.49 ft Critical Slope 0.03229 ft/ft 6.37 ft/s Velocity Velocity Head 0.63 ft Specific Energy 5.45 ft Froude Number 0.58 Flow Type Subcritical

GVF Input Data

Downstream Depth 0.00 ft
Length 0.00 ft
Number Of Steps 0

GVF Output Data

Upstream Depth

Profile Description Profile Headloss 0.00 ft **Downstream Velocity** Infinity ft/s **Upstream Velocity** Infinity ft/s 4.82 Normal Depth ft Critical Depth 3.49 ft Channel Slope 0.01000 ft/ft

0.00 ft

Lithium Nevada Corporation
Thacker Pass Project
CTFS West Ult 13+75-20+40 100yr, 24hr storm

NOTE: Gray boxes require input, Orange boxes require specific values, Red boxes are calculated

Step 1: Channel Design Parameters						
Bottom Width	В	30	ft			
Side Slope	Z	2.5	x:1			
Longitudinal Slope	S	0.01	ft/ft			
Flow	Q	1291.5	ft ³ /s			

Step 2: Initial Riprap sizing					
Median Stone Size	D ₅₀	0.75	ft		
Stone Unit Weight	Ys	165	pcf		
Riprap Calculation Gradation	D ₁₀₀	15.00	inch		
	D ₇₅	11.25	inch		
	D ₅₀	9.00	inch		
	D ₃₀	6.00	inch		
	D ₁₅	4.50	inch		
	D ₁₀	3.00	inch		

Step 3: Estimate the Flow Depth						
Initial Flow Depth Estimate	D _i	4.8	ft			
Area of Channel	Α	201.60	ft ²			
Wetted Perimeter	Р	55.85	ft			
Hydraulic Radius	R	3.61	ft			
Wetted Top Width	Т	54.00	ft			
Calculated Average Flow Depth	D_a	3.73	ft			

Step 4: Estimate Manning's n and the Implied Discharge				
D_a/D_{50}		4.978		
For 1.5 < D _a /D ₅₀ < 185	n	0.055		
Q from mannings	Qi	1277.02 ft ³ /s	S	
% Difference from Design Discharge		-1.12%		
For 0.3 < D _a /D ₅₀ < 1.5	n	0.040		
function(Froude number)	f(Fr)	0.883		
Froude number	Fr	0.584		
Velocity of flow	V	6.406		
effective roughness concrentration	b	0.607		
Roughness element geometry	f(REG)	47.147		
Channel geometry	f(CG)	0.198		
Q from mannings	Qi	1779.20 ft ³ /s	S	
% Difference from Design Discharge		37.76%		

Step 5:		
If % difference is > 5%, estimate a new depth in Step 3	FALSE	Proceed to Step 6
For $0.3 < D_a/D_{50} < 1.5$	TRUE	
If false, proceed to step 6		

Step 6: Calculate Reynolds and Determine Appropriate Shields Parameter & Safety Factor				
Shear Velocity	V*	1.243		
Reynolds number	R_{e}	7.66E+04		
Gravity	g	32.2	ft/s ²	
Kinematic Viscosity	V	1.22E-05	ft ² /s	(1.217e-5 for 60 °F)
From Table 6.1	F*	0.071		
From Table 6.1	SF	1.114		
Specific Gravity of Stone	SG	2.64		
For S < 5%	D ₅₀	0.46	ft	

Table 6.1. Selection of Shields' Parameter and Safety Factor			
Reynolds number	F*	SF	
≤ 4x10 ⁴	0.047	1	
4x10 ⁴ <re<2x10<sup>5</re<2x10<sup>	0.071	1.114	(Linear Interpolation)
≥ 2x10 ⁵	0.15	1.5	

Step 7: Iterate Solution till Calculated D50 is Acceptably Smaller then Chosen D50				
Difference to Chosen Riprap 61.47% < 100% TRUE				TRUE
IF FALSE GOTO STEP 2, ADJUST RIPRAP SIZE				

Step 8. Side Slope Assessment					
Stone Angle of Repose	ф	42	۰		
For 1.5 < Z < 5	K1	0.835			
	Θ	21.80	•		
	K2	0.83			
Stable D ₅₀	D _{50,s}	0.46			
Difference to Chosen Riprap		61.70%	<	100%	TRUE

Worksheet for CTFS West 132+65 - 167+50

Pro	iect	Descri	ption

Friction Method Manning Formula
Solve For Normal Depth

Input Data

Roughness Coefficient	0.051	
Channel Slope	0.01100	ft/ft
Left Side Slope	2.50	ft/ft (H:V)
Right Side Slope	2.50	ft/ft (H:V)
Bottom Width	30.00	ft
Discharge	727.20	ft³/s

Results

Normal Depth		3.27	ft
Flow Area		125.05	ft²
Wetted Perimeter		47.63	ft
Hydraulic Radius		2.63	ft
Top Width		46.37	ft
Critical Depth		2.45	ft
Critical Slope		0.03050	ft/ft
Velocity		5.82	ft/s
Velocity Head		0.53	ft
Specific Energy		3.80	ft
Froude Number		0.62	
Flow Type	Subcritical		

GVF Input Data

Downstream Depth	0.00	ft
Length	0.00	ft
Number Of Steps	0	

GVF Output Data

Upstream Depth	0.00	ft
Profile Description		
Profile Headloss	0.00	ft
Downstream Velocity	Infinity	ft/s
Upstream Velocity	Infinity	ft/s
Normal Depth	3.27	ft
Critical Depth	2.45	ft
Channel Slope	0.01100	ft/ft

Lithium Nevada Corporation
Thacker Pass Project
CTFS West Ult 132+65-167+50, 100yr 24hr storm

NOTE: Gray boxes require input, Orange boxes require specific values, Red boxes are calculated

Step 1: Channel Design Parameters					
Bottom Width	В	30	ft		
Side Slope	Z	2.5	x:1		
Longitudinal Slope	S	0.011	ft/ft		
Flow	Q	727.2	ft ³ /s		

Step 2: Initial Riprap sizing				
Median Stone Size	D ₅₀	0.5	ft	
Stone Unit Weight	Ys	165	pcf	
Riprap Calculation Gradation	D ₁₀₀	10.00	inch	
	D ₇₅	7.50	inch	
	D ₅₀	6.00	inch	
	D ₃₀	4.00	inch	
	D ₁₅	3.00	inch	
	D ₁₀	2.00	inch	

Step 3: Estimate the Flow Depth				
Initial Flow Depth Estimate	D _i	3.25	ft	
Area of Channel	Α	123.91	ft^2	
Wetted Perimeter	Р	47.50	ft	
Hydraulic Radius	R	2.61	ft	
Wetted Top Width	Т	46.25	ft	
Calculated Average Flow Depth	D_a	2.68	ft	

Step 4: Estimate Manning's n and the Implied Discharge					
D_a/D_{50}		5.358			
For 1.5 < D _a /D ₅₀ < 185	n	0.051			
Q from mannings	Qi	720.45	ft ³ /s		
% Difference from Design Discharge		-0.93%			
For $0.3 < D_a/D_{50} < 1.5$	n	0.039			
function(Froude number)	f(Fr)	0.870			
Froude number	Fr	0.632			
Velocity of flow	V	5.869			
effective roughness concrentration	b	0.575			
Roughness element geometry	f(REG)	47.342			
Channel geometry	f(CG)	0.194			
Q from mannings	Qi	949.17	ft ³ /s		
% Difference from Design Discharge		30.52%			

Step 5:		
If % difference is > 5%, estimate a new depth in Step 3	FALSE	Proceed to Step 6
For $0.3 < D_a/D_{50} < 1.5$	TRUE	
If false, proceed to step 6		

Step 6: Calculate Reynolds and Determine Appropriate Shields Parameter & Safety Factor					
Shear Velocity	V*	1.073			
Reynolds number	R_{e}	4.41E+04			
Gravity	g	32.2	ft/s ²		
Kinematic Viscosity	V	1.22E-05	ft²/s	(1.217e-5 for 60 °F)	
From Table 6.1	F*	0.050			
From Table 6.1	SF	1.013			
Specific Gravity of Stone	SG	2.64			
For S < 5%	D ₅₀	0.44	ft		

Table 6.1. Selection of Shields' Parameter and Safety Factor					
Reynolds number	F*	SF			
≤ 4x10 ⁴	0.047	1			
4x10 ⁴ <re<2x10<sup>5</re<2x10<sup>	0.050	1.013	(Linear Interpolation)		
≥ 2x10 ⁵	0.15	1.5			

Step 7: Iterate Solution till Calculated D50 is Acceptably Smaller then Chosen D50					
Difference to Chosen Riprap	88.74%	<	100%	TRUE	
IF FALSE GOTO STEP 2, ADJUST RIPRAP SIZE					

Step 8. Side Slope Assessment					
Stone Angle of Repose	ф	42	0		
For 1.5 < Z < 5	K1	0.835			
	Θ	21.80	•		
	K2	0.83			
Stable D ₅₀	D _{50,s}	0.45			
Difference to Chosen Riprap		89.08%	<	100%	TRUE

Worksheet for CTFS West 167+50 - 179+35

Pro	iect	Descri	ption

Friction Method Manning Formula
Solve For Normal Depth

Input Data

Roughness Coefficient	0.041	
Channel Slope	0.01400	ft/ft
Left Side Slope	2.50	ft/ft (H:V)
Right Side Slope	2.50	ft/ft (H:V)
Bottom Width	30.00	ft
Discharge	34.20	ft³/s

Results

Normal Depth		0.45	ft
Flow Area		13.97	ft²
Wetted Perimeter		32.42	ft
Hydraulic Radius		0.43	ft
Top Width		32.25	ft
Critical Depth		0.34	ft
Critical Slope		0.03561	ft/ft
Velocity		2.45	ft/s
Velocity Head		0.09	ft
Specific Energy		0.54	ft
Froude Number		0.66	
Flow Type	Subcritical		

GVF Input Data

Downstream Depth	0.00	ft
Length	0.00	ft
Number Of Steps	0	

Upstream Depth	0.00	ft
Profile Description		
Profile Headloss	0.00	ft
Downstream Velocity	Infinity	ft/s
Upstream Velocity	Infinity	ft/s
Normal Depth	0.45	ft
Critical Depth	0.34	ft
Channel Slope	0.01400	ft/ft

Lithium Nevada Corporation
Thacker Pass Project
CTFS West Ult 167+50-179+35, 100yr 24hr storm

NOTE: Gray boxes require input, Orange boxes require specific values, Red boxes are calculated

Step 1: Channel Design Parameters						
Bottom Width	В	30	ft			
Side Slope	Z	2.5	x:1			
Longitudinal Slope	S	0.014	ft/ft			
Flow	Q	34.2	ft ³ /s			

Step 2: Initial Riprap sizing					
Median Stone Size	D ₅₀	0.1	ft		
Stone Unit Weight	Ys	165	pcf		
	D ₁₀₀	2.00	inch		
	D ₇₅	1.50	inch		
Riprap Calculation Gradation	D ₅₀	1.20	inch		
Triplap calculation Gradution	D ₃₀	0.80	inch		
	D ₁₅	0.60	inch		
	D ₁₀	0.40	inch		

Step 3: Estimate the Flow Depth					
Initial Flow Depth Estimate	D _i	0.45	ft		
Area of Channel	Α	14.01	ft^2		
Wetted Perimeter	Р	32.42	ft		
Hydraulic Radius	R	0.43	ft		
Wetted Top Width	T	32.25	ft		
Calculated Average Flow Depth	D_a	0.43	ft		

Step 4: Estimate Manning's n and the Implied Discharge					
D_a/D_{50}		4.343			
For 1.5 < D _a /D ₅₀ < 185	n	0.041			
Q from mannings	Qi	34.57	ft ³ /s		
% Difference from Design Discharge		1.08%			
For $0.3 < D_a/D_{50} < 1.5$	n	0.053			
function(Froude number)	f(Fr)	0.836			
Froude number	Fr	0.653			
Velocity of flow	V	2.442			
effective roughness concrentration	b	0.275			
Roughness element geometry	f(REG)	16.866			
Channel geometry	f(CG)	0.306			
Q from mannings	Qi	26.60	ft ³ /s		
% Difference from Design Discharge		-22.22%			

Step 5:		
If % difference is > 5%, estimate a new depth in Step 3	FALSE	Proceed to Step 6
For $0.3 < D_a/D_{50} < 1.5$	TRUE	
If false, proceed to step 6		

Step 6: Calculate Reynolds and I	Determine App	ropriate Shields	Parameter	- & Safety Factor
Shear Velocity	V*	0.450		
Reynolds number	R_{e}	3.70E+03		
Gravity	g	32.2	ft/s ²	
Kinematic Viscosity	V	1.22E-05	ft ² /s	(1.217e-5 for 60 °F)
From Table 6.1	F*	0.047		
From Table 6.1	SF	1.000		
Specific Gravity of Stone	SG	2.64		
For S < 5%	D ₅₀	0.08	ft	

Table 6.1. Selection of Shields' Parameter and Safety Factor					
Reynolds number	F*	SF			
≤ 4x10 ⁴	0.047	1			
4x10 ⁴ <re<2x10<sup>5</re<2x10<sup>	0.024	0.887	(Linear Interpolation)		
≥ 2x10 ⁵	0.15	1.5			

Step 7: Iterate Solution till Calculated D50 is Acceptably Smaller then Chosen D50				
Difference to Chosen Riprap	81.52%	<	100%	TRUE
IF FALSE GOTO STEP 2, ADJUST RIPRAP SIZE				

Step 8. Side Slope Assessment					
Stone Angle of Repose	ф	42	0		
For 1.5 < Z < 5	K1	0.835			
	Θ	21.80	•		
	K2	0.83			
Stable D ₅₀	D _{50,s}	0.08			
Difference to Chosen Riprap		81.83%	<	100%	TRUE

Worksheet for CTFS West Outlet 20+40 - 25+00

Drai	100+		-rir	sti a n
PIO	lect	Desc	ЯK	uon

Friction Method Manning Formula
Solve For Normal Depth

Input Data

0.068 Roughness Coefficient 0.08400 Channel Slope ft/ft Left Side Slope 2.50 ft/ft (H:V) Right Side Slope 2.50 ft/ft (H:V) **Bottom Width** 30.00 1268.90 ft³/s Discharge

Results

Normal Depth 2.97 ft 111.22 Flow Area ft² Wetted Perimeter 46.00 ft Hydraulic Radius 2.42 ft Top Width 44.86 ft Critical Depth 3.45 ft Critical Slope 0.04949 ft/ft ft/s Velocity 11.41 Velocity Head 2.02 ft Specific Energy 4.99 ft Froude Number 1.28 Flow Type Supercritical

GVF Input Data

Downstream Depth 0.00 ft
Length 0.00 ft
Number Of Steps 0

GVF Output Data

Upstream Depth

Profile Description Profile Headloss 0.00 ft **Downstream Velocity** Infinity ft/s **Upstream Velocity** Infinity ft/s 2.97 ft Normal Depth Critical Depth 3.45 ft Channel Slope 0.08400 ft/ft

Lithium Nevada Corporation
Thacker Pass Project
CTFS West Ult 20+40-25+00 100yr, 24hr storm

NOTE: Gray boxes require input, Orange boxes require specific values, Red boxes are calculated

Step 1: Channel Design Parameters						
Bottom Width	В	30	ft			
Side Slope	Z	2.5	x:1			
Longitudinal Slope	S	0.084	ft/ft			
Flow	Q	1268.9	ft ³ /s			

Step 2: Initial Riprap sizing						
Median Stone Size	D ₅₀	2	ft			
Stone Unit Weight	Ys	165	pcf			
Riprap Calculation Gradation	D ₁₀₀	40.00	inch			
	D ₇₅	30.00	inch			
	D ₅₀	24.00	inch			
	D ₃₀	16.00	inch			
	D ₁₅	12.00	inch			
	D ₁₀	8.00	inch			

Step 3: Estimate the Flow Depth						
Initial Flow Depth Estimate	D _i	3.7	ft			
Area of Channel	Α	145.23	ft ²			
Wetted Perimeter	Р	49.93	ft			
Hydraulic Radius	R	2.91	ft			
Wetted Top Width	Т	48.50	ft			
Calculated Average Flow Depth	D_a	2.99	ft			

Step 4: Estimate Manning's n and the Implied Discharge					
D_a/D_{50}		1.497			
For 1.5 < D _a /D ₅₀ < 185	n	0.099			
Q from mannings	Qi	1286.57	ft ³ /s		
% Difference from Design Discharge		1.39%			
For 0.3 < D _a /D ₅₀ < 1.5	n	0.068			
function(Froude number)	f(Fr)	0.884			
Froude number	Fr	0.890			
Velocity of flow	V	8.737			
effective roughness concrentration	b	0.374			
Roughness element geometry	f(REG)	14.820			
Channel geometry	f(CG)	0.353			
Q from mannings	Qi	1876.00	ft ³ /s		
% Difference from Design Discharge		47.84%			

Step 5:				
If % difference is > 5%, estimate a new depth in Step 3	FALSE			
For $0.3 < D_a/D_{50} < 1.5$	TRUE	No Good		
If false, proceed to step 6				

Step 6: Calculate Reynolds and Determine Appropriate Shields Parameter & Safety Factor					
Shear Velocity	V*	3.164			
Reynolds number	R_{e}	5.20E+05			
Gravity	g	32.2	ft/s ²		
Kinematic Viscosity	V	1.22E-05	ft²/s	(1.217e-5 for 60 °F)	
From Table 6.1	F*	0.150			
From Table 6.1	SF	1.500			
Specific Gravity of Stone	SG	2.64			
For S < 5%	D ₅₀	1.89	ft		

Table 6.1. Selection of Shields' Parameter and Safety Factor					
Reynolds number	F*	SF			
≤ 4x10 ⁴	0.047	1			
4x10 ⁴ <re<2x10<sup>5</re<2x10<sup>	0.356	2.500	(Linear Interpolation)		
≥ 2x10 ⁵	0.15	1.5			

Step 7: Iterate Solution till Calculated D50 is Acceptably Smaller then Chosen D50				
Difference to Chosen Riprap	94.51%	<	100%	TRUE
IF FALSE GOTO STEP 2, ADJUST RIPRAP SIZE				

Step 8. Side Slope Assessment					
Stone Angle of Repose	ф	42	۰		
For 1.5 < Z < 5	K1	0.835			
	θ	21.80	•		
	K2	0.83			
Stable D ₅₀	D _{50,s}	1.90			
Difference to Chosen Riprap		94.87%	<	100%	TRUE

Worksheet for CTFS West Outlet 25+00 - 27+00

Friction Method Manning Formula
Solve For Normal Depth

Input Data

0.091 Roughness Coefficient 0.08400 Channel Slope ft/ft Left Side Slope 2.50 ft/ft (H:V) Right Side Slope 2.50 ft/ft (H:V) **Bottom Width** 30.00 907.90 ft³/s Discharge

Results

Normal Depth 2.90 ft Flow Area 108.00 ft² Wetted Perimeter 45.61 ft Hydraulic Radius 2.37 ft Top Width 44.50 ft Critical Depth 2.81 ft Critical Slope 0.09358 ft/ft ft/s Velocity 8.41 Velocity Head 1.10 ft Specific Energy 4.00 ft Froude Number 0.95 Flow Type Subcritical

GVF Input Data

Downstream Depth 0.00 ft
Length 0.00 ft
Number Of Steps 0

GVF Output Data

Upstream Depth

Profile Description Profile Headloss 0.00 ft **Downstream Velocity** Infinity ft/s **Upstream Velocity** Infinity ft/s 2.90 Normal Depth ft 2.81 Critical Depth ft Channel Slope 0.08400 ft/ft

Lithium Nevada Corporation
Thacker Pass Project
CTFS West Ult 25+00-27+00 100yr, 24hr storm

NOTE: Gray boxes require input, Orange boxes require specific values, Red boxes are calculated

Step 1: Channel Design Parameters						
Bottom Width	В	30	ft			
Side Slope	Z	2.5	x:1			
Longitudinal Slope	S	0.084	ft/ft			
Flow	Q	907.9	ft ³ /s			

Step 2: Initial Riprap sizing						
Median Stone Size	D ₅₀	1.5	ft			
Stone Unit Weight	Ys	165	pcf			
Riprap Calculation Gradation	D ₁₀₀	30.00	inch			
	D ₇₅	22.50	inch			
	D ₅₀	18.00	inch			
	D ₃₀	12.00	inch			
	D ₁₅	9.00	inch			
	D ₁₀	6.00	inch			

Step 3: Estimate the Flow Depth					
Initial Flow Depth Estimate	D _i	2.9	ft		
Area of Channel	Α	108.03	ft^2		
Wetted Perimeter	Р	45.62	ft		
Hydraulic Radius	R	2.37	ft		
Wetted Top Width	Т	44.50	ft		
Calculated Average Flow Depth	D_a	2.43	ft		

Step 4: Estimate Manning's n and the Implied Discharge					
D_a/D_{50}		1.618			
For 1.5 < D _a /D ₅₀ < 185	n	0.091			
Q from mannings	Qi	912.32	ft³/s		
% Difference from Design Discharge		0.49%			
For 0.3 < D _a /D ₅₀ < 1.5	n	0.064			
function(Froude number)	f(Fr)	0.906			
Froude number	Fr	0.951			
Velocity of flow	V	8.405			
effective roughness concrentration	b	0.363			
Roughness element geometry	f(REG)	15.134			
Channel geometry	f(CG)	0.348			
Q from mannings	Qi	1297.97	ft ³ /s		
% Difference from Design Discharge		42.96%			

Step 5:		
If % difference is > 5%, estimate a new depth in Step 3	FALSE	Proceed to Step 6
For $0.3 < D_a/D_{50} < 1.5$	TRUE	
If false, proceed to step 6		

Step 6: Calculate Reynolds and Determine Appropriate Shields Parameter & Safety Factor					
Shear Velocity	V*	2.801			
Reynolds number	R_{e}	3.45E+05			
Gravity	g	32.2	ft/s ²		
Kinematic Viscosity	V	1.22E-05	ft²/s	(1.217e-5 for 60 °F)	
From Table 6.1	F*	0.150			
From Table 6.1	SF	1.500			
Specific Gravity of Stone	SG	2.64			
For S < 5%	D ₅₀	1.48	ft		

Table 6.1. Selection of Shields' Parameter and Safety Factor						
Reynolds number	F*	SF				
≤ 4x10 ⁴	0.047	1				
4x10 ⁴ <re<2x10<sup>5</re<2x10<sup>	0.243	1.954	(Linear Interpolation)			
≥ 2x10 ⁵	0.15	1.5				

Step 7: Iterate Solution till Calculated D50 is Acceptably Smaller then Chosen D50					
Difference to Chosen Riprap	98.77%	<	100%	TRUE	
IF FALSE GOTO STEP 2, ADJUST RIPRAP SIZE					

Step 8. Side Slope Assessment					
Stone Angle of Repose	ф	42	0		
For 1.5 < Z < 5	K1	0.835			
	Θ	21.80	•		
	K2	0.83			
Stable D ₅₀	D _{50,s}	1.49			
Difference to Chosen Riprap		99.15%	<	100%	TRUE

Worksheet for CTFS West Outlet 27+00 - 28+00

Project Descr	ption
---------------	-------

Friction Method Manning Formula
Solve For Normal Depth

Input Data

0.072 Roughness Coefficient 0.05300 Channel Slope ft/ft Left Side Slope 2.50 ft/ft (H:V) Right Side Slope 2.50 ft/ft (H:V) **Bottom Width** 30.00 896.90 ft³/s Discharge

Results

Normal Depth 2.87 ft Flow Area 106.82 ft² Wetted Perimeter 45.47 ft Hydraulic Radius 2.35 ft Top Width 44.36 ft Critical Depth 2.79 ft Critical Slope 0.05870 ft/ft ft/s Velocity 8.40 Velocity Head 1.10 ft Specific Energy ft 3.97 Froude Number 0.95 Flow Type Subcritical

GVF Input Data

Downstream Depth 0.00 ft
Length 0.00 ft
Number Of Steps 0

GVF Output Data

Upstream Depth

Profile Description Profile Headloss 0.00 ft **Downstream Velocity** Infinity ft/s **Upstream Velocity** Infinity ft/s 2.87 ft Normal Depth 2.79 Critical Depth ft Channel Slope 0.05300 ft/ft

Lithium Nevada Corporation
Thacker Pass Project
CTFS West Ult 27+00-28+00 100yr, 24hr storm

NOTE: Gray boxes require input, Orange boxes require specific values, Red boxes are calculated

Step 1: Channel Design Parameters						
Bottom Width	В	30 f	it			
Side Slope	Z	2.5	c:1			
Longitudinal Slope	S	0.053 f	t/ft			
Flow	Q	896.9 f	t³/s			

Step 2: Initial Riprap sizing						
Median Stone Size	D ₅₀	1	ft			
Stone Unit Weight	Ys	165	pcf			
Riprap Calculation Gradation	D ₁₀₀	20.00	inch			
	D ₇₅	15.00	inch			
	D ₅₀	12.00	inch			
	D ₃₀	8.00	inch			
	D ₁₅	6.00	inch			
	D ₁₀	4.00	inch			

Step 3: Estimate the Flow Depth					
Initial Flow Depth Estimate	D _i	2.85	ft		
Area of Channel	Α	105.81	ft^2		
Wetted Perimeter	Р	45.35	ft		
Hydraulic Radius	R	2.33	ft		
Wetted Top Width	Т	44.25	ft		
Calculated Average Flow Depth	D_a	2.39	ft		

Step 4: Estimate Manning's n and the Implied Discharge					
D_a/D_{50}		2.391			
For 1.5 < D _a /D ₅₀ < 185	n	0.072			
Q from mannings	Qi	891.43	ft ³ /s		
% Difference from Design Discharge		-0.61%			
For 0.3 < D _a /D ₅₀ < 1.5	n	0.054			
function(Froude number)	f(Fr)	0.895			
Froude number	Fr	0.966			
Velocity of flow	V	8.477			
effective roughness concrentration	b	0.416			
Roughness element geometry	f(REG)	21.282			
Channel geometry	f(CG)	0.297			
Q from mannings	Qi	1187.70	ft ³ /s		
% Difference from Design Discharge		32.42%			

Step 5:					
If % difference is > 5%, estimate a new depth in Step 3	FALSE	Proceed to Step 6			
For $0.3 < D_a/D_{50} < 1.5$	TRUE				
If false, proceed to step 6					

Step 6: Calculate Reynolds and Determine Appropriate Shields Parameter & Safety Factor						
Shear Velocity	V*	2.205				
Reynolds number	R_{e}	1.81E+05				
Gravity	g	32.2	ft/s ²			
Kinematic Viscosity	V	1.22E-05	ft ² /s	(1.217e-5 for 60 °F)		
From Table 6.1	F*	0.138				
From Table 6.1	SF	1.441				
Specific Gravity of Stone	SG	2.64				
For S < 5%	D ₅₀	0.96	ft			

Table 6.1. Selection of Shields' Parameter and Safety Factor						
Reynolds number	F*	SF				
≤ 4x10 ⁴	0.047	1				
4x10 ⁴ <re<2x10<sup>5</re<2x10<sup>	0.138	1.441	(Linear Interpolation)			
≥ 2x10 ⁵	0.15	1.5				

Step 7: Iterate Solution till Calculated D50 is Acceptably Smaller then Chosen D50						
Difference to Chosen Riprap 96.01% < 100% TRUE						
IF FALSE GOTO STEP 2, ADJUST RIPRAP SIZE						

Step 8. Side Slope Assessment					
Stone Angle of Repose	ф	42	0		
For 1.5 < Z < 5	K1	0.835			
	Θ	21.80	•		
	K2	0.83			
Stable D ₅₀	D _{50,s}	0.96			
Difference to Chosen Riprap		96.38%	<	100%	TRUE

Worksheet for CTFS West 96+00 - 106+00

Proi	iect	Desci	ripti	ion
			100	\sim \sim \sim

Friction Method Manning Formula
Solve For Normal Depth

Input Data

0.043 Roughness Coefficient 0.00600 Channel Slope ft/ft Left Side Slope 2.50 ft/ft (H:V) Right Side Slope 2.50 ft/ft (H:V) **Bottom Width** 30.00 893.70 ft³/s Discharge

Results

Normal Depth 3.96 ft Flow Area 157.84 ft² Wetted Perimeter 51.31 ft Hydraulic Radius 3.08 ft Top Width 49.78 ft Critical Depth 2.78 ft Critical Slope 0.02095 ft/ft 5.66 ft/s Velocity Velocity Head 0.50 ft Specific Energy 4.45 ft Froude Number 0.56 Flow Type Subcritical

GVF Input Data

Downstream Depth 0.00 ft
Length 0.00 ft
Number Of Steps 0

GVF Output Data

Upstream Depth

Profile Description Profile Headloss 0.00 ft **Downstream Velocity** Infinity ft/s **Upstream Velocity** Infinity ft/s 3.96 Normal Depth ft 2.78 Critical Depth ft Channel Slope 0.00600 ft/ft

Lithium Nevada Corporation
Thacker Pass Project
CTFS West Ult 96+00-106+00 100yr, 24hr storm

NOTE: Gray boxes require input, Orange boxes require specific values, Red boxes are calculated

Step 1: Channel Design Parameters							
Bottom Width	В	30	ft				
Side Slope	Z	2.5	x:1				
Longitudinal Slope	S	0.006	ft/ft				
Flow	Q	893.7	ft ³ /s				

Step 2: Initial Riprap sizing						
Median Stone Size	D ₅₀	0.33	ft			
Stone Unit Weight	Ys	165	pcf			
Riprap Calculation Gradation	D ₁₀₀	6.60	inch			
	D ₇₅	4.95	inch			
	D ₅₀	3.96	inch			
	D ₃₀	2.64	inch			
	D ₁₅	1.98	inch			
	D ₁₀	1.32	inch			

Step 3: Estimate the Flow Depth							
Initial Flow Depth Estimate	D _i	3.95	ft				
Area of Channel	Α	157.51	ft ²				
Wetted Perimeter	Р	51.27	ft				
Hydraulic Radius	R	3.07	ft				
Wetted Top Width	Т	49.75	ft				
Calculated Average Flow Depth	D_a	3.17	ft				

Step 4: Estimate Manning's n and the Implied Discharge						
D_a/D_{50}		9.594				
For 1.5 < D _a /D ₅₀ < 185	n	0.043				
Q from mannings	Qi	893.69	ft ³ /s			
% Difference from Design Discharge		0.00%				
For 0.3 < D _a /D ₅₀ < 1.5	n	0.027				
function(Froude number)	f(Fr)	0.987				
Froude number	Fr	0.562				
Velocity of flow	V	5.674				
effective roughness concrentration	b	0.740				
Roughness element geometry	f(REG)	90.811				
Channel geometry	f(CG)	0.130				
Q from mannings	Qi	1407.70	ft ³ /s			
% Difference from Design Discharge		57.51%				

Step 5:					
If % difference is > 5%, estimate a new depth in Step 3	FALSE	Proceed to Step 6			
For $0.3 < D_a/D_{50} < 1.5$	TRUE				
If false, proceed to step 6					

Step 6: Calculate Reynolds and Determine Appropriate Shields Parameter & Safety Factor						
Shear Velocity	V*	0.874				
Reynolds number	R_{e}	2.37E+04				
Gravity	g	32.2	ft/s ²			
Kinematic Viscosity	V	1.22E-05	ft²/s	(1.217e-5 for 60 °F)		
From Table 6.1	F*	0.047				
From Table 6.1	SF	1.000				
Specific Gravity of Stone	SG	2.64				
For S < 5%	D ₅₀	0.31	ft			

Table 6.1. Selection of Shields' Parameter and Safety Factor			
Reynolds number	F*	SF	
≤ 4x10 ⁴	0.047	1	
4x10 ⁴ <re<2x10<sup>5</re<2x10<sup>	0.036	0.949	(Linear Interpolation)
≥ 2x10 ⁵	0.15	1.5	

Step 7: Iterate Solution till Calculated D50 is Acceptably Smaller then Chosen D50				
Difference to Chosen Riprap	92.93%	<	100%	TRUE
IF FALSE GOTO STEP 2, ADJUST RIPRAP SIZE				

Step 8. Side Slope Assessment					
Stone Angle of Repose	ф	42	0		
For 1.5 < Z < 5	K1	0.835			
	Θ	21.80	0		
	K2	0.83			
Stable D ₅₀	D _{50,s}	0.31			
Difference to Chosen Riprap		93.29%	<	100%	TRUE

Worksheet for CTFS West Outlet 500yr 0+00 - 13+75

Friction Method Manning Formula
Solve For Normal Depth

Input Data

Roughness Coefficient	0.066	
Channel Slope	0.04000	ft/ft
Left Side Slope	2.50	ft/ft (H:V)
Right Side Slope	2.50	ft/ft (H:V)
Bottom Width	30.00	ft
Discharge	1981.70	ft³/s

Results

Normal Depth		4.61	ft
Flow Area		191.28	ft²
Wetted Perimeter		54.81	ft
Hydraulic Radius		3.49	ft
Top Width		53.04	ft
Critical Depth		4.50	ft
Critical Slope		0.04350	ft/ft
Velocity		10.36	ft/s
Velocity Head		1.67	ft
Specific Energy		6.28	ft
Froude Number		0.96	
Flow Type	Subcritical		

GVF Input Data

Downstream Depth	0.00	ft
Length	0.00	ft
Number Of Steps	0	

GVF Output Data

Upstream Depth

Profile Description		
Profile Headloss	0.00	ft
Downstream Velocity	Infinity	ft/s
Upstream Velocity	Infinity	ft/s
Normal Depth	4.61	ft
Critical Depth	4.50	ft
Channel Slope	0.04000	ft/ft

Worksheet for CTFS West 500yr 106+00 - 112+73

Project Descr	ption
---------------	-------

Friction Method Manning Formula
Solve For Normal Depth

Input Data

Roughness Coefficient	0.070	
Channel Slope	0.04200	ft/ft
Left Side Slope	2.50	ft/ft (H:V)
Right Side Slope	2.50	ft/ft (H:V)
Bottom Width	30.00	ft
Discharge	1305.90	ft³/s

Results

Normal Depth		3.73	ft
Flow Area		146.66	ft²
Wetted Perimeter		50.08	ft
Hydraulic Radius		2.93	ft
Top Width		48.65	ft
Critical Depth		3.51	ft
Critical Slope		0.05221	ft/ft
Velocity		8.90	ft/s
Velocity Head		1.23	ft
Specific Energy		4.96	ft
Froude Number		0.90	
Flow Type	Subcritical		

GVF Input Data

Downstream Depth	0.00	ft
Length	0.00	ft
Number Of Steps	0	

Upstream Depth	0.00	ft
Profile Description		
Profile Headloss	0.00	ft
Downstream Velocity	Infinity	ft/s
Upstream Velocity	Infinity	ft/s
Normal Depth	3.73	ft
Critical Depth	3.51	ft
Channel Slope	0.04200	ft/ft

Worksheet for CTFS West 500yr 112+73 - 116+00

Project Descr	ption
---------------	-------

Friction Method Manning Formula
Solve For Normal Depth

Input Data

Roughness Coefficient	0.060	
Channel Slope	0.02200	ft/ft
Left Side Slope	2.50	ft/ft (H:V)
Right Side Slope	2.50	ft/ft (H:V)
Bottom Width	30.00	ft
Discharge	1295.30	ft³/s

Results

Normal Depth		4.08	ft
Flow Area		163.94	ft²
Wetted Perimeter		51.96	ft
Hydraulic Radius		3.15	ft
Top Width		50.39	ft
Critical Depth		3.49	ft
Critical Slope		0.03840	ft/ft
Velocity		7.90	ft/s
Velocity Head		0.97	ft
Specific Energy		5.05	ft
Froude Number		0.77	
Flow Type	Subcritical		

GVF Input Data

Downstream Depth	0.00	ft
Length	0.00	ft
Number Of Steps	0	

GVF Output Data

Upstream Depth

- F		
Profile Description		
Profile Headloss	0.00	ft
Downstream Velocity	Infinity	ft/s
Upstream Velocity	Infinity	ft/s
Normal Depth	4.08	ft
Critical Depth	3.49	ft
Channel Slope	0.02200	ft/ft

Worksheet for CTFS West 500yr 116+00 - 123+50

Project Descr	ption
---------------	-------

Friction Method Manning Formula
Solve For Normal Depth

Input Data

Roughness Coefficient	0.070	
Channel Slope	0.04200	ft/ft
Left Side Slope	2.50	ft/ft (H:V)
Right Side Slope	2.50	ft/ft (H:V)
Bottom Width	30.00	ft
Discharge	1291.70	ft³/s

Results

Normal Depth		3.71	ft
Flow Area		145.56	ft²
Wetted Perimeter		49.96	ft
Hydraulic Radius		2.91	ft
Top Width		48.53	ft
Critical Depth		3.49	ft
Critical Slope		0.05230	ft/ft
Velocity		8.87	ft/s
Velocity Head		1.22	ft
Specific Energy		4.93	ft
Froude Number		0.90	
Flow Type	Subcritical		

GVF Input Data

Downstream Depth	0.00	ft
Length	0.00	ft
Number Of Steps	0	

Upstream Depth	0.00	ft
Profile Description		
Profile Headloss	0.00	ft
Downstream Velocity	Infinity	ft/s
Upstream Velocity	Infinity	ft/s
Normal Depth	3.71	ft
Critical Depth	3.49	ft
Channel Slope	0.04200	ft/ft

Worksheet for CTFS West 500yr 123+50 - 126+00

Project Descr	ption
---------------	-------

Friction Method Manning Formula
Solve For Normal Depth

Input Data

Roughness Coefficient	0.070	
Channel Slope	0.04200	ft/ft
Left Side Slope	2.50	ft/ft (H:V)
Right Side Slope	2.50	ft/ft (H:V)
Bottom Width	30.00	ft
Discharge	1275.80	ft³/s

Results

Normal Depth		3.68	ft
Flow Area		144.32	ft²
Wetted Perimeter		49.82	ft
Hydraulic Radius		2.90	ft
Top Width		48.41	ft
Critical Depth		3.46	ft
Critical Slope		0.05240	ft/ft
Velocity		8.84	ft/s
Velocity Head		1.21	ft
Specific Energy		4.90	ft
Froude Number		0.90	
Flow Type	Subcritical		

GVF Input Data

Downstream Depth	0.00	ft
Length	0.00	ft
Number Of Steps	0	

GVF Output Data

Upstream Depth

-1		
Profile Description		
Profile Headloss	0.00	ft
Downstream Velocity	Infinity	ft/s
Upstream Velocity	Infinity	ft/s
Normal Depth	3.68	ft
Critical Depth	3.46	ft
Channel Slope	0.04200	ft/ft

Worksheet for CTFS West 500yr 126+00 - 132+65

Project Descr	ption
---------------	-------

Friction Method Manning Formula
Solve For Normal Depth

Input Data

Roughness Coefficient	0.060	
Channel Slope	0.02000	ft/ft
Left Side Slope	2.50	ft/ft (H:V)
Right Side Slope	2.50	ft/ft (H:V)
Bottom Width	30.00	ft
Discharge	1271.90	ft³/s

Results

Normal Depth		4.15	ft
Flow Area		167.31	ft²
Wetted Perimeter		52.32	ft
Hydraulic Radius		3.20	ft
Top Width		50.73	ft
Critical Depth		3.45	ft
Critical Slope		0.03852	ft/ft
Velocity		7.60	ft/s
Velocity Head		0.90	ft
Specific Energy		5.04	ft
Froude Number		0.74	
Flow Type	Subcritical		

GVF Input Data

Downstream Depth	0.00	ft
Length	0.00	ft
Number Of Steps	0	

Upstream Depth	0.00	ft
Profile Description		
Profile Headloss	0.00	ft
Downstream Velocity	Infinity	ft/s
Upstream Velocity	Infinity	ft/s
Normal Depth	4.15	ft
Critical Depth	3.45	ft
Channel Slope	0.02000	ft/ft

Worksheet for CTFS West Outlet 500yr 13+75 - 20+40

	Pro	ject	Desc	rip	tion
--	-----	------	------	-----	------

Friction Method Manning Formula
Solve For Normal Depth

Input Data

Roughness Coefficient	0.055	
Channel Slope	0.01000	ft/ft
Left Side Slope	2.50	ft/ft (H:V)
Right Side Slope	2.50	ft/ft (H:V)
Bottom Width	30.00	ft
Discharge	1859.10	ft³/s

Results

Normal Depth		5.87	ft
Flow Area		262.07	ft²
Wetted Perimeter		61.60	ft
Hydraulic Radius		4.25	ft
Top Width		59.34	ft
Critical Depth		4.34	ft
Critical Slope		0.03051	ft/ft
Velocity		7.09	ft/s
Velocity Head		0.78	ft
Specific Energy		6.65	ft
Froude Number		0.60	
Flow Type	Subcritical		

GVF Input Data

Downstream Depth	0.00	ft
Length	0.00	ft
Number Of Steps	0	

GVF Output Data

Upstream Depth

- F		
Profile Description		
Profile Headloss	0.00	ft
Downstream Velocity	Infinity	ft/s
Upstream Velocity	Infinity	ft/s
Normal Depth	5.87	ft
Critical Depth	4.34	ft
Channel Slope	0.01000	ft/ft

Worksheet for CTFS West 500yr 132+65 - 167+50

Project Descr	ption
---------------	-------

Friction Method Manning Formula
Solve For Normal Depth

Input Data

Roughness Coefficient	0.051	
Channel Slope	0.01100	ft/ft
Left Side Slope	2.50	ft/ft (H:V)
Right Side Slope	2.50	ft/ft (H:V)
Bottom Width	30.00	ft
Discharge	1073.30	ft³/s

Results

Normal Depth		4.07	ft
Flow Area		163.50	ft²
Wetted Perimeter		51.92	ft
Hydraulic Radius		3.15	ft
Top Width		50.35	ft
Critical Depth		3.12	ft
Critical Slope		0.02860	ft/ft
Velocity		6.56	ft/s
Velocity Head		0.67	ft
Specific Energy		4.74	ft
Froude Number		0.64	
Flow Type	Subcritical		

GVF Input Data

Downstream Depth	0.00	ft
Length	0.00	ft
Number Of Steps	0	

GVF Output Data

Upstream Depth

Profile Description		
Profile Headloss	0.00	ft
Downstream Velocity	Infinity	ft/s
Upstream Velocity	Infinity	ft/s
Normal Depth	4.07	ft
Critical Depth	3.12	ft
Channel Slope	0.01100	ft/ft

Worksheet for CTFS West 500yr 167+50 - 179+35

Project Descr	ption
---------------	-------

Friction Method Manning Formula
Solve For Normal Depth

Input Data

Roughness Coefficient	0.041	
Channel Slope	0.01400	ft/ft
Left Side Slope	2.50	ft/ft (H:V)
Right Side Slope	2.50	ft/ft (H:V)
Bottom Width	30.00	ft
Discharge	50.50	ft³/s

Results

Normal Depth		0.57	ft
Flow Area		17.80	ft²
Wetted Perimeter		33.05	ft
Hydraulic Radius		0.54	ft
Top Width		32.83	ft
Critical Depth		0.44	ft
Critical Slope		0.03282	ft/ft
Velocity		2.84	ft/s
Velocity Head		0.13	ft
Specific Energy		0.69	ft
Froude Number		0.68	
Flow Type	Subcritical		

GVF Input Data

Downstream Depth	0.00	ft
Length	0.00	ft
Number Of Steps	0	

Upstream Depth	0.00	ft
Profile Description		
Profile Headloss	0.00	ft
Downstream Velocity	Infinity	ft/s
Upstream Velocity	Infinity	ft/s
Normal Depth	0.57	ft
Critical Depth	0.44	ft
Channel Slope	0.01400	ft/ft

Worksheet for CTFS West Outlet 500yr 20+40 - 25+00

Project Description

Friction Method Manning Formula
Solve For Normal Depth

Input Data

0.068 Roughness Coefficient 0.08400 Channel Slope ft/ft Left Side Slope 2.50 ft/ft (H:V) Right Side Slope 2.50 ft/ft (H:V) **Bottom Width** 30.00 1828.30 ft³/s Discharge

Results

Normal Depth 3.65 ft Flow Area 142.76 ft² Wetted Perimeter 49.65 ft Hydraulic Radius 2.88 ft Top Width 48.24 ft Critical Depth 4.29 ft Critical Slope 0.04675 ft/ft 12.81 ft/s Velocity Velocity Head 2.55 ft Specific Energy ft 6.20 Froude Number 1.31 Flow Type Supercritical

GVF Input Data

Downstream Depth 0.00 ft
Length 0.00 ft
Number Of Steps 0

GVF Output Data

Upstream Depth

Profile Description Profile Headloss 0.00 ft **Downstream Velocity** Infinity ft/s **Upstream Velocity** Infinity ft/s 3.65 Normal Depth ft 4.29 Critical Depth ft Channel Slope 0.08400 ft/ft

Worksheet for CTFS West Outlet 500yr 25+00 - 27+00

Pro	iect	Desc	rin	tion
1 10	JOUL	DUSC	ין יי	uon

Friction Method Manning Formula
Solve For Normal Depth

Input Data

0.091 Roughness Coefficient 0.08400 Channel Slope ft/ft Left Side Slope 2.50 ft/ft (H:V) Right Side Slope 2.50 ft/ft (H:V) **Bottom Width** 30.00 1335.00 ft³/s Discharge

Results

Normal Depth 3.60 ft Flow Area 140.51 ft² Wetted Perimeter 49.40 ft Hydraulic Radius 2.84 ft Top Width 48.01 ft Critical Depth 3.56 ft Critical Slope 0.08792 ft/ft 9.50 ft/s Velocity Velocity Head 1.40 ft Specific Energy ft 5.01 Froude Number 0.98 Flow Type Subcritical

GVF Input Data

Downstream Depth 0.00 ft
Length 0.00 ft
Number Of Steps 0

GVF Output Data

Upstream Depth

Profile Description Profile Headloss 0.00 ft **Downstream Velocity** Infinity ft/s **Upstream Velocity** Infinity ft/s 3.60 Normal Depth ft 3.56 Critical Depth ft Channel Slope 0.08400 ft/ft

Worksheet for CTFS West Outlet 500yr 27+00 - 28+00

Project Description

Friction Method Manning Formula
Solve For Normal Depth

Input Data

Roughness Coefficient	0.072	
Channel Slope	0.05300	ft/ft
Left Side Slope	2.50	ft/ft (H:V)
Right Side Slope	2.50	ft/ft (H:V)
Bottom Width	30.00	ft
Discharge	1320.00	ft³/s

Results

Normal Depth		3.57	ft
Flow Area		139.05	ft²
Wetted Perimeter		49.23	ft
Hydraulic Radius		2.82	ft
Top Width		47.86	ft
Critical Depth		3.53	ft
Critical Slope		0.05514	ft/ft
Velocity		9.49	ft/s
Velocity Head		1.40	ft
Specific Energy		4.97	ft
Froude Number		0.98	
Flow Type	Subcritical		

GVF Input Data

Downstream Depth	0.00	ft
Length	0.00	ft
Number Of Steps	0	

GVF Output Data

Upstream Depth

- F		
Profile Description		
Profile Headloss	0.00	ft
Downstream Velocity	Infinity	ft/s
Upstream Velocity	Infinity	ft/s
Normal Depth	3.57	ft
Critical Depth	3.53	ft
Channel Slope	0.05300	ft/ft

Worksheet for CTFS West 500yr 96+00 - 106+00

Friction Method Manning Formula
Solve For Normal Depth

Input Data

Roughness Coefficient	0.043	
Channel Slope	0.00600	ft/ft
Left Side Slope	2.50	ft/ft (H:V)
Right Side Slope	2.50	ft/ft (H:V)
Bottom Width	30.00	ft
Discharge	1315.60	ft³/s

Results

Normal Depth		4.89	ft
Flow Area		206.66	ft²
Wetted Perimeter		56.35	ft
Hydraulic Radius		3.67	ft
Top Width		54.47	ft
Critical Depth		3.53	ft
Critical Slope		0.01968	ft/ft
Velocity		6.37	ft/s
Velocity Head		0.63	ft
Specific Energy		5.52	ft
Froude Number		0.58	
Flow Type	Subcritical		

GVF Input Data

Downstream Depth	0.00	ft
Length	0.00	ft
Number Of Steps	0	

Upstream Depth	0.00	ft
Profile Description		
Profile Headloss	0.00	ft
Downstream Velocity	Infinity	ft/s
Upstream Velocity	Infinity	ft/s
Normal Depth	4.89	ft
Critical Depth	3.53	ft
Channel Slope	0.00600	ft/ft

Worksheet for CGS RISER CHANNEL

Proi	iect	Desci	ripti	ion
			100	\sim \sim \sim

Friction Method Manning Formula
Solve For Normal Depth

Input Data

0.077 Roughness Coefficient 0.01900 Channel Slope ft/ft Left Side Slope 2.50 ft/ft (H:V) Right Side Slope 2.50 ft/ft (H:V) **Bottom Width** 32.00 136.00 ft³/s Discharge

Results

Normal Depth 1.30 ft Flow Area 45.89 ft² Wetted Perimeter 39.01 ft Hydraulic Radius 1.18 ft Top Width 38.51 ft Critical Depth 0.81 ft Critical Slope 0.09567 ft/ft 2.96 ft/s Velocity Velocity Head 0.14 ft Specific Energy ft 1.44 Froude Number 0.48 Flow Type Subcritical

GVF Input Data

Downstream Depth $0.00\,$ ft Length $0.00\,$ ft Number Of Steps $0\,$

GVF Output Data

Upstream Depth

Profile Description Profile Headloss 0.00 ft **Downstream Velocity** Infinity ft/s **Upstream Velocity** Infinity ft/s 1.30 Normal Depth ft Critical Depth 0.81 ft Channel Slope 0.01900 ft/ft

Worksheet for CGS SPILLWAY CHANNEL

Pro	iect	Descri	ption

Friction Method Manning Formula
Solve For Normal Depth

Input Data

Roughness Coefficient	0.077	
Channel Slope	0.03200	ft/ft
Left Side Slope	2.50	ft/ft (H:V)
Right Side Slope	2.50	ft/ft (H:V)
Bottom Width	32.00	ft
Discharge	361.00	ft³/s

Results

Normal Depth	1.98	ft
Flow Area	73.04	ft²
Wetted Perimeter	42.65	ft
Hydraulic Radius	1.71	ft
Top Width	41.89	ft
Critical Depth	1.52	ft
Critical Slope	0.07928	ft/ft
Velocity	4.94	ft/s
Velocity Head	0.38	ft
Specific Energy	2.36	ft
Froude Number	0.66	
Flow Type	Subcritical	

Flow Type Subcritical

GVF Input Data

Downstream Depth	0.00	ft
Length	0.00	ft
Number Of Steps	0	

GVF Output Data

Upstream Depth

-1 1		
Profile Description		
Profile Headloss	0.00	ft
Downstream Velocity	Infinity	ft/s
Upstream Velocity	Infinity	ft/s
Normal Depth	1.98	ft
Critical Depth	1.52	ft
Channel Slope	0.03200	ft/ft

CGS East Diversion 100 YR

Pro	iect	Descri	ption
1 10	COL	Descii	Puon

Friction Method Manning Formula
Solve For Normal Depth

Input Data

Roughness Coefficient	0.035	
Channel Slope	0.03300	ft/ft
Left Side Slope	3.50	ft/ft (H:V)
Right Side Slope	40.00	ft/ft (H:V)
Bottom Width	1.00	ft
Discharge	142.17	ft³/s

Results

Normal Depth		1.10	ft
Flow Area		27.22	ft²
Wetted Perimeter		48.84	ft
Hydraulic Radius		0.56	ft
Top Width		48.67	ft
Critical Depth		1.19	ft
Critical Slope		0.02117	ft/ft
Velocity		5.22	ft/s
Velocity Head		0.42	ft
Specific Energy		1.52	ft
Froude Number		1.23	
Flow Type	Supercritical		

GVF Input Data

Downstream Depth	0.00	ft
Length	0.00	ft
Number Of Steps	0	

Upstream Depth	0.00	ft
Profile Description		
Profile Headloss	0.00	ft
Downstream Velocity	Infinity	ft/s
Upstream Velocity	Infinity	ft/s
Normal Depth	1.10	ft
Critical Depth	1.19	ft
Channel Slope	0.03300	ft/ft

CGS East Diversion 500 YR

Project D	Description
-----------	-------------

Friction Method Manning Formula
Solve For Normal Depth

Input Data

 Roughness Coefficient
 0.035

 Channel Slope
 0.03300
 ft/ft

 Left Side Slope
 3.50
 ft/ft (H:V)

 Right Side Slope
 40.00
 ft/ft (H:V)

 Bottom Width
 1.00
 ft

 Discharge
 194.26
 ft³/s

Results

Normal Depth 1.24 ft Flow Area 34.41 ft2 Wetted Perimeter 54.91 ft Hydraulic Radius 0.63 ft Top Width 54.73 ft Critical Depth 1.35 ft Critical Slope 0.02031 ft/ft ft/s Velocity 5.64 Velocity Head 0.50 ft Specific Energy 1.73 ft Froude Number 1.25 Flow Type Supercritical

GVF Input Data

Downstream Depth 0.00 ft
Length 0.00 ft
Number Of Steps 0

GVF Output Data

Upstream Depth

Profile Description Profile Headloss 0.00 ft Downstream Velocity Infinity ft/s **Upstream Velocity** Infinity ft/s 1.24 Normal Depth ft Critical Depth 1.35 ft Channel Slope 0.03300 ft/ft

CGS South Diversion 100 YR

Pro	iect	Descri	ption
		DCCCII	Puon

Friction Method Manning Formula
Solve For Normal Depth

Input Data

Roughness Coefficient	0.035	
Channel Slope	0.01500	ft/ft
Left Side Slope	2.50	ft/ft (H:V)
Right Side Slope	25.00	ft/ft (H:V)
Bottom Width	1.00	ft
Discharge	217.80	ft³/s

Results

Normal Depth		1.77	ft
Flow Area		45.01	ft²
Wetted Perimeter		50.14	ft
Hydraulic Radius		0.90	ft
Top Width		49.77	ft
Critical Depth		1.70	ft
Critical Slope		0.01892	ft/ft
Velocity		4.84	ft/s
Velocity Head		0.36	ft
Specific Energy		2.14	ft
Froude Number		0.90	
Flow Type	Subcritical		

GVF Input Data

Downstream Depth		ft
Length	0.00	ft
Number Of Steps	0	

Upstream Depth	0.00	ft
Profile Description		
Profile Headloss	0.00	ft
Downstream Velocity	Infinity	ft/s
Upstream Velocity	Infinity	ft/s
Normal Depth	1.77	ft
Critical Depth	1.70	ft
Channel Slope	0.01500	ft/ft

CGS South Diversion 500 YR

Pro	iect	Descri	ption

Friction Method Manning Formula
Solve For Normal Depth

Input Data

Roughness Coefficient	0.035	
Channel Slope	0.01500	ft/ft
Left Side Slope	2.50	ft/ft (H:V)
Right Side Slope	25.00	ft/ft (H:V)
Bottom Width	1.00	ft
Discharge	297.64	ft³/s

Results

Normal Depth		2.00	ft
Flow Area		56.89	ft²
Wetted Perimeter		56.37	ft
Hydraulic Radius		1.01	ft
Top Width		55.95	ft
Critical Depth		1.93	ft
Critical Slope		0.01814	ft/ft
Velocity		5.23	ft/s
Velocity Head		0.43	ft
Specific Energy		2.42	ft
Froude Number		0.91	
Flow Type	Subcritical		

GVF Input Data

Downstream Depth	0.00	ft
Length	0.00	ft
Number Of Steps	0	

GVF Output Data

Upstream Depth	0.00	ft
Profile Description		
Profile Headloss	0.00	ft
Downstream Velocity	Infinity	ft/s
Upstream Velocity	Infinity	ft/s
Normal Depth	2.00	ft
Critical Depth	1.93	ft
Channel Slope	0.01500	ft/ft

CGS West Diversion 100 YR

Pro	iect	Descri	ption
1 10	COL	Descii	Puon

Friction Method Manning Formula Solve For Normal Depth

Input Data

0.035 Roughness Coefficient 0.04200 Channel Slope ft/ft Left Side Slope 2.50 ft/ft (H:V) Right Side Slope 1000.00 ft/ft (H:V) Bottom Width 2.00 95.20 Discharge ft³/s

Results

Normal Depth 0.28 ft Flow Area 40.24 ft2 Wetted Perimeter 284.09 ft Hydraulic Radius 0.14 ft Top Width 284.03 ft Critical Depth 0.29 ft Critical Slope 0.03379 ft/ft ft/s Velocity 2.37 Velocity Head 0.09 ft Specific Energy 0.37 ft Froude Number 1.11 Flow Type Supercritical

GVF Input Data

Downstream Depth 0.00 ft
Length 0.00 ft
Number Of Steps 0

GVF Output Data

0.00 ft Upstream Depth Profile Description Profile Headloss 0.00 ft Downstream Velocity Infinity ft/s **Upstream Velocity** Infinity ft/s 0.28 Normal Depth ft 0.29 Critical Depth ft Channel Slope 0.04200 ft/ft

CGS West Diversion 500 YR

Pro	iect	Descri	ption
1 10	COL	Descii	Puon

Friction Method Manning Formula Solve For Normal Depth

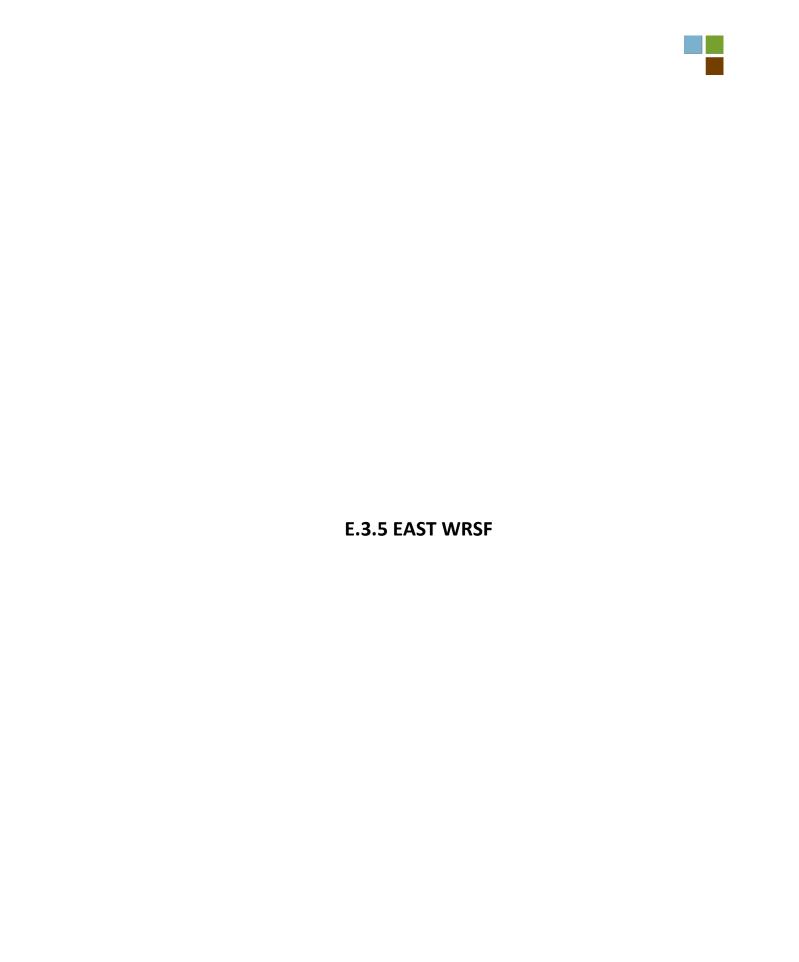
Input Data

0.035 Roughness Coefficient 0.04200 Channel Slope ft/ft 2.50 Left Side Slope ft/ft (H:V) Right Side Slope 1000.00 ft/ft (H:V) Bottom Width 2.00 130.07 Discharge ft³/s

Results

Normal Depth 0.32 ft Flow Area 50.88 ft2 Wetted Perimeter 319.47 ft Hydraulic Radius 0.16 ft Top Width 319.41 ft Critical Depth 0.33 ft Critical Slope 0.03241 ft/ft 2.56 ft/s Velocity Velocity Head 0.10 ft Specific Energy 0.42 ft Froude Number 1.13 Flow Type Supercritical

GVF Input Data


Downstream Depth 0.00 ft
Length 0.00 ft
Number Of Steps 0

GVF Output Data

Upstream Depth

Profile Description Profile Headloss 0.00 ft Downstream Velocity Infinity ft/s **Upstream Velocity** Infinity ft/s 0.32 Normal Depth ft Critical Depth 0.33 ft Channel Slope 0.04200 ft/ft

0.00 ft

	East WRSF East Diver	si	on 100 YR
Project Description			
Friction Method	Manning Formula		
Solve For	Normal Depth		
Input Data			
Roughness Coefficient	0.0)35	
Channel Slope	0.294	100	ft/ft
Left Side Slope	21	.70	ft/ft (H:V)
Right Side Slope	3	.50	ft/ft (H:V)
Bottom Width	2	.00	ft
Discharge	38	.16	ft³/s
Results			
Normal Depth	0	.48	ft
Flow Area	3	.92	ft²
Wetted Perimeter	14	.28	ft
Hydraulic Radius	0	.27	ft
Top Width	14	.20	ft
Critical Depth	0	.82	ft
Critical Slope	0.023	356	ft/ft
Velocity	9	.73	ft/s
Velocity Head	1	.47	ft
Specific Energy	1	.95	ft
Froude Number	3	.26	
Flow Type	Supercritical		
GVF Input Data			
Downstream Depth	0	.00	ft
Length	0	.00	ft
Number Of Steps		0	
GVF Output Data			
Upstream Depth	0	.00	ft
Profile Description			
Profile Headloss	0	.00	ft
Downstream Velocity	Infi	nity	ft/s
Upstream Velocity	Infi	nity	ft/s
Normal Depth	0	.48	ft

Critical Depth

Channel Slope

0.82 ft

0.29400 ft/ft

East WRSF East Diversion 500 YR				
Project Description				
Friction Method	Manning Formula			
Solve For	Normal Depth			
Input Data				
Roughness Coefficient	0.03	35		
Channel Slope	0.2940	00 ft/ft		
Left Side Slope	21.7	70 ft/ft (H:V)		
Right Side Slope	3.5	50 ft/ft (H:V)		
Bottom Width	2.0	00 ft		
Discharge	52.2	28 ft³/s		
Results				
Normal Depth	0.5	55 ft		
Flow Area	4.9	96 ft ²		
Wetted Perimeter	16.0	03 ft		
Hydraulic Radius	0.3	31 ft		
Top Width	15.9	94 ft		
Critical Depth	0.9	94 ft		
Critical Slope	0.0225	59 ft/ft		
Velocity	10.5	54 ft/s		
Velocity Head	1.7	73 ft		
Specific Energy	2.2	28 ft		
Froude Number	3.3	33		
Flow Type	Supercritical			
GVF Input Data				
Downstream Depth	0.0	00 ft		
Length	0.0	00 ft		
Number Of Steps		0		
GVF Output Data				
Upstream Depth	0.0	00 ft		
Profile Description				
Profile Headloss	0.0	00 ft		
Downstream Velocity	Infini	ity ft/s		
Upstream Velocity	Infini	ity ft/s		
Normal Depth	0.5	55 ft		

Critical Depth

Channel Slope

0.94 ft

0.29400 ft/ft

East WRSF South Diversion 100 YR

Friction Method Manning Formula Solve For Normal Depth

Input Data

0.035 Roughness Coefficient 0.00500 Channel Slope ft/ft 1000.00 Left Side Slope ft/ft (H:V) Right Side Slope 200.00 ft/ft (H:V) Bottom Width 1.00 ft 88.20 Discharge ft³/s

Results

Normal Depth 0.38 ft Flow Area 88.31 ft2 Wetted Perimeter 460.37 ft Hydraulic Radius 0.19 Top Width 460.37 ft Critical Depth 0.27 ft Critical Slope 0.03495 ft/ft 1.00 ft/s Velocity Velocity Head 0.02 ft Specific Energy 0.40 ft Froude Number 0.40 Flow Type Subcritical

GVF Input Data

Downstream Depth $0.00\,$ ft Length $0.00\,$ ft Number Of Steps $0\,$

GVF Output Data

Upstream Depth

Profile Description Profile Headloss 0.00 ft Downstream Velocity Infinity ft/s **Upstream Velocity** Infinity ft/s 0.38 Normal Depth ft Critical Depth 0.27 ft Channel Slope 0.00500 ft/ft

0.00 ft

East WRSF South Diversion 500 YR

Friction Method Manning Formula Solve For Normal Depth

Input Data

0.035 Roughness Coefficient 0.00500 Channel Slope ft/ft 1000.00 Left Side Slope ft/ft (H:V) Right Side Slope 200.00 ft/ft (H:V) Bottom Width 1.00 ft 120.90 Discharge ft3/s

Results

Normal Depth 0.43 ft Flow Area 111.87 ft2 Wetted Perimeter 518.17 ft Hydraulic Radius 0.22 ft Top Width 518.17 ft Critical Depth 0.30 ft Critical Slope 0.03351 ft/ft 1.08 ft/s Velocity Velocity Head 0.02 ft Specific Energy 0.45 ft Froude Number 0.41 Flow Type Subcritical

GVF Input Data

Downstream Depth 0.00 ft
Length 0.00 ft
Number Of Steps 0

GVF Output Data

Upstream Depth

Profile Description Profile Headloss 0.00 ft Downstream Velocity Infinity ft/s **Upstream Velocity** Infinity ft/s 0.43 Normal Depth ft Critical Depth 0.30 ft Channel Slope 0.00500 ft/ft

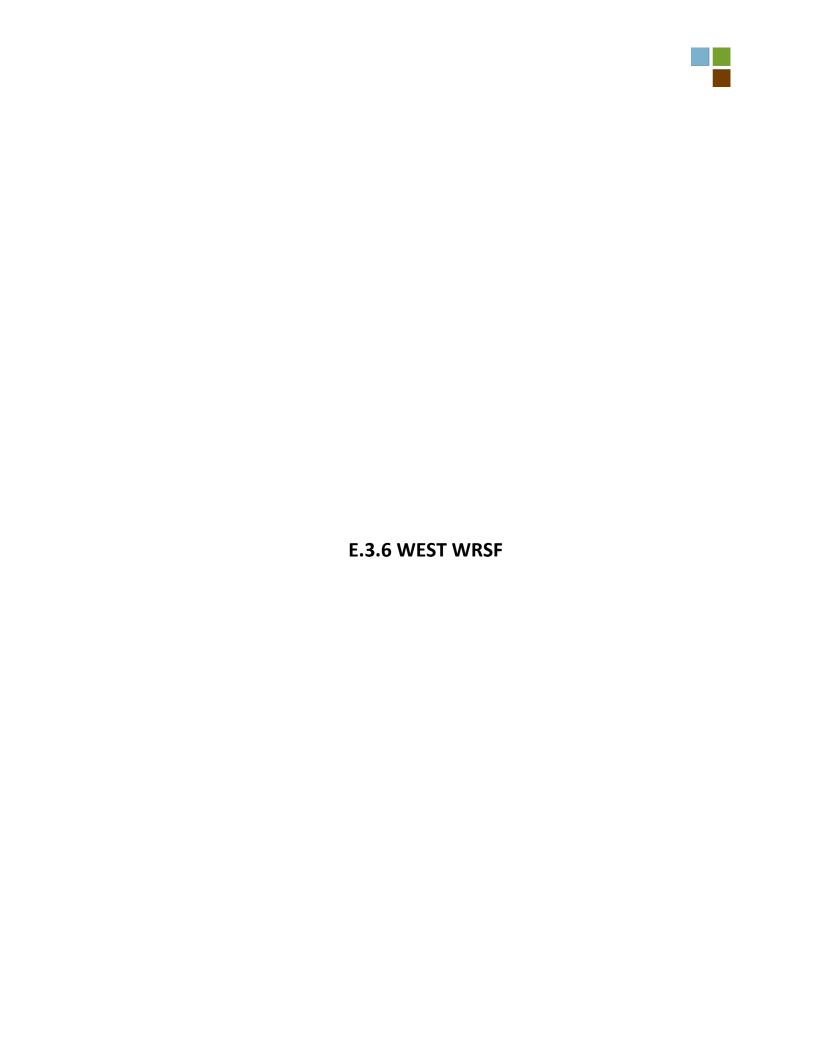
0.00 ft

Fast WRSF West Diversion 100 YR

	East WRSF West Dive	rs.	ION TOO YR
Project Description			
Friction Method	Manning Formula		
Solve For	Normal Depth		
Input Data			
•		005	
Roughness Coefficient		035	6.46
Channel Slope		000	ft/ft
Left Side Slope		2.50	ft/ft (H:V)
Right Side Slope Bottom Width		1.00	ft/ft (H:V) ft
		1.80	ft³/s
Discharge		1.00	11.75
Results			
Normal Depth		0.66	ft
Flow Area	1	0.06	ft²
Wetted Perimeter	2	9.40	ft
Hydraulic Radius		0.34	ft
Top Width	2	9.26	ft
Critical Depth		0.73	ft
Critical Slope		489	ft/ft
Velocity		4.15	ft/s
Velocity Head		0.27	ft
Specific Energy		0.93	ft
Froude Number		1.25	
Flow Type	Supercritical		
GVF Input Data			
Downstream Depth		0.00	ft
Length		0.00	ft
Number Of Steps		0	
GVF Output Data			
Upstream Depth		0.00	ft
Profile Description			
Profile Headloss		0.00	ft
Downstream Velocity	In	inity	ft/s
Upstream Velocity	In	inity	ft/s
Normal Depth		0.66	ft
Critical Depth		0.73	ft

Channel Slope

0.04000 ft/ft


	East WRSF West Diversion 500 YR
Project Description	
Friction Method	Manning Formula
Solve For	Normal Depth
Input Data	
Roughness Coefficient	0.035
Channel Slope	0.04000 ft/ft
Left Side Slope	2.50 ft/ft (H:V)
Right Side Slope	40.00 ft/ft (H:V)
Bottom Width	1.00 ft
Discharge	57.20 ft³/s
Results	
Normal Depth	0.75 ft
Flow Area	12.73 ft ²
Wetted Perimeter	33.06 ft
Hydraulic Radius	0.38 ft
Top Width	32.91 ft
Critical Depth	0.83 ft
Critical Slope	0.02387 ft/ft
Velocity	4.49 ft/s
Velocity Head	0.31 ft
Specific Energy	1.06 ft
Froude Number	1.27
Flow Type	Supercritical
GVF Input Data	
Downstream Depth	0.00 ft
Length	0.00 ft
Number Of Steps	0
GVF Output Data	
Upstream Depth	0.00 ft
Profile Description	
Profile Headloss	0.00 ft
Downstream Velocity	Infinity ft/s
Upstream Velocity	Infinity ft/s
Normal Depth	0.75 ft
- I	**

Critical Depth

Channel Slope

0.83 ft

0.04000 ft/ft

West WRSF East Diversion 100 YR

Project	Description
----------------	-------------

Friction Method Manning Formula
Solve For Normal Depth

Input Data

Roughness Coefficient	0.035	
Channel Slope	0.22000	ft/ft
Left Side Slope	21.70	ft/ft (H:V)
Right Side Slope	3.50	ft/ft (H:V)
Bottom Width	2.00	ft
Discharge	43.10	ft³/s

Results

Normal Depth	0.54	ft
Flow Area	4.79	ft²
Wetted Perimeter	15.75	ft
Hydraulic Radius	0.30	ft
Top Width	15.66	ft
Critical Depth	0.86	ft
Critical Slope	0.02318	ft/ft
Velocity	9.00	ft/s
Velocity Head	1.26	ft
Specific Energy	1.80	ft
Froude Number	2.87	
El . T		

Flow Type Supercritical

GVF Input Data

Downstream Depth	0.00	ft
Length	0.00	ft
Number Of Steps	0	

GVF Output Data

Upstream Depth	0.00	ft
Profile Description		
Profile Headloss	0.00	ft
Downstream Velocity	Infinity	ft/s
Upstream Velocity	Infinity	ft/s
Normal Depth	0.54	ft
Critical Depth	0.86	ft
Channel Slope	0.22000	ft/ft

West WRSF East Diversion 500 YR

Proi	iect	Desci	ripti	ion
			100	\sim 11

Friction Method Manning Formula
Solve For Normal Depth

Input Data

Roughness Coefficient	0.035	
Channel Slope	0.22000	ft/ft
Left Side Slope	21.70	ft/ft (H:V)
Right Side Slope	3.50	ft/ft (H:V)
Bottom Width	2.00	ft
Discharge	83.90	ft³/s

Results

Normal Depth		0.72	ft
Flow Area		7.88	ft²
Wetted Perimeter		20.14	ft
Hydraulic Radius		0.39	ft
Top Width		20.03	ft
Critical Depth		1.15	ft
Critical Slope		0.02120	ft/ft
Velocity		10.65	ft/s
Velocity Head		1.76	ft
Specific Energy		2.48	ft
Froude Number		2.99	
Flow Type	Supercritical		

GVF Input Data

Downstream Depth	0.00	ft
Length	0.00	ft
Number Of Steps	0	

GVF Output Data

Upstream Depth

- F		
Profile Description		
Profile Headloss	0.00	ft
Downstream Velocity	Infinity	ft/s
Upstream Velocity	Infinity	ft/s
Normal Depth	0.72	ft
Critical Depth	1.15	ft
Channel Slope	0.22000	ft/ft

0.00 ft

West WRSF South Diversion 100 YR

i lojeot bescription	Pro	ject	Descri	ption
----------------------	-----	------	--------	-------

Friction Method Manning Formula
Solve For Normal Depth

Input Data

0.035 Roughness Coefficient 0.04500 Channel Slope ft/ft Left Side Slope 19.00 ft/ft (H:V) Right Side Slope 2.50 ft/ft (H:V) **Bottom Width** 1.00 194.10 ft³/s Discharge

Results

Normal Depth 1.50 ft Flow Area 25.75 ft² Wetted Perimeter 33.62 ft Hydraulic Radius 0.77 ft Top Width 33.29 ft Critical Depth 1.78 ft Critical Slope 0.01865 ft/ft ft/s Velocity 7.54 Velocity Head 0.88 ft Specific Energy ft 2.39 Froude Number 1.51 Flow Type Supercritical

GVF Input Data

Downstream Depth 0.00 ft
Length 0.00 ft
Number Of Steps 0

GVF Output Data

0.00 ft Upstream Depth Profile Description Profile Headloss 0.00 ft **Downstream Velocity** Infinity ft/s **Upstream Velocity** Infinity ft/s 1.50 Normal Depth ft 1.78 Critical Depth ft Channel Slope 0.04500 ft/ft

West WRSF South Diversion 500 YR

Pro	iect	Descri	ption

Friction Method Manning Formula
Solve For Normal Depth

Input Data

0.075 Roughness Coefficient 0.04500 Channel Slope ft/ft Left Side Slope 19.00 ft/ft (H:V) Right Side Slope 2.50 ft/ft (H:V) **Bottom Width** 1.00 265.30 ft³/s Discharge

Results

Normal Depth 2.27 ft Flow Area 57.65 ft² Wetted Perimeter 50.30 ft Hydraulic Radius 1.15 ft Top Width 49.80 ft Critical Depth 2.02 ft Critical Slope 0.08214 ft/ft 4.60 ft/s Velocity Velocity Head 0.33 ft Specific Energy ft 2.60 Froude Number 0.75 Flow Type Subcritical

GVF Input Data

Downstream Depth 0.00 ft
Length 0.00 ft
Number Of Steps 0

GVF Output Data

Upstream Depth

Profile Description Profile Headloss 0.00 ft **Downstream Velocity** Infinity ft/s **Upstream Velocity** Infinity ft/s 2.27 ft Normal Depth 2.02 Critical Depth ft Channel Slope 0.04500 ft/ft

0.00 ft

West WRSF West Diversion 100 YR

Friction Method	Manning Formula	
Solve For	Normal Depth	
Input Data		
Roughness Coefficient	0.035	
Channel Slope	0.15000	ft/ft
Left Side Slope	7.00	ft/ft (H:V)
Right Side Slope	3.50	ft/ft (H:V)
Bottom Width	1.00	ft
Discharge	100.90	ft³/s
Results		

rtoounto			
Normal Depth		1.18	ft
Flow Area		8.44	ft²
Wetted Perimeter		13.60	ft
Hydraulic Radius		0.62	ft
Top Width		13.35	ft
Critical Depth		1.78	ft
Critical Slope		0.01872	ft/ft
Velocity		11.96	ft/s
Velocity Head		2.22	ft
Specific Energy		3.40	ft
Froude Number		2.65	
Flow Type	Supercritical		

GVF Input Data		

Downstream Depth 0.00 ft Length 0.00 ft Number Of Steps 0 t

GVF Output Data

Project Description

Upstream Depth	0.00	ft
Profile Description		
Profile Headloss	0.00	ft
Downstream Velocity	Infinity	ft/s
Upstream Velocity	Infinity	ft/s
Normal Depth	1.18	ft
Critical Depth	1.78	ft
Channel Slope	0.15000	ft/ft

	West WRSF West Diver	sion 500 YR
Project Description		
Friction Method	Manning Formula	
Solve For	Normal Depth	
Input Data		
Roughness Coefficient	0.03	35
Channel Slope	0.1500	00 ft/ft
Left Side Slope	7.0	00 ft/ft (H:V)
Right Side Slope	3.5	50 ft/ft (H:V)
Bottom Width	1.0	00 ft
Discharge	137.9	90 ft³/s
Results		
Normal Depth	1.3	33 ft
Flow Area	10.6	66 ft²
Wetted Perimeter	15.2	28 ft
Hydraulic Radius	0.7	70 ft
Top Width	15.0	00 ft
Critical Depth	2.0	03 ft
Critical Slope	0.0179	96 ft/ft
Velocity	12.9	94 ft/s
Velocity Head	2.6	60 ft
Specific Energy	3.9	93 ft
Froude Number	2.7	70
Flow Type	Supercritical	
GVF Input Data		
Downstream Depth	0.0	00 ft
Length	0.0	00 ft
Number Of Steps		0
GVF Output Data		
Upstream Depth	0.0	00 ft
Profile Description		
Profile Headloss	0.0	00 ft
Downstream Velocity	Infini	
Upstream Velocity	Infini	
		•

Normal Depth Critical Depth

Channel Slope

1.33 ft

2.03 ft

0.15000 ft/ft

HEC-15 RIPRAP DESIGN

Lithium Nevada Corporation Thacker Pass Project West WRSF South 100yr, 24hr storm

NOTE: Gray boxes require input, Orange boxes require specific values, Red boxes are calculated

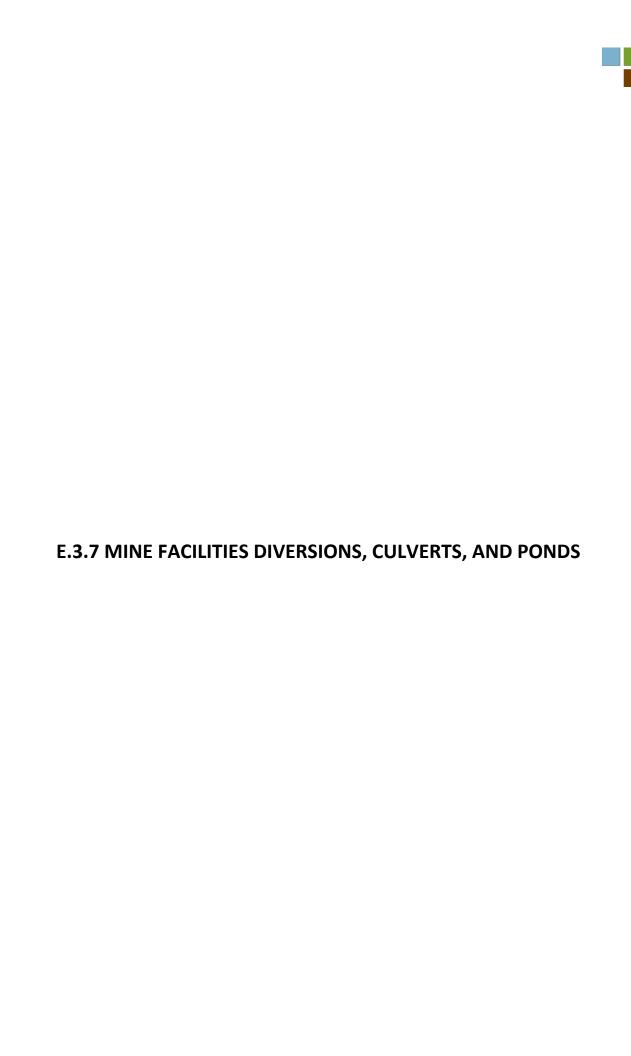
Step 1: Channel Design Parameters				
Bottom Width	В	1 ft		
Side Slope	Z	2.5 x:1		
Longitudinal Slope	S	0.045 ft/ft		
Flow	Q	194.1 ft ³ /s		

Step 2: Initial Riprap sizing				
Median Stone Size	D ₅₀	1	ft	
Stone Unit Weight	Ys	165	pcf	
	D ₁₀₀	20.00	inch	
	D ₇₅	15.00	inch	
Riprap Calculation Gradation	D ₅₀	12.00	inch	
Triplay calculation dradation	D ₃₀	8.00	inch	
	D ₁₅	6.00	inch	
	D ₁₀	4.00	inch	

Step 3: Estimate the Flow Depth				
Initial Flow Depth Estimate	D _i	3.5	ft	
Area of Channel	Α	34.13	ft ²	
Wetted Perimeter	Р	19.85	ft	
Hydraulic Radius	R	1.72	ft	
Wetted Top Width	Т	18.50	ft	
Calculated Average Flow Depth	D_a	1.84	ft	

Step 4: Estimate Manning's n and the Implied Discharge					
D_a/D_{50}		1.845			
For 1.5 < D _a /D ₅₀ < 185	n	0.080			
Q from mannings	Qi	194.24 f	t³/s		
% Difference from Design Discharge		0.07%			
For 0.3 < D _a /D ₅₀ < 1.5	n	0.052			
function(Froude number)	f(Fr)	0.854			
Froude number	Fr	0.738			
Velocity of flow	V	5.688			
effective roughness concrentration	b	0.500			
Roughness element geometry	f(REG)	20.739			
Channel geometry	f(CG)	0.315			
Q from mannings	Qi	297.40 f	t³/s		
% Difference from Design Discharge		53.22%			

HEC-15 RIPRAP DESIGN


Step 5:			
If % difference is > 5%, estimate a new depth in Step 3	FALSE	Proceed to Step 6	
For $0.3 < D_a/D_{50} < 1.5$	TRUE		
If false, proceed to step 6			

Step 6: Calculate Reynolds and Determine Appropriate Shields Parameter & Safety Factor					
Shear Velocity	V*	2.252			
Reynolds number	R_{e}	1.85E+05			
Gravity	g	32.2	ft/s ²		
Kinematic Viscosity	V	1.22E-05	ft²/s	(1.217e-5 for 60 °F)	
From Table 6.1	F*	0.140			
From Table 6.1	SF	1.453			
Specific Gravity of Stone	SG	2.64			
For S < 5%	D ₅₀	0.99	ft		

Table 6.1. Selection of Shields' Parameter and Safety Factor						
Reynolds number	F*	SF				
≤ 4x10 ⁴	0.047	1				
4x10 ⁴ <re<2x10<sup>5</re<2x10<sup>	0.140	1.453	(Linear Interpolation)			
≥ 2x10 ⁵	0.15	1.5				

Step 7: Iterate Solution till Calculated D50 is Acceptably Smaller then Chosen D50					
Difference to Chosen Riprap	99.17%	<	100%	TRUE	
IF FALSE GOTO STEP 2, ADJUST RIPRAP SIZE					

Step 8. Side Slope Assessment							
Stone Angle of Repose	ф	42	۰				
For 1.5 < Z < 5	K1	0.835					
	θ	21.80	•				
	K2	0.83					
Stable D ₅₀	D _{50,s}	1.00					
Difference to Chosen Riprap		99.55%	<	100%	TRUE		

Facility Pond #1 2-Year/24-Hour Storm Event Routing

Corey Sadowsky

North American Coal Corporation 5340 Legacy Drive Building 1, Suite 300 Plano, TX 75024

General Information

Storm Information:

Storm Type:	NRCS Type II
Design Storm:	2 yr - 24 hr
Rainfall Depth:	1.130 inches

Structure Networking:

Туре	Stru #	(flows into)	Stru #	Musk. K (hrs)	Musk. X	Description
Pond	#1	==>	End	0.000	0.000	Facility Pond #1

#1 Pond

Structure Summary:

		Immediate Contributing Area (ac)	Total Contributing Area (ac)	Peak Discharge (cfs)	Total Runoff Volume (ac-ft)
#1	In	111.000	111.000	37.37	3.94
#1	Out	111.000	111.000	1.74	3.22

Structure Detail:

Structure #1 (Pond)

Facility Pond #1

Pond Inputs:

Initial Pool Elev:	4,962.00 ft
Initial Pool:	2.20 ac-ft

Perforated Riser

Riser Diameter (in)	Riser Height (ft)	Barrel Diameter (in)	Barrel Length (ft)	Barrel Slope (%)	Manning's n	Spillway Elev (ft)	Number of Holes per Elev
31.50	3.00	31.50	95.00	4.20	0.0120	4,964.50	12

Emergency Spillway

Spillway Elev	Crest Length	Left	Right	Bottom
	(ft)	Sideslope	Sideslope	Width (ft)
4,966.00	103.00	4.00:1	4.00:1	20.00

Pond Results:

Peak Elevation:	4,964.37 ft
Dewater Time:	2.64 days

Dewatering time is calculated from peak stage to lowest spillway

Elevation-Capacity-Discharge Table

Elevation	Area (ac)	Capacity (ac-ft)	Discharge (cfs)	Dewater Time (hrs)	
4,959.00	0.000	0.000	0.000		
4,959.50	0.222	0.037	0.000		
4,960.00	0.890	0.297	0.000		
4,960.50	0.920	0.749	0.000		
4,961.00	0.950	1.217	0.000		
4,961.50	0.980	1.699	0.000		
4,962.00	1.011	2.197	0.000		Low hole SPW #1
4,962.50	1.042	2.710	0.223	27.87*	
4,963.00	1.074	3.239	0.538	11.90*	
4,963.50	1.108	3.785	0.924	9.25	
4,964.00	1.143	4.348	1.370	6.00	

Elevation	Area (ac)	Capacity (ac-ft)	Discharge (cfs)	Dewater Time (hrs)	
4,964.37	1.179	4.776	1.736	8.40	Peak Stage
4,964.50	1.190	4.931	1.868		Spillway #1
4,965.00	1.238	5.538	9.038		
4,965.50	1.284	6.168	25.565		
4,966.00	1.331	6.822	31.915		Spillway #2
4,966.50	1.381	7.500	53.019		
4,967.00	1.432	8.203	73.535		
4,967.50	1.490	8.934	120.384		
4,968.00	1.549	9.693	184.620		
4,968.50	1.613	10.484	263.784		
4,969.00	1.679	11.307	359.850		

^{*}Designates time(s) to dewater have been extrapolated beyond the 50 hour hydrograph limit.

Detailed Discharge Table

		Combined
Darf Disar (cfs)	Emergency	Total
Terr. Niser (cis)	Spillway (cfs)	Discharge
		(cfs)
0.000	0.000	0.000
0.000	0.000	0.000
0.000	0.000	0.000
0.000	0.000	0.000
0.000	0.000	0.000
0.000	0.000	0.000
1.00>0.000	0.000	0.000
1.00>0.223	0.000	0.223
1.00>0.538	0.000	0.538
1.00>0.924	0.000	0.924
1.00>1.370	0.000	1.370
1.868	0.000	1.868
9.038	0.000	9.038
25.565	0.000	25.565
31.915	0.000	31.915
36.852	16.167	53.019
41.201	32.334	73.535
45.134	75.250	120.384
48.750	135.869	184.620
52.116	211.667	263.784
55.278	304.572	359.850
	0.000 0.000 0.000 0.000 0.000 1.00>0.000 1.00>0.223 1.00>0.538 1.00>0.924 1.00>1.370 1.868 9.038 25.565 31.915 36.852 41.201 45.134 48.750 52.116	O.000 O.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.00>0.000 0.000 1.00>0.223 0.000 1.00>0.538 0.000 1.00>1.370 0.000 1.868 0.000 9.038 0.000 25.565 0.000 31.915 0.000 36.852 16.167 41.201 32.334 45.134 75.250 48.750 135.869 52.116 211.667

Subwatershed Hydrology Detail:

#1	1	111.000 111.000	(hrs) 0.363	0.000	0.000	91.000	F	(cfs) 37.37 37.37	(ac-ft) 3.942 3.942
Stru #	SWS #	SWS Area (ac)	Conc	Musk K (hrs)	Musk X	Curve UHS Number	UHS	Peak Discharge	Runoff Volume

Subwatershed Time of Concentration Details:

Stru #	SWS #	Land Flow Condition	Slope (%)	Vert. Dist. (ft)	Horiz. Dist. (ft)	Velocity (fps)	Time (hrs)
#1	1	8. Large gullies, diversions, and low flowing streams	1.40	65.00	4,640.00	3.550	0.363
#1	1	Time of Concentration:					0.363

Facility Pond #1 25-Year/24-Hour Storm Event Routing

Corey Sadowsky

North American Coal Corporation 5340 Legacy Drive Building 1, Suite 300 Plano, TX 75024

General Information

Storm Information:

Storm Type:	NRCS Type II
Design Storm:	25 yr - 24 hr
Rainfall Depth:	1.960 inches

Structure Networking:

Туре	Stru #	(flows into)	Stru #	Musk. K (hrs)	Musk. X	Description
Pond	#1	==>	End	0.000	0.000	Facility Pond #1

#1 Pond

Structure Summary:

		Immediate Contributing Area (ac)	Total Contributing Area (ac)	Peak Discharge (cfs)	Total Runoff Volume (ac-ft)
#1	In	111 000	94.94	9.84	
#1	0ut 111.000		111.000	29.80	9.02

Structure Detail:

Structure #1 (Pond)

Facility Pond #1

Pond Inputs:

Initial Pool Elev:	4,962.00 ft
Initial Pool:	2.20 ac-ft

Perforated Riser

Riser Diameter (in)	Riser Height (ft)	Barrel Diameter (in)	Barrel Length (ft)	Barrel Slope (%)	Manning's n	Spillway Elev (ft)	Number of Holes per Elev
31.50	3.00	31.50	95.00	4.20	0.0120	4,964.50	12

Emergency Spillway

Spillway Elev	Crest Length	Left	Right	Bottom
	(ft)	Sideslope	Sideslope	Width (ft)
4,966.00	103.00	4.00:1	4.00:1	20.00

Pond Results:

Peak Elevation:	4,965.83 ft
Dewater Time:	2.97 days

Dewatering time is calculated from peak stage to lowest spillway

Elevation-Capacity-Discharge Table

Elevation	Area (ac)	Capacity (ac-ft)	Discharge (cfs)	Dewater Time (hrs)	
4,959.00	0.000	0.000	0.000		
4,959.50	0.222	0.037	0.000		
4,960.00	0.890	0.297	0.000		
4,960.50	0.920	0.749	0.000		
4,961.00	0.950	1.217	0.000		
4,961.50	0.980	1.699	0.000		
4,962.00	1.011	2.197	0.000		Low hole SPW #1
4,962.50	1.042	2.710	0.223	27.87*	
4,963.00	1.074	3.239	0.538	11.90*	
4,963.50	1.108	3.785	0.924	9.25	
4,964.00	1.143	4.348	1.370	6.00	

Convright 1998 -2010 Pamela I. Schu	<i>ı</i> ah
-------------------------------------	-------------

Elevation	Area (ac)	Capacity (ac-ft)	Discharge (cfs)	Dewater Time (hrs)	
4,964.50	1.190	4.931	1.868	4.45	Spillway #1
4,965.00	1.238	5.538	9.038	10.10	
4,965.50	1.284	6.168	25.565	1.20	
4,965.83	1.316	6.604	29.801	0.50	Peak Stage
4,966.00	1.331	6.822	31.915		Spillway #2
4,966.50	1.381	7.500	53.019		
4,967.00	1.432	8.203	73.535		
4,967.50	1.490	8.934	120.384		
4,968.00	1.549	9.693	184.620		
4,968.50	1.613	10.484	263.784		
4,969.00	1.679	11.307	359.850		

^{*}Designates time(s) to dewater have been extrapolated beyond the 50 hour hydrograph limit.

Detailed Discharge Table

			Combined	
Elevation (ft)	D (D) (()	Emergency	Total	
	Perf. Riser (cfs)	Spillway (cfs)	Discharge	
			(cfs)	
4,959.00	0.000	0.000	0.000	
4,959.50	0.000	0.000	0.000	
4,960.00	0.000	0.000	0.000	
4,960.50	0.000	0.000	0.000	
4,961.00	0.000	0.000	0.000	
4,961.50	0.000	0.000	0.000	
4,962.00	1.00>0.000	0.000	0.000	
4,962.50	1.00>0.223	0.000	0.223	
4,963.00	1.00>0.538	0.000	0.538	
4,963.50	1.00>0.924	0.000	0.924	
4,964.00	1.00>1.370	0.000	1.370	
4,964.50	1.868	0.000	1.868	
4,965.00	9.038	0.000	9.038	
4,965.50	25.565	0.000	25.565	
4,966.00	31.915	0.000	31.915	
4,966.50	36.852	16.167	53.019	
4,967.00	41.201	32.334	73.535	
4,967.50	45.134	75.250	120.384	
4,968.00	48.750	135.869	184.620	
4,968.50	52.116	211.667	263.784	
4,969.00	55.278	304.572	359.850	

Subwatershed Hydrology Detail:

#1	1	111.000 111.000	0.363	0.000	0.000	91.000	F	94.94 94.94	9.836 9.836
Stru #	SWS #	SWS Area (ac)	Time of Conc (hrs)	Musk K (hrs)	Musk X	Curve Number	UHS	Peak Discharge (cfs)	Runoff Volume (ac-ft)

Subwatershed Time of Concentration Details:

Stru #	SWS #	Land Flow Condition	Slope (%)	Vert. Dist. (ft)	Horiz. Dist. (ft)	Velocity (fps)	Time (hrs)
#1	1	8. Large gullies, diversions, and low flowing streams	1.40	65.00	4,640.00	3.550	0.363
#1	1	Time of Concentration:					0.363

Facility Pond #1 100-Year/24-Hour Storm Event Routing

Corey Sadowsky

North American Coal Corporation 5340 Legacy Drive Building 1, Suite 300 Plano, TX 75024

General Information

Storm Information:

Storm Type:	NRCS Type II
Design Storm:	100 yr - 24 hr
Rainfall Depth:	2.480 inches

Structure Networking:

Туре	Stru #	(flows into)	Stru #	Musk. K (hrs)	Musk. X	Description
Pond	#1	==>	End	0.000	0.000	Facility Pond #1

#1 Pond

Structure Summary:

		Immediate Contributing Area (ac)	Total Contributing Area (ac)	Peak Discharge (cfs)	Total Runoff Volume (ac-ft)
ш.1	In	111 000	111 000	133.31	13.87
#1	Out	111.000	111.000	111.05	13.87

Structure Detail:

Structure #1 (Pond)

Facility Pond #1

Pond Inputs:

Initial Pool Elev:	4,966.00 ft
Initial Pool:	6.82 ac-ft

Emergency Spillway

Spillway Elev	Crest Length	Left	Right	Bottom
	(ft)	Sideslope	Sideslope	Width (ft)
4,966.00	103.00	4.00:1	4.00:1	20.00

Pond Results:

Peak Elevation:	4,967.80 ft
Dewater Time:	0.64 days

Dewatering time is calculated from peak stage to lowest spillway

Elevation-Capacity-Discharge Table

Elevation	Area (ac)	Capacity (ac-ft)	Discharge (cfs)	Dewater Time (hrs)	
4,959.00	0.000	0.000	0.000		
4,959.50	0.222	0.037	0.000		
4,960.00	0.890	0.297	0.000		
4,960.50	0.920	0.749	0.000		
4,961.00	0.950	1.217	0.000		
4,961.50	0.980	1.699	0.000		
4,962.00	1.011	2.197	0.000		
4,962.50	1.042	2.710	0.000		
4,963.00	1.074	3.239	0.000		
4,963.50	1.108	3.785	0.000		
4,964.00	1.143	4.348	0.000		
4,964.50	1.190	4.931	0.000		
4,965.00	1.238	5.538	0.000		
4,965.50	1.284	6.168	0.000		
4,966.00	1.331	6.822	0.000		Spillway #1
4,966.50	1.381	7.500	16.167	13.70	
4,967.00	1.432	8.203	32.334	0.95	

Elevation	Area (ac)	Capacity (ac-ft)	Discharge (cfs)	Dewater Time (hrs)	
4,967.50	1.490	8.934	75.250	0.50	
4,967.80	1.525	9.382	111.048	0.20	Peak Stage
4,968.00	1.549	9.693	135.869		
4,968.50	1.613	10.484	211.667		
4,969.00	1.679	11.307	304.572		

Detailed Discharge Table

Elevation (ft)	Emergency Spillway (cfs)	Combined Total Discharge
		(cfs)
4,959.00	0.000	0.000
4,959.50	0.000	0.000
4,960.00	0.000	0.000
4,960.50	0.000	0.000
4,961.00	0.000	0.000
4,961.50	0.000	0.000
4,962.00	0.000	0.000
4,962.50	0.000	0.000
4,963.00	0.000	0.000
4,963.50	0.000	0.000
4,964.00	0.000	0.000
4,964.50	0.000	0.000
4,965.00	0.000	0.000
4,965.50	0.000	0.000
4,966.00	0.000	0.000
4,966.50	16.167	16.167
4,967.00	32.334	32.334
4,967.50	75.250	75.250
4,968.00	135.869	135.869
4,968.50	211.667	211.667
4,969.00	304.572	304.572

Subwatershed Hydrology Detail:

Stru # #1	SWS #	SWS Area (ac)	Conc (hrs) 0.363	Musk K (hrs)	Musk X 0.000	Number 91.000	UHS	Discharge (cfs)	Volume (ac-ft) 13.875
	Σ	111.000						133.31	13.875

Subwatershed Time of Concentration Details:

Stru #	SWS #	Land Flow Condition	Slope (%)	Vert. Dist. (ft)	Horiz. Dist. (ft)	Velocity (fps)	Time (hrs)
#1	1	8. Large gullies, diversions, and low flowing streams	1.40	65.00	4,640.00	3.550	0.363
#1	1	Time of Concentration:					0.363

Facility Pond #2 2-Year/24-Hour Storm Event Routing

Corey Sadowsky

North American Coal Corporation 5340 Legacy Drive Building 1, Suite 300 Plano, TX 75024

General Information

Storm Information:

Storm Type:	NRCS Type II
Design Storm:	2 yr - 24 hr
Rainfall Depth:	1.130 inches

Structure Networking:

Туре	Stru #	(flows into)	Stru #	Musk. K (hrs)	Musk. X	Description
Pond	#1	==>	End	0.000	0.000	Facility Pond #2

#1 Pond

Structure Summary:

		Immediate Contributing Area (ac)	Total Contributing Area (ac)	Peak Discharge (cfs)	Total Runoff Volume (ac-ft)
#1	In	73.000	73.000	30.02	2.64
#1	Out	73.000	73.000	2.16	1.86

Structure Detail:

Structure #1 (Pond)

Facility Pond #2

Pond Inputs:

Initial Pool Elev:	4,897.00 ft
Initial Pool:	1.49 ac-ft

Perforated Riser

Riser Diameter (in)	Riser Height (ft)	Barrel Diameter (in)	Barrel Length (ft)	Barrel Slope (%)	Manning's n	Spillway Elev (ft)	Number of Holes per Elev
31.50	2.00	31.50	90.00	4.40	0.0120	4,899.00	8

Emergency Spillway

Spillway Elev	Crest Length	Left	Right	Bottom
	(ft)	Sideslope	Sideslope	Width (ft)
4,900.50	30.00	4.00:1	4.00:1	18.00

Pond Results:

Peak Elevation	4,899.09 ft
Dewater Time	2.65 days

Dewatering time is calculated from peak stage to lowest spillway

Elevation-Capacity-Discharge Table

Elevation	Area (ac)	Capacity (ac-ft)	Discharge (cfs)	Dewater Time (hrs)	
4,894.00	0.000	0.000	0.000		
4,894.50	0.150	0.025	0.000		
4,895.00	0.598	0.199	0.000		
4,895.50	0.623	0.505	0.000		
4,896.00	0.647	0.822	0.000		
4,896.50	0.673	1.152	0.000		
4,897.00	0.699	1.495	0.000		
4,897.50	0.727	1.851	0.000		Low hole SPW #1
4,898.00	0.756	2.222	0.149	30.21*	
4,898.50	0.792	2.609	0.359	13.06*	
4,899.00	0.828	3.014	0.616	10.35	Spillway #1

Elevation	Area (ac)	Capacity (ac-ft)	Discharge (cfs)	Dewater Time (hrs)	
4,899.09	0.840	3.092	2.163	10.10	Peak Stage
4,899.50	0.874	3.440	9.038		
4,900.00	0.920	3.888	25.565		
4,900.50	0.972	4.361	31.915		Spillway #2
4,901.00	1.025	4.860	57.813		
4,901.50	1.084	5.387	83.124		
4,902.00	1.145	5.945	140.054		
4,902.50	1.216	6.535	207.133		
4,903.00	1.289	7.161	294.893		

^{*}Designates time(s) to dewater have been extrapolated beyond the 50 hour hydrograph limit.

Detailed Discharge Table

Elevation (ft)	Perf. Riser (cfs)	Emergency Spillway (cfs)	Combined Total Discharge (cfs)
4,894.00	0.000	0.000	0.000
4,894.50	0.000	0.000	0.000
4,895.00	0.000	0.000	0.000
4,895.50	0.000	0.000	0.000
4,896.00	0.000	0.000	0.000
4,896.50	0.000	0.000	0.000
4,897.00	0.000	0.000	0.000
4,897.50	1.00>0.000	0.000	0.000
4,898.00	1.00>0.149	0.000	0.149
4,898.50	1.00>0.359	0.000	0.359
4,899.00	0.616	0.000	0.616
4,899.50	9.038	0.000	9.038
4,900.00	25.565	0.000	25.565
4,900.50	31.915	0.000	31.915
4,901.00	36.852	20.961	57.813
4,901.50	41.201	41.922	83.124
4,902.00	45.134	94.920	140.054
4,902.50	48.750	158.383	207.133
4,903.00	52.116	242.777	294.893

Subwatershed Hydrology Detail:

Stru #	SWS #	SWS Area (ac)	Time of Conc (hrs)	Musk K (hrs)		Curve Musk X UHS Number		Peak Discharge (cfs)	Runoff Volume (ac-ft)
#1	1	73.000	0.179	0.000	0.000	91.000	F	30.02	2.643
	Σ	73.000						30.02	2.643

Subwatershed Time of Concentration Details:

Stru #	SWS #	Land Flow Condition	Slope (%)	Vert. Dist. (ft)	Horiz. Dist. (ft)	Velocity (fps)	Time (hrs)
#1	1	8. Large gullies, diversions, and low flowing streams	4.01	155.00	3,870.16	6.000	0.179
#1	1	Time of Concentration:					0.179

Facility Pond #2 25-Year/24-Hour Storm Event Routing

Corey Sadowsky

North American Coal Corporation 5340 Legacy Drive Building 1, Suite 300 Plano, TX 75024

General Information

Storm Information:

Storm Type:	NRCS Type II
Design Storm:	25 yr - 24 hr
Rainfall Depth:	1.960 inches

Structure Networking:

Туре	Stru #	(flows into)	Stru #	Musk. K (hrs)	Musk. X	Description
Pond	#1	==>	End	0.000	0.000	Facility Pond #2

#1 Pond

Structure Summary:

		Immediate Contributing Area (ac)	Total Contributing Area (ac)	Peak Discharge (cfs)	Total Runoff Volume (ac-ft)
#1	In	72 000	72 000	74.25	6.60
#1	Out	73.000	73.000	30.20	5.80

Structure Detail:

Structure #1 (Pond)

Facility Pond #2

Pond Inputs:

Initial Pool Elev:	4,897.00 ft
Initial Pool:	1.49 ac-ft

Perforated Riser

Riser Diameter (in)	Riser Height (ft)	Barrel Diameter (in)	Barrel Length (ft)	Barrel Slope (%)	Manning's n	Spillway Elev (ft)	Number of Holes per Elev
31.50	2.00	31.50	90.00	4.40	0.0120	4,899.00	8

Emergency Spillway

Spillway Elev	Crest Length	Left	Right	Bottom
	(ft)	Sideslope	Sideslope	Width (ft)
4,900.50	30.00	4.00:1	4.00:1	18.00

Pond Results:

Peak Elevation:	4,900.36 ft
Dewater Time:	2.75 days

Dewatering time is calculated from peak stage to lowest spillway

Elevation-Capacity-Discharge Table

Elevation	Area (ac)	Capacity (ac-ft)	Discharge (cfs)	Dewater Time (hrs)	
4,894.00	0.000	0.000	0.000		
4,894.50	0.150	0.025	0.000		
4,895.00	0.598	0.199	0.000		
4,895.50	0.623	0.505	0.000		
4,896.00	0.647	0.822	0.000		
4,896.50	0.673	1.152	0.000		
4,897.00	0.699	1.495	0.000		
4,897.50	0.727	1.851	0.000		Low hole SPW #1
4,898.00	0.756	2.222	0.149	30.21*	
4,898.50	0.792	2.609	0.359	13.06*	
4,899.00	0.828	3.014	0.616	10.30	Spillway #1

Elevation	Area (ac)	Capacity (ac-ft)	Discharge (cfs)	Dewater Time (hrs)	
4,899.50	0.874	3.440	9.038	11.25	
4,900.00	0.920	3.888	25.565	0.80	
4,900.36	0.958	4.233	30.199	0.40	Peak Stage
4,900.50	0.972	4.361	31.915		Spillway #2
4,901.00	1.025	4.860	57.813		
4,901.50	1.084	5.387	83.124		
4,902.00	1.145	5.945	140.054		
4,902.50	1.216	6.535	207.133		
4,903.00	1.289	7.161	294.893		

^{*}Designates time(s) to dewater have been extrapolated beyond the 50 hour hydrograph limit.

Detailed Discharge Table

Elevation (ft)	Perf. Riser (cfs)	Emergency Spillway (cfs)	Combined Total Discharge (cfs)
4,894.00	0.000	0.000	0.000
4,894.50	0.000	0.000	0.000
4,895.00	0.000	0.000	0.000
4,895.50	0.000	0.000	0.000
4,896.00	0.000	0.000	0.000
4,896.50	0.000	0.000	0.000
4,897.00	0.000	0.000	0.000
4,897.50	1.00>0.000	0.000	0.000
4,898.00	1.00>0.149	0.000	0.149
4,898.50	1.00>0.359	0.000	0.359
4,899.00	0.616	0.000	0.616
4,899.50	9.038	0.000	9.038
4,900.00	25.565	0.000	25.565
4,900.50	31.915	0.000	31.915
4,901.00	36.852	20.961	57.813
4,901.50	41.201	41.922	83.124
4,902.00	45.134	94.920	140.054
4,902.50	48.750	158.383	207.133
4,903.00	52.116	242.777	294.893

Subwatershed Hydrology Detail:

Stru #	SWS #	SWS Area (ac)	Time of Conc (hrs)	Musk K (hrs)	Musk X	Curve Number	UHS	Peak Discharge (cfs)	Runoff Volume (ac-ft)
#1	1	73.000	0.179	0.000	0.000	91.000	F	74.25	6.596
	Σ	73.000						74.25	6.596

Subwatershed Time of Concentration Details:

Stru #	SWS #	Land Flow Condition	Slope (%)	Vert. Dist. (ft)	Horiz. Dist. (ft)	Velocity (fps)	Time (hrs)
#1	1	8. Large gullies, diversions, and low flowing streams	4.01	155.00	3,870.16	6.000	0.179
#1	1	Time of Concentration:					0.179

Facility Pond #2 100-Year/24-Hour Storm Event Routing

Corey Sadowsky

North American Coal Corporation 5340 Legacy Drive Building 1, Suite 300 Plano, TX 75024

General Information

Storm Information:

Storm Type:	NRCS Type II
Design Storm:	100 yr - 24 hr
Rainfall Depth:	2.480 inches

Structure Networking:

Туре	Stru #	(flows into)	Stru #	Musk. K (hrs)	Musk. X	Description
Pond	#1	==>	End	0.000	0.000	Facility Pond #2

#1 Pond

Structure Summary:

		Immediate Contributing Area (ac)	Total Contributing Area (ac)	Peak Discharge (cfs)	Total Runoff Volume (ac-ft)
#1	In	73.000	72 000	103.33	9.31
#1	Out	73.000	73.000	90.08	9.31

Structure Detail:

Structure #1 (Pond)

Facility Pond #2

Pond Inputs:

Initial Pool Elev:	4,900.50 ft
Initial Pool:	4.36 ac-ft

Emergency Spillway

Spillway Elev	Crest Length (ft)	Left Sideslope	Right Sideslope	Bottom Width (ft)
4,900.50	30.00	4.00:1	4.00:1	18.00

Pond Results:

Peak Elevation:	4,901.95 ft
Dewater Time:	0.57 days

Dewatering time is calculated from peak stage to lowest spillway

Elevation-Capacity-Discharge Table

Elevation	Area (ac)	Capacity (ac-ft)	Discharge (cfs)	Dewater Time (hrs)	
4,894.00	0.000	0.000	0.000		
4,894.50	0.150	0.025	0.000		
4,895.00	0.598	0.199	0.000		
4,895.50	0.623	0.505	0.000		
4,896.00	0.647	0.822	0.000		
4,896.50	0.673	1.152	0.000		
4,897.00	0.699	1.495	0.000		
4,897.50	0.727	1.851	0.000		
4,898.00	0.756	2.222	0.000		
4,898.50	0.792	2.609	0.000		
4,899.00	0.828	3.014	0.000		
4,899.50	0.874	3.440	0.000		
4,900.00	0.920	3.888	0.000		
4,900.50	0.972	4.361	0.000		Spillway #1
4,901.00	1.025	4.860	20.961	13.00	
4,901.50	1.084	5.387	41.922	0.50	
4,901.95	1.140	5.894	90.075	0.25	Peak Stage

ah

Elevation	Area (ac)	Capacity (ac-ft)	Discharge (cfs)	Dewater Time (hrs)	
4,902.00	1.145	5.945	94.920		
4,902.50	1.216	6.535	158.383		
4,903.00	1.289	7.161	242.777		

<u>Detailed Discharge Table</u>

F	Combined Total
Spiliway (cis)	Discharge
	(cfs)
0.000	0.000
0.000	0.000
0.000	0.000
0.000	0.000
0.000	0.000
0.000	0.000
0.000	0.000
0.000	0.000
0.000	0.000
0.000	0.000
0.000	0.000
0.000	0.000
0.000	0.000
0.000	0.000
20.961	20.961
41.922	41.922
94.920	94.920
158.383	158.383
242.777	242.777
	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 20.961 41.922 94.920 158.383

Subwatershed Hydrology Detail:

Stru #	SWS #	SWS Area (ac)	Time of Conc (hrs)	Musk K (hrs)	Musk X	Curve Number	UHS	Peak Discharge (cfs)	Runoff Volume (ac-ft)
#1	1	73.000	0.179	0.000	0.000	91.000	F	103.33	9.305
	Σ	73.000						103.33	9.305

Subwatershed Time of Concentration Details:

Stru #	SWS #	Land Flow Condition	Slope (%)	Vert. Dist. (ft)	Horiz. Dist. (ft)	Velocity (fps)	Time (hrs)
#1	1	8. Large gullies, diversions, and low flowing streams	4.01	155.00	3,870.16	6.000	0.179
#1	1	Time of Concentration:					0.179

Mine Pond #1 2-Year/24-Hour Storm Event Routing

Corey Sadowsky

North American Coal Corporation 5340 Legacy Drive Building 1, Suite 300 Plano, TX 75024

General Information

Storm Information:

Storm Type:	NRCS Type II
Design Storm:	2 yr - 24 hr
Rainfall Depth:	1.130 inches

Structure Networking:

Туре	Stru #	(flows into)	Stru #	Musk. K (hrs)	Musk. X	Description
Pond	#1	==>	End	0.000	0.000	Mine Pond #1

#1 Pond

Structure Summary:

		Immediate Contributing Area (ac)	Total Contributing Area (ac)	Peak Discharge (cfs)	Total Runoff Volume (ac-ft)
#1	In	207.000	207 000	101.82	10.59
#1	Out	297.000	297.000	8.98	7.96

Structure Detail:

Structure #1 (Pond)

Mine Pond #1

Pond Inputs:

Initial Pool Elev:	4,873.00 ft
Initial Pool:	5.68 ac-ft

Perforated Riser

Riser Diameter (in)	Riser Height (ft)	Barrel Diameter (in)	Barrel Length (ft)	Barrel Slope (%)	Manning's n	Spillway Elev (ft)	Number of Holes per Elev
31.50	2.00	31.50	105.00	0.95	0.0120	4,875.00	24

Emergency Spillway

Spillway Elev	Crest Length	Left	Right	Bottom
	(ft)	Sideslope	Sideslope	Width (ft)
4,878.50	36.00	4.00:1	4.00:1	40.00

Pond Results:

Peak Elevation:	4,875.50 ft
Dewater Time:	2.81 days

Dewatering time is calculated from peak stage to lowest spillway

Elevation-Capacity-Discharge Table

Elevation	Area (ac)	Capacity (ac-ft)	Discharge (cfs)	Dewater Time (hrs)	
4,869.00	0.000	0.000	0.000		
4,869.50	0.218	0.036	0.000		
4,870.00	0.872	0.291	0.000		
4,870.50	1.213	0.810	0.000		
4,871.00	1.611	1.513	0.000		
4,871.50	1.901	2.390	0.000		
4,872.00	2.215	3.418	0.000		
4,872.50	2.260	4.537	0.000		
4,873.00	2.305	5.678	0.000		
4,873.50	2.351	6.842	0.000		Low hole SPW #1
4,874.00	2.397	8.029	0.446	32.22*	

Elevation	Area (ac)	Capacity (ac-ft)	Discharge (cfs)	Dewater Time (hrs)	
4,874.50	2.443	9.239	1.076	13.61*	
4,875.00	2.489	10.472	1.848	10.45	Spillway #1
4,875.50	2.535	11.719	8.984	11.20	Peak Stage
4,875.50	2.536	11.728	9.038		
4,876.00	2.583	13.008	25.565		
4,876.50	2.630	14.311	31.915		
4,877.00	2.678	15.638	36.852		
4,877.50	2.726	16.989	41.201		
4,878.00	2.775	18.365	45.134		
4,878.50	2.824	19.764	48.750		Spillway #2
4,879.00	2.873	21.188	94.437		
4,879.50	2.922	22.637	139.919		
4,880.00	2.972	24.111	244.561		
4,880.50	3.023	25.610	368.825		
4,881.00	3.075	27.134	517.068		
4,881.50	3.133	28.686	703.717		
4,882.00	3.191	30.267	917.682		

^{*}Designates time(s) to dewater have been extrapolated beyond the 50 hour hydrograph limit.

Detailed Discharge Table

			Combined
Elevation	Perf. Riser (cfs)	Emergency	Total
(ft)	Terr. Niser (cis)	Spillway (cfs)	Discharge
			(cfs)
4,869.00	0.000	0.000	0.000
4,869.50	0.000	0.000	0.000
4,870.00	0.000	0.000	0.000
4,870.50	0.000	0.000	0.000
4,871.00	0.000	0.000	0.000
4,871.50	0.000	0.000	0.000
4,872.00	0.000	0.000	0.000
4,872.50	0.000	0.000	0.000
4,873.00	0.000	0.000	0.000
4,873.50	1.00>0.000	0.000	0.000
4,874.00	1.00>0.446	0.000	0.446
4,874.50	1.00>1.076	0.000	1.076
4,875.00	1.848	0.000	1.848
4,875.50	9.038	0.000	9.038
4,876.00	25.565	0.000	25.565
4,876.50	31.915	0.000	31.915

			Combined
Elevation	Douf Diggs (efg)	Emergency	Total
(ft)	Perf. Riser (cfs)	Spillway (cfs)	Discharge
			(cfs)
4,877.00	36.852	0.000	36.852
4,877.50	41.201	0.000	41.201
4,878.00	45.134	0.000	45.134
4,878.50	48.750	0.000	48.750
4,879.00	52.116	42.321	94.437
4,879.50	55.278	84.641	139.919
4,880.00	58.268	186.293	244.561
4,880.50	61.112	307.714	368.825
4,881.00	63.829	453.239	517.068
4,881.50	66.435	637.281	703.717
4,882.00	68.943	848.738	917.682

Subwatershed Hydrology Detail:

Stru #	SWS #	SWS Area (ac)	Time of Conc (hrs)	Musk K (hrs)	Musk X	Curve Number	UHS	Peak Discharge (cfs)	Runoff Volume (ac-ft)
#1	1	297.000	0.347	0.000	0.000	91.000	F	101.82	10.586
	Σ	297.000						101.82	10.586

Subwatershed Time of Concentration Details:

Stru #	SWS #	Land Flow Condition	Slope (%)	Vert. Dist. (ft)	Horiz. Dist. (ft)	Velocity (fps)	Time (hrs)
#1	1	8. Large gullies, diversions, and low flowing streams	5.28	455.00	8,620.00	6.890	0.347
#1	1	Time of Concentration:					0.347

Mine Pond #1 25-Year/24-Hour Storm Event Routing

Corey Sadowsky

North American Coal Corporation 5340 Legacy Drive Building 1, Suite 300 Plano, TX 75024

General Information

Storm Information:

Storm Type:	NRCS Type II
Design Storm:	25 yr - 24 hr
Rainfall Depth:	1.960 inches

Structure Networking:

Туре	Stru #	(flows into)	Stru #	Musk. K (hrs)	Musk. X	Description
Pond	#1	==>	End	0.000	0.000	Mine Pond #1

#1 Pond

Structure Summary:

		Immediate Contributing Area (ac)	Total Contributing Area (ac)	Peak Discharge (cfs)	Total Runoff Volume (ac-ft)
#1	In	297.000	207.000	257.73	26.42
#1	Out	297.000	297.000	46.52	23.72

Structure Detail:

Structure #1 (Pond)

Mine Pond #1

Pond Inputs:

Initial Pool Elev:	4,873.00 ft
Initial Pool:	5.68 ac-ft

Perforated Riser

Riser Diameter (in)	Riser Height (ft)	Barrel Diameter (in)	Barrel Length (ft)	Barrel Slope (%)	Manning's n	Spillway Elev (ft)	Number of Holes per Elev
31.50	2.00	31.50	105.00	0.95	0.0120	4,875.00	24

Emergency Spillway

Spillway Elev	Crest Length	Left	Right	Bottom
	(ft)	Sideslope	Sideslope	Width (ft)
4,878.50	36.00	4.00:1	4.00:1	40.00

Pond Results:

Peak Elevation:	4,878.19 ft
Dewater Time:	2.93 days

Dewatering time is calculated from peak stage to lowest spillway

Elevation-Capacity-Discharge Table

Elevation	Area (ac)	Capacity (ac-ft)	Discharge (cfs)	Dewater Time (hrs)	
4,869.00	0.000	0.000	0.000		
4,869.50	0.218	0.036	0.000		
4,870.00	0.872	0.291	0.000		
4,870.50	1.213	0.810	0.000		
4,871.00	1.611	1.513	0.000		
4,871.50	1.901	2.390	0.000		
4,872.00	2.215	3.418	0.000		
4,872.50	2.260	4.537	0.000		
4,873.00	2.305	5.678	0.000		
4,873.50	2.351	6.842	0.000		Low hole SPW #1
4,874.00	2.397	8.029	0.446	32.22*	

Convright	1998	-2010	Pamela	.1	Schwah

Elevation	Area (ac)	Capacity (ac-ft)	Discharge (cfs)	Dewater Time (hrs)	
4,874.50	2.443	9.239	1.076	13.61*	
4,875.00	2.489	10.472	1.848	10.45	Spillway #1
4,875.50	2.536	11.728	9.038	7.50	
4,876.00	2.583	13.008	25.565	2.70	
4,876.50	2.630	14.311	31.915	0.90	
4,877.00	2.678	15.638	36.852	0.80	
4,877.50	2.726	16.989	41.201	0.75	
4,878.00	2.775	18.365	45.134	0.80	
4,878.19	2.794	18.902	46.522	0.50	Peak Stage
4,878.50	2.824	19.764	48.750		Spillway #2
4,879.00	2.873	21.188	94.437		
4,879.50	2.922	22.637	139.919		
4,880.00	2.972	24.111	244.561		
4,880.50	3.023	25.610	368.825		
4,881.00	3.075	27.134	517.068		
4,881.50	3.133	28.686	703.717		
4,882.00	3.191	30.267	917.682		

^{*}Designates time(s) to dewater have been extrapolated beyond the 50 hour hydrograph limit.

Detailed Discharge Table

			Combined
Elevation	Perf. Riser (cfs)	Emergency	Total
(ft)	reii. Risei (Cis)	Spillway (cfs)	Discharge
			(cfs)
4,869.00	0.000	0.000	0.000
4,869.50	0.000	0.000	0.000
4,870.00	0.000	0.000	0.000
4,870.50	0.000	0.000	0.000
4,871.00	0.000	0.000	0.000
4,871.50	0.000	0.000	0.000
4,872.00	0.000	0.000	0.000
4,872.50	0.000	0.000	0.000
4,873.00	0.000	0.000	0.000
4,873.50	1.00>0.000	0.000	0.000
4,874.00	1.00>0.446	0.000	0.446
4,874.50	1.00>1.076	0.000	1.076
4,875.00	1.848	0.000	1.848
4,875.50	9.038	0.000	9.038
4,876.00	25.565	0.000	25.565
4,876.50	31.915	0.000	31.915

Convright	1002	2010	Damela	1	Schwah

			Combined
Elevation	Porf Disor (efc)	Emergency	Total
(ft)	Perf. Riser (cfs)	Spillway (cfs)	Discharge
			(cfs)
4,877.00	36.852	0.000	36.852
4,877.50	41.201	0.000	41.201
4,878.00	45.134	0.000	45.134
4,878.50	48.750	0.000	48.750
4,879.00	52.116	42.321	94.437
4,879.50	55.278	84.641	139.919
4,880.00	58.268	186.293	244.561
4,880.50	61.112	307.714	368.825
4,881.00	63.829	453.239	517.068
4,881.50	66.435	637.281	703.717
4,882.00	68.943	848.738	917.682

Subwatershed Hydrology Detail:

Stru #	SWS #	SWS Area (ac)	Time of Conc (hrs)	Musk K (hrs)	Musk X	Curve Number	UHS	Peak Discharge (cfs)	Runoff Volume (ac-ft)
#1	1	297.000	0.347	0.000	0.000	91.000	F	257.73	26.415
	Σ	297.000						257.73	26.415

Subwatershed Time of Concentration Details:

Stru #	SWS #	Land Flow Condition	Slope (%)	Vert. Dist. (ft)	Horiz. Dist. (ft)	Velocity (fps)	Time (hrs)
#1	1	8. Large gullies, diversions, and low flowing streams	5.28	455.00	8,620.00	6.890	0.347
#1	1	Time of Concentration:					0.347

Mine Pond #1 100-Year/24-Hour Storm Event Routing

Corey Sadowsky

North American Coal Corporation 5340 Legacy Drive Building 1, Suite 300 Plano, TX 75024

General Information

Storm Information:

Storm Type:	NRCS Type II
Design Storm:	100 yr - 24 hr
Rainfall Depth:	2.480 inches

Structure Networking:

Туре	Stru #	(flows into)	Stru #	Musk. K (hrs)	Musk. X	Description
Pond	#1	==>	End	0.000	0.000	Mine Pond #1

#1 Pond

Structure Summary:

		Immediate Contributing Area (ac)	Total Contributing Area (ac)	Peak Discharge (cfs)	Total Runoff Volume (ac-ft)
#1	In	207.000	207 000	361.85	37.26
#1	Out	297.000	297.000	312.11	37.26

Structure Detail:

Structure #1 (Pond)

Mine Pond #1

Pond Inputs:

Initial Pool Elev:	4,878.50 ft
Initial Pool:	19.76 ac-ft

Emergency Spillway

Spillway Elev	Crest Length	Left	Right	Bottom
	(ft)	Sideslope	Sideslope	Width (ft)
4,878.50	36.00	4.00:1	4.00:1	40.00

Pond Results:

Peak Elevation:	4,880.52 ft
Dewater Time:	0.63 days

Dewatering time is calculated from peak stage to lowest spillway

Elevation-Capacity-Discharge Table

Elevation	Area (ac)	Capacity (ac-ft)	Discharge (cfs)	Dewater Time (hrs)	
4,869.00	0.000	0.000	0.000		
4,869.50	0.218	0.036	0.000		
4,870.00	0.872	0.291	0.000		
4,870.50	1.213	0.810	0.000		
4,871.00	1.611	1.513	0.000		
4,871.50	1.901	2.390	0.000		
4,872.00	2.215	3.418	0.000		
4,872.50	2.260	4.537	0.000		
4,873.00	2.305	5.678	0.000		
4,873.50	2.351	6.842	0.000		
4,874.00	2.397	8.029	0.000		
4,874.50	2.443	9.239	0.000		
4,875.00	2.489	10.472	0.000		
4,875.50	2.536	11.728	0.000		
4,876.00	2.583	13.008	0.000		
4,876.50	2.630	14.311	0.000		
4,877.00	2.678	15.638	0.000		

Elevation	Area (ac)	Capacity (ac-ft)	Discharge (cfs)	Dewater Time (hrs)	
4,877.50	2.726	16.989	0.000		
4,878.00	2.775	18.365	0.000		
4,878.50	2.824	19.764	0.000		Spillway #1
4,879.00	2.873	21.188	42.321	13.55	
4,879.50	2.922	22.637	84.641	0.85	
4,880.00	2.972	24.111	186.293	0.45	
4,880.50	3.023	25.610	307.714		
4,880.52	3.025	25.656	312.111	0.25	Peak Stage
4,881.00	3.075	27.134	453.239		
4,881.50	3.133	28.686	637.281		
4,882.00	3.191	30.267	848.738		

<u>Detailed Discharge Table</u>

Floretion	F	Combined Total
Elevation (ft)	Emergency Spillway (cfs)	Discharge
	, , , ,	(cfs)
4,869.00	0.000	0.000
4,869.50	0.000	0.000
4,870.00	0.000	0.000
4,870.50	0.000	0.000
4,871.00	0.000	0.000
4,871.50	0.000	0.000
4,872.00	0.000	0.000
4,872.50	0.000	0.000
4,873.00	0.000	0.000
4,873.50	0.000	0.000
4,874.00	0.000	0.000
4,874.50	0.000	0.000
4,875.00	0.000	0.000
4,875.50	0.000	0.000
4,876.00	0.000	0.000
4,876.50	0.000	0.000
4,877.00	0.000	0.000
4,877.50	0.000	0.000
4,878.00	0.000	0.000
4,878.50	0.000	0.000
4,879.00	42.321	42.321
4,879.50	84.641	84.641
4,880.00	186.293	186.293

Convright 1998 -2010 Pamela I Sch	wah
-----------------------------------	-----

		Combined
Elevation	Emergency	Total
(ft)	Spillway (cfs)	Discharge
		(cfs)
4,880.50	307.714	307.714
4,881.00	453.239	453.239
4,881.50	637.281	637.281
4,882.00	848.738	848.738

Subwatershed Hydrology Detail:

#1	1 Σ	297.000 297.000	0.347	0.000	0.000	91.000	F	361.85 361.85	37.262 37.262
Stru #	SWS #	SWS Area (ac)	Time of Conc (hrs)	Musk K (hrs)	Musk X	Curve Number	UHS	Peak Discharge (cfs)	Runoff Volume (ac-ft)

Subwatershed Time of Concentration Details:

Stru #	SWS #	Land Flow Condition	Slope (%)	Vert. Dist. (ft)	Horiz. Dist. (ft)	Velocity (fps)	Time (hrs)
#1	1	8. Large gullies, diversions, and low flowing streams	5.28	455.00	8,620.00	6.890	0.347
#1	1	Time of Concentration:					0.347

Facility Pond #1 Diversion 100-Year/24-Hour Storm Event Routing

Corey Sadowsky

North American Coal Corporation 5340 Legacy Drive Building 1, Suite 300 Plano, TX 75024

General Information

Storm Information:

Storm Type:	NRCS Type II
Design Storm:	100 yr - 24 hr
Rainfall Depth:	2.480 inches

Structure Networking:							
Туре	Stru #	(flows into)	Stru #	Musk. K (hrs)	Musk. X	Description	
Null	#1	==>	End	0.000	0.000	Facility Pond #1 Diversion	

#1 Null

Structure Summary:

	Immediate Contributing Area (ac)	Total Contributing Area (ac)	Peak Discharge (cfs)	Total Runoff Volume (ac-ft)
#1	91.000	91.000	95.66	11.33

Structure Detail:

Structure #1 (Null)

Facility Pond #1 Diversion

Subwatershed Hydrology Detail:

#1	1	91.000 91.000	0.541	0.000	0.000	91.000	F	95.66 95.66	11.333 11.333
Stru #	SWS #	SWS Area (ac)	Time of Conc (hrs)	Musk K (hrs)	Musk X	Curve Number	UHS	Peak Discharge (cfs)	Runoff Volume (ac-ft)

Subwatershed Time of Concentration Details:

#1	1	Time of Concentration:					0.541
		8. Large gullies, diversions, and low flowing streams	0.92	15.00	1,630.00	2.870	0.157
#1	1	8. Large gullies, diversions, and low flowing streams	0.24	5.00	2,050.02	1.480	0.384
Stru #	SWS #	Land Flow Condition	Slope (%)	Vert. Dist. (ft)	Horiz. Dist. (ft)	Velocity (fps)	Time (hrs)

	Facility Pond #1 Diversion Sta. 0+00 to 16+28
Project Description	
Friction Method	Manning Formula
Solve For	Normal Depth
Input Data	
Roughness Coefficient	0.035
Channel Slope	0.01000 ft/ft
Left Side Slope	3.00 ft/ft (H:V)
Right Side Slope	3.00 ft/ft (H:V)
Bottom Width	5.00 ft
Discharge	95.66 ft³/s
Results	
Normal Depth	1.89 ft
Flow Area	20.09 ft ²
Wetted Perimeter	16.93 ft
Hydraulic Radius	1.19 ft
Top Width	16.31 ft
Critical Depth	1.63 ft
Critical Slope	0.01817 ft/ft
Velocity	4.76 ft/s
Velocity Head	0.35 ft
Specific Energy	2.24 ft
Froude Number	0.76
Flow Type	Subcritical
GVF Input Data	
Downstream Depth	0.00 ft
Length	0.00 ft
Number Of Steps	0
GVF Output Data	
Upstream Depth	0.00 ft
Profile Description	
Profile Headloss	0.00 ft
Downstream Velocity	Infinity ft/s
Upstream Velocity	Infinity ft/s
Normal Depth	1.89 ft

1.63 ft

0.01000 ft/ft

Critical Depth

Channel Slope

Facility Pond #1 Diversion Sta. 0+00 to 16+28

GVF Output Data

Critical Slope 0.01817 ft/ft

Facility Pond #2 Diversion 100-Year/24-Hour Storm Event Routing

Corey Sadowsky

North American Coal Corporation 5340 Legacy Drive Building 1, Suite 300 Plano, TX 75024

General Information

Storm Information:

Storm Type:	NRCS Type II
Design Storm:	100 yr - 24 hr
Rainfall Depth:	2.480 inches

Structure Networking:

Туре	Stru #	(flows into)	Stru #	Musk. K (hrs)	Musk. X	Description
Null	#1	==>	End	0.000	0.000	Facility Pond #2 Diversion

#1 Null

Structure Summary:

	Immediate Contributing Area	Total Contributing Area	Peak Discharge (cfs)	Total Runoff Volume
	(ac)	(ac)	(613)	(ac-ft)
#1	40.000	40.000	54.40	5.01

Structure Detail:

Structure #1 (Null)

Facility Pond #2 Diversion

Subwatershed Hydrology Detail:

Stru # #1	SWS #	(ac) 40.000	Conc (hrs) 0.217	(hrs) 0.000	Musk X 0.000	Number 91.000	UHS F	Discharge (cfs) 54.40	Volume (ac-ft) 5.009
	Σ	40.000						54.40	5.009

Subwatershed Time of Concentration Details:

#1	1	Time of Concentration:					0.217
		8. Large gullies, diversions, and low flowing streams	3.71	70.00	1,885.00	5.780	0.090
#1	1	7. Paved area and small upland gullies	2.00	26.00	1,300.00	2.840	0.127
Stru #	SWS #	Land Flow Condition	Slope (%)	Vert. Dist. (ft)	Horiz. Dist. (ft)	Velocity (fps)	Time (hrs)

Facility Pond #2 Diversion Sta. 0+00 to 4+14

Facii	ity Pond #2 Dive	rsion Sta	a. U+UU to 4+14
Project Description			
Friction Method	Manning Formula		
Solve For	Normal Depth		
Input Data			
Roughness Coefficient		0.035	
Channel Slope		0.01000	ft/ft
Left Side Slope		3.00	ft/ft (H:V)
Right Side Slope		3.00	ft/ft (H:V)
Bottom Width		5.00	ft
Discharge		54.40	ft³/s
Results			
Normal Depth		1.43	ft
Flow Area		13.29	ft²
Wetted Perimeter		14.05	ft
Hydraulic Radius		0.95	ft
Top Width		13.58	ft
Critical Depth		1.21	ft
Critical Slope		0.01965	ft/ft
Velocity		4.09	ft/s
Velocity Head		0.26	ft
Specific Energy		1.69	ft
Froude Number		0.73	
Flow Type	Subcritical		
GVF Input Data			
Downstream Depth		0.00	ft
Length		0.00	ft
Number Of Steps		0	
CVE Output Data			

GVF	Output	Data
OVI	Output	Data

Upstream Depth	0.00	ft
Profile Description		
Profile Headloss	0.00	ft
Downstream Velocity	Infinity	ft/s
Upstream Velocity	Infinity	ft/s
Normal Depth	1.43	ft
Critical Depth	1.21	ft
Channel Slope	0.01000	ft/ft

Facility Pond #2 Diversion Sta. 0+00 to 4+14

GVF Output Data

Critical Slope 0.01965 ft/ft

Facility Pond #2 Diversion Sta. 4+14 to 8+00

Project Description

Manning Formula Friction Method Solve For Normal Depth

Input Data

Roughness Coefficient	0.045	
Channel Slope	0.06000	ft/ft
Left Side Slope	3.00	ft/ft (H:V)
Right Side Slope	3.00	ft/ft (H:V)
Bottom Width	5.00	ft
Discharge	54.40	ft³/s

Results

Normal Depth		1.03	ft
Flow Area		8.34	ft²
Wetted Perimeter		11.52	ft
Hydraulic Radius		0.72	ft
Top Width		11.18	ft
Critical Depth		1.21	ft
Critical Slope		0.03249	ft/ft
Velocity		6.52	ft/s
Velocity Head		0.66	ft
Specific Energy		1.69	ft
Froude Number		1.33	
Flow Type	Supercritical		

GVF Input Data

Downstream Depth	0.00	ft
Length	0.00	ft
Number Of Steps	0	

GVF Output Data

Upstream Depth	0.00	ft
Profile Description		
Profile Headloss	0.00	ft
Downstream Velocity	Infinity	ft/s
Upstream Velocity	Infinity	ft/s
Normal Depth	1.03	ft
Critical Depth	1.21	ft
Channel Slope	0.06000	ft/ft

Facility Pond #2 Diversion Sta. 4+14 to 8+00

GVF	Output	Data
-----	--------	------

Critical Slope 0.03249 ft/ft

Facility Pond #2 Diversion Sta. 8+00 to 18+59

Facility Pond #2 Diversion Sta. 8+00 to 18+59					
Project Description					
Friction Method	Manning Formula				
Solve For	Normal Depth				
Input Data					
Roughness Coefficient	0.04				
Channel Slope	0.03600	ft/ft			
Left Side Slope	3.00	ft/ft (H:V)			
Right Side Slope	3.00	ft/ft (H:V)			
Bottom Width	5.00	ft			
Discharge	54.40	ft³/s			
Results					
Normal Depth	1.18	ft			
Flow Area	10.03	ft²			
Wetted Perimeter	12.44	ft			
Hydraulic Radius	0.8	ft			
Top Width	12.09	ft			
Critical Depth	1.2	ft			
Critical Slope	0.03249	ft/ft			
Velocity	5.43	ft/s			
Velocity Head	0.46	ft			
Specific Energy	1.63	ft			
Froude Number	1.09				
Flow Type	Supercritical				
GVF Input Data					
Downstream Depth	0.00	ft			
Length	0.00	ft			
Number Of Steps	(
GVF Output Data					
Upstream Depth	0.00	ft			
Profile Description					
Profile Headloss	0.00	ft			
Downstream Velocity	Infinit	ft/s			
Upstream Velocity	Infinit	ft/s			
Normal Depth	1.18	ft			
Critical Depth	1.2	ft			

0.03600 ft/ft

Channel Slope

Facility Pond #2 Diversion Sta. 8+00 to 18+59

G۷	F (Эu	tnı	ıt I	Dat	a
\sim		ᇰ	LPI	46	– u	·u

Critical Slope 0.03249 ft/ft

Facility Pond #2 Diversion Sta. 4+14 to 18+59 Riprap

Material: Riprap

Trapezoidal Channel

Bottom Width (ft)	Left Sideslope Ratio	Right Sideslope Ratio	Slope (%)	Freeboard Depth (ft)	Freeboard % of Depth	Freeboard Mult. x (VxD)
5.00	3.0:1	3.0:1	6.0			

PADER Method - Steep Slope Design

	w/o Freeboard	w/ Freeboard
Design Discharge:	54.40 cfs	
Depth:	1.03 ft	
Top Width:	11.18 ft	
Velocity:	6.53 fps	
X-Section Area:	8.32 sq ft	
Hydraulic Radius:	0.723 ft	
Froude Number:	1.33	
Manning's n:	0.0450	
Dmin:	3.00 in	
D50:	6.00 in	
Dmax:	9.00 in	

SEDCAD Utility Run Printed 03-02-2020

Ancillary Road #1 Diverion 100-Year/24-Hour Storm Event Routing

Corey Sadowsky

North American Coal Corporation 5340 Legacy Drive Building 1, Suite 300 Plano, TX 75024

General Information

Storm Information:

Storm Type:	NRCS Type II
Design Storm:	100 yr - 24 hr
Rainfall Depth:	2.480 inches

Structure Networking:

Туре	Stru #	(flows into)	Stru #	Musk. K (hrs)	Musk. X	Description
Null	#1	==>	End	0.000	0.000	Ancillary Road #1 Diversion

#1 Null

Structure Summary:

	Immediate Contributing Area (ac)	Total Contributing Area (ac)	Peak Discharge (cfs)	Total Runoff Volume (ac-ft)
#1	522.000	522.000	237.61	40.28

Structure Detail:

Structure #1 (Null)

Ancillary Road #1 Diversion

Subwatershed Hydrology Detail:

Stru # #1	SWS #	(ac) 522.000	Conc (hrs) 0.816	(hrs) 0.000	0.000	Number 85.000	UHS M	Discharge (cfs)	Volume (ac-ft) 40.276
	Σ	522.000						237.61	40.276

Subwatershed Time of Concentration Details:

Stru #	SWS #	Land Flow Condition	Slope (%)	Vert. Dist. (ft)	Horiz. Dist. (ft)	Velocity (fps)	Time (hrs)
#1	1	7. Paved area and small upland gullies	24.98	1,555.00	6,225.00	10.060	0.171
		7. Paved area and small upland gullies	14.97	244.00	1,630.00	7.780	0.058
		8. Large gullies, diversions, and low flowing streams	0.27	8.85	3,280.20	1.550	0.587
#1	1	Time of Concentration:					0.816

Ancillary Road #1 Diversion Sta. 0+00 to 25+78

Alicii	iary Roau # i bivei	31011 31	a. 0.00 to 25.70
Project Description			
Friction Method	Manning Formula		
Solve For	Normal Depth		
Input Data			
Roughness Coefficient		0.035	
Channel Slope		0.00300	ft/ft
Left Side Slope		3.00	ft/ft (H:V)
Right Side Slope		3.00	ft/ft (H:V)
Bottom Width		8.00	ft
Discharge		237.61	ft³/s
Results			
Normal Depth		3.41	ft
Flow Area		62.24	ft²
Wetted Perimeter		29.58	ft
Hydraulic Radius		2.10	ft
Top Width		28.48	ft
Critical Depth		2.27	ft
Critical Slope		0.01611	ft/ft
Velocity		3.82	ft/s
Velocity Head		0.23	ft
Specific Energy		3.64	ft
Froude Number		0.46	
Flow Type	Subcritical		
GVF Input Data			
Downstream Depth		0.00	ft
Length		0.00	ft
Number Of Steps		0	
GVF Output Data			
Upstream Depth		0.00	ft
Profile Description			
Profile Headloss		0.00	ft
Downstream Velocity		Infinity	ft/s
Upstream Velocity		Infinity	ft/s
Normal Depth		3.41	ft
Critical Depth		2.27	ft

0.00300 ft/ft

Channel Slope

Ancillary Road #1 Diversion Sta. 0+00 to 25+78

GVF	Output	Data
-----	--------	------

Critical Slope 0.01611 ft/ft

Ancillary Road #1 Diversion Sta. 25+78 to 30+78

Ancillary	Road #1 Diversion Sta	a. 25+78 to 30+78
Project Description		
Friction Method	Manning Formula	
Solve For	Normal Depth	
Input Data		
Roughness Coefficient	0.046	
Channel Slope	0.05500	ft/ft
Left Side Slope	3.00	ft/ft (H:V)
Right Side Slope	3.00	ft/ft (H:V)
Bottom Width	8.00	ft
Discharge	237.61	ft³/s
Results		
Normal Depth	1.91	ft
Flow Area	26.25	ft²
Wetted Perimeter	20.09	ft
Hydraulic Radius	1.31	ft
Top Width	19.47	ft
Critical Depth	2.27	ft
Critical Slope	0.02783	ft/ft
Velocity	9.05	ft/s
Velocity Head	1.27	ft
Specific Energy	3.18	ft
Froude Number	1.37	
Flow Type	Supercritical	
GVF Input Data		
Downstream Depth	0.00	ft
Length	0.00	ft
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.00	ft
Profile Description		
Profile Headloss	0.00	ft
Downstream Velocity	Infinity	ft/s
Upstream Velocity	Infinity	ft/s
Normal Depth	1.91	ft
Critical Depth	2.27	ft

0.05500 ft/ft

Channel Slope

Ancillary Road #1 Diversion Sta. 25+78 to 30+78

GV	FΩ	utp	ut l	Data

Critical Slope 0.02783 ft/ft

Ancillary Road #1 Diversion Sta. 25+78 to 30+78 Riprap

Material: Riprap

Trapezoidal Channel

Bottom Width (ft)	Left Sideslope Ratio	Right Sideslope Ratio	Slope (%)	Freeboard Depth (ft)	Freeboard % of Depth	Freeboard Mult. x (VxD)
8.00	3.0:1	3.0:1	5.5			

PADER Method - Steep Slope Design

	w/o Freeboard	w/ Freeboard
Design Discharge:	237.61 cfs	
Depth:	1.91 ft	
Top Width:	19.45 ft	
Velocity:	9.07 fps	
X-Section Area:	26.19 sq ft	
Hydraulic Radius:	1.305 ft	
Froude Number:	1.38	
Manning's n:	0.0460	
Dmin:	5.00 in	
D50:	9.00 in	
Dmax:	12.00 in	

SEDCAD Utility Run Printed 03-03-2020

Ancillary Road #2 Diversion 100-Year/24-Hour Storm Event Routing

Corey Sadowsky

North American Coal Corporation 5340 Legacy Drive Building 1, Suite 300 Plano, TX 75024

General Information

Storm Information:

Storm Type:	NRCS Type II
Design Storm:	100 yr - 24 hr
Rainfall Depth:	2.480 inches

Convright 1998 -2010 Pamela I. Schwah

Structure Networking:

Туре	Stru #	(flows into)	Stru #	Musk. K (hrs)	Musk. X	Description
Null	#1	==>	End	0.000	0.000	Ancillary Road #2 Diversion

#1 Null

Structure Summary:

	Immediate Contributing Area	Total Contributing Area	Peak Discharge	Total Runoff Volume
	(ac)	(ac)	(cfs)	(ac-ft)
#1	1,015.000	1,015.000	334.49	78.27

Structure Detail:

Structure #1 (Null)

Ancillary Road #2 Diversion

Subwatershed Hydrology Detail:

Stru #	SWS #	SWS Area (ac)	Time of Conc (hrs)	Musk K (hrs)	Musk X	Curve Number	UHS	Peak Discharge (cfs)	Runoff Volume (ac-ft)
#1	1	1,015.000	1.356	0.000	0.000	85.000	М	334.49	78.270
	Σ	1,015.000						334.49	78.270

Subwatershed Time of Concentration Details:

Stru #	SWS #	Land Flow Condition	Slope (%)	Vert. Dist. (ft)	Horiz. Dist. (ft)	Velocity (fps)	Time (hrs)
#1	1	7. Paved area and small upland gullies	24.98	1,555.00	6,225.00	10.060	0.171
		7. Paved area and small upland gullies	14.97	244.00	1,630.00	7.780	0.058
		8. Large gullies, diversions, and low flowing streams	0.27	8.85	3,280.20	1.550	0.587
		7. Paved area and small upland gullies	6.00	289.00	4,815.06	4.930	0.271
		8. Large gullies, diversions, and low flowing streams	3.25	170.00	5,235.11	5.400	0.269
#1	1	Time of Concentration:					1.356

Anci	Ilary Road #2 Dive	rsion St	a. 0+00 to 21+68
Project Description			
Friction Method Solve For	Manning Formula Normal Depth		
Input Data			
Roughness Coefficient Channel Slope Left Side Slope Right Side Slope Bottom Width Discharge		0.045 0.03300 3.00 3.00 25.00 334.49	ft/ft ft/ft (H:V) ft/ft (H:V) ft ft*
Results			
Normal Depth Flow Area Wetted Perimeter Hydraulic Radius Top Width Critical Depth Critical Slope Velocity Velocity Head Specific Energy Froude Number Flow Type	Supercritical	1.56 46.20 34.85 1.33 34.34 1.65 0.02680 7.24 0.81 2.37 1.10	ft ft² ft ft ft ft ft ft ft ft ft/ft ft/ft ft/s
GVF Input Data			
Downstream Depth Length Number Of Steps		0.00 0.00 0	ft ft
GVF Output Data			
Upstream Depth Profile Description Profile Headloss		0.00	ft
Downstream Velocity		Infinity	ft/s
Upstream Velocity Normal Depth		Infinity 1.56	ft/s ft

1.65 ft

0.03300 ft/ft

Critical Depth

Channel Slope

Ancillary Road #2 Diversion Sta. 0+00 to 21+68

GV	FΩ	utp	ut l	Data

Critical Slope 0.02680 ft/ft

Ancillary Road #2 Diversion Sta. 21+68 to 28+56

Project Description	
Friction Method	Manning Formula
Solve For	Normal Depth

In	nut	Data
ш	Pul	Data

Roughness Coefficient	0.044	
Channel Slope	0.02600	ft/ft
Left Side Slope	3.00	ft/ft (H:V)
Right Side Slope	3.00	ft/ft (H:V)
Bottom Width	25.00	ft
Discharge	334.49	ft³/s

Results

Normal Depth		1.65	ft
Flow Area		49.28	ft²
Wetted Perimeter		35.41	ft
Hydraulic Radius		1.39	ft
Top Width		34.88	ft
Critical Depth		1.65	ft
Critical Slope		0.02563	ft/ft
Velocity		6.79	ft/s
Velocity Head		0.72	ft
Specific Energy		2.36	ft
Froude Number		1.01	
Flow Type	Supercritical		

GVF Input Data

Downstream Depth	0.00	ft
Length	0.00	ft
Number Of Steps	0	

GVF Output Data

Upstream Depth	0.00	ft
Profile Description		
Profile Headloss	0.00	ft
Downstream Velocity	Infinity	ft/s
Upstream Velocity	Infinity	ft/s
Normal Depth	1.65	ft
Critical Depth	1.65	ft
Channel Slope	0.02600	ft/ft

Ancillary Road #2 Diversion Sta. 21+68 to 28+56

GVF Output Data

Critical Slope 0.02563 ft/ft

Ancillary Road #2 Diversion Sta. 28+56 to 39+29

Ancillary	Road #2 Diversion Sta	a. 28+56 to 39+29
Project Description		
Friction Method	Manning Formula	
Solve For	Normal Depth	
Input Data		
Roughness Coefficient	0.045	
Channel Slope	0.03300	ft/ft
Left Side Slope	3.00	ft/ft (H:V)
Right Side Slope	3.00	ft/ft (H:V)
Bottom Width	25.00	ft
Discharge	334.49	ft³/s
Results		
Normal Depth	1.56	ft
Flow Area	46.20	ft²
Wetted Perimeter	34.85	ft
Hydraulic Radius	1.33	ft
Top Width	34.34	ft
Critical Depth	1.65	ft
Critical Slope	0.02680	ft/ft
Velocity	7.24	ft/s
Velocity Head	0.81	ft
Specific Energy	2.37	ft
Froude Number	1.10	
Flow Type	Supercritical	
GVF Input Data		
Downstream Depth	0.00	ft
Length	0.00	ft
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.00	ft
Profile Description		
Profile Headloss	0.00	ft
Downstream Velocity	Infinity	ft/s
Upstream Velocity	Infinity	ft/s
Normal Depth	1.56	ft
Critical Depth	1.65	ft

0.03300 ft/ft

Channel Slope

Ancillary Road #2 Diversion Sta. 28+56 to 39+29

GVF	- Ou	tout	Da	ata
\smile		LPU		alu

Critical Slope 0.02680 ft/ft

Ancillary Road #2 Diversion Sta. 39+29 to 56+27

Road #2 Diversion Sta	a. 39+29 to 56+27
Manning Formula	
Normal Depth	
0.035	
	ft/ft
	ft/ft (H:V)
	ft/ft (H:V)
25.00	ft
334.49	ft³/s
1.95	ft
60.33	ft²
37.36	ft
1.61	ft
36.73	ft
1.65	ft
0.01621	ft/ft
5.54	ft/s
0.48	ft
2.43	ft
0.76	
Subcritical	
0.00	ft
0.00	ft
0	
0.00	ft
0.00	ft
Infinity	ft/s
Infinity	ft/s
1.95	ft
1.65	ft
	Manning Formula Normal Depth 0.035 0.00900 3.00 25.00 334.49 1.95 60.33 37.36 1.61 36.73 1.65 0.01621 5.54 0.48 2.43 0.76 Subcritical 0.00 0.00 0 0.00 0 0.00 Infinity Infinity Infinity Infinity

0.00900 ft/ft

Channel Slope

Ancillary Road #2 Diversion Sta. 39+29 to 56+27

GV	FΩ	utp	ut l	Data

Critical Slope 0.01621 ft/ft

Ancillary Road #2 Diversion Sta. 0+00 to 21+68 Riprap

Material: Riprap

Trapezoidal Channel

Bottom Width (ft)	Left Sideslope Ratio	Right Sideslope Ratio	Slope (%)	Freeboard Depth (ft)	Freeboard % of Depth	Freeboard Mult. x (VxD)
25.00	3.0:1	3.0:1	3.3			

PADER Method - Steep Slope Design

	w/o Freeboard	w/ Freeboard
Design Discharge:	334.49 cfs	
Depth:	1.55 ft	
Top Width:	34.33 ft	
Velocity:	7.25 fps	
X-Section Area:	46.12 sq ft	
Hydraulic Radius:	1.324 ft	
Froude Number:	1.10	
Manning's n:	0.0450	
Dmin:	3.00 in	
D50:	6.00 in	
Dmax:	9.00 in	

SEDCAD Utility Run Printed 03-24-2020

Ancillary Road #2 Diversion Sta. 21+68 to 28+56 Riprap

Material: Riprap

Trapezoidal Channel

Bottom Width (ft)	Left Sideslope Ratio	Right Sideslope Ratio	Slope (%)	Freeboard Depth (ft)	Freeboard % of Depth	Freeboard Mult. x (VxD)
25.00	3.0:1	3.0:1	2.6			

PADER Method - Steep Slope Design

	w/o Freeboard	w/ Freeboard
Design Discharge:	334.49 cfs	
Depth:	1.64 ft	
Top Width:	34.86 ft	
Velocity:	6.80 fps	
X-Section Area:	49.19 sq ft	
Hydraulic Radius:	1.390 ft	
Froude Number:	1.01	
Manning's n:	0.0440	
Dmin:	3.00 in	
D50:	6.00 in	
Dmax:	9.00 in	

SEDCAD Utility Run Printed 03-03-2020

Ancillary Road #2 Diversion Sta. 28+56 to 39+29 Riprap

Material: Riprap

Trapezoidal Channel

Bottom Width (ft)	Left Sideslope Ratio	Right Sideslope Ratio	Slope (%)	Freeboard Depth (ft)	Freeboard % of Depth	Freeboard Mult. x (VxD)
25.00	3.0:1	3.0:1	3.3			

PADER Method - Steep Slope Design

	w/o Freeboard	w/ Freeboard
Design Discharge:	334.49 cfs	
Depth:	1.55 ft	
Top Width:	34.33 ft	
Velocity:	7.25 fps	
X-Section Area:	46.12 sq ft	
Hydraulic Radius:	1.324 ft	
Froude Number:	1.10	
Manning's n:	0.0450	
Dmin:	3.00 in	
D50:	6.00 in	
Dmax:	9.00 in	

SEDCAD Utility Run Printed 03-24-2020

Culvert C-1 100-Year/24-Hour Storm Event Routing

Corey Sadowsky

North American Coal Corporation 5340 Legacy Drive Building 1, Suite 300 Plano, TX 75024

General Information

Storm Information:

Storm Type:	NRCS Type II
Design Storm:	100 yr - 24 hr
Rainfall Depth:	2.480 inches

Structure Networking:

Туре	Stru #	(flows into)	Stru #	Musk. K (hrs)	Musk. X	Description
Null	#1	==>	End	0.000	0.000	Culvert C-1

#1 Null

Structure Summary:

	Immediate Contributing Area (ac)	Total Contributing Area (ac)	Peak Discharge (cfs)	Total Runoff Volume (ac-ft)
#1	3,078.000	3,078.000	1,049.13	246.77

Structure Detail:

Structure #1 (Null)

Culvert C-1

Printed 03-13-2020

Subwatershed Hydrology Detail:

Stru #	SWS #	SWS Area (ac)	Time of Conc (hrs)	Musk K (hrs)	Musk X	Curve Number	UHS	Peak Discharge (cfs)	Runoff Volume (ac-ft)
#1	1	840.000	1.197	0.000	0.000	85.000	М	300.73	64.785
	2	1,015.000	1.356	0.098	0.353	85.000	М	334.49	78.270
	3	25.000	0.173	0.073	0.353	91.000	F	35.57	3.197
	4	1,027.000	1.019	0.569	0.346	85.000	М	407.86	79.231
	5	171.000	0.542	0.313	0.351	91.000	F	179.61	21.288
	Σ	3,078.000						1,049.13	246.772

Subwatershed Time of Concentration Details:

Stru #	SWS #	Land Flow Condition	Slope (%)	Vert. Dist. (ft)	Horiz. Dist. (ft)	Velocity (fps)	Time (hrs)
#1	1	7. Paved area and small upland gullies	6.28	1,365.00	21,725.00	5.040	1.197
#1	1	Time of Concentration:					1.197
#1	2	7. Paved area and small upland gullies	25.00	1,556.00	6,225.04	10.060	0.171
		7. Paved area and small upland gullies	14.97	244.00	1,630.00	7.780	0.058
		8. Large gullies, diversions, and low flowing streams	0.27	8.85	3,280.20	1.550	0.587
		7. Paved area and small upland gullies	6.00	289.00	4,815.06	4.930	0.271
		8. Large gullies, diversions, and low flowing streams	3.25	170.00	5,235.11	5.400	0.269
#1	2	Time of Concentration:					1.356
#1	3	5. Nearly bare and untilled, and alluvial valley fans	5.56	50.00	900.00	2.350	0.106
		8. Large gullies, diversions, and low flowing streams	1.62	15.00	925.01	3.820	0.067
#1	3	Time of Concentration:					0.173
#1	4	7. Paved area and small upland gullies	6.49	1,220.00	18,790.04	5.120	1.019
#1	4	Time of Concentration:					1.019
#1	5	7. Paved area and small upland gullies	2.91	195.00	6,700.11	3.430	0.542
#1	5	Time of Concentration:					0.542

Subwatershed Muskingum Routing Details:

Filename: Culvert C-1 100-24.sc4

Stru #	SWS #	Land Flow Condition	Slope (%)	Vert. Dist. (ft)	Horiz. Dist. (ft)	Velocity (fps)	Time (hrs)
#1	2	7. Paved area and small upland gullies	4.14	60.00	1,450.00	4.090	0.098
#1	2	Muskingum K:					0.098
#1	3	8. Large gullies, diversions, and low flowing streams	1.86	20.00	1,075.00	4.090	0.073
#1	3	Muskingum K:					0.073
#1	4	5. Nearly bare and untilled, and alluvial valley fans	10.00	125.00	1,250.00	3.160	0.109
		7. Paved area and small upland gullies	3.83	250.00	6,525.03	3.940	0.460
#1	4	Muskingum K:					0.569
#1	5	7. Paved area and small upland gullies	3.97	180.00	4,530.01	4.010	0.313
#1	5	Muskingum K:					0.313

Filename: Culvert C-1 100-24.sc4

Culvert C-2 100-Year/24-Hour Storm Event Routing

Corey Sadowsky

North American Coal Corporation 5340 Legacy Drive Building 1, Suite 300 Plano, TX 75024

General Information

Storm Information:

Storm Type:	NRCS Type II
Design Storm:	100 yr - 24 hr
Rainfall Depth:	2.480 inches

Structure Networking:

Туре	Stru #	(flows into)	Stru #	Musk. K (hrs)	Musk. X	Description
Null	#1	==>	End	0.000	0.000	Culvert C-2

#1 Null

Structure Summary:

	Immediate Contributing Area	Total Contributing Area	Peak Discharge	Total Runoff Volume
	(ac)	(ac)	(cfs)	(ac-ft)
#1	25.000	25.000	35.57	3.20

Structure Detail:

Structure #1 (Null)

Culvert C-2

Subwatershed Hydrology Detail:

Stru #	SWS #	SWS Area (ac)	Time of Conc (hrs)	Musk K (hrs)	Musk X	Curve Number	UHS	Peak Discharge (cfs)	Runoff Volume (ac-ft)
#1	1	25.000	0.173	0.000	0.000	91.000	F	35.57	3.197
	Σ	25.000						35.57	3.197

Subwatershed Time of Concentration Details:

Stru #	SWS #	Land Flow Condition	Slope (%)	Vert. Dist. (ft)	Horiz. Dist. (ft)	Velocity (fps)	Time (hrs)
#1	1	5. Nearly bare and untilled, and alluvial valley fans	5.56	50.00	900.00	2.350	0.106
		8. Large gullies, diversions, and low flowing streams	1.62	15.00	925.00	3.820	0.067
#1	1	Time of Concentration:					0.173

Culvert C-3 100-Year/24-Hour Storm Event Routing

Corey Sadowsky

North American Coal Corporation 5340 Legacy Drive Building 1, Suite 300 Plano, TX 75024

General Information

Storm Information:

Storm Type:	NRCS Type II
Design Storm:	100 yr - 24 hr
Rainfall Depth:	2.480 inches

Convright 1998 -2010 Pamela I. Schwah

Structure Networking:

Туре	Stru #	(flows into)	Stru #	Musk. K (hrs)	Musk. X	Description
Pond	#1	==>	#2	0.039	0.364	Mine Pond #1
Null	#2	==>	End	0.000	0.000	Culvert C-3

Structure Routing Details:

Stru #	Land Flow Condition	Slope (%)	Vert. Dist. (ft)	Horiz. Dist. (ft)	Velocity (fps)	Time (hrs)
#1	8. Large gullies, diversions, and low flowing streams	2.31	15.00	650.00	4.55	0.039
#1	Muskingum K:					0.039

Structure Summary:

		Immediate Contributing Area	Total Contributing Area	Peak Discharge (cfs)	Total Runoff Volume
		(ac)	(ac)	(0.0)	(ac-ft)
#1	In	292.000	292.000	312.37	36.48
#1	Out	292.000	292.000	271.37	36.48
#2		15.000	307.000	275.96	38.47

Structure Detail:

Structure #1 (Pond)

Mine Pond #1

Pond Inputs:

Initial Pool Elev:	4,878.50 ft
Initial Pool:	19.76 ac-ft

Emergency Spillway

Spillway Elev	Crest Length (ft)	Left Sideslope	Right Sideslope	Bottom Width (ft)
4,878.50	36.00	4.00:1	4.00:1	40.00

Pond Results:

Peak Elevation	: 4,880.35 ft
Dewater Time	: 0.63 days

Dewatering time is calculated from peak stage to lowest spillway

Elevation-Capacity-Discharge Table

Elevation	Area (ac)	Capacity (ac-ft)	Discharge (cfs)	Dewater Time (hrs)	
4,869.00	0.000	0.000	0.000		
4,869.50	0.218	0.036	0.000		
4,870.00	0.872	0.291	0.000		
4,870.50	1.213	0.810	0.000		
4,871.00	1.611	1.513	0.000		
4,871.50	1.901	2.390	0.000		
4,872.00	2.215	3.418	0.000		
4,872.50	2.260	4.537	0.000		
4,873.00	2.305	5.678	0.000		
4,873.50	2.351	6.842	0.000		
4,874.00	2.397	8.029	0.000		
4,874.50	2.443	9.239	0.000		
4,875.00	2.489	10.472	0.000		
4,875.50	2.536	11.728	0.000		
4,876.00	2.583	13.008	0.000		
4,876.50	2.630	14.311	0.000		
4,877.00	2.678	15.638	0.000		

Elevation	Area (ac)	Capacity (ac-ft)	Discharge (cfs)	Dewater Time (hrs)	
4,877.50	2.726	16.989	0.000		
4,878.00	2.775	18.365	0.000		
4,878.50	2.824	19.764	0.000		Spillway #1
4,879.00	2.873	21.188	42.321	13.60	
4,879.50	2.922	22.637	84.641	0.85	
4,880.00	2.972	24.111	186.293	0.50	
4,880.35	3.008	25.161	271.367	0.25	Peak Stage
4,880.50	3.023	25.610	307.714		
4,881.00	3.075	27.134	453.239		
4,881.50	3.133	28.686	637.281		
4,882.00	3.191	30.267	848.738		

<u>Detailed Discharge Table</u>

		Combined
Elevation	Emergency	Total
(ft)	Spillway (cfs)	Discharge
		(cfs)
4,869.00	0.000	0.000
4,869.50	0.000	0.000
4,870.00	0.000	0.000
4,870.50	0.000	0.000
4,871.00	0.000	0.000
4,871.50	0.000	0.000
4,872.00	0.000	0.000
4,872.50	0.000	0.000
4,873.00	0.000	0.000
4,873.50	0.000	0.000
4,874.00	0.000	0.000
4,874.50	0.000	0.000
4,875.00	0.000	0.000
4,875.50	0.000	0.000
4,876.00	0.000	0.000
4,876.50	0.000	0.000
4,877.00	0.000	0.000
4,877.50	0.000	0.000
4,878.00	0.000	0.000
4,878.50	0.000	0.000
4,879.00	42.321	42.321
4,879.50	84.641	84.641
4,880.00	186.293	186.293

Filename: Culvert C-3 100-24.sc4

		Combined
Elevation	Emergency	Total
(ft)	Spillway (cfs)	Discharge
		(cfs)
4,880.50	307.714	307.714
4,881.00	453.239	453.239
4,881.50	637.281	637.281
4,882.00	848.738	848.738

Structure #2 (Null)

Culvert C-3

Subwatershed Hydrology Detail:

Stru #	SWS #	SWS Area (ac)	Time of Conc (hrs)	Musk K (hrs)	Musk X	Curve Number	UHS	Peak Discharge (cfs)	Runoff Volume (ac-ft)
#1	1	292.000	0.518	0.000	0.000	91.000	F	312.37	36.480
	Σ	292.000						312.37	36.480
#2	1	15.000	0.062	0.000	0.000	91.000	F	23.61	1.988
	Σ	307.000						275.96	38.469

Subwatershed Time of Concentration Details:

Stru #	SWS #	Land Flow Condition	Slope (%)	Vert. Dist. (ft)	Horiz. Dist. (ft)	Velocity (fps)	Time (hrs)
#1	1	7. Paved area and small upland gullies	5.28	455.00	8,620.03	4.620	0.518
#1	1	Time of Concentration:					0.518
#2	1	7. Paved area and small upland gullies	4.62	45.00	975.00	4.320	0.062
#2	1	Time of Concentration:					0.062

Culvert C-4 100-Year/24-Hour Storm Event Routing

Corey Sadowsky

North American Coal Corporation 5340 Legacy Drive Building 1, Suite 300 Plano, TX 75024

General Information

Storm Information:

Storm Type:	NRCS Type II
Design Storm:	100 yr - 24 hr
Rainfall Depth:	2.480 inches

Structure Networking:

Туре	Stru #	(flows into)	Stru #	Musk. K (hrs)	Musk. X	Description
Null	#1	==>	End	0.000	0.000	Culvert C-4

#1 Null

Structure Summary:

	Immediate Contributing C Area		Peak Discharge	Total Runoff Volume
	(ac)	(ac)	(cfs)	(ac-ft)
#1	15.000	15.000	23.61	1.99

Structure Detail:

Structure #1 (Null)

Culvert C-4

Subwatershed Hydrology Detail:

Stru #	SWS #	SWS Area (ac)	Time of Conc (hrs)	Musk K (hrs)	Musk X	Curve Number	UHS	Peak Discharge (cfs)	Runoff Volume (ac-ft)
#1	1	15.000	0.087	0.000	0.000	91.000	F	23.61	1.988
	Σ	15.000						23.61	1.988

Subwatershed Time of Concentration Details:

Stru #	SWS #	Land Flow Condition	Slope (%)	Vert. Dist. (ft)	Horiz. Dist. (ft)	Velocity (fps)	Time (hrs)
#1	1	8. Large gullies, diversions, and low flowing streams	3.43	60.00	1,750.00	5.550	0.087
#1	1	Time of Concentration:					0.087

Culvert C-5 100-Year/24-Hour Storm Event Routing

Corey Sadowsky

North American Coal Corporation 5340 Legacy Drive Building 1, Suite 300 Plano, TX 75024

General Information

Storm Information:

Storm Type:	NRCS Type II
Design Storm:	100 yr - 24 hr
Rainfall Depth:	2.480 inches

Structure Networking:

Туре	Stru #	(flows into)	Stru #	Musk. K (hrs)	Musk. X	Description
Null	#1	==>	End	0.000	0.000	Culvert C-5

#1 Null

Structure Summary:

	Immediate Contributing Area	Total Contributing Area	Peak Discharge	Total Runoff Volume
	(ac)	(ac)	(cfs)	(ac-ft)
#1	84.000	84.000	99.19	10.49

Structure Detail:

Structure #1 (Null)

Culvert C-5

Subwatershed Hydrology Detail:

Stru # #1	SWS #	(ac) 84.000	Conc (hrs) 0.384	(hrs) 0.000	0.000	Number 91.000	UHS F	Discharge (cfs) 99.19	Volume (ac-ft) 10.486
	Σ	84.000						99.19	10.486

Subwatershed Time of Concentration Details:

Stru #	SWS #	Land Flow Condition	Slope (%)	Vert. Dist. (ft)	Horiz. Dist. (ft)	Velocity (fps)	Time (hrs)
#1	1	8. Large gullies, diversions, and low flowing streams	0.24	5.00	2,050.00	1.480	0.384
#1	1	Time of Concentration:					0.384

Culvert C-6 100-Year/24-Hour Storm Event Routing

Corey Sadowsky

North American Coal Corporation 5340 Legacy Drive Building 1, Suite 300 Plano, TX 75024

General Information

Storm Information:

Storm Type:	NRCS Type II
Design Storm:	100 yr - 24 hr
Rainfall Depth:	2.480 inches

Structure Networking:

Туре	Stru #	(flows into)	Stru #	Musk. K (hrs)	Musk. X	Description
Null	#1	==>	End	0.000	0.000	Culvert C-6

#1 Null

Structure Summary:

	Immediate Contributing Area (ac)	Total Contributing Area (ac)	Peak Discharge (cfs)	Total Runoff Volume (ac-ft)
#1	1.200	1.200	1.89	0.16

Structure Detail:

Structure #1 (Null)

Culvert C-6

Subwatershed Hydrology Detail:

#1	1	(ac) 1.200	(hrs) 0.004	(hrs) 0.000	0.000	91.000	F	(cfs) 1.89	(ac-ft) 0.158
Stru #	SWS #	SWS Area	Time of Conc	Musk K	Musk X	Curve sk X UHS Number		Peak Discharge	Runoff Volume

Subwatershed Time of Concentration Details:

Stru #	SWS #	Land Flow Condition	Slope (%)	Vert. Dist. (ft)	Horiz. Dist. (ft)	Velocity (fps)	Time (hrs)
#1	1	9. Small streams flowing bankfull	8.00	30.00	375.00	25.450	0.004
#1	1	Time of Concentration:					0.004

Culvert C-7 100-Year/24-Hour Storm Event Routing

Corey Sadowsky

North American Coal Corporation 5340 Legacy Drive Building 1, Suite 300 Plano, TX 75024

General Information

Storm Information:

Storm Type:	NRCS Type II
Design Storm:	100 yr - 24 hr
Rainfall Depth:	2.480 inches

Structure Networking:

Туре	Stru #	(flows into)	Stru #	Musk. K (hrs)	Musk. X	Description
Null	#1	==>	End	0.000	0.000	Culvert C-7

#1 Null

Structure Summary:

	Immediate Contributing Area	Total Contributing Area	Peak Discharge	Total Runoff Volume
	(ac)	(ac)	(cfs)	(ac-ft)
#1	166.000	166.000	222.15	20.96

Structure Detail:

Structure #1 (Null)

Culvert C-7

Subwatershed Hydrology Detail:

#1	1	(ac) 166.000	Conc (hrs) 0.238	(hrs) 0.000	0.000	Number 91.000	UHS F	Discharge (cfs) 222.15	Volume (ac-ft) 20.959
	Σ	166.000						222.15	20.959

Subwatershed Time of Concentration Details:

Stru #	SWS #	Land Flow Condition	Slope (%)	Vert. Dist. (ft)	Horiz. Dist. (ft)	Velocity (fps)	Time (hrs)
#1	1	7. Paved area and small upland gullies	6.70	300.00	4,475.00	5.210	0.238
#1	1	Time of Concentration:					0.238

Culvert C-8 100-Year/24-Hour Storm Event Routing

Corey Sadowsky

North American Coal Corporation 5340 Legacy Drive Building 1, Suite 300 Plano, TX 75024

General Information

Storm Information:

Storm Type:	NRCS Type II
Design Storm:	100 yr - 24 hr
Rainfall Depth:	2.480 inches

Structure Networking:

Туре	Stru #	(flows into)	Stru #	Musk. K (hrs)	Musk. X	Description
Null	#1	==>	End	0.000	0.000	Culvert C-1

#1 Null

Structure Summary:

	Immediate Contributing Area	Total Contributing Area	Peak Discharge	Total Runoff Volume
	(ac)	(ac)	(cfs)	(ac-ft)
#1	21.000	21.000	30.00	2.68

Structure Detail:

Structure #1 (Null)

Culvert C-1

Subwatershed Hydrology Detail:

Stru # #1	SWS #	SWS Area (ac) 21.000	Conc (hrs) 0.144	Musk K (hrs)	Musk X 0.000	Number 91.000	UHS F	Discharge (cfs) 30.00	Volume (ac-ft) 2.684
	Σ	21.000						30.00	2.684

Subwatershed Time of Concentration Details:

Stru #	SWS #	Land Flow Condition	Slope (%)	Vert. Dist. (ft)	Horiz. Dist. (ft)	Velocity (fps)	Time (hrs)
#1	1	8. Large gullies, diversions, and low flowing streams	4.01	125.00	3,120.00	6.000	0.144
#1	1	Time of Concentration:					0.144

Peak Discharge Meth	nod: User-Specified					
Design Discharge	1,049.13	cfs	Check Discl	harge	1,049.13	cfs
Grades Model: Invert	s					
Invert Upstream	4,817.20	ft	Invert Down	stream	4,802.60	ft
Length	295.00	ft	Slope		0.049492	ft/ft
Drop	14.60	ft				
Headwater Model: M	aximum Allowable HW	,				
Headwater Elevation	n 4,830.00	ft				
Tailwater properties: I	rregular Channel					
Tailwater conditions for	or Design Storm.					
Discharge	1,049.13	cfs	Actual Dept	h	0.00	ft
Velocity	0.00	ft/s				
Tailwater conditions for	or Check Storm.					
Discharge	1,049.13	cfs	Actual Dept	 h	0.00	ft
Velocity	0.00		<u> </u>			
Name	Description	Discharge	HW Elev.	Velocity		
x Trial-1						
			.,.=:			

Design:Trial-1

Culvert Summary					
Allowable HW Elevation	4,830.00	ft	Storm Event	Design	
Computed Headwater El	eva 4,823.45	ft	Discharge	1,049.13	cfs
Headwater Depth/Height	1.25		Tailwater Elevation	0.00	ft
Inlet Control HW Elev.	4,823.03	ft	Control Type E	Entrance Control	
Outlet Control HW Elev.	4,823.45	ft			
Grades					
Upstream Invert	4,817.20	ft	Downstream Invert	4,802.60	ft
Length	295.00		Constructed Slope	0.049492	
Longan	200.00		Constructed Ciops	0.010102	1010
Hydraulic Profile					
Profile	S2		Depth, Downstream	2.43	
Slope Type	Steep		Normal Depth	2.43	
Flow Regime	Supercritical		Critical Depth	3.51	
Velocity Downstream	15.80	ft/s	Critical Slope	0.015985	tt/tt
Section					
Section Shape	Circular		Mannings Coefficient	0.024	
Section Material	CMP		Span	5.00	ft
Section Size	60 inch		Rise	5.00	ft
Number Sections	7				
Outlet Control Properties					
Outlet Control HW Elev.	4,823.45	ft	Upstream Velocity Hea	d 1.61	ft
Ke	0.70		Entrance Loss	1.13	
Inlet Control Properties					
Inlet Control HW Elev.	4,823.03	ft	Flow Control	Unsubmerged	
Inlet Type N	litered to slope		Area Full	137.4	ft²
K	0.02100		HDS 5 Chart	2	
M	1.33000		HDS 5 Scale	2	
С	0.04630		Equation Form	1	
	0.01000				

Peak Discharge Method:	User-Specified				
Design Discharge	35.57	cfs	Check Discharge	35.57	cfs
Grades Model: Inverts					
Invert Upstream	4,839.60	ft	Invert Downstream	4,838.50	ft
Length	120.00	ft	Slope	0.009167	ft/ft
Drop	1.10	ft			
Headwater Model: Maxim	num Allowable HW	1			
Headwater Elevation	4,845.00	ft			
Tailwater properties: Trape	ezoidai Channei				
Tailwater conditions for De		cfs	Bottom Elevation	4,838.50	ft
	esign Storm.		Bottom Elevation Velocity	4,838.50 3.64	
Tailwater conditions for De	esign Storm. 35.57 1.15			•	
Tailwater conditions for De Discharge Depth	esign Storm. 35.57 1.15	ft		•	ft/s
Tailwater conditions for De Discharge Depth Tailwater conditions for Cl	esign Storm. 35.57 1.15 neck Storm.	ft	Velocity	3.64	ft/s
Tailwater conditions for De Discharge Depth Tailwater conditions for Cl Discharge Depth	esign Storm. 35.57 1.15 heck Storm. 35.57 1.15	cfs ft	Velocity Bottom Elevation	3.64 4,838.50	ft/s

Design:Trial-1

Out to the Course					
Culvert Summary					
Allowable HW Elevation	4,845.00	ft	Storm Event	Design	
Computed Headwater Elev	*	ft	Discharge	35.57	
Headwater Depth/Height	1.11		Tailwater Elevation	4,839.65	ft
Inlet Control HW Elev.	4,842.66	ft	Control Type	Outlet Control	
Outlet Control HW Elev.	4,842.93	ft			
Grades					
Upstream Invert	4,839.60	ft	Downstream Invert	4,838.50	ft
Length	120.00	ft	Constructed Slope	0.009167	ft/ft
Hydraulic Profile					
Profile	M2		Depth, Downstream	1.94	ft
Slope Type	Mild		Normal Depth	2.54	ft
Flow Regime	Subcritical		Critical Depth	1.94	ft
Velocity Downstream	7.36	ft/s	Critical Slope	0.017221	ft/ft
Section					
Section Shape	Circular		Mannings Coefficient	0.024	
Section Material	CMP		Span	3.00	ft
Section Size	36 inch		Rise	3.00	ft
Number Sections	1				
Outlet Control Properties					
Outlet Control HW Elev.	4,842.93	ft	Upstream Velocity Head	0.51	ft
Ke	0.70		Entrance Loss	0.36	ft
Inlet Control Properties					
Inlet Control HW Elev.	4,842.66	ft	Flow Control	N/A	
Inlet Type Mite	ered to slope		Area Full	7.1	ft²
K	0.02100		HDS 5 Chart	2	
M	1.33000		HDS 5 Scale	2	
С	0.04630		Equation Form	1	
Υ	0.75000				

Peak Discharge Met	thod: User-Specified				
Design Discharge	275.96	cfs	Check Discharge	275.96	cfs
Grades Model: Inver	rts				
Invert Upstream	4,850.00	ft	Invert Downstream	4,833.20	ft
Length	280.00	ft	Slope	0.060000	ft/ft
Drop	16.80	ft			
Headwater Model: N	Maximum Allowable HV	V			
Headwater Elevati	on 4,858.00	ft			
Tailwater properties:	Irregular Channel				
Tailwater conditions	for Design Storm.				
Discharge	275.96	cfs	Actual Depth	0.00	ft
Velocity	0.00	ft/s			
Tailwater conditions	for Check Storm.				
Tailwater conditions Discharge	for Check Storm. 275.96	cfs	Actual Depth	0.00	ft
			Actual Depth	0.00	ft
Discharge	275.96	ft/s	Actual Depth Begin HW Elev. Velocity	_	ft

Design:Trial-1

Culvert Summary					
Allowable HW Elevation	4,858.00	ft	Storm Event	Design	
Computed Headwater E	leva 4,854.33	ft	Discharge	275.96	cfs
Headwater Depth/Heigh	t 1.08		Tailwater Elevation	0.00	ft
Inlet Control HW Elev.	4,854.07	ft	Control Type I	Entrance Control	
Outlet Control HW Elev.	4,854.33	ft			
Grades					
Upstream Invert	4,850.00	ft	Downstream Invert	4,833.20	ft
Length	280.00	ft	Constructed Slope	0.060000	ft/ft
Hydraulic Profile					
Profile	S2	_	Depth, Downstream	1.66	ft
Slope Type	Steep		Normal Depth	1.66	ft
Flow Regime	Supercritical		Critical Depth	2.51	ft
Velocity Downstream	13.95	ft/s	Critical Slope	0.015219	ft/ft
Section					
Section Shape	Circular		Mannings Coefficient	0.024	
Section Material	CMP		Span	4.00	
Section Size	48 inch		Rise	4.00	ft
Number Sections	4				
Outlet Control Properties					
Outlet Control HW Elev.	4,854.33	ft	Upstream Velocity Hea	d 1.07	ft
Ke	0.70		Entrance Loss	0.75	ft
Inlet Control Properties					
Inlet Control HW Elev.	4,854.07	ft	Flow Control	Unsubmerged	
Inlet Type	Mitered to slope		Area Full	50.3	ft²
K	0.02100		HDS 5 Chart	2	
M	1.33000		HDS 5 Scale	2	
С	0.04630		Equation Form	1	
Υ	0.75000				

Grades Model: Inverts Invert Upstream 5,037.40 ft Invert Downstream 5,030.80 dength 190.00 ft Slope 0.034737 dength 190.00 ft	Peak Discharge Meth	od: User-Specified				
Length 190.00 ft Slope 0.034737 Drop 6.60 ft Headwater Model: Maximum Allowable HW Headwater Elevation 5,041.00 ft Tailwater properties: Trapezoidal Channel Tailwater conditions for Design Storm. Discharge 23.61 cfs Bottom Elevation 5,030.80 Depth 0.67 ft Velocity 5.05 Tailwater conditions for Check Storm. Discharge 23.61 cfs Bottom Elevation 5,030.80 Depth 0.67 ft Velocity 5.05	Design Discharge	23.61	cfs	Check Discharge	23.61	cfs
Length 190.00 ft Slope 0.034737 Drop 6.60 ft Headwater Model: Maximum Allowable HW Headwater Elevation 5,041.00 ft Tailwater properties: Trapezoidal Channel Tailwater conditions for Design Stom. Discharge 23.61 cfs Bottom Elevation 5,030.80 Depth 0.67 ft Velocity 5.05 Tailwater conditions for Check Storm. Discharge 23.61 cfs Bottom Elevation 5,030.80 Depth 0.67 ft Velocity 5.05	Grades Model: Inverts	·				
Drop 6.60 ft Headwater Model: Maximum Allowable HW Headwater Elevation 5,041.00 ft Tailwater properties: Trapezoidal Channel Tailwater conditions for Design Storm. Discharge 23.61 cfs Bottom Elevation 5,030.80 Depth 0.67 ft Velocity 5.05 Tailwater conditions for Check Storm. Discharge 23.61 cfs Bottom Elevation 5,030.80 Depth 0.67 ft Velocity 5.05	Invert Upstream	5,037.40	ft	Invert Downstream	5,030.80	ft
Headwater Model: Maximum Allowable HW Headwater Elevation 5,041.00 ft Tailwater properties: Trapezoidal Channel Tailwater conditions for Design Stom. Discharge 23.61 cfs Bottom Elevation 5,030.80 Depth 0.67 ft Velocity 5.05 Tailwater conditions for Check Stom. Discharge 23.61 cfs Bottom Elevation 5,030.80 Depth 0.67 ft Velocity 5.05 Name Description Discharge HW Elev. Velocity	Length	190.00	ft	Slope	0.034737	ft/ft
Headwater Elevation 5,041.00 ft Tailwater properties: Trapezoidal Channel Tailwater conditions for Design Storm. Discharge 23.61 cfs Bottom Elevation 5,030.80 Depth 0.67 ft Velocity 5.05 Tailwater conditions for Check Storm. Discharge 23.61 cfs Bottom Elevation 5,030.80 Depth 0.67 ft Velocity 5.05	Drop	6.60	ft			
Tailwater properties: Trapezoidal Channel Tailwater conditions for Design Storm. Discharge 23.61 cfs Bottom Elevation 5,030.80 Depth 0.67 ft Velocity 5.05 Tailwater conditions for Check Storm. Discharge 23.61 cfs Bottom Elevation 5,030.80 Depth 0.67 ft Velocity 5.05 Name Description Discharge HW Elev. Velocity	Headwater Model: Ma	aximum Allowable HW	<i>'</i>			
Tailwater conditions for Design Storm. Discharge 23.61 cfs Bottom Elevation 5,030.80 Depth 0.67 ft Velocity 5.05 Tailwater conditions for Check Storm. Discharge 23.61 cfs Bottom Elevation 5,030.80 Depth 0.67 ft Velocity 5.05	Headwater Elevation	n 5,041.00	ft			
Depth 0.67 ft Velocity 5.05 Tailwater conditions for Check Storm. Discharge 23.61 cfs Bottom Elevation 5,030.80 Depth 0.67 ft Velocity 5.05 Name Description Discharge HW Elev. Velocity	Tailwater conditions fo	r Design Storm.				
Tailwater conditions for Check Storm. Discharge 23.61 cfs Bottom Elevation 5,030.80 Depth 0.67 ft Velocity 5.05 Name Description Discharge HW Elev. Velocity	Discharge	23.61	cfs	Bottom Elevation	5,030.80	ft
Discharge 23.61 cfs Bottom Elevation 5,030.80 Depth 0.67 ft Velocity 5.05 Name Description Discharge HW Elev. Velocity	Depth	0.67	ft	Velocity	5.05	ft/s
Depth 0.67 ft Velocity 5.05 Name Description Discharge HW Elev. Velocity	Tailwater conditions for	r Check Storm.				
Name Description Discharge HW Elev. Velocity	Discharge	23.61	cfs	Bottom Elevation	5,030.80	ft
<u> </u>	Depth	0.67	ft	Velocity	5.05	ft/s
	Name	Description	Discharg	e HW Elev. Velocity		
		-24 inch Circular				

Design:Trial-1

Culvert Summary					
Allowable HW Elevation	5,041.00	ft	Storm Event	Design	
Computed Headwater E	leva 5,039.52	ft	Discharge	23.61	cfs
Headwater Depth/Heigh	t 1.06		Tailwater Elevation	5,031.47	ft
Inlet Control HW Elev.	5,039.36	ft	Control Type	Entrance Control	
Outlet Control HW Elev.	5,039.52	ft			
Grades					
Upstream Invert	5,037.40	ft	Downstream Invert	5,030.80	ft
Length	190.00		Constructed Slope	0.034737	
Longan	100.00		Constructed Clops	0.001101	1011
Lhadroulia Drofila					
Hydraulic Profile					
Profile	S2		Depth, Downstream	1.02	
Slope Type	Steep		Normal Depth	1.02	
Flow Regime	Supercritical	5 1.7	Critical Depth	1.23	
Velocity Downstream	7.33	TI/S	Critical Slope	0.018889	π/π
Section					
Section Shape	Circular		Mannings Coefficient	0.024	
Section Material	CMP		Span	2.00	ft
Section Size	24 inch		Rise	2.00	ft
Number Sections	2				
Outlet Control Properties					
Outlet Control HW Elev.	5,039.52	ft	Upstream Velocity Hea	ad 0.52	ft
Ke	0.70		Entrance Loss	0.37	
Inlet Control Properties					
Inlet Control HW Elev.	5,039.36	ft	Flow Control	N/A	
	5,039.36 Mitered to slope	ft	Flow Control Area Full	N/A 6.3	ft²
	-,	ft			ft²
Inlet Type	Mitered to slope	ft	Area Full	6.3	ft²
Inlet Type N	Mitered to slope 0.02100	ft	Area Full HDS 5 Chart	6.3	ft²

Peak Discharge Method: Us	ser-Specified				
Design Discharge	99.19	cfs (Check Discharge	99.19	cfs
Grades Model: Inverts					
Invert Upstream	5,032.50	ft	nvert Downstream	5,030.00	ft
Length	205.00	ft :	Slope	0.012195	ft/ft
Drop	2.50	ft			
Headwater Model: Maximur	m Allowable HW				
Headwater Elevation	5,045.00	ft			
Tailwater properties: Trapezo					
Tailwater conditions for Desi					
		cfs I	Bottom Elevation	5,030.00	ft
Tailwater conditions for Desi	gn Storm.		Bottom Elevation √elocity	5,030.00 4.62	
Tailwater conditions for Desi	gn Storm. 99.19 1.97			,	
Tailwater conditions for Desi Discharge Depth	gn Storm. 99.19 1.97	ft '		,	ft/s
Tailwater conditions for Desi Discharge Depth Tailwater conditions for Che	ign Storm. 99.19 1.97 ck Storm.	ft cfs	Velocity	4.62	ft/s
Tailwater conditions for Desi Discharge Depth Tailwater conditions for Che Discharge Depth	gn Storm. 99.19 1.97 ck Storm. 99.19 1.97	cfs I	Velocity Bottom Elevation	5,030.00	ft/s

Design:Trial-1

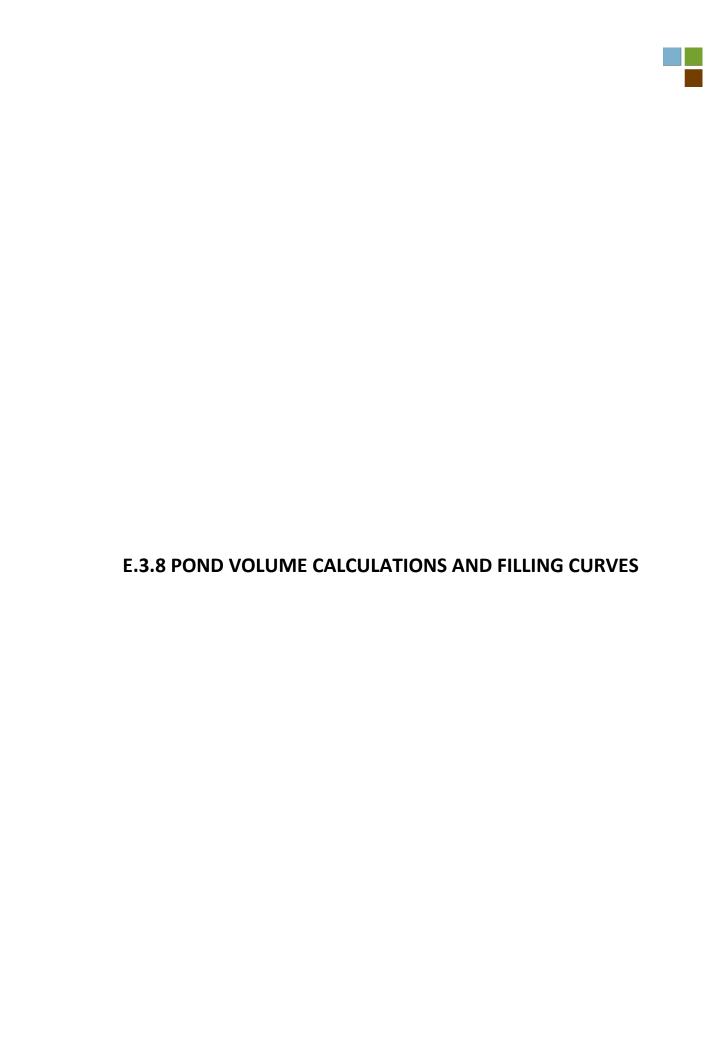
Culvert Summary					
Allowable HW Elevation	5,045.00	ft	Storm Event	Design	
Computed Headwater Elev	5,037.27	ft	Discharge	99.19	cfs
Headwater Depth/Height	0.95		Tailwater Elevation	5,031.97	ft
Inlet Control HW Elev.	5,036.85	ft	Control Type	Outlet Control	
Outlet Control HW Elev.	5,037.27	ft			
Grades					
Upstream Invert	5,032.50	ft	Downstream Invert	5,030.00	ft
Length	205.00	ft	Constructed Slope	0.012195	ft/ft
Hydraulic Profile					
Profile	M2	· · · · · ·	Depth, Downstream	2.83	ft
Slope Type	Mild		Normal Depth	2.90	ft
Flow Regime	Subcritical		Critical Depth	2.83	ft
Velocity Downstream	8.64	ft/s	Critical Slope	0.013073	ft/ft
Section					
Section Shape	Circular		Mannings Coefficient	0.024	
Section Material	CMP		Span	5.00	ft
Section Size	60 inch		Rise	5.00	ft
Number Sections	1				
Outlet Control Properties					
Outlet Control HW Elev.	5,037.27	ft	Upstream Velocity Head	1.10	ft
Ke	0.70		Entrance Loss	0.77	
Inlet Control Properties					
	E 026 05	4	Flour Control	I lmay have one!	
Inlet Type Mit	5,036.85	π	Flow Control	Unsubmerged 19.6	f +2
Inlet Type Mite K	ered to slope 0.02100		Area Full HDS 5 Chart	19.6	IL"
M	1.33000		HDS 5 Chart HDS 5 Scale	2	
C	0.04630		Equation Form	1	
Y	0.75000		Equation Form	1	
·	0.70000				

Peak Discharge Method: Us	er-Specified				
Design Discharge	1.89	cfs	Check Discharge	1.89	cfs
Grades Model: Inverts					
Invert Upstream	5,035.60	ft	Invert Downstream	5,035.40	ft
Length	115.00	ft	Slope	0.001739	ft/ft
Drop	0.20	ft			
Headwater Model: Maximur	n Allowable HW				
Headwater Elevation	5,041.00	ft			
Tailwater properties: Trapezo	oldal Channel				
Tailwater properties: Trapezo					
		cfs	Bottom Elevation	5,035.40	ft
Tailwater conditions for Desi	gn Storm.		Bottom Elevation Velocity	5,035.40 0.83	
Tailwater conditions for Desi	gn Storm. 1.89 0.37			*	
Tailwater conditions for Desi Discharge Depth	gn Storm. 1.89 0.37	ft		*	ft/s
Tailwater conditions for Desi Discharge Depth Tailwater conditions for Chee	gn Storm. 1.89 0.37 ck Storm.	ft	Velocity	0.83	ft/s
Tailwater conditions for Desi Discharge Depth Tailwater conditions for Cher Discharge Depth	gn Storm. 1.89 0.37 ck Storm. 1.89 0.37	cfs ft	Velocity Bottom Elevation	5,035.40	ft/s

Design:Trial-1

Culvert Summary					
Allowable HW Elevation	5,041.00	ft	Storm Event	Design	
Computed Headwater Ele	νε 5,037.41	ft	Discharge	1.89	cfs
Headwater Depth/Height	1.81		Tailwater Elevation	5,035.77	ft
Inlet Control HW Elev.	5,036.50	ft	Control Type	Outlet Control	
Outlet Control HW Elev.	5,037.41	ft			
Grades					
Upstream Invert	5,035.60	ft	Downstream Invert	5,035.40	ft
Length	115.00		Constructed Slope	0.001739	
				0.001.00	
Hydraulic Profile					
Profile CompositeM2P	ressureProfile		Depth, Downstream	0.59	ft
Slope Type	Mild		Normal Depth	N/A	
Flow Regime	Subcritical		Critical Depth	0.59	
Velocity Downstream	3.95	ft/s	Critical Slope	0.022876	
Section					
Section Shape	Circular		Mannings Coefficient	0.024	
Section Material	CMP		Span	1.00	ft
Section Size	12 inch		Rise	1.00	ft
Number Sections	1				
Outlet Control Properties					
Outlet Control HW Elev.	5,037.41	ft	Upstream Velocity Head	0.09	ft
Ke	0.70		Entrance Loss	0.06	ft
Inlet Control Properties					
Inlet Control HW Elev.	5,036.50	ft	Flow Control	N/A	
• •	tered to slope		Area Full	8.0	ft²
K	0.02100		HDS 5 Chart	2	
M	1.33000		HDS 5 Scale	2	
С	0.04630		Equation Form	1	
Υ	0.75000				

Peak Discharge Me	thod: User-Specified				
Design Discharge	222.15	cfs	Check Discharge	222.15	cfs
Grades Model: Inve	rts				
Invert Upstream	5,033.70	ft	Invert Downstream	5,023.50	ft
Length	175.00	ft	Slope	0.058286	ft/ft
Drop	10.20	ft			
Headwater Model: I	Maximum Allowable HW	1			
Headwater Elevat	ion 5,045.00	ft			
Tailwater properties:	Irregular Channel				
Tailwater conditions	for Design Storm.				
Discharge	222.15	cfs	Actual Depth	0.00	ft
Velocity	0.00	ft/s			
Tailwater conditions	for Check Storm.				
Discharge	222.15	cfs	Actual Depth	0.00	ft
Velocity	0.00	ft/s	·		
Name	Description	Discha	ge HW Elev. Velocity		
			<u>-</u>		


Design:Trial-1

Culvert Summary					
Allowable HW Elevation	5,045.00	ft	Storm Event	Design	
Computed Headwater E	leva 5,038.85	ft	Discharge	222.15	cfs
Headwater Depth/Heigh	t 1.03		Tailwater Elevation	0.00	ft
Inlet Control HW Elev.	5,038.53	ft	Control Type	Entrance Control	
Outlet Control HW Elev.	5,038.85	ft			
Grades					
Upstream Invert	5,033.70	ft	Downstream Invert	5,023.50	ft
Length	175.00		Constructed Slope	0.058286	
	170.00		Contracted Clope	0.000200	1010
Hudraulia Profila					
Hydraulic Profile					
Profile	S2		Depth, Downstream	1.96	
Slope Type	Steep		Normal Depth	1.96	
Flow Regime	Supercritical	5 17	Critical Depth	3.01	
Velocity Downstream	15.51	π/s	Critical Slope	0.013635	π/π
Section					
Section Shape	Circular		Mannings Coefficient	0.024	
Section Material	CMP		Span	5.00	ft
Section Size	60 inch		Rise	5.00	ft
Number Sections	2				
Outlet Control Properties					
Outlet Control HW Elev.	5,038.85	ft	Upstream Velocity Hea	ad 1.26	ft
Ke	0.70		Entrance Loss	0.88	
Inlet Control Properties					
Inlet Control HW Elev.	5,038.53	ft	Flow Control	N/A	
Inlet Type	Mitered to slope		Area Full	39.3	ft²
K	0.02100		HDS 5 Chart	2	
M	1.33000		HDS 5 Scale	2	
С	0.04630		Equation Form	1	
Υ	0.75000				

Peak Discharge Meth	nod: User-Specified					
Design Discharge	30.00	cfs	Check Disc	harge	30.00	cfs
Grades Model: Invert	s					
Invert Upstream	4,924.50	ft	Invert Dowr	nstream	4,919.10	ft
Length	95.00	ft	Slope		0.056842	ft/ft
Drop	5.40	ft				
Headwater Model: N	laximum Allowable HW	/				
Headwater Elevation	on 4,930.50	ft				
Tailwater properties:	Irregular Channel					
Tailwater conditions f	or Design Storm.					
Discharge	30.00	cfs	Actual Dept	:h	0.00	ft
Velocity	0.00	ft/s	·			
Tailwater conditions f	or Check Storm.					
Discharge	30.00	cfs	Actual Dept	:h	0.00	ft
Velocity	0.00	ft/s	·			
Name	Description	Discharge	HW Elev.	Velocity		
x Trial-1	1-36 inch Circular	30.00 cfs	4,927.53 ft	11.09 ft/s		
			,			

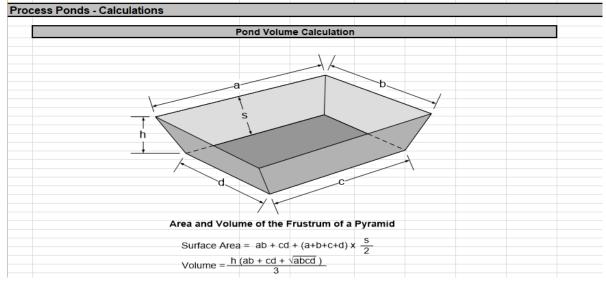
Design:Trial-1

Culvert Summary					
Allowable HW Elevation	4,930.50	ft	Storm Event	Design	
Computed Headwater E	Eleva 4,927.53	ft	Discharge	30.00	cfs
Headwater Depth/Heigh	nt 1.01		Tailwater Elevation	0.00	ft
Inlet Control HW Elev.	4,927.34	ft	Control Type E	Entrance Control	
Outlet Control HW Elev.	4,927.53	ft			
Grades					
Upstream Invert	4,924.50	ft	Downstream Invert	4,919.10	ft
Length	95.00	ft	Constructed Slope	0.056842	ft/ft
Hydraulic Profile					
Profile	S2		Depth, Downstream	1.22	ft
Slope Type	Steep		Normal Depth	1.22	ft
Flow Regime	Supercritical		Critical Depth	1.77	ft
Velocity Downstream	11.09	ft/s	Critical Slope	0.015957	ft/ft
Section					
Section Shape	Circular		Mannings Coefficient	0.024	
Section Material	CMP		Span	3.00	ft
Section Size	36 inch		Rise	3.00	ft
Number Sections	1				
Outlet Control Properties					
Outlet Control HW Elev.	4,927.53	ft	Upstream Velocity Hea	d 0.74	ft
Ke	0.70		Entrance Loss	0.52	ft
Inlet Control Properties					
Inlet Control HW Elev.	4,927.34	ft	Flow Control	Unsubmerged	
Inlet Type	Mitered to slope		Area Full	7.1	ft²
K	0.02100		HDS 5 Chart	2	
M	1.33000		HDS 5 Scale	2	
С	0.04630		Equation Form	1	
Υ	0.75000				

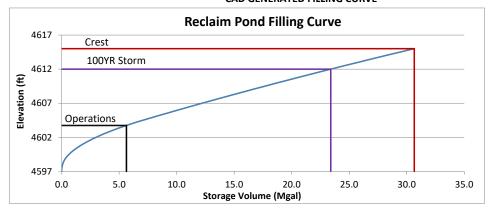
Thacker Pass Pond Volume Estimate Calculator RECLAIM POND

Completed by Sarah Breidt December 2019

Length (Top)	900.00
Width (Top)	350.00
Total Depth	9.00
Side Slopes	2.5
Liquid Depth (ft)	10.00
Freeboard (ft)	3.00


	<u>Length</u>	<u>Width</u>
Pond Dims. @ Liquid Level	885.00	335.00
Pond Dims. @ Bottom	835.00	285.00

SPILLWAY	SPILLWAY SZING $Q = \frac{2}{3} C b \sqrt{2g} H^{3/2}$						
Q	125.7	b	37.90				
С	0.62	Н	1				


	Cubic Feet	<u>Gallons</u>
Pond Liquid Volume	2,668,083.33	19,957,263

Required Volume 2,374,020

GOOD

CAD GENERATED FILLING CURVE

Operational Volume: 5,635,600 gallons 100 YR Strom Volume: 17,757,700 gallons

Thacker Pass Sediment Pond Spillway Calculator

Broad Crested Weir Equation:

$$Q = \frac{2}{3}Cb\sqrt{2g}H^{3/2}$$

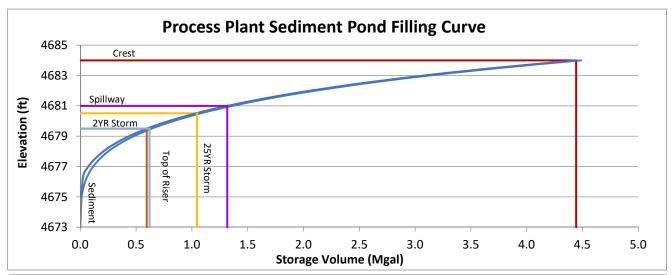
input value

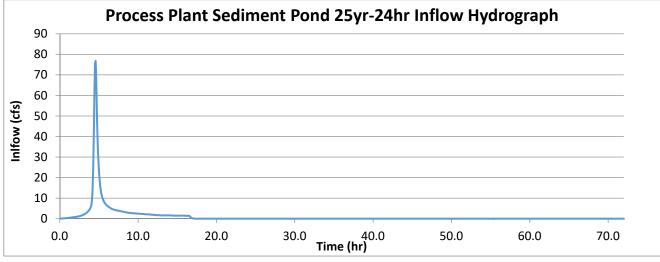
EAST WRSF SEDIMENT POND (sub-area 3C)

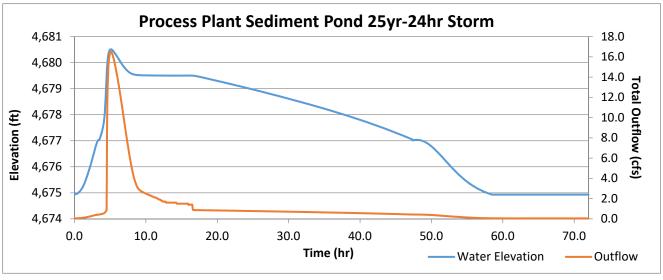
Peak Q ₁₀₀	130	cfs	Flow Depth	1	ft
Weir Coef.	0.62		Weir Width	39.19	ft

CGS SEDIMENT POND (sub-area 4B)

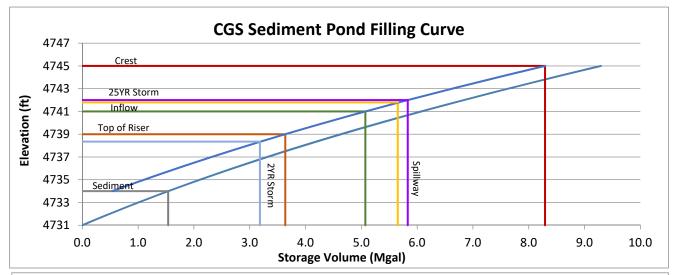
Peak Q ₁₀₀	361	cfs Flow De	pth 2	ft
Weir Coef.	0.62	Weir W	idth 38.48	ft

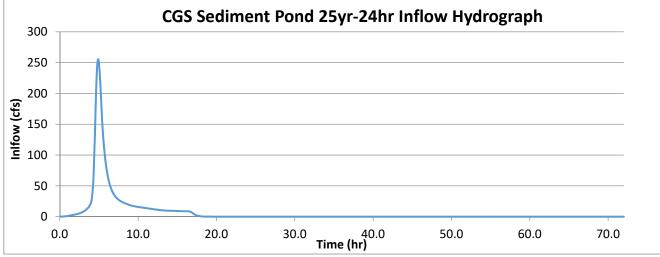

PROCESS PLANT SEDIMENT POND (sub-area 4C)

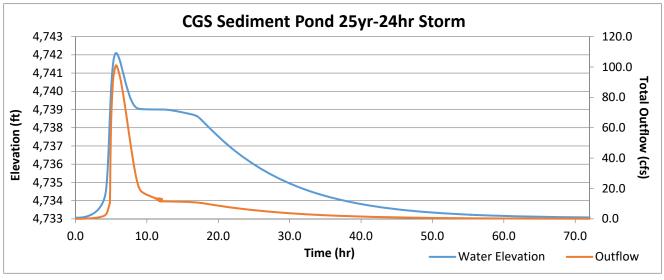

Peak Q ₁₀₀	106.6	cfs Flo v	w Depth 1	ft
Weir Coef.	0.62	Wei	ir Width 32.14	ft

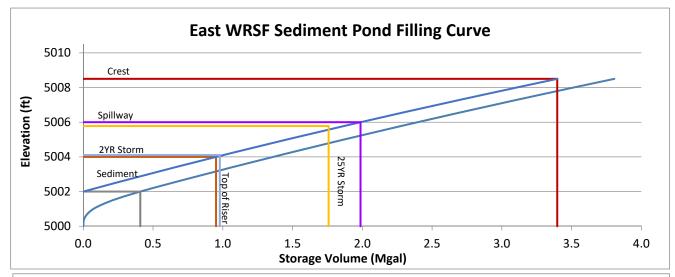

WEST WRSF SEDIMENT POND (sub-area 6)

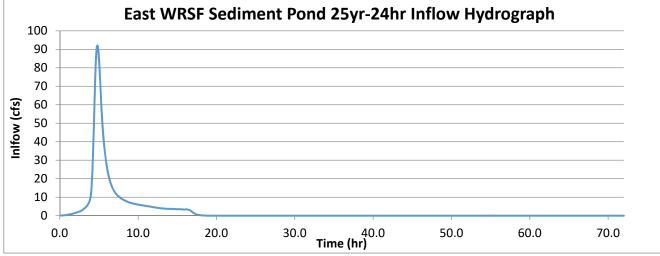
Peak Q ₅₀₀	403.2	cfs Flow Dep	th 2 ft
Weir Coef.	0.62	Weir Wid	t h 42.98 ft

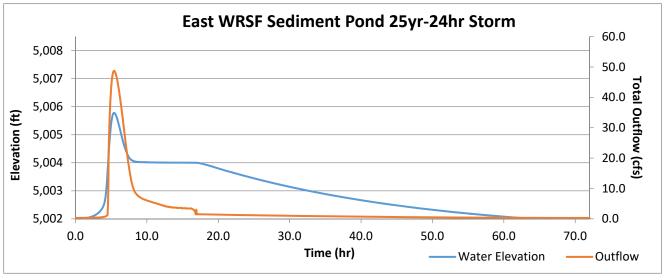

Thacker Pass CAD GENERATED FILLING CURVE PROCESS PLANT SEDIMENT POND



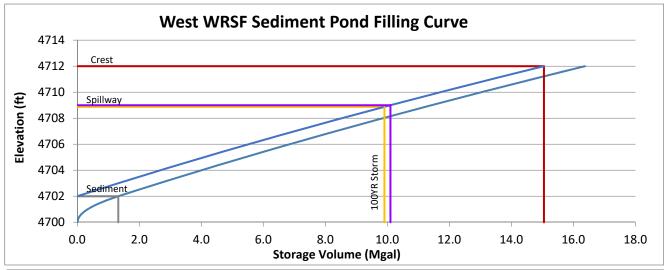


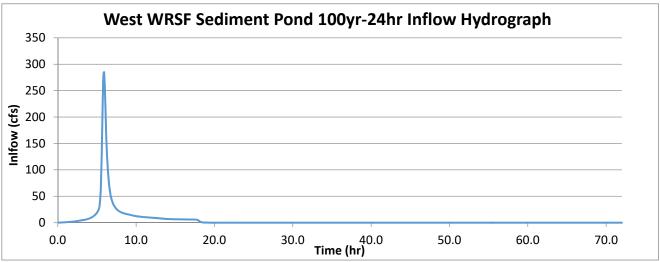

Thacker Pass CAD GENERATED FILLING CURVE CGS SEDIMENT POND





Thacker Pass CAD GENERATED FILLING CURVE East WRSF





Thacker Pass CAD GENERATED FILLING CURVE

WEST WRSF SEDIMENT POND

Freshwater Basin Perforated Riser Calculations

OUTFLOW SIMPLIFICATIONS

15.37

85.475

ORIF

SPILL

Client	Lithium Nevada Corp.	Preparer:	S. Breidt	
Project	Thacker Pass Project	Checked:	R. Li	1/13/2020
Title	Perforated Riser - Process Plant Sediment Pond	Revision:	2	

Assumptions/Methodology

1. Vertical riser has a diameter of 2ft, with perforations from elevation 4675ft to 4679.5ft

2. Perforations are 0.5in diameter, with 8 holes per row and 6in between rows, for 10 total rows

3. Flow through an orifice = CdA(2gh)1/2, where Cd = 0.61, A = 0.005454ft2, g = 32.17ft/s2, h= head (ft)

4. "Total Out Flow" row includes a porosity of 0.43 for the rock piled around the riser

3.0 ft

Inputs

Max head over riser

4,681.0 ft Min. Perforation Elevation 4,675.0 ft Height of Perforations 4.5 ft Hole Diameter **0.5** in = 0.0417 ft 6 in = 0.5 ft Spillway elev Vertical spacing 0.0014 ft² Riser Pipe Diameter 2 ft Basin Max. Elevation 4,683.0 ft Area of ind. hole, A **Total Rows** 10 Spillway width, b 32.5 ft 3.14 ft² Max. Perforation Elevation 4,679.5 ft Pipe End Area Orifice Coefficient, Cd 0.61 Weir coeficient 2.63 Holes per row Max Riser Elevation 4,680.0 ft No. of pipes 1 ft Gravitational const., g 32.17 ft/s²

Perf Elev.	Water Le	vel (ft)																
(ft)	4675.0	4675.5	4676.0	4676.5	4677.0	4677.5	4678.0	4678.5	4679.0	4679.5	4680.0	4680.5	4681.0	4681.5	4682.0	4682.5	4683.0	END
4,675.0	0.00	0.04	0.05	0.07	0.08	0.08	0.09	0.10	0.11	0.11	0.12	0.13	0.13	0.14	0.14	0.15	0.15	
4,675.5	0.00	0.00	0.04	0.05	0.07	0.08	0.08	0.09	0.10	0.11	0.11	0.12	0.13	0.13	0.14	0.14	0.15	
4,676.0	0.00	0.00	0.00	0.04	0.05	0.07	0.08	0.08	0.09	0.10	0.11	0.11	0.12	0.13	0.13	0.14	0.14	
4,676.5	0.00	0.00	0.00	0.00	0.04	0.05	0.07	0.08	0.08	0.09	0.10	0.11	0.11	0.12	0.13	0.13	0.14	
4,677.0	0.00	0.00	0.00	0.00	0.00	0.04	0.05	0.07	0.08	0.08	0.09	0.10	0.11	0.11	0.12	0.13	0.13	
4,677.5	0.00	0.00	0.00	0.00	0.00	0.00	0.04	0.05	0.07	0.08	0.08	0.09	0.10	0.11	0.11	0.12	0.13	
4,678.0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.04	0.05	0.07	0.08	0.08	0.09	0.10	0.11	0.11	0.12	
4,678.5	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.04	0.05	0.07	0.08	0.08	0.09	0.10	0.11	0.11	
4,679.0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.04	0.05	0.07	0.08	0.08	0.09	0.10	0.11	
4,679.5	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.04	0.05	0.07	0.08	0.08	0.09	0.10	
END	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
#REF!	0.00																	
Q _{PERF} (cfs)	0.00	0.04	0.09	0.16	0.23	0.32	0.41	0.51	0.62	0.73	0.85	0.94	1.01	1.08	1.15	1.21	1.27	
OVERTOPPI	NG PERFO	RATED R	ISER @46	80' elev.		0	0	0	0	0	10.8694	15.3716	18.8263	21.7388	24.3047	26.6245	28.7577	
32.5' LONG,	2' DEEP S	PILLWAY				0	0	0	0	0	0	0	0	30	85	157	242	
Total Q _{out} (f	t ³ /s)	0.02	0.04	0.07	0.10	0.14	0.18	0.22	0.26	0.31	11.23	15.77	19.26	52.42	110.27	184.17	271.06	

Freshwater Basin Perforated Riser Calculations

Client	Lithium Nevada Corp.	Preparer:	S. Breidt	
Project	Thacker Pass Project	Checked:	R. Li	1/14/2020
Title	Perforated Riser - CGS Sediment Pond	Revision:	2	

Assumptions/Methodology

1. Vertical riser has a diameter of 3.5ft, with perforations from elevation 4734ft to 4739ft

2. Perforations are 1.2in diameter, with 18 holes per row and 6in between rows, for 11 total rows

3. Flow through an orifice = CdA(2gh)1/2, where Cd = 0.61, A = 0.005454ft2, g = 32.17ft/s2, h= head (ft)

4. "Total Out Flow" row includes a porosity of 0.43 for the rock piled around the riser

OUTFLOW SIMPLIFICATIONS

ORIF 47.08

SPILL 26.3

Inputs

Min. Perforation Elevation 4,733.0 ft Height of Perforations 6.0 ft Hole Diameter 1.2 in = 0.1000 ft Vertical spacing 6 in = Spillway elev 4,742.0 ft Basin Max. Elevation 3.5 ft 4,745.0 ft Riser Pipe Diameter Area of ind. hole, A 0.0079 ft² **Total Rows** 13 Spillway width, b 10 ft 4,739.0 ft 9.62 ft² 18 0.61 Max. Perforation Elevation Pipe End Area Holes per row Orifice Coefficient, Cd Weir coeficient 2.63 Max Riser Elevation 4,739.5 ft 1 ft 32.17 ft/s² No. of pipes Gravitational const., g

Max head over riser 5.5 ft

Perf Elev.	Water Le	vel (ft)																								
(ft)	4733.0	4733.5	4734.0	4734.5	4735.0	4735.5	4736.0	4736.5	4737.0	4737.5	4738.0	4738.5	4739.0	4739.5	4740.0	4740.5	4741.0	4741.5	4742.0	4742.5	4743.0	4743.5	4744.0	4744.5	4745.0	ENI
4,733.0	0.00	0.49	0.69	0.85	0.98	1.09	1.20	1.29	1.38	1.47	1.55	1.62	1.69	1.76	1.83	1.89	1.96	2.02	2.08	2.13	2.19	2.24	2.29	2.35	2.40	
4,733.5	0.00	0.00	0.49	0.69	0.85	0.98	1.09	1.20	1.29	1.38	1.47	1.55	1.62	1.69	1.76	1.83	1.89	1.96	2.02	2.08	2.13	2.19	2.24	2.29	2.35	
4,734.0	0.00	0.00	0.00	0.49	0.69	0.85	0.98	1.09	1.20	1.29	1.38	1.47	1.55	1.62	1.69	1.76	1.83	1.89	1.96	2.02	2.08	2.13	2.19	2.24	2.29	
4,734.5	0.00	0.00	0.00	0.00	0.49	0.69	0.85	0.98	1.09	1.20	1.29	1.38	1.47	1.55	1.62	1.69	1.76	1.83	1.89	1.96	2.02	2.08	2.13	2.19	2.24	
4,735.0	0.00	0.00	0.00	0.00	0.00	0.49	0.69	0.85	0.98	1.09	1.20	1.29	1.38	1.47	1.55	1.62	1.69	1.76	1.83	1.89	1.96	2.02	2.08	2.13	2.19	
4,735.5	0.00	0.00	0.00	0.00	0.00	0.00	0.49	0.69	0.85	0.98	1.09	1.20	1.29	1.38	1.47	1.55	1.62	1.69	1.76	1.83	1.89	1.96	2.02	2.08	2.13	
4,736.0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.49	0.69	0.85	0.98	1.09	1.20	1.29	1.38	1.47	1.55	1.62	1.69	1.76	1.83	1.89	1.96	2.02	2.08	
4,736.5	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.49	0.69	0.85	0.98	1.09	1.20	1.29	1.38	1.47	1.55	1.62	1.69	1.76	1.83	1.89	1.96	2.02	
4,737.0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.49	0.69	0.85	0.98	1.09	1.20	1.29	1.38	1.47	1.55	1.62	1.69	1.76	1.83	1.89	1.96	
4,737.5	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.49	0.69	0.85	0.98	1.09	1.20	1.29	1.38	1.47	1.55	1.62	1.69	1.76	1.83	1.89	
4,738.0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.49	0.69	0.85	0.98	1.09	1.20	1.29	1.38	1.47	1.55	1.62	1.69	1.76	1.83	
0 (-f-)	0.00	0.40	1.10	2.02	2.04	110	F 20	6.50	7.00	0.44	10.00	12.12	42.42	4404	1100	45.60	46.45	47.40	47.07	40.53	10.17	40.70	20.20	20.07	24.54	
Q _{PERF} (cfs)	0.00	0.49	1.18	2.03	3.01	4.10	5.30	6.59	7.98	9.44	10.99	12.12	13.13	14.04	14.89	15.69	16.45	17.18	17.87	18.53	19.17	19.79	20.39	20.97	21.54	
OVERTOPPI	NG PERFO	RATED R	ISER @47	739.5' ele	v.	0	0	0	0	0.0	0.0	0.0	0.0	33.3	47.1	57.7	66.6	74.4	81.5	88.1	94.2	99.9	105.3	110.4	115.3	
LO' LONG, 3	DEEP SPI	LLWAY				0	0	0	0	0	0	0	0	0	0	0	0	0	0	9	26	48	74	104	137	
Total Q _{out} (f	t ³ /s)	0.21	0.51	0.87	1.29	1.76	2.28	2.83	3.43	4.06	4.73	5.21	5.64	39.33	53.48	64.40	73.65	81.82	89.22	105.34	128.70	156.69	188.42	223.38	261.23	

Freshwater Basin Perforated Riser Calculations

OUTFLOW SIMPLIFICATIONS

SPILL

34.59

26.3

Client	Lithium Nevada Corp.	Preparer:	S. Breidt	
Project	Thacker Pass Project	Checked:	R. Li	1/10/2020
Title	Perforated Riser - East WRSF Sediment Pond	Revision:	1	

Assumptions/Methodology

- 1. Vertical riser has a diameter of 3ft, with perforations from elevation 5001.5ft to 5003.5ft
- 2. Perforations are 1in diameter, with 12 holes per row and 6in between rows, for 5 total rows
- 3. Flow through an orifice = CdA(2gh)1/2, where Cd = 0.61, A = 0.005454ft2, g = 32.17ft/s2, h = head(ft)
- 4. "Total Out Flow" row includes a porosity of 0.43 for the rock piled around the riser

Inputs

Perforations Min. Elevation	5,001.5 ft	Height of perforations	2.0 ft	Hole Diameter	1 in = 0.0833 ft	Vertical spacing	6 in = 0.5 ft	Spillway elev	5,006.0 ft
Basin Max. Elevation	5,008.0 ft	Riser Pipe Diameter	3 ft	Area of ind. hole, A	0.0055 ft ²	Total Rows	5	Spillway width, b	10 ft
Perforations Max. Elevation	5,003.5 ft	Pipe End Area	7.07 ft ²	Holes per row	12	Orifice Coefficient, Cd	0.61	Weir coeficient	2.63
Max riser elevation	5.004.0 ft	No. of pipes	1 ft			Gravitational const g	32.17 ft/s ²		

Max head over riser 4.0 ft

Perf Elev.	Water Le	vel (ft)													
(ft)	5001.5	5002.0	5002.5	5003.0	5003.5	5004.0	5004.5	5005.0	5005.5	5006.0	5006.5	5007.0	5007.5	5008.0	END
5,001.5	0.00	0.23	0.32	0.39	0.45	0.51	0.55	0.60	0.64	0.68	0.72	0.75	0.78	0.82	
5,002.0	0.00	0.00	0.23	0.32	0.39	0.45	0.51	0.55	0.60	0.64	0.68	0.72	0.75	0.78	
5,002.5	0.00	0.00	0.00	0.23	0.32	0.39	0.45	0.51	0.55	0.60	0.64	0.68	0.72	0.75	
5,003.0	0.00	0.00	0.00	0.00	0.23	0.32	0.39	0.45	0.51	0.55	0.60	0.64	0.68	0.72	
5,003.5	0.00	0.00	0.00	0.00	0.00	0.23	0.32	0.39	0.45	0.51	0.55	0.60	0.64	0.68	
END	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
#VALUE!	0.00														
#VALUE!	0.00														
Q _{PERF} (cfs)	0.00	0.23	0.55	0.94	1.39	1.90	2.23	2.51	2.75	2.98	3.19	3.39	3.57	3.75	
OVERTOPPING PERFORATED F		ISER @50	04' elev.		24.4561	34.5862	42.35926	48.9123	54.6856	59.905	64.7048	69.1724	73.3684		
10' LONG, 2	10' LONG, 2' DEEP SPILLWAY					0	0	0	0	0	9	26	48	74	
Total Q _{out} (f	t³/s)	0.10	0.24	0.40	0.60	25.27	35.54	43.44	50.10	55.97	70.58	92.46	119.02	149.37	

Culvert Calculator Report Haul Road from CGS

Solve For: Headwater Elevation

Culvert Summary					
Allowable HW Elevation	4,771.33	ft	Headwater Depth/Height	2.10	
Computed Headwater Elevation	4,768.85	ft	Discharge	1,177.40	cfs
Inlet Control HW Elev.	4,768.85	ft	Tailwater Elevation	0.00	ft
Outlet Control HW Elev.	4,767.68	ft	Control Type	Inlet Control	
Grades					
Upstream Invert	4,758.33	ft	Downstream Invert	4,746.63	ft
Length	214.00	ft	Constructed Slope	0.054673	ft/ft
Hydraulic Profile					
Profile	S2		Depth, Downstream	3.12	ft
Slope Type	Steep		Normal Depth	3.12	ft
Flow Regime	Supercritical		Critical Depth	4.33	ft
Velocity Downstream	18.25	ft/s	Critical Slope	0.025596	ft/ft
Section					
Section Shape	Circular		Mannings Coefficient	0.024	
Section Material	CMP		Span	5.00	ft
Section Size	60 inch		Rise	5.00	ft
Number Sections	5				
Outlet Control Properties					
Outlet Control HW Elev.	4,767.68	ft	Upstream Velocity Head	2.64	ft
Ke	0.90		Entrance Loss	2.38	ft
Inlet Control Properties					
Inlet Control HW Elev.	4,768.85	ft	Flow Control	N/A	
Inlet Type	Projecting		Area Full	98.2	ft²
K	0.03400		HDS 5 Chart	2	
M	1.50000		HDS 5 Scale	3	
C	0.05530		Equation Form	1	
Υ	0.54000				

Page 1

Culvert Calculator Report Salt Conveyor Corridor Crossing

Solve For: Headwater Elevation

Culvert Summary				
Allowable HW Elevation	4,708.10 ft	Headwater Depth/Height	1.70	
Computed Headwater Elevation	4,707.61 ft	Discharge	1,177.40	cfs
Inlet Control HW Elev.	4,707.30 ft	Tailwater Elevation	0.00	ft
Outlet Control HW Elev.	4,707.61 ft	Control Type	Outlet Control	
Grades				
Upstream Invert	4,699.10 ft	Downstream Invert	4,697.58	ft
Length	137.00 ft	Constructed Slope	0.011095	ft/ft
Hydraulic Profile				
Profile CompositeM2F	PressureProfile	Depth, Downstream	4.00	ft
Slope Type	Mild	Normal Depth	N/A	ft
Flow Regime	Subcritical	Critical Depth	4.00	ft
Velocity Downstream	11.65 ft/s	Critical Slope	0.020230	ft/ft
Section				
Section Shape	Circular	Mannings Coefficient	0.024	
Section Material	CMP	Span	5.00	ft
Section Size	60 inch	Rise	5.00	ft
Number Sections	6			
Outlet Control Properties				
Outlet Control HW Elev.	4,707.61 ft	Upstream Velocity Head	1.55	ft
Ke	0.90	Entrance Loss	1.40	ft
Inlet Control Properties				
Inlet Control HW Elev.	4,707.30 ft	Flow Control	N/A	
Inlet Type	Projecting	Area Full	117.8	ft²
K	0.03400	HDS 5 Chart	2	
M	1.50000	HDS 5 Scale	3	
C	0.05530	Equation Form	1	

Page 2

Culvert Calculator Report Tailings Conveyor Corridor Crossing

Culvert Summary				
Allowable HW Elevation	4,713.21 ft	Headwater Depth/Height	1.75	
Computed Headwater Elevation	4,712.94 ft	Discharge	1,177.40	cfs
Inlet Control HW Elev.	4,712.41 ft	Tailwater Elevation	0.00	ft
Outlet Control HW Elev.	4,712.94 ft	Control Type	Outlet Control	
Grades				
Upstream Invert	4,704.21 ft	Downstream Invert	4,702.85	ft
Length	139.00 ft	Constructed Slope	0.009784	ft/ft
Hydraulic Profile				
Profile CompositeM2F	PressureProfile	Depth, Downstream	4.00	ft
Slope Type	Mild	Normal Depth	N/A	ft
Flow Regime	Subcritical	Critical Depth	4.00	ft
Velocity Downstream	11.65 ft/s	Critical Slope	0.020230	ft/ft
Section				
Section Shape	Circular	Mannings Coefficient	0.024	
Section Material	CMP	Span	5.00	ft
Section Size	60 inch	Rise	5.00	ft
Number Sections	6			
Outlet Control Properties				
Outlet Control HW Elev.	4,712.94 ft	Upstream Velocity Head	1.55	ft
Ke	0.90	Entrance Loss	1.40	ft
Inlet Control Properties				
Inlet Control HW Elev.	4,712.41 ft	Flow Control	N/A	
Inlet Type	Projecting	Area Full	117.8	ft²
K	0.03400	HDS 5 Chart	2	
M	1.50000	HDS 5 Scale	3	
C	0.05530	Equation Form	1	
Υ	0.54000			

Culvert Calculator Report CGS SEDIMENT POND INLET - 100YR

Culvert Summary				
Allowable HW Elevation	4,761.00 ft	Headwater Depth/Height	1.98	
Computed Headwater Elevation	4,756.40 ft	Discharge	361.00	cfs
Inlet Control HW Elev.	4,754.33 ft	Tailwater Elevation	4,743.00	ft
Outlet Control HW Elev.	4,756.40 ft	Control Type	Outlet Control	
Grades				
Upstream Invert	4,747.50 ft	Downstream Invert	4,745.00	ft
Length	167.22 ft	Constructed Slope	0.014950	ft/ft
Hydraulic Profile				
Profile CompositeM2P	ressureProfile	Depth, Downstream	3.89	ft
Slope Type	Mild	Normal Depth	N/A	ft
Flow Regime	Subcritical	Critical Depth	3.89	ft
Velocity Downstream	12.35 ft/s	Critical Slope	0.026413	ft/ft
Section				
Section Shape	Circular	Mannings Coefficient	0.024	
Section Material	CMP	Span	4.50	ft
Section Size	54 inch	Rise	4.50	ft
Number Sections	2			
Outlet Control Properties				
Outlet Control HW Elev.	4,756.40 ft	Upstream Velocity Head	2.00	ft
Ke	0.20	Entrance Loss	0.40	ft
Inlet Control Properties				
Inlet Control HW Elev.	4,754.33 ft	Flow Control	Submerged	
Inlet Type Beveled ring, 33.7°	(1.5:1) bevels	Area Full	31.8	ft²
	0.00180	HDS 5 Chart	3	
K	0.00100			
K M	2.50000	HDS 5 Scale	В	
		HDS 5 Scale Equation Form	B 1	

Culvert Calculator Report MINE ENTRANCE (GUARD SHACK) **CULVERT WEST 25YR**

Culvert Summary					
Allowable HW Elevation	0.00	ft	Headwater Depth/Height	2.41	
Computed Headwater Elevation	4,696.04	ft	Discharge	1,882.20	cfs
Inlet Control HW Elev.	4,694.30	ft	Tailwater Elevation	0.00	ft
Outlet Control HW Elev.	4,696.04	ft	Control Type	Outlet Control	
Grades					
Upstream Invert	4,684.00	ft	Downstream Invert	4,682.00	ft
Length	89.00	ft	Constructed Slope	0.022472	ft/ft
Hydraulic Profile					
Profile CompositeM2F	ressureProfile		Depth, Downstream	4.72	ft
Slope Type	Mild		Normal Depth	N/A	ft
Flow Regime	Subcritical		Critical Depth	4.72	ft
Velocity Downstream	16.34	ft/s	Critical Slope	0.042754	ft/ft
Section Section Shape	Circular		Mannings Coefficient	0.024	
Section Material	CMP		Span	5.00	ft
Section Size	60 inch		Rise	5.00	ft
Number Sections	6				
Outlet Control Properties					
Outlet Control HW Elev.	4,696.04	ft	Upstream Velocity Head	3.97	ft
Ke	0.20		Entrance Loss	0.79	ft
Inlet Control Properties					
Inlet Control HW Elev.	4,694.30	ft	Flow Control	Submerged	
Inda 4 Truns - David and minute 20, 79	(1.5:1) bevels		Area Full	117.8	ft²
Inlet Type Beveled ring, 33.7°			HDS 5 Chart	3	
K Beveled ring, 33.7	0.00180				
	0.00180 2.50000		HDS 5 Scale	В	
K			HDS 5 Scale Equation Form	B 1	

Culvert Calculator Report GUARD SHACK CULVERT EAST 25YR

Culvert Summary					
Allowable HW Elevation	0.00	ft	Headwater Depth/Height	3.08	
Computed Headwater Elevation	4,695.65	ft	Discharge	1,914.00	cfs
Inlet Control HW Elev.	4,690.78	ft	Tailwater Elevation	0.00	ft
Outlet Control HW Elev.	4,695.65	ft	Control Type	Outlet Control	
Grades					
Upstream Invert	4,680.24	ft	Downstream Invert	4,678.77	ft
Length	138.00	ft	Constructed Slope	0.010652	ft/ft
Hydraulic Profile					
Profile CompositeM2P	ressureProfile		Depth, Downstream	4.73	ft
Slope Type	Mild		Normal Depth	N/A	ft
Flow Regime	Subcritical		Critical Depth	4.73	ft
Velocity Downstream	16.59	ft/s	Critical Slope	0.044241	ft/ft
Section					
Section Shape	Circular		Mannings Coefficient	0.024	
Section Material	CMP		Span	5.00	ft
Section Size	60 inch		Rise	5.00	ft
Number Sections	6				
Outlet Control Properties					
Outlet Control HW Elev.	4,695.65	ft	Upstream Velocity Head	4.10	ft
Ke	0.20		Entrance Loss	0.82	ft
Inlet Control Properties					
Inlet Control HW Elev.	4,690.78	ft	Flow Control	Submerged	
Inlet Type Beveled ring, 33.7°	(1.5:1) bevels		Area Full	117.8	ft²
K	0.00180		HDS 5 Chart	3	
M	2.50000		HDS 5 Scale	В	
С	0.02430		Equation Form	1	
Υ	0.83000				

Culvert Calculator Report GUARD SHACK CULVERT COMBINED ROAD 25YR

Culvert Summary					
Allowable HW Elevation	4,702.00	ft	Headwater Depth/Height	3.29	
Computed Headwater Elevat	tion 4,701.44	ft	Discharge	1,914.00	cfs
Inlet Control HW Elev.	4,696.57	ft	Tailwater Elevation	0.00	ft
Outlet Control HW Elev.	4,701.44	ft	Control Type	Outlet Control	
Grades					
Upstream Invert	4,685.00	ft	Downstream Invert	4,681.37	ft
Length	200.52	ft	Constructed Slope	0.018103	ft/ft
Hydraulic Profile					
Profile Compos	iteM2PressureProfile		Depth, Downstream	4.73	ft
Slope Type	Mild		Normal Depth	N/A	ft
Flow Regime	Subcritical		Critical Depth	4.73	ft
Velocity Downstream	16.59	ft/s	Critical Slope	0.044241	ft/ft
Section					
Section Shape	Circular		Mannings Coefficient	0.024	
Section Material	CMP		Span	5.00	ft
Section Size	60 inch		Rise	5.00	ft
Number Sections	6				
Outlet Control Properties					
Outlet Control HW Elev.	4,701.44	ft	Upstream Velocity Head	4.10	ft
Ke	0.20		Entrance Loss	0.82	ft
Inlet Control Properties					
Inlet Control HW Elev.	4,696.57	ft	Flow Control	N/A	
Inlet Type Beveled	ring, 45° (1:1) bevels		Area Full	117.8	ft²
K	0.00180		HDS 5 Chart	3	
M	2.50000		HDS 5 Scale	Α	
C	0.03000		Equation Form	1	
Υ	0.74000				

HEC-15 RIPRAP DESIGN

Lithium Nevada Corporation
Thacker Pass Project
Mine Entrance Road Culvert Entrance 25yr, 24hr storm

NOTE: Gray boxes require input, Orange boxes require specific values, Red boxes are calculated

Step 1: Channel Design Parameters							
Bottom Width	В	70	ft				
Side Slope	Z	3	x:1				
Longitudinal Slope	S	0.01	ft/ft				
Flow	Q	1914	ft ³ /s				

Step 2: Initial Riprap sizing						
Median Stone Size	D ₅₀	0.5	ft			
Stone Unit Weight	Ys	165	pcf			
	D ₁₀₀	10.00	inch			
	D ₇₅	7.50	inch			
Riprap Calculation Gradation	D ₅₀	6.00	inch			
raprap calculation Gradation	D ₃₀	4.00	inch			
	D ₁₅	3.00	inch			
	D ₁₀	2.00	inch			

Step 3: Estimate the Flow Depth							
Initial Flow Depth Estimate	D _i	3.65	ft				
Area of Channel	Α	295.47	ft^2				
Wetted Perimeter	Р	93.08	ft				
Hydraulic Radius	R	3.17	ft				
Wetted Top Width	Т	91.90	ft				
Calculated Average Flow Depth	D_a	3.22	ft				

Step 4: Estimate Manning's n and the Implied Discharge							
D_a/D_{50}		6.430					
For 1.5 < D _a /D ₅₀ < 185	n	0.049					
Q from mannings	Qi	1934.90 ft ³ /s					
% Difference from Design Discharge		1.09%					
For 0.3 < D _a /D ₅₀ < 1.5	n	0.044					
function(Froude number)	f(Fr)	0.827					
Froude number	Fr	0.637					
Velocity of flow	V	6.478					
effective roughness concrentration	b	0.489					
Roughness element geometry	f(REG)	44.936					
Channel geometry	f(CG)	0.194					
Q from mannings	Qi	2150.65 ft ³ /s					
% Difference from Design Discharge		12.36%					

HEC-15 RIPRAP DESIGN

Step 5:		
If % difference is > 5%, estimate a new depth in Step 3	FALSE	Proceed to Step 6
For $0.3 < D_a/D_{50} < 1.5$	TRUE	
If false, proceed to step 6		

Step 6: Calculate Reynolds and Determine Appropriate Shields Parameter & Safety Factor						
Shear Velocity	V*	1.084				
Reynolds number	R_{e}	4.45E+04				
Gravity	g	32.2	ft/s ²			
Kinematic Viscosity	v	1.22E-05	ft ² /s	(1.217e-5 for 60 °F)		
From Table 6.1	F*	0.050				
From Table 6.1	SF	1.014				
Specific Gravity of Stone	SG	2.64				
For S < 5%	D ₅₀	0.45	ft			

Table 6.1. Selection of Shields' Parameter and Safety Factor						
Reynolds number	F*	SF				
≤ 4x10 ⁴	0.047	1				
4x10 ⁴ <re<2x10<sup>5</re<2x10<sup>	0.050	1.014	(Linear Interpolation)			
≥ 2x10 ⁵	0.15	1.5				

Step 7: Iterate Solution till Calculated D50 is Acceptably Smaller then Chosen D50								
Difference to Chosen Riprap	90.19%	<	100%	TRUE				
IF FALSE GOTO STEP 2, ADJUST RIPRAP SIZE								

Step 8. Side Slope Assessment							
Stone Angle of Repose	ф	42	۰				
For 1.5 < Z < 5	K1	0.868					
	Θ	18.43	•				
	K2	0.88					
Stable D ₅₀	D _{50,s}	0.44					
Difference to Chosen Riprap		88.84%	<	100%	TRUE		

	NewFields	С	ALCULATION SH	HEET
Client	Lithium Nevada Corp.	Preparer:	SEB	3/10/2020
Project	Thacker Pass Project	Checked:		
Title	12" CMP Temporary Culverts	Revision	Α	Page 1

STEEL BURIED PIPE LOAD CAPACITY AND COVER DESIGN

Handbook of Steel Drainage & Highway Construction Products, Corrugated Steel Pipe Institute,

1 Backfill compaction

85%

2 Design Pressure

Cover height must be equal to or greater than diameter of pipe Soil bury depth: 2 ft Soil Unit Weight 120 pcf P_E - Vertical Earth Soil Pressure 240 psf

Design Vehicle 777

Overall Width 11.5 ft
Recommended Maximum Load 85 tons

Additional Payload Weight (Above Recommended) 0 tons

Total Payload Weight

Loaded Front Axle Weight Distribution33.33%Loaded Rear Axle Weight Distrution66.67%Total Weight (Truck + Payload)294,405Front Axle Weight98,135 lbsRear Axle Weight196,270 lbs

Tire Size

Tire width 26.20 in Pressure 94.00 psi Load 98,135 lbs Contact Area 7.25 sf

Determine Largest Live Load from Truck By Comparing Timoshenko and Boussinesq Eq.

2.1.1: Timoshenko:

Timoshenko's Equation

The Timoshenko Equation gives the soil pressure at a point directly under a distributed surface load, neglecting any pavement.

 $P_L = \frac{I_f W_w}{a_C} \left(1 - \frac{H^3}{\left(I_T^2 + H^2 \right)^{1.5}} \right) \qquad \text{The equivalent radius}$ $I_T = \sqrt{\frac{a_C}{\pi}}$

WHERE

 P_L = vertical soil pressure due to live load, lb/ft²

 $I_f = \text{impact factor}$

 W_W = wheel load, lb

 $a_C = \text{contact area, ft}^2$

 r_T = equivalent radius, ft

H = depth of cover, ft

Impact Factor (If)	Between 2-3 for Haul Truck	3
Wheel Load (Ww)	Half of rear load	98,135 lbs
Contact Area (Ac)	Tire contact (dual rear tire)	7.25 sf
rT	Equivalent Radius	1.52
Depth		2.00 ft
P _L - Vertical Live Soil Pressur	e	20,101 psf
P _T - Total Vertical Soil Pressu	20,341 psf	

2.1.2: Boussinesq:

Boussinesq Equation

The Boussinesq Equation gives the pressure at any point in a soil mass under a concentrated surface load. The Boussinesq Equation may be used to find the pressure transmitted from a wheel load to a point that is not along the line of action of the load. Pavement effects are neglected.

(3-4)
$$P_L = \frac{3I_f W_w H^3}{2\pi r^5}$$

WHERE

 P_I = vertical soil pressure due to live load lb/ft

 W_{W} = wheel load, Ib

H =vertical depth to pipe crown, ft

 $I_f = Impact factor$

r = distance from the point of load application to pipe crown, ft

(3-5)
$$\Gamma = \sqrt{X^2 + H^2}$$

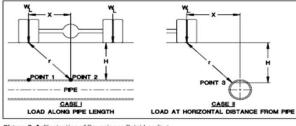
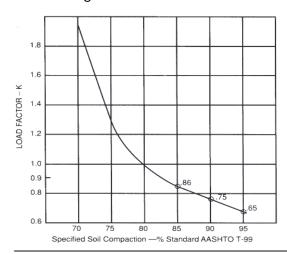


Figure 3-4 Illustration of Boussinesq Point Loading


Loaded weight on center + rear axle

Wl	Per side	98,135	lbs
	x	42.80	in
	r	4	ft
Per side		983.59	psf
P _L - Vertica	1,967.18	psf	
P _T - Total V	ertical Soil Pressure, Boussinesq	2,207	psf

2.2 Determine Load Pressure

Use Figure 6.5 to obtain the load factor, K

The load on the pipe becomes:

$$\begin{array}{ll} P_v &= K \ (DL+LL), \ when \ H \geq S \\ P_v &= (DL+LL), \ when \ H < S \end{array}$$

Where: P_v=Design Pressure

K = Load Factor
DL = Dead Load (psf)
LL = Live Load (psf)
H= Height of cover (ft)

0.86

S = Span (ft)

Figure 6.5 Load factors for CSP in backfill compacted to indicated density.

K =

Total load on pipe, Pv: 17,734 psf

3 Ring Compression

$$\begin{array}{cccc} C &=& P_v & \bullet \, \underline{S} & \text{C = ring compression, lb/ft} \\ P_v &=& \text{design pressure, psf} \\ 2 & \text{S = span or diameter} \end{array}$$

Pv 17,734 psf
CMP pipe diameter, S 12 inch
Ring compression, C 8,867 psf

4 Allowable Wall Stress

Conversion of nominal gage to thickness							
Gage No.	22	20	18	16	14	12	10
Uncoated Thickness (in.) Galvanized Thickness* (in.) Galvanized Structural Plate Thickness (in.)	0.0299 0.034	0.0359 0.040	0.0478 0.052	0.0598 0.064	0.0747 0.079	0.1046 0.109 0.111	0.1345 0.138 0.140
Gage No.	8	7	5	3	1	5/16"	3/8"
Uncoated Thickness (in.) Galvanized Thickness* (in.) Galvanized Structural Plate Thickness (in.)	0.1644 0.168 0.170	0.1838 0.188	0.2145	0.2451	0.2758 0.280	0.3125 0.318	0.3750 0.380

Notes: * Also referred to as specified thickness for corrugated steel pipe products.

For structural plate, tunnel liner plates and other products, see chapters on those products.

Sectional properties of 11/2 x 1/4 in. (Helical)									
Specified Thickness	Uncoated Thickness T	Area of Section A	Tangent Length TL	Tangent Angle	Moment of Inertia	Section Modulus S	Radius of Gyration	Developed Width Factor	
(in.)	(in.)	(in. ² /ft)	(in.)	(Degrees)	(in. ⁴ /in)	(in. ³ /ft)	(in.)		
0.040*	0.0359	0.456	0.571	21.44	0.00025	0.0213	0.0816	1.060	
0.052	0.0478	0.608	0.566	21.52	0.00034	0.0277	0.0842	1.060	
0.064	0.0598	0.761	0.560	21.61	0.00044	0.0340	0.0832	1.060	
0.079	0.0747	0.950	0.554	21.71	0.00057	0.0419	0.0846	1.060	
0.109*	0.1046	1.331	0.540	21.94	0.00086	0.0580	0.0879	1.060	
0.138*	0.1345	1.712	0.526	22.17	0.00121	0.0753	0.0919	1.061	
0.168*	0.1644	2.093	0.511	22.42	0.00163	0.0945	0.0967	1.061	

* Thickness not commonly available. Information only.

Notes: 1. Per foot of projection about the neutral axis.

To obtain A or S per inch of width, divide the above values by 12.

Developed width factor measures the increase in profile length due to corrugating. Dimensions are subject to manufacturing tolerances.

Sectional properties of 2 x 1/2 in. (Helical)								
Specified Thickness	Uncoated Thickness T	Area of Section A	Tangent Length 71.	Tangent Angle △	Moment of Inertia	Section Modulus S	Radius of Gyration	Developed Width Factor
(in.)	(in.)	(in. ² /ft)	(in.)	(Degrees)	(in. ⁴ /in)	(in. ³ /ft)	(in.)	
0.040*	0.0359	0.489	0.681	33.12	0.0011	0.0513	0.1676	1.136
0.052	0.0478	0.652	0.672	33.29	0.0015	0.0673	0.1682	1.136
0.064	0.0598	0.815	0.663	33.46	0.0019	0.0832	0.1690	1.136
0.079	0.0747	1.019	0.625	33.68	0.0025	0.1025	0.1700	1.137
0.109	0.1046	1.428	0.629	34.13	0.0035	0.1406	0.1725	1.138
0.138*	0.1345	1.838	0.605	34.62	0.0047	0.1783	0.1754	1.139
0.168*	0.1644	2.249	0.579	35.13	0.0060	0.2166	0.1788	1.140

* Thickness not commonly available. Information only.

Notes: 1. Per foot of projection about the neutral axis.

To obtain A or S per inch of width, divide the above values by 12.

Developed width factor measures the increase in profile length due to corrugating. Dimensions are subject to manufacturing tolerances.

From Tables:

Selected gage: 12 (Use 2x1/2 in)

Specified thickness: 0.109 in Radius of Gyration, r: 0.1725 in

Pipe diameter, D 12 in D/r 70

Allowable compressive stress – wall stress (f_b)

 $\begin{array}{lll} -f_b\!=\!f_y=33,\!000\;psi. & when\;D/r\!<\!294 \\ -f_b\!=\!40,\!000-0.081(D/r)^2, & when\;D/r\!>\!294\!<\!500 \\ -f_b\!=\!4.93x10^9/(D/r)^2 & when\;D/r\!>\!500 \end{array}$

Ultimate compressive stress, fb 33,000 psi
Factor of Safety 2

Allowable wall stress, fc 16,500 psi

5 **Wall Thickness**

$$A = \frac{C}{f_c}$$

Required Wall Area, A

0.5374 in²/foot

Confirm that the selected wall thickness provides the required area

Specified Wall thickness

0.109 in

GOOD

Wall area from table

1.428 in²/foot

Check wall areas:

0.5374

6 **Handling Thickness**

= modulus of elasticity

= diameter or span,

moment of inertia of the pipe wall (

1.428

Modulus of Elasticity, E

30000000 psi

Moment of Inertia, I (from table)

0.0035 in⁴/in

Flexibility Factor, F

0.0014

Flexibility Factor acceptable maximum values:

0.0433 factory made seams

0.02 Field assembled

0.0014

0.0433 GOOD

Factory made: Field assembled:

0.0014

<

0.02 GOOD

7 **Seam Strength**

From Table 6.4a **Ultimate Seam Strength** 769 (kN/m)

Allowable

52,705 psf

FOS = 2Total load on pipe, Pv:

26,352 psf

17,734 psf

GOOD

Table 0.4a	Riveted CSP - Ultimate longitudinal seam strength (kN/m)								
Constinut		8 mm Rivets			10 mm i	12 mm Rivets			
Specified Thickness		68 x 13 mm		68 x 1	3 mm	76 x 25 mm			
mm		Single	Double	Single	Double	Double	Double		
1.3 1.6 2.0 2.8 3.5 4.2		148 236 261	274 401	341 356 372	682 712 746	387 499	769 <u>921</u> 1023		

Pipe arches 8

n/a

	NewFields	CALCULATION SHEET			
Client	Lithium Nevada Corp.	Preparer:	SEB	3/10/2020	
Project	Thacker Pass Project	Checked:			
Title	18" CMP Temporary Culverts	Revision	Α	Page 1	

STEEL BURIED PIPE LOAD CAPACITY AND COVER DESIGN

Handbook of Steel Drainage & Highway Construction Products, Corrugated Steel Pipe Institute,

1 Backfill compaction

85%

2 Design Pressure

Cover height must be equal to or greater than diameter of pipe Soil bury depth: 2 ft Soil Unit Weight 120 pcf P_E - Vertical Earth Soil Pressure 240 psf

Design Vehicle 777

Overall Width 11.5 ft
Recommended Maximum Load 85 tons
Additional Payload Weight (Above Recommended) 0 tons

Total Payload Weight

Loaded Front Axle Weight Distribution33.33%Loaded Rear Axle Weight Distrution66.67%Total Weight (Truck + Payload)294,405Front Axle Weight98,135 lbsRear Axle Weight196,270 lbs

Tire Size

Tire width 26.20 in Pressure 94.00 psi Load 98,135 lbs Contact Area 7.25 sf

Determine Largest Live Load from Truck By Comparing Timoshenko and Boussinesq Eq.

2.1.1: Timoshenko:

Timoshenko's Equation

The Timoshenko Equation gives the soil pressure at a point directly under a distributed surface load, neglecting any pavement.

 $P_L = \frac{I_f W_w}{a_C} \left(1 - \frac{H^3}{\left(I_T^2 + H^2 \right)^{1.5}} \right) \qquad \text{The equivalent radius}$ $I_T = \sqrt{\frac{a_C}{\pi}}$

WHERE

 P_L = vertical soil pressure due to live load, lb/ft²

 $I_f = \text{impact factor}$

 W_W = wheel load, lb

 $a_C = \text{contact area, ft}^2$

 r_T = equivalent radius, ft

H = depth of cover, ft

Impact Factor (If)	Between 2-3 for Haul Truck	3
Wheel Load (Ww)	Half of rear load	98,135 lbs
Contact Area (Ac)	Tire contact (dual rear tire)	7.25 sf
rT	Equivalent Radius	1.52
Depth		2.00 ft
P _L - Vertical Live Soil Pressur	e	20,101 psf
P _T - Total Vertical Soil Pressu	20,341 psf	

2.1.2: Boussinesq:

Boussinesq Equation

The Boussinesq Equation gives the pressure at any point in a soil mass under a concentrated surface load. The Boussinesq Equation may be used to find the pressure transmitted from a wheel load to a point that is not along the line of action of the load. Pavement effects are neglected.

(3-4)
$$P_L = \frac{3I_f W_w H^3}{2\pi r^5}$$

WHERE

 P_I = vertical soil pressure due to live load lb/ft

 W_{W} = wheel load, Ib

H =vertical depth to pipe crown, ft

 $I_f = Impact factor$

r = distance from the point of load application to pipe crown, ft

(3-5)
$$\Gamma = \sqrt{X^2 + H^2}$$

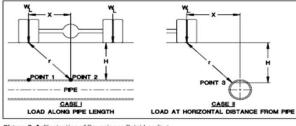
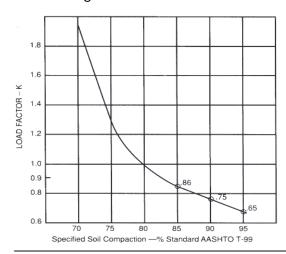


Figure 3-4 Illustration of Boussinesq Point Loading


Loaded weight on center + rear axle

Wl	Per side	98,135	lbs
	x	42.80	in
	r	4	ft
Per side		983.59	psf
P _L - Vertica	1,967.18	psf	
P _T - Total V	ertical Soil Pressure, Boussinesq	2,207	psf

2.2 Determine Load Pressure

Use Figure 6.5 to obtain the load factor, K

The load on the pipe becomes:

$$\begin{array}{ll} P_v &= K \ (DL+LL), \ when \ H \geq S \\ P_v &= (DL+LL), \ when \ H < S \end{array}$$

Where: P_v=Design Pressure

K = Load Factor
DL = Dead Load (psf)
LL = Live Load (psf)
H= Height of cover (ft)

S = Span (ft)

Figure 6.5 Load factors for CSP in backfill compacted to indicated density.

K =

0.86

Total load on pipe, Pv:

17,734 psf

3 Ring Compression

$$\begin{array}{cccc} C &=& P_v & \bullet \, \underline{S} & \text{C = ring compression, lb/ft} \\ P_v &=& \text{design pressure, psf} \\ 2 & \text{S = span or diameter} \end{array}$$

Pv CMP pipe diameter, S Ring compression, C 17,734 psf 18 inch 13,300 psf

4 Allowable Wall Stress

Conversion of nominal gage to thickness							
Gage No.	22	20	18	16	14	12	10
Uncoated Thickness (in.) Galvanized Thickness* (in.) Galvanized Structural Plate Thickness (in.)	0.0299 0.034	0.0359 0.040	0.0478 0.052	0.0598 0.064	0.0747 0.079	0.1046 0.109 0.111	0.1345 0.138 0.140
Gage No.	8	7	5	3	1	5/16"	3/8"
Uncoated Thickness (in.) Galvanized Thickness* (in.) Galvanized Structural Plate Thickness (in.)	0.1644 0.168 0.170	0.1838 0.188	0.2145	0.2451	0.2758 0.280	0.3125 0.318	0.3750 0.380

Notes: * Also referred to as specified thickness for corrugated steel pipe products.

For structural plate, tunnel liner plates and other products, see chapters on those products.

Sectional properties of 11/2 x 1/4 in. (Helical)								
Specified Thickness	Uncoated Thickness T	Area of Section A	Tangent Length TL	Tangent Angle	Moment of Inertia	Section Modulus S	Radius of Gyration	Developed Width Factor
(in.)	(in.)	(in. ² /ft)	(in.)	(Degrees)	(in. ⁴ /in)	(in. ³ /ft)	(in.)	
0.040*	0.0359	0.456	0.571	21.44	0.00025	0.0213	0.0816	1.060
0.052	0.0478	0.608	0.566	21.52	0.00034	0.0277	0.0842	1.060
0.064	0.0598	0.761	0.560	21.61	0.00044	0.0340	0.0832	1.060
0.079	0.0747	0.950	0.554	21.71	0.00057	0.0419	0.0846	1.060
0.109*	0.1046	1.331	0.540	21.94	0.00086	0.0580	0.0879	1.060
0.138*	0.1345	1.712	0.526	22.17	0.00121	0.0753	0.0919	1.061
0.168*	0.1644	2.093	0.511	22.42	0.00163	0.0945	0.0967	1.061

* Thickness not commonly available. Information only.

Notes: 1. Per foot of projection about the neutral axis.

To obtain A or S per inch of width, divide the above values by 12.

Developed width factor measures the increase in profile length due to corrugating. Dimensions are subject to manufacturing tolerances.

Sectional properties of 2 x 1/2 in. (Helical)								
Specified Thickness	Uncoated Thickness T	Area of Section A	Tangent Length 71.	Tangent Angle △	Moment of Inertia	Section Modulus S	Radius of Gyration	Developed Width Factor
(in.)	(in.)	(in. ² /ft)	(in.)	(Degrees)	(in. ⁴ /in)	(in. ³ /ft)	(in.)	
0.040*	0.0359	0.489	0.681	33.12	0.0011	0.0513	0.1676	1.136
0.052	0.0478	0.652	0.672	33.29	0.0015	0.0673	0.1682	1.136
0.064	0.0598	0.815	0.663	33.46	0.0019	0.0832	0.1690	1.136
0.079	0.0747	1.019	0.625	33.68	0.0025	0.1025	0.1700	1.137
0.109	0.1046	1.428	0.629	34.13	0.0035	0.1406	0.1725	1.138
0.138*	0.1345	1.838	0.605	34.62	0.0047	0.1783	0.1754	1.139
0.168*	0.1644	2.249	0.579	35.13	0.0060	0.2166	0.1788	1.140

^{*} Thickness not commonly available. Information only.

Notes: 1. Per foot of projection about the neutral axis.

To obtain A or S per inch of width, divide the above values by 12.

Developed width factor measures the increase in profile length due to corrugating. Dimensions are subject to manufacturing tolerances.

From Tables:

Selected gage: 12 (Use 2x1/2 in)

Specified thickness: 0.109 in Radius of Gyration, r: 0.1725 in

Pipe diameter, D 18 in D/r 104

Allowable compressive stress – wall stress (fb)

 $\begin{array}{lll} -f_b = f_y = 33,000 \; psi. & when \; D/r < 294 \\ -f_b = 40,000 - 0.081 (D/r)^2, & when \; D/r > 294 < 500 \\ -f_b = 4.93 \times 10^9 / (D/r)^2 & when \; D/r > 500 \end{array}$

Ultimate compressive stress, fb 33,000 psi Factor of Safety 2 Allowable wall stress, fc 16,500 psi

5 Wall Thickness

$$A = \frac{C}{f_c}$$

Required Wall Area, A

0.8061 in²/foot

Confirm that the selected wall thickness provides the required area

Specified Wall thickness

0.109 in

Wall area from table

1.428 in²/foot

Check wall areas:

1.428 >

0.8061 GOOD

6 Handling Thickness

 $FF = D^2$

E = modulus of elasticity

D = diameter or span,

I = moment of inertia of the pipe wall (

Modulus of Elasticity, E

3000000 psi

Moment of Inertia, I (from table)

0.0035 in⁴/in

Flexibility Factor, F

0.0031

Flexibility Factor acceptable maximum values:

0.0433 factory made seams

0.02 Field assembled

0.0031

0.0433 GOOD

Factory made: Field assembled:

0.0031

0.02 GOOD

7 Seam Strength

From Table 6.4a Ultimate Seam Strength

769 (kN/m)

GOOD

Allowable FOS = 2

52,705 psf

Total load on pipe, Pv:

26,352 psf

Table 6.4a

Disected CCD - Ultimate longitudinal seam strength (kN/m)

<

Constinut	8 mm	8 mm Rivets		10 mm F	12 mm Rivets	
Specified Thickness	68 x	13 mm	68 x 1	3 mm	76 x 25 mm	76 x 25 mm
mm	Single	Double	Single	Double	Double	Double
1.3 1.6	148 236	274			387	
2.0 2.8	261	401	341	682	499	769
3.5 4.2			356 372	712 746		921 1023

8 Pipe arches

n/a

	NewFields	CALCULATION SHEET			
Client	Lithium Nevada Corp.	Preparer:	RL	2/18/2020	
Project	Thacker Pass Project	Checked:	ZR	2/19/2020	
Title	36" CMP Temporary Culverts	Revision	А	Page 1	

STEEL BURIED PIPE LOAD CAPACITY AND COVER DESIGN

Handbook of Steel Drainage & Highway Construction Products, Corrugated Steel Pipe Institute, 2007

1	Backfill	compaction
---	----------	------------

85%

2 Design Pressure

Cover height must be equal to or greater than diameter of pipe		
Soil bury depth:	4	ft
Soil Unit Weight	120	pcf
P _E - Vertical Earth Soil Pressure	480	psf

Design Vehicle		777

Overall Width 11.5 ft
Recommended Maximum Load 85 tons
Additional Payload Weight (Above Recommended) 0 tons

Total Payload Weight

Loaded Front Axle Weight Distribution33.33%Loaded Rear Axle Weight Distrution66.67%Total Weight (Truck + Payload)294,405Front Axle Weight98,135 lbsRear Axle Weight196,270 lbs

Tire Size

Tire width	26.20 in
Pressure	94.00 psi
Load	98,135 lbs
Contact Area	7.25 sf

2.1 Determine Largest Live Load from Truck By Comparing Timoshenko and Boussinesq Eq.

2.1.1: Timoshenko:

Timoshenko's Equation

The Timoshenko Equation gives the soil pressure at a point directly under a distributed surface load, neglecting any pavement.

(3-2)
$$P_L = \frac{I_f W_w}{a_C} \left(1 - \frac{H^3}{(r_T^2 + H^2)^{1.5}} \right)$$

The ed	uivalent radius is given by:
(3-3)	$r_T = \sqrt{\frac{a_C}{\pi}}$

WHERE

 P_L = vertical soil pressure due to live load, lb/ft²

 $I_f = impact factor$

 W_W = wheel load, lb

 a_C = contact area, ft²

 r_T = equivalent radius, ft

H = depth of cover, ft

Impact Factor (If)	Between 2-3 for Haul Truck	3
Wheel Load (Ww)	Half of rear load	98,135 lbs
Contact Area (Ac)	Tire contact (dual rear tire)	7.25 sf
rT	Equivalent Radius	1.52
Depth		4.00 ft
P _L - Vertical Live Soil Pressui	7,431 psf	
P _T - Total Vertical Soil Pressu	7,911 psf	

2.1.2: Boussinesq:

Boussinesq Equation

The Boussinesq Equation gives the pressure at any point in a soil mass under a concentrated surface load. The Boussinesq Equation may be used to find the pressure transmitted from a wheel load to a point that is not along the line of action of the load. Pavement effects are neglected.

$$P_{L} = \frac{3I_{f}W_{w}H^{3}}{2\pi r^{5}}$$

WHERE

 P_L = vertical soil pressure due to live load lb/ft²

 W_W = wheel load, Ib

H = vertical depth to pipe crown, ft

 $I_f = Impact factor$

r = distance from the point of load application to pipe crown, ft

(3-5)
$$\Gamma = \sqrt{X^2 + H^2}$$

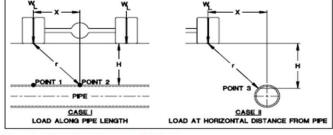
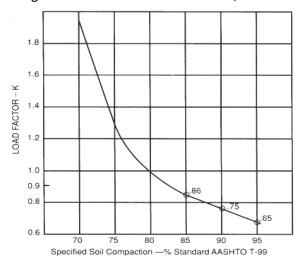


Figure 3-4 Illustration of Boussinesq Point Loading


Loaded weight on center + rear axle

WI	Per side	98,135	lbs
	X	42.80	in
	r	5	ft
Per side		2,035.00	psf
P _L - Vertical Live Soil Pressure 4,		4,070.00	psf
P _T - Total Vertical Soil Pressure, Boussinesq		4,550	psf

2.2 Determine Load Pressure

Use Figure 6.5 to obtain the load factor, K

The load on the pipe becomes:

$$P_v = K (DL + LL)$$
, when $H \ge S$
 $P_v = (DL + LL)$, when $H < S$

Where: P_v=Design Pressure

K = Load Factor
DL = Dead Load (psf)
LL = Live Load (psf)
H= Height of cover (ft)

S = Span (ft)

Figure 6.5 Load factors for CSP in backfill compacted to indicated density.

K = 0.86

Total load on pipe, Pv: 7,283 psf

3 Ring Compression

Pv7,283 psfCMP pipe diameter, S36 inchRing compression, C10,925 psf

4 Allowable Wall Stress

Conversion of nominal gage to thickness							
Gage No. 22 20 18 16 14 12 10						10	
Uncoated Thickness (in.) Galvanized Thickness* (in.) Galvanized Structural Plate Thickness (in.)	0.0299 0.034	0.0359 0.040	0.0478 0.052	0.0598 0.064	0.0747 0.079	0.1046 0.109 0.111	0.1345 0.138 0.140
Gage No.	8	7	5	3	1	5/16"	3/8"
Uncoated Thickness (in.) Galvanized Thickness* (in.) Galvanized Structural Plate Thickness (in.)	0.1644 0.168 0.170	0.1838 0.188	0.2145 0.218	0.2451 0.249	0.2758 0.280	0.3125 0.318	0.3750 0.380

Notes: * Also referred to as specified thickness for corrugated steel pipe products.

For structural plate, tunnel liner plates and other products, see chapters on those products.

Sectional properties of 11/2 x 1/4 in. (Helical)								
Specified Thickness	Uncoated Thickness T	Area of Section A	Tangent Length TL	Tangent Angle	Moment of Inertia	Section Modulus S	Radius of Gyration	Developed Width Factor
(in.)	(in.)	(in. ² /ft)	(in.)	(Degrees)	(in. ⁴ /in)	(in. ³ /ft)	(in.)	
0.040*	0.0359	0.456	0.571	21.44	0.00025	0.0213	0.0816	1.060
0.052	0.0478	0.608	0.566	21.52	0.00034	0.0277	0.0842	1.060
0.064	0.0598	0.761	0.560	21.61	0.00044	0.0340	0.0832	1.060
0.079	0.0747	0.950	0.554	21.71	0.00057	0.0419	0.0846	1.060
0.109*	0.1046	1.331	0.540	21.94	0.00086	0.0580	0.0879	1.060
0.138*	0.1345	1.712	0.526	22.17	0.00121	0.0753	0.0919	1.061
0.168*	0.1644	2.093	0.511	22.42	0.00163	0.0945	0.0967	1.061

Sectional properties of 2 x 1/2 in. (Helical)

Specified Thickness (in.)	Uncoated Thickness T (in.)	Area of Section A (in. ² /ft)	Tangent Length 7L (in.)	Tangent Angle A (Degrees)	Moment of Inertia ! (in. ⁴ /in)	Section Modulus S (in. ³ /ft)	Radius of Gyration " (in.)	Developed Width Factor
0.040*	0.0359	0.489	0.681	33.12	0.0011	0.0513	0.1676	1.136
0.052	0.0478	0.652	0.672	33.29	0.0015	0.0673	0.1682	1.136
0.064 0.079	0.0598 0.0747	0.815 1.019	0.663 0.625	33.46 33.68	0.0019 0.0025	0.0832 0.1025	0.1690 0.1700	1.136 1.137
0.109	0.1046	1.428	0.629	34.13	0.0025	0.1406	0.1725	1.138
0.138* 0.168*	0.1345 0.1644	1.838 2.249	0.605 0.579	34.62 35.13	0.0047 0.0060	0.1783 0.2166	0.1754 0.1788	1.139 1.140

^{*} Thickness not commonly available. Information only.

Notes: 1. Per foot of projection about the neutral axis.

To obtain A or S per inch of width, divide the above values by 12.

Developed width factor measures the increase in profile length due to corrugating. Dimensions are subject to manufacturing tolerances.

From Tables:

Selected gage: 12 (Use 2x1/2 in)

Specified thickness: 0.109 in Radius of Gyration, r: 0.1725 in

Pipe diameter, D 36 in D/r 209

Allowable compressive stress - wall stress (fb)

 $\begin{array}{lll} -f_b = f_y = 33,000 \; psi. & when \; D/r < 294 \\ -f_b = 40,000 - 0.081 (D/r)^2, & when \; D/r > 294 < 500 \\ -f_b = 4.93 \times 10^9 / (D/r)^2 & when \; D/r > 500 \end{array}$

Ultimate compressive stress, fb33,000 psiFactor of Safety2Allowable wall stress, fc16,500 psi

5 Wall Thickness

$$A = \frac{C}{f_c}$$

Required Wall Area, A 0.6621 in²/foot

Confirm that the selected wall thickness provides the required area

Specified Wall thickness

0.109 in 1.428 in²/foot

7,283 psf

GOOD

Wall area from table Check wall areas:

1.428 > 0.6621 GOOD

6 Handling Thickness

$$FF = \frac{D^2}{EI}$$
 E = modulus of elasticity D = diameter or span,

I = moment of inertia of the pipe wall (

Modulus of Elasticity, E 30000000 psi

Moment of Inertia, I (from table) 0.0035 in⁴/in

Flexibility Factor, F 0.0123

Flexibility Factor acceptable maximum values:

0.0433 factory made seams

0.02 Field assembled

Factory made: 0.0123 < 0.0433 GOOD Field assembled: 0.0123 < 0.02 GOOD

7 Seam Strength

From Table 6.4a Ultimate Seam Strength 769 (kN/m) Allowable FOS = 2 52,705 psf

Total load on pipe, Pv: 26,352 psf

Table 6.4a	veted CSP -	Ultimat	e longi	tudinal:	seam strength	n (kN/m)
Specified	8 mr	n Rivets		10 mm i	Rivets	12 mm Rivets
Thickness	683	13 mm	68 x 1	3 mm	76 x 25 mm	76 x 25 mm
mm	Single	Double	Single	Double	Double	Double
1.3 1.6 2.0 2.8 3.5	148 236 261	274 401	341 356	682 712 746	387 499	769 <u>921</u> 1023
4.2			372	746		1023

8 Pipe arches

n/a

	NewFields	CALCULATION SHEET		
Client	Lithium Nevada Corp.	Preparer:	SEB	2/28/2020
Project	Thacker Pass Project	Checked:		
Title	54" CMP CGS Inlet Culverts	Revision	А	Page 1

STEEL BURIED PIPE LOAD CAPACITY AND COVER DESIGN

Handbook of Steel Drainage & Highway Construction Products, Corrugated Steel Pipe Institute, 2007

1 Bac	kfill com	paction
-------	-----------	---------

85%

2 Design Pressure

Cover height must be equal to or greater than diameter of pipe		
Soil bury depth:	3	ft
Soil Unit Weight	120	pcf
P _F - Vertical Earth Soil Pressure	360	psf

<u>Design Vehicle</u>	777
-----------------------	-----

Overall Width 11.5 ft
Recommended Maximum Load 85 tons
Additional Payload Weight (Above Recommended) 0 tons

Total Payload Weight

Loaded Front Axle Weight Distribution33.33%Loaded Rear Axle Weight Distrution66.67%Total Weight (Truck + Payload)294,405Front Axle Weight98,135 lbsRear Axle Weight196,270 lbs

Tire Size

Tire width	26.20 in
Pressure	94.00 psi
Load	98,135 lbs
Contact Area	7.25 sf

2.1 Determine Largest Live Load from Truck By Comparing Timoshenko and Boussinesq Eq.

2.1.1: Timoshenko:

Timoshenko's Equation

The Timoshenko Equation gives the soil pressure at a point directly under a distributed surface load, neglecting any pavement.

(3-2)
$$P_L = \frac{I_f W_w}{a_C} \left(1 - \frac{H^3}{(r_T^2 + H^2)^{1.5}} \right)$$

The ed	uivalent radius is given by:
(3-3)	$r_T = \sqrt{\frac{a_C}{\pi}}$

WHERE

 P_L = vertical soil pressure due to live load, lb/ft ²

 $I_f = impact factor$

 W_W = wheel load, lb

 $a_C = \text{contact area, ft}^2$

 r_T = equivalent radius, ft

H = depth of cover, ft

Impact Factor (If)	Between 2-3 for Haul Truck	3	
Wheel Load (Ww)	Half of rear load	98,135 lb	S
Contact Area (Ac)	Tire contact (dual rear tire)	7.25 sf	
rT	Equivalent Radius	1.52	
Depth		3.00 ft	
P _L - Vertical Live Soil Pressure		11,773 ps	f
P _T - Total Vertical Soil Pressure, Timoshenko		12,133 ps	f

2.1.2: Boussinesq:

Boussinesq Equation

The Boussinesq Equation gives the pressure at any point in a soil mass under a concentrated surface load. The Boussinesq Equation may be used to find the pressure transmitted from a wheel load to a point that is not along the line of action of the load. Pavement effects are neglected.

$$P_{L} = \frac{3I_{f}W_{w}H^{3}}{2\pi r^{5}}$$

WHERE

 P_L = vertical soil pressure due to live load Ib/ft²

 W_W = wheel load, Ib

H = vertical depth to pipe crown, ft

 $I_f = Impact factor$

r = distance from the point of load application to pipe crown, ft

(3-5)
$$\Gamma = \sqrt{X^2 + H^2}$$

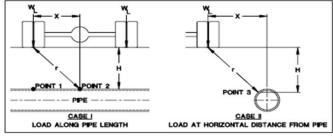
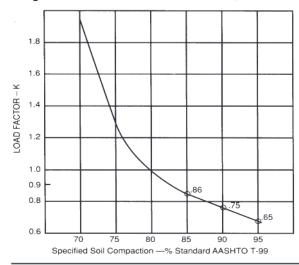


Figure 3-4 Illustration of Boussinesq Point Loading


Loaded weight on center + rear axle

WI	Per side	98,135	lbs
	x	42.80	in
	r	5	ft
Per side		1,726.02	psf
P _L - Vertical Live Soil Pressure		3,452.04	psf
P _T - Total Vertical Soil Pressure, Boussinesq 3,		3,812	psf

2.2 Determine Load Pressure

Use Figure 6.5 to obtain the load factor, K

The load on the pipe becomes:

 $P_v = K (DL + LL)$, when $H \ge S$ $P_v = (DL + LL)$, when H < S

Where: P_v=Design Pressure

K = Load Factor
DL = Dead Load (psf)
LL = Live Load (psf)
H= Height of cover (ft)

S = Span (ft)

Figure 6.5 Load factors for CSP in backfill compacted to indicated density.

K = 0.86

Total load on pipe, Pv: 10,795 psf

3 Ring Compression

Pv 10,795 psf CMP pipe diameter, S 54 inch Ring compression, C 24,288 psf

4 Allowable Wall Stress

Conversion of nominal gage to thickness								
Gage No.	22	20	18	16	14	12	10	
Uncoated Thickness (in.) Galvanized Thickness* (in.) Galvanized Structural Plate Thickness (in.)	0.0299 0.034	0.0359 0.040	0.0478 0.052	0.0598 0.064	0.0747 0.079	0.1046 0.109 0.111	0.1345 0.138 0.140	
Gage No.	8	7	5	3	1	5/16"	3/8"	
Uncoated Thickness (in.) Galvanized Thickness* (in.) Galvanized Structural Plate Thickness (in.)	0.1644 0.168 0.170	0.1838 0.188	0.2145 0.218	0.2451 0.249	0.2758 0.280	0.3125 0.318	0.3750 0.380	

Notes: * Also referred to as specified thickness for corrugated steel pipe products.

For structural plate, tunnel liner plates and other products, see chapters on those products.

Sectional	Sectional properties of 11/2 x 1/4 in. (Helical)										
Specified Thickness	Uncoated Thickness T	Area of Section A	Tangent Length TL	Tangent Angle	Moment of Inertia	Section Modulus S	Radius of Gyration	Developed Width Factor			
(in.)	(in.)	(in. ² /ft)	(in.)	(Degrees)	(in. ⁴ /in)	(in. ³ /ft)	(in.)				
0.040*	0.0359	0.456	0.571	21.44	0.00025	0.0213	0.0816	1.060			
0.052	0.0478	0.608	0.566	21.52	0.00034	0.0277	0.0842	1.060			
0.064	0.0598	0.761	0.560	21.61	0.00044	0.0340	0.0832	1.060			
0.079	0.0747	0.950	0.554	21.71	0.00057	0.0419	0.0846	1.060			
0.109*	0.1046	1.331	0.540	21.94	0.00086	0.0580	0.0879	1.060			
0.138*	0.1345	1.712	0.526	22.17	0.00121	0.0753	0.0919	1.061			
0.168*	0.1644	2.093	0.511	22.42	0.00163	0.0945	0.0967	1.061			

Sectional properties of 2 x 1/2 in. (Helical)

Specified Thickness (in.)	Uncoated Thickness T (in.)	Area of Section A (in. ² /ft)	Tangent Length 7L (in.)	Tangent Angle (Degrees)	Moment of Inertia / (in. ⁴ /in)	Section Modulus S (in. ³ /ft)	Radius of Gyration r (in.)	Developed Width Factor
0.040*	0.0359	0.489	0.681	33.12	0.0011	0.0513	0.1676	1.136
0.052	0.0478	0.652	0.672	33.29	0.0015	0.0673	0.1682	1.136
0.064	0.0598	0.815	0.663	33.46	0.0019	0.0832	0.1690	1.136
0.079	0.0747	1.019	0.625	33.68	0.0025	0.1025	0.1700	1.137
0.109	0.1046	1.428	0.629	34.13	0.0035	0.1406	0.1725	1.138
0.138*	0.1345	1.838	0.605	34.62	0.0047	0.1783	0.1754	1.139
0.168*	0.1644	2.249	0.579	35.13	0.0060	0.2166	0.1788	1.140

^{*} Thickness not commonly available. Information only.

Notes: 1. Per foot of projection about the neutral axis.

To obtain A or S per inch of width, divide the above values by 12.

Developed width factor measures the increase in profile length due to corrugating. Dimensions are subject to manufacturing tolerances.

From Tables:

Selected gage: 8 (Use 2x1/2 in)

Specified thickness: 0.168 in Radius of Gyration, r: 0.1788 in

Pipe diameter, D 54 in D/r 302

Allowable compressive stress – wall stress (fb)

 $\begin{array}{lll} -f_b = f_y = 33,000 \; psi. & when \; D/r < 294 \\ -f_b = 40,000 - 0.081 (D/r)^2, & when \; D/r > 294 < 500 \\ -f_b = 4.93 \times 10^9 / (D/r)^2 & when \; D/r > 500 \end{array}$

Ultimate compressive stress, fb 32,612 psi
Factor of Safety 2
Allowable wall stress, fc 16,306 psi

5 Wall Thickness

$$A = \frac{C}{f_c}$$

Required Wall Area, A 1.4895 in²/foot

Confirm that the selected wall thickness provides the required area

Specified Wall thickness

0.168 in 2.249 in²/foot

Wall area from table Check wall areas:

2.249 > 1.4895 GOOD

6 Handling Thickness

$$FF = \frac{D^2}{EI}$$
 E = modulus of elasticity D = diameter or span,

I = moment of inertia of the pipe wall (

Modulus of Elasticity, E 3000000 psi

Moment of Inertia, I (from table) 0.006 in⁴/in

Flexibility Factor, F 0.0162

Flexibility Factor acceptable maximum values:

0.0433 factory made seams

0.02 Field assembled

Factory made: 0.0162 < 0.0433 GOOD Field assembled: 0.0162 < 0.02 GOOD

7 Seam Strength

From Table 6.4a Ultimate Seam Strength 341 kN/m 23,371 psf Allowable FOS = 2 11,685 psf

Total load on pipe, Pv: 10,795 psf GOOD

Table 6.4a	ted CSP -	Ultimat	e longi	tudinal:	seam strength	n (kN/m)
Constind	8 mn	n Rivets		10 mm i	Rivets	12 mm Rivets
Specified Thickness	68 x	13 mm	68 x 13 mm 76 x 25 mm 76			76 x 25 mm
mm	Single	Double	Single	Double	Double	Double
1.3 1.6 2.0 2.8 3.5 4.2	148 236 261	274 401	341 356 372	682 712 746	387 499	769 <u>921</u> 1023

8 Pipe arches

n/a

98,135 lbs 7.25 sf

	NewFields		CALCULATION S	HEET
Client	Lithium Nevada Corp.	Preparer:	RL	2/20/2020
Project	Thacker Pass Project	Checked:	ZR	
Title	60" CMP Culverts - CTFS West Diversion	Revision	А	Page 1

STEEL BURIED PIPE LOAD CAPACITY AND COVER DESIGN

Handbook of Steel Drainage & Highway Construction Products, Corrugated Steel Pipe Institute, 2007

1	Backfill compaction		
		90%	
2	Design Pressure		
	Cover height must be equal to or greater than diameter of pipe		
	Soil bury depth:	3 ft	
	Soil Unit Weight	120 pcf	
	P _E - Vertical Earth Soil Pressure	360 psf	
	Design Vehicle	777	
	Overall Width	11.5 ft	
	Recommended Maximum Load	85 tons	
	Additional Payload Weight (Above Recommended)	0 tons	
	Total Payload Weight		
	Loaded Front Axle Weight Distribution	33.33%	
	Loaded Rear Axle Weight Distrution	66.67%	
	Total Weight (Truck + Payload)	294,405	
	Front Axle Weight	98,135 lbs	
	Rear Axle Weight	196,270 lbs	
	<u>Tire Size</u>		
	Tire width	26.20 in	
	Pressure	94.00 psi	

Load

Contact Area

2.1 Determine Largest Live Load from Truck By Comparing Timoshenko and Boussinesq Eq.

2.1.1: Timoshenko:

Timoshenko's Equation

The Timoshenko Equation gives the soil pressure at a point directly under a distributed surface load, neglecting any pavement.

(3-2) $P_{L} = \frac{I_{f}W_{w}}{a_{C}} \left(1 - \frac{H^{3}}{(r_{T}^{2} + H^{2})^{L5}}\right)$

The equivalent radius is given by: (3-3) $\Gamma_T = \sqrt{\frac{a_C}{\pi}}$

WHERE

 P_L = vertical soil pressure due to live load, lb/ft²

If= impact factor

 W_{w} = wheel load, lb

 a_C = contact area, ft²

 r_T = equivalent radius, ft

H =depth of cover, ft

Impact Factor (If)	Between 2-3 for Haul Truck	3
Wheel Load (Ww)	Half of rear load	98,135 lbs
Contact Area (Ac)	Tire contact (dual rear tire)	7.25 sf
rT	Equivalent Radius	1.52
Depth		3.00 ft
P _L - Vertical Live Soil Pressure		11,773 psf
P _T - Total Vertical Soil Pressure, 7	Timoshenko	12,133 psf

2.1.2: Boussinesq:

Boussinesq Equation

The Boussinesq Equation gives the pressure at any point in a soil mass under a concentrated surface load. The Boussinesq Equation may be used to find the pressure transmitted from a wheel load to a point that is not along the line of action of the load. Pavement effects are neglected.

(3-4)
$$P_{L} = \frac{3I_{f}W_{w}H^{3}}{2\pi f^{5}}$$

WHERE

 P_L = vertical soil pressure due to live load lb/ft2

 W_{w} = wheel load, lb

H = vertical depth to pipe crown, ft

 $I_f = Impact factor$

r = distance from the point of load application to pipe crown, f

(3-5)
$$\Gamma = \sqrt{X^2 + H^2}$$

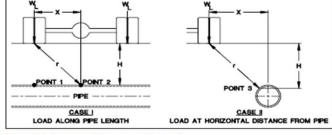
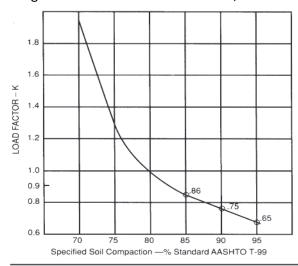


Figure 3-4 Illustration of Boussinesq Point Loading


Loaded weight on center + rear axle

WI	Per side	98,135	lbs
	X	42.80	in
	r	5	ft
Per side		1,726.02	psf
P _L - Vertica	al Live Soil Pressure	3,452.04	psf
P _T - Total \	/ertical Soil Pressure, Boussinesq	3,812	psf

2.2 Determine Load Pressure

Use Figure 6.5 to obtain the load factor, K

The load on the pipe becomes:

$$P_v = K (DL + LL), \text{ when } H \ge S$$

 $P_v = (DL + LL), \text{ when } H < S$

Where: P_v=Design Pressure

K = Load Factor DL = Dead Load (psf) LL = Live Load (psf) H= Height of cover (ft)

S = Span (ft)

Figure 6.5 Load factors for CSP in backfill compacted to indicated density.

K = 0.75

Total load on pipe, Pv: 9,460 psf

3 Ring Compression

$$C = P_v \bullet \underline{S}$$
 C = ring compression, lb/ft Pv = design pressure, psf S = span or diameter

Pv 9,460 psf
CMP pipe diameter, S 60 inch
Ring compression, C 23,650 psf

4 Allowable Wall Stress

Conversion of nominal gage to thickness									
22	20	18	16	14	12	10			
0.0299 0.034	0.0359 0.040	0.0478 0.052	0.0598 0.064	0.0747 0.079	0.1046 0.109 0.111	0.1345 0.138 0.140			
8	7	5	3	1	5/16"	3/8"			
0.1644 0.168 0.170	0.1838 0.188	0.2145	0.2451	0.2758	0.3125	0.3750			
	22 0.0299 0.034 8 0.1644 0.168	22 20 0.0299 0.0359 0.034 0.040 8 7 0.1644 0.168 0.1838	22 20 18 0.0299 0.0359 0.0478 0.034 0.040 0.052 8 7 5 0.1644 0.1838 0.2145	22 20 18 16 0.0299 0.0359 0.0478 0.0598 0.034 0.040 0.052 0.064 8 7 5 3 0.1644 0.1838 0.2145 0.2451	22 20 18 16 14 0.0299 0.0359 0.0478 0.0598 0.0747 0.034 0.040 0.052 0.064 0.079 8 7 5 3 1 0.1644 0.1838 0.2145 0.2451 0.2758	22 20 18 16 14 12 0.0299 0.0359 0.0478 0.0598 0.0747 0.1046 0.034 0.040 0.052 0.064 0.079 0.109 0.111 8 7 5 3 1 5/16" 0.1644 0.1838 0.2145 0.2451 0.2758 0.3125			

Notes: * Also referred to as specified thickness for corrugated steel pipe products.

For structural plate, tunnel liner plates and other products, see chapters on those products.

Sectional	Sectional properties of 11/2 x 1/4 in. (Helical)											
Specified Thickness	Uncoated Thickness T	Area of Section A	Tangent Length 7L	Tangent Angle	Moment of Inertia	Section Modulus S	Radius of Gyration	Developed Width Factor				
(in.)	(in.)	(in. ² /ft)	(in.)	(Degrees)	(in. ⁴ /in)	(in. ³ /ft)	(in.)					
0.040*	0.0359	0.456	0.571	21.44	0.00025	0.0213	0.0816	1.060				
0.052	0.0478	0.608	0.566	21.52	0.00034	0.0277	0.0842	1.060				
0.064	0.0598	0.761	0.560	21.61	0.00044	0.0340	0.0832	1.060				
0.079	0.0747	0.950	0.554	21.71	0.00057	0.0419	0.0846	1.060				
0.109*	0.1046	1.331	0.540	21.94	0.00086	0.0580	0.0879	1.060				
0.138*	0.1345	1.712	0.526	22.17	0.00121	0.0753	0.0919	1.061				
0.168*	0.1644	2.093	0.511	22.42	0.00163	0.0945	0.0967	1.061				

Sectional properties of 2 x 1/2 in. (Helical)

Specified Thickness	Uncoated Thickness T	Area of Section	Tangent Length 7L	Tangent Angle	Moment of Inertia	Modulus S	Radius of Gyration	Developed Width Factor
(in.)	(in.)	(in. ² /ft)	(in.)	(Degrees)	(in. ⁴ /in)	(in. ³ /ft)	(in.)	
0.040*	0.0359	0.489	0.681	33.12	0.0011	0.0513	0.1676	1.136
0.052	0.0478	0.652	0.672	33.29	0.0015	0.0673	0.1682	1.136
0.064	0.0598	0.815	0.663	33.46	0.0019	0.0832	0.1690	1.136
0.079	0.0747	1.019	0.625	33.68	0.0025	0.1025	0.1700	1.137
0.109	0.1046	1.428	0.629	34.13	0.0035	0.1406	0.1725	1.138
0.138*	0.1345	1.838	0.605	34.62	0.0047	0.1783	0.1754	1.139
0.168*	0.1644	2.249	0.579	35.13	0.0060	0.2166	0.1788	1.140

^{*} Thickness not commonly available. Information only.

Notes: 1. Per foot of projection about the neutral axis.

To obtain A or S per inch of width, divide the above values by 12.

Developed width factor measures the increase in profile length due to corrugating. Dimensions are subject to manufacturing tolerances.

From Tables:

Selected gage: 8 (Use 2x1/2 in)

Uncoated thickness: 0.1644 in Radius of Gyration, r: 0.1788 in

Pipe diameter, D 60 in D/r 336

Allowable compressive stress – wall stress (fb)

 $\begin{array}{lll} -f_b = f_\gamma = 33,000 \; psi. & when \; D/r < 294 \\ -f_b = 40,000 - 0.081 (D/r)^2, & when \; D/r > 294 < 500 \\ -f_b = 4.93 \times 10^9 / (D/r)^2 & when \; D/r > 500 \end{array}$

Ultimate compressive stress, fb 30,879 psi
Factor of Safety 2
Allowable wall stress, fc 15,439 psi

5 Wall Thickness

$$A = \frac{C}{f_c}$$

Required Wall Area, A 1.5318 in²/foot

Select the wall thickness that provides the required area

Specified Wall thickness 0.168 in

Wall area from table 2.249 in²/foot

Check wall areas:

2.249 > 1.5318 GOOD

6 Handling Stiffness

$$FF = D^2$$
 E = modulus of elasticity
D = diameter or span,

I = moment of inertia of the pipe wall (

Modulus of Elasticity, E 30000000 psi Moment of Inertia, I (from table) $0.006 \, \text{in}^4/\text{in}$

Flexibility Factor, F 0.0200

Flexibility Factor acceptable maximum values:

0.0433 factory made seams

0.02 Field assembled

Factory made: 0.0200 < 0.0433 GOOD Field assembled: 0.0200 = 0.02 GOOD

7 Seam Strength

From Table 6.4a

Ultimate Seam Strength 372 kN/m 25,496 lb/ft

Allowable FOS = 2 12,748 psf

Total load on pipe, Pv: 9,460 psf GOOD

able 6.4a	Riveted CSP - Ultimate longitudinal seam strength (kN/m)									
Specified	8 mn	n Rivets		10 mm i	Rivets	12 mm Rivets				
Thickness	68 x	13 mm	68 x 1	3 mm	76 x 25 mm	76 x 25 mm				
mm	Single	Double	Single	Double	Double	Double				
1.3	148									
1.6	236	274			387					
2.0	261	401			499					
2.8			341	682		769				
3.5				712		921				
4.2			356 372	712 746		921 1023				

8 Pipe arches

■NewFields		CALCULATION SHEET		
Client	Lithium Nevada Corp	Preparer:	MTH	2/7/2020
Project	Thacker Pass Project	Checked:	RL	2/7/2020
Title	24" Dia HDPE (DR17) Pipeline	Revision	A	Page 1

HDPE BURIED PIPE LOAD CAPACITY AND COVER DESIGN

Design Methodology Per Design of PE Piping Systems, Plastic Pipe Institute

Determine Vertical Soil Pressure

Soil Bury Depth Soil Unit Weight P_E - Vertical Earth Soil Pressure

3.00	Feet
120.00	pcf
360.00	nsf

Determine Largest Live Load from Truck By Comparing Timoshenko and Boussinesq Eq. Below			
Truck	74	0	
Empty Truck Weight	72,400	lbs	
Overall Width	12	ft	
Recommended Maximum Load	42	tons	
Additional Payload Weight (Above Recommened Load)	0	tons	
Total Payload Weight	42	tons	
Total Payload Weight	84,000	lbs	
Loaded Front Axle Weight Distribution	51.10%	%	
Loaded Rear Axle Weight Distrution	48.90%	%	
Total Weight (Truck + Payload)	156,400		
Front Axle Weight	79,920.40	lbs	
Rear Axle Weight	76,479.60	lbs	
Tire Size	29.5R25	_	
Tire width	29.50	in	
Pressure	76.00	psi	
Load	39960.20	lbs	

Determine Live Load from Truck

Contact Area

Timoshenko's Equation

The Timoshenko Equation gives the soil pressure at a point directly under a distributed surface load, neglecting any pavement.

$$P_{L} = \frac{I_{f} W_{w}}{a_{C}} \left(1 - \frac{H^{3}}{(r_{T}^{2} + H^{2})^{L5}} \right)$$

The equivalent radius is given by: $r_T = \sqrt{\frac{1}{\pi}}$

WHERE

 P_L = vertical soil pressure due to live load, lb/ft²

Use Timoshenko's Equation

3.65

sf

 $I_f = \text{impact factor}$

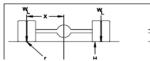
 W_W = wheel load, lb

 a_C = contact area, ft²

 r_T = equivalent radius, ft

H = depth of cover, ft

Impact Factor (If)	Between 2-3 for Haul Truck	3
Wheel Load (Ww)	793D Haul Truck (half of rear load)	39,960 lbs
Contact Area (Ac)	Tire contact (dual rear tire)	3.65 sf
rT	Equivalent Radius	1.08
Depth		3.00 ft
P _L - Vertical Live Soil Pressure		5,468 psf


P_T - Total Vertical Soil Pressure

5,828 psf **Use Boussinesq's Equation**

Determine Live Load from Truck

Boussinesq Equation
The Boussinesq Equation gives the pressure at any point in a soil mass under a concentrated surface load. The Boussinesq Equation may be used to find the pressure transmitted from a wheel load to a point that is not along the line of action of the load. Pavement effects are neglected.

 $2\pi r^5$ WHERE P_L = vertical soil pressure due to live load ib/ Π^2 W_m = wheel load, ib H^2 = vertical eight polipe crown, Π I_f = impact factor I_f = distance from the point of load application to pipe crown, Π CASE II

LOAD AT HORIZONTAL DISTANCE FROM PIPE Figure 3-4 Illustration of Boussinesq Point Loading (3-5) $\Gamma = \sqrt{X^2 + H^2}$ Loaded weight on center + rear axle lbs Per side 39,960 lbs WI 42.50 in Х 5 ft 717.41 psf Per side P_L - Vertical Live Soil Pressure 1,434.82 psf

1,795 psf

P_T - Total Vertical Soil Pressure

Client	Lithium Nevada Corp	Preparer:	MTH	2/7/2020
Project	Thacker Pass Project	Checked:	RL	2/7/2020
Title	24" Dia HDPE (DR17) Pipeline	Revision	А	Page 2

HDPE BURIED PIPE LOAD CAPACITY AND COVER DESIGN

Pipe Selected

Pipe size

Pipe DR

Pipe Outside Diameter (Do)

Pipe Inside Diameter (D_I)

24 Inches **DR17**

24 inches

21.007 inches

Determine Pipe Deflection

Use when bury depth is 18" or at least 1 pipe diameter

Modified Iowa Equation

Spangler's Modified Iowa Formula can be written for use with solid wall PE pipe as:

$$\frac{\Delta X}{D_{M}} = \frac{1}{144} \left[\frac{K_{BED} L_{DL} P_{E} + K_{BED} P_{L}}{\frac{2E}{3} \left(\frac{1}{DR - 1} \right)^{3} + 0.061 F_{S} E'} \right]$$

and for use with ASTM F894 profile wall pipe as: (3-11)

$$\frac{\Delta X}{D_{I}} = \frac{P}{144} \left(\frac{K_{BED} L_{DL}}{\frac{1.24(RSC)}{D_{M}} + 0.061 F_{s} E'} \right)$$

WHERE

 ΔX = Horizontal deflection, in

 K_{BED} = Bedding factor, typically 0.1

 L_{DL} = Deflection lag factor

 P_E = Vertical soil pressure due to earth load, psf

 P_L = Vertical soil pressure due to live load, psf

 $E = \text{Apparent modulus of elasticity of pipe material, lb/in}^2$

E' =Modulus of Soil reaction, psi

 F_S = Soil Support Factor

RSC = Ring Stiffness Constant, lb/ft

DR = Dimension Ratio, 0D/t

D_M= Mean diameter (D₁+2z or D₀-t), in

Z = Centroid of wall section, in

t = Minimum wall thickness, in

 D_I = pipe inside diameter, in

 D_O = pipe outside diameter, in

K_{BED}	0.1		Typical
L_DL	1		Deflection Lag Factor
E	28,000	psi	See Table B.1.1 Below for Vehicle Loading
E'	2000	psi	See Table 3-7 below
E' _N	2000	psi	See Table 3-9 below
Bd	108		Trench Width (inches)
Do	24		Pipe Outside Diameter (inches)
DR	17		
Bd/D_O	4.5		
E' _N /E'	1		
Fs	1		See Table 3-10 below

Use Timoshenko's Equation

 $\Delta X/D_1 =$ 0.031981 3.2%

< 5% Therefore Design is Adequate, **Tabe 3-11 for Deflection Limit Check**

Use Boussinesq's Equation

0.009849

1%

Client	Lithium Nevada Corp	Preparer:	MTH	2/7/2020
Project	Thacker Pass Project	Checked:	RL	2/7/2020
Title	24" Dia HDPE (DR17) Pipeline	Revision	Α	Page 3

TABLE 3-7
Values of E' for Pipe Embedment (See Howard (8))

		E' for Degree of Er	nbedment Compacti	on, lb/in ²	
Soil Type-pipe Embedment Material (Unified Classification System) ¹	Dumped	Slight, <85% Proctor, <40% Relative Density	Moderate, 85%-95% Proctor, 40%-70% Relative Density	High, >95% Proctor, >70% Relative Density	
Fine-grained Soils (LL > 50) ² Soils with medium to high plasticity; CH, MH, CH-MH	No data available: consult a competent soils engineer, otherwise, use E' = 0.				
Fine-grained Soils (LL < 50) Soils with medium to no plasticity, CL, ML, ML- CL, with less than 25% coarse grained particles.	50	200	400	1000	
Fine-grained Solis (LL < 50) Solis with medium to no plasticity, Ct., Mt., MtCt., with more than 25% coarse-grained particles; Coarse-grained Solis with Fines, GM, GC, SM, SC3 containing more than 12% fines.	100	400	1000	2000	
Coarse-grained soils with Little or No Fines GW, GP, SW, SP ³ containing less than 12% fines	200	1000	2000	3000	
Crushed Rock	1000	3000	3000	3000	
Accuracy in Terms of Percentage Deflection ⁴	±2%	±2%	±196	±0.5%	

- ASTM D-2487, USBR Designation E-3

Note: Values applicable only for fills less than 60 ft (15 m). Table does not include any safety factor. For use in predicting initial deflections only; appropriate Deflection Lag Factor must be applied for long-term deflections. If embedment falls on the borderine between two compaction categories, select lower E' value, or average that two values. Percentage Proctor based on laboratory maximum dry density from test standards using 12,500 ft-sibert (16 SBO 000 Juline) (ACTM 0-588, AASHTO T-198, USBR Designation E-1); 1 psi = 8,9 NT 1); psi = 8,0 NT 1); psi = 8

TABLE 3-9

ues of E'N, Native Soil Modulus of Soil Reaction, Howard (1)

		Native In Situ Soils		
Granular		Cohe		
Std. Pentration ASTM D1586 Blows/ft	Description	Unconfined Compressive Strength (TSF)	Description	E'n (psi)
> 0 - 1	very, very loose	> 0 - 0.125	very, very soft	50
1-2	very loose	0.125 - 0.25	very soft	200
2 - 4	very loose	0.25 - 0.50	soft	700
4 - 8	loose	0.50 - 1.00	medium	1,500
8 - 15	slightly compact	1.00 - 2.00	stiff	3,000
16 - 30	compact	2.00 - 4.00	very stiff	5,000
30 - 50	dense	4.00 - 6.00	hard	10,000
> 50	very dense	> 6.00	very hard	20,000
Rock	-	-	-	50,000

TABLE 3-11

Safe Deflection Limits for Pressurized Pipe

DR or SDR	Safe Deflection as % of Diameter
32.5	7.5
26	7.5
21	7.5
17	6.0
13.5	6.0
11	5.0
9	4.0
7.3	3.0

Based on Long-Term Design Deflection of Buried Pressurized Pipe given in ASTM F1962

TABLE B.1.1 Apparent Bastic Modulus for 73°F (23°C)

Design Values For 73°F (23°C) (1,2,3) Duration of Sustained PE3XXX PE4XXX PE 20000 Loading psi MPa MPa psi MPa 0.5hr 62,000 78,000 82,000 59,000 407 74,000 510 78,000 538 2hr 57,000 393 71,000 490 74,000 510 10hr 50,000 345 62,000 428 65,000 448 60,000 48,000 434 414 24hr 46,000 317 393 60,000 42,000 1,000hr 35,000 241 44,000 303 46,000 317 1 year 30,000 207 38,000 40,000 276 179 34,000 234 32,000 221 10 years 26,000 50 ye

100 years

		Approximate	e Values of Apparent Modulus for 73°F (23°C)			
Rate of Increasing Stress	For Materials Coded PE2XXX ⁽¹⁾		For Materials Coded PE3XXX ⁽¹⁾		For Materials Codeo	
	psi	MPa	psi	MPa	psi	MPa
"Short term" (Results Obtained Under Tensile Testing) (2)	100,000	690	125,000	862	130,000	896
"Dynamic" (9	150,000psi (1,034MPa), For All Designation Codes					

27,000

186

28,000

193

- (1) See Chapter 5 for an explanation of the PE Pipe Material Designation Code. The X's designate any numeral that is recognized under this code.
- is recognized under this code.

 (2) Under ASTM DS38, "Standard Test Method for Tensile Properties of Plastics", a dog-bone shaped specimen subjected to a constant rate of pull. The "apparent modulus" under this method is the ratio of stress to strain that is achieved at a certain defined strain. This apparent modulus is of limited value for engineering design.

 (3) The dynamic modulus is the ratio of stress to strain that occurs under instantaneous rate of increasing stress such as can occur in a water-hammer reaction in a pipeline. This modulus is used as a parameter for the computing of a localized surge pressure that results from a water hammer event.

TABLE 3-10

Soil Support Factor, Fs

21,000

145

E'N/E'	B _d /D ₀ 1.5	B _d /D ₀ 2.0	B _d /D ₀ 2.5	B _d /D ₀ 3.0	B _d /D ₀ 4.0	B _d /D ₀ 5.0
0.1	0.15	0.30	0.60	0.80	0.90	1.00
0.2	0.30	0.45	0.70	0.85	0.92	1.00
0.4	0.50	0.60	0.80	0.90	0.95	1.00
0.6	0.70	0.80	0.90	0.95	1.00	1.00
8.0	0.85	0.90	0.95	0.98	1.00	1.00
1.0	1.00	1.00	1.00	1.00	1.00	1.00
1.5	1.30	1.15	1.10	1.05	1.00	1.00
2.0	1.50	1.30	1.15	1.10	1.05	1.00
3.0	1.75	1.45	1.30	1.20	1.08	1.00
5.0	2.00	1.60	1.40	1.25	1.10	1.00

Client	Lithium Nevada Corp	Preparer:	MTH	
Project	Thacker Pass Project	Checked:	RL	
Title	24" Dia HDPE (DR17) Pipeline	Revision	Α	Page 4

Check Compressive Ring Thrust

(3-13)
$$S = \frac{(P_E + P_L) DR}{288}$$

S=

344 psi

< 1150 psi for PE 4710 HDPE Therefore, design is adequate

Appendix C

Allowable Compressive Stress

Table C.1 lists allowable compressive stress values for 73°F (23°C). Values for allowable compressive stress for other temperatures may be determined by application of the same multipliers that are used for pipe pressure rating (See Table A.2).

TABLE C.1

Allowable Compressive Stress for 73°F (23°C)

	Pe Pipe Material Designation Co				ode (1)	
T	PE 2406		PE3	408		
1			PE 3	808		
	05	2708 PE 3708		708	PE 4710	
	PE	2708	PE 3710 PE 4708			
	psi	мРа	psi	MPa	psi	MPa
Allowable Compressive Stress	800	5.52	1000	6.90	1150	7.93

(1) See Chapter 5 for an explanation of the PE Pipe Material Designation Code.

Check for Constrained Buckling

Pwc Allowable buckling pressure

(3-15) $P_{WC} = \frac{5.65}{N} \sqrt{RB'E' \frac{E}{12(DR-1)^3}}$

Safety Factor (N)

2 For Plastic Pipe

(3-17) $R = 1 - 0.33 \frac{H_{GW}}{H}$

Buoyancy Reduction Factor (R)

Depth of Cover (H)

Height of Ground Water Above Pipe (H_{GW})

1.00 L 3.00 ft

0 ft

(3-18) $B' = \frac{1}{1 + 4e^{(-0.065H)}}$

Soil Support Factor (B')

Use Long Term E for Buckling (E)

0.23

28,000 Per Table B.1.1

P_{wc}=

6,628 psf

> P_E

5,828

psf

Therefore, design is adequate

	NewFields	CALCULATION SHEET		
Client	Lithium Nevada Corp	Preparer:	MTH	12/19/2019
Project	Thacker Pass Project	Checked:	KDJ	
Title	36" Dia HDPE (DR11) Pipeline	Revision	A	Page 1

Design Methodology Per Design of PE Piping Systems, Plastic Pipe Institute

Determine Vertical Soil Pressure

Soil Bury Depth Soil Unit Weight P_E - Vertical Earth Soil Pressure

4.00	Feet
120.00	pcf
400.00	- nof

Determine Largest Live Load from Truck By Comparing Timoshenko and Boussinesg Eg. Below

Determini	e Largest Live Load from Truck by Comparing Timosheriko and	boussinesy cy. bei	<u>ow</u>
Truck		785D	
	Empty Truck Weight	259,257	lbs
	Overall Width	22	ft
	Recommended Maximum Load	150	tons
	Additional Payload Weight (Above Recommened Load)	0	tons
Total Payl	oad Weight	150	tons
	Total Payload Weight	300,000	lbs
	Loaded Front Axle Weight Distribution	33.33%	%
	Loaded Rear Axle Weight Distrution	66.67%	%
	Total Weight (Truck + Payload)	559,257	
	Front Axle Weight	186,419.00	lbs
	Rear Axle Weight	372,838.00	lbs
Tire Size		33.00-51	
	Tire width	36.70	in
	Pressure	116.00	psi
	Load	186419.00	lbs
	Contact Area	11.16	sf

Determine Live Load from Truck

Timoshenko's Equation

The Timoshenko Equation gives the soil pressure at a point directly under a distributed surface load, neglecting any pavement.

 $P_{L} = \frac{I_{f}W_{w}}{a_{C}} \left(1 - \frac{H^{3}}{(r_{T}^{2} + H^{2})^{L5}} \right)$

The equivalent radius is given by: $r_T = \sqrt{\frac{1}{\pi}}$

Use Timoshenko's Equation

WHERE

 P_L = vertical soil pressure due to live load, lb/ft 2

 $I_f = \text{impact factor}$

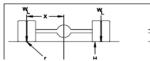
Ww= wheel load, lb

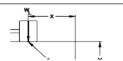
 a_C = contact area, ft²

 Γ_T = equivalent radius, ft

H = depth of cover, ft

Impact Factor (If)	Between 2-3 for Haul Truck	3
Wheel Load (Ww)	793D Haul Truck (half of rear load)	186,419 lbs
Contact Area (Ac)	Tire contact (dual rear tire)	11.16 sf
rT	Equivalent Radius	1.88
Depth		4.00 ft
P _L - Vertical Live Soil Pressure		13,016 psf


P_T - Total Vertical Soil Pressure


13,496 psf **Use Boussinesg's Equation**

Determine Live Load from Truck

Boussinesq Equation
The Boussinesq Equation gives the pressure at any point in a soil mass under a concentrated surface load. The Boussinesq Equation may be used to find the pressure transmitted from a wheel load to a point that is not along the line of action of the load. Pavement effects are neglected.

WHERE P_{j} = vertical soil pressure due to live load ib.rt?

W_w = wheel load, ib H = vertical depth to pipe crown, it I_{j} impact factor I_{j} = impact factor I_{j} = impact factor

US-9) I_{j} = $\sqrt{X^{2} + H^{2}}$ Load edd weight on center + rear axle

WI Per side

X

94.10 in

PONT 1

PONT 2

PONT 3

PONT 1

PONT 2

PONT 1

PONT 2

PONT 3

PONT 1

PONT 2

PONT 1

PONT 3

PONT 1

PONT 3

PONT 1

PONT 3

PONT 1

PONT 2

PONT 1

PONT 3

PONT 1

PONT 3

PONT 1

PONT 2

PONT 3

PONT 1

PONT 3

PONT 1

PONT 3

PONT 1

PONT 3

PONT 1

PONT 3

PONT 3

PONT 1

PONT 3

PONT 3

PONT 3

PONT 3

PONT 1

PONT 3

PONT 1

PONT 3

P_T - Total Vertical Soil Pressure 1,127 psf

646.58 psf

P_L - Vertical Live Soil Pressure

Client	Lithium Nevada Corp	Preparer:	MTH	12/19/2019
Project	Thacker Pass Project	Checked:	KDJ	
Title	36" Dia HDPE (DR11) Pipeline	Revision	А	Page 2

Pipe Selected

Pipe size

Pipe DR

(3-11)

Pipe Outside Diameter (D_O)

Pipe Inside Diameter (D_I)

and for use with ASTM F894 profile wall pipe as:

 $\frac{\Delta \lambda}{D_I} = \frac{1}{144} \frac{1.24(RSC)}{1.24(RSC)} + 0.061F_S E'$

36 Inches DR11

36 inches

29.062 inches

Determine Pipe Deflection

Modified Iowa Equation

Use when bury depth is 18" or at least 1 pipe diameter

Spangler's Modified Iowa Formula can be written for use with solid wall PE pipe as:

 ΔX = Horizontal deflection, in

 K_{BED} = Bedding factor, typically 0.1

 L_{DL} = Deflection lag factor

 P_E = Vertical soil pressure due to earth load, psf

 P_L = Vertical soil pressure due to live load, psf

E = Apparent modulus of elasticity of pipe material, lb/in²

E' =Modulus of Soil reaction, psi

 F_S = Soil Support Factor

RSC = Ring Stiffness Constant, lb/ft

DR = Dimension Ratio, 0D/t

D_M= Mean diameter (D₁+2z or D₀-t), in

Z = Centroid of wall section, in

t = Minimum wall thickness, in

 D_I = pipe inside diameter, in

 D_O = pipe outside diameter, in

K _{BED}	0.1		Typical
L_DL	1		Deflection Lag Factor
Е	28,000	psi	See Table B.1.1 Below for Vehicle Loading
Ε'	3000	psi	See Table 3-7 below
E' _N	2000	psi	See Table 3-9 below
Bd	108		Trench Width (inches)
Do	36		Pipe Outside Diameter (inches)
DR	11		
Bd/D_{O}	3		
E' _N /E'	0.666667		
Fs	1		See Table 3-10 below

Use Timoshenko's Equation

 $\Delta X/D_1 = 0.046475 =$

4.6%

< 5% Therefore Design is Adequate, Tabe 3-11 for Deflection Limit Check

Use Boussinesq's Equation

0.003879

0%

Client	Lithium Nevada Corp	Preparer:	MTH	12/19/2019
Project	Thacker Pass Project	Checked:	KDJ	
Title	36" Dia HDPE (DR11) Pipeline	Revision	Α	Page 3

TABLE 3-7
Values of E' for Pipe Embedment (See Howard (8))

		E' for Degree of Embedment Compaction, lb/in ²						
Soil Type-pipe Embedment Material (Unified Classification System) ¹	Dumped	Slight, <85% Proctor, <40% Relative Density	Moderate, 85%-95% Proctor, 40%-70% Relative Density	High, >95% Proctor, >70% Relative Density				
Fine-grained Soils (LL > 50) ² Soils with medium to high plasticity; CH, MH, CH-MH	No data available: consult a competent soils engine otherwise, use E' = 0.							
Fine-grained Soils (LL < 50) Soils with medium to no plasticity, CL, ML, ML- CL, with less than 25% coarse grained particles.	50	200	400	1000				
Fine-grained Solis (LL < 50) Solis with medium to no plasticity, Ct., Mt., MtCt., with more than 25% coarse-grained particles; Coarse-grained Solis with Fines, GM, GC, SM, SC3 containing more than 12% fines.	100	400	1000	2000				
Coarse-grained soils with Little or No Fines GW, GP, SW, SP ³ containing less than 12% fines	200	1000	2000	3000				
Crushed Rock	1000	3000	3000	3000				
Accuracy in Terms of Percentage Deflection ⁴	±2%	±2%	±196	±0.5%				

- ASTM D-2487, USBR Designation E-3

Note: Values applicable only for fills less than 50 ft (15 m). Table does not include any safety factor. For use in predicting initial deflections only; appropriate Deflection Lag Factor must be applied for long-term deflections. If embedment falls on the borderline between two compaction categories, select lower E' value, or average the two values. Percentage Proctor based on laboratory maximum dry density from test standards using 12,800 ft-lib/cu ft (698,000 J/m²) (ASTM D-698, AASHTO T-98, USBR Designation E-11). 1 pci = 6.9 KPa.

TABLE 3-9 Values of E'_N, Native Soil Modulus of Soil Reaction, Howard ⁽¹⁾

		Native In Situ Soils		
Gra	nular	Cohe	esive	
Std. Pentration ASTM D1586 Blows/ft	Description	Unconfined Compressive Strength (TSF)	Description	E'n (psi)
> 0 - 1	very, very loose	> 0 - 0.126	very, very soft	50
1-2	very loose	0.125 - 0.25	very soft	200
2 - 4	very loose	0.25 - 0.50	soft	700
4 - 8	loose	0.50 - 1.00	medium	1,500
8 - 15	slightly compact	1.00 - 2.00	stiff	3,000
16 - 30	compact	2.00 - 4.00	very stiff	5,000
30 - 60	dense	4.00 - 6.00	hard	10,000
> 50	very dense	> 6.00	very hard	20,000
Rock	-	-	-	60,000

TABLE 3-11

Safe Deflection Limits for Pressurized Pipe

DR or SDR	Safe Deflection as % of Diameter
32.5	7.5
26	7.5
21	7.5
17	6.0
13.5	6.0
11	5.0
9	4.0
7.3	3.0

*Based on Long-Term Design Deflection of Buried Pressurized Pipe given in ASTM F1962

TABLE B.1.1 Apparent Bastic Modulus for 73°F (23°C)

Duration of	Design Values For 73°F (23°C) (1,1,1)								
Sustained Loading	PE 2	XXX	PE3	XXX	PE4XXX				
	psi	MPa	psi	MPa	psi	MPa			
0.5hr	62,000	428	78,000	538	82,000	565			
1hr	59,000	407	74,000	510	78,000	538			
2hr	57,000	393	71,000	490	74,000	510			
10hr	50,000	345	62,000	428	65,000	448			
12hr	48,000	331	60,000	414	63,000	434			
24hr	46,000	317	57,000	393	60,000	414			
100hr	42,000	290	52,000	359	55,000	379			
1,000hr	35,000	241	44,000	303	46,000	317			
1 year	30,000	207	38,000	262	40,000	276			
10 years	26,000	179	32,000	221	34,000	234			
50 years	22,000	152	28,000	193	29,000	200			
100 years	21,000	145	27,000	186	28,000	193			

TABLE B.2.1

	Approximate Values of Apparent Modulus for 73°F (23°C)							
Rate of Increasing Stress	For Materials Coded PE2XXX ⁽¹⁾		For Materials Coded PE3XXX ⁽¹⁾		For Materials Codeo			
	psi	MPa	psi	MPa	psi	MPa		
"Short term" (Results Obtained Under Tensile Testing) ⁽²⁾	100,000	690	125,000	862	130,000	896		
"Dynamic" (9	150,000psi (1,034MPa), For All Designation Codes							

- (1) See Chapter 5 for an explanation of the PE Pipe Material Designation Code. The X's designate any numeral that is recognized under this code.
- is recognized under this code.

 (2) Under ASTM D638, "Standard Test Method for Tensile Properties of Plastics", a dog-bone shaped specimen is subjected to a constant rate of pull. The "apparent modulus" under this method is the ratio of stress to strain that is achieved at a certain defined strain. This apparent modulus is of third value for engineering design.

 (3) The dynamic modulus is the ratio of stress to strain that occurs under instantaneous rate of increasing stress, such as can occur in a water-hammer reaction in a pipeline. This modulus is used as a parameter for the computing of a localized surge pressure that results from a water hammer event.

TABLE 3-10

Soil Support Factor, Fs

E'N/E'	B _d /D ₀ 1.5	B _d /D ₀ 2.0	B _d /D ₀ 2.5	B _d /D ₀ 3.0	B _d /D ₀ 4.0	B _d /D ₀ 5.0
0.1	0.15	0.30	0.60	0.80	0.90	1.00
0.2	0.30	0.45	0.70	0.85	0.92	1.00
0.4	0.50	0.60	0.80	0.90	0.95	1.00
0.6	0.70	0.80	0.90	0.95	1.00	1.00
8.0	0.85	0.90	0.95	0.98	1.00	1.00
1.0	1.00	1.00	1.00	1.00	1.00	1.00
1.5	1.30	1.15	1.10	1.05	1.00	1.00
2.0	1.50	1.30	1.15	1.10	1.05	1.00
3.0	1.75	1.45	1.30	1.20	1.08	1.00
5.0	2.00	1.60	1.40	1.25	1.10	1.00

Client	Lithium Nevada Corp	Preparer:	MTH				
Project	Thacker Pass Project	Checked:	KDJ				
Title	36" Dia HDPE (DR11) Pipeline	Revision	А	Page 4			

Check Compressive Ring Thrust

$$S = \frac{(P_E + P_L) DR}{288}$$

S=

515 psi

< 1150 psi for PE 4710 HDPE Therefore, design is adequate

Appendix C

Allowable Compressive Stress

Table C.1 lists allowable compressive stress values for 73°F (23°C). Values for allowable compressive stress for other temperatures may be determined by application of the same multipliers that are used for pipe pressure rating (See Table A.2).

TABLE C.1

Allowable Compressive Stress for 73°F (23°C)

	Pe Pipe Material Designation Code (1)						
T	PE:	2406	PE3	PE3408			
1	PE 2708		PE 3608		1		
			PE 3	708	PE -	4710	
			PE 3	3710			
			PE 4708				
	psi	мРа	psi	MPa	psi	MPa	
Allowable Compressive Stress	800	5.52	1000	6.90	1150	7.93	

(1) See Chapter 5 for an explanation of the PE Pipe Material Designation Code.

Check for Constrained Buckling

Pwc

Allowable buckling pressure

(3-15) $P_{WC} = \frac{5.65}{N} \sqrt{RB'E' \frac{E}{12(DR-1)^3}}$

Safety Factor (N)

2 For Plastic Pipe

(3-17) $R = 1 - 0.33 \frac{H_{CW}}{H}$

Buoyancy Reduction Factor (R)

Depth of Cover (H)

Height of Ground Water Above Pipe (H_{GW})

1.00 L 4.00 ft

0 ft

(3-18) $B' = \frac{1}{1 + 4e^{(-0.065H)}}$

Soil Support Factor (B')

Use Long Term E for Buckling (E)

0.24

28,000 Per Table B.1.1

P_{wc}=

16,841 psf

> P_E =

13,496

psf

Therefore, design is adequate

NewFields		CALCULATION SHEET				
Client	Lithium Nevada Corp	Preparer:	RLL	1/31/2020		
Project	Thacker Pass Project	Checked:	MH	2/5/2020		
Title	36" Dia HDPE (DR17) Pipeline	Revision	A	Page 1		

Design Methodology Per Design of PE Piping Systems, Plastic Pipe Institute

Determine Vertical Soil Pressure

Soil Bury Depth (Top of pipe to top of fill) 5.00 Feet Soil Unit Weight 120.00 pcf P_E - Vertical Earth Soil Pressure 600.00 psf

Determine Largest Live Load from	Truck By Comparing	Timoshenko and Boussines	q Eq. Below

Truck		777	7
	Empty Truck Weight	124,403	lbs
	Overall Width	12	ft
	Recommended Maximum Load	85	tons
	Additional Payload Weight (Above Recommended Load)	0	tons
Total Payl	oad Weight	85	tons
	Total Payload Weight	170,000	lbs
	Loaded Front Axle Weight Distribution	33.33%	%
	Loaded Rear Axle Weight Distrution	66.67%	%
	Total Weight (Truck + Payload)	294,403	
	Front Axle Weight	98,134.17	lbs
	Rear Axle Weight	196,268.33	lbs
Tire Size		24x49 42pr	
	Tire width	26.20	in
	Pressure	94.00	psi
	Load	98134.17	lbs
	Contact Area	7.25	sf

Determine Live Load from Truck

Timoshenko's Equation

The Timoshenko Equation gives the soil pressure at a point directly under a distributed surface load, neglecting any pavement.

(3-2)
$$P_{L} = \frac{I_{f}W_{w}}{a_{C}} \left(1 - \frac{H^{3}}{(\Gamma_{T}^{2} + H^{2})^{1.5}}\right)$$

The ed	uivalent radius is given by:
(3-3)	$r_T = \sqrt{\frac{a_C}{\pi}}$

Use Timoshenko's Equation

WHERE

 P_L = vertical soil pressure due to live load, lb/ft 2

 $I_f = \text{impact factor}$

 W_{W} = wheel load, lb

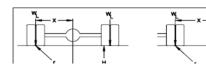
 a_C = contact area, ft²

 r_T = equivalent radius, ft

H = depth of cover, ft

Impact Factor (If)	Between 2-3 for Haul Truck	3
Wheel Load (Ww)	793D Haul Truck (half of rear load)	98,134 lbs
Contact Area (Ac)	Tire contact (dual rear tire)	7.25 sf
rT	Equivalent Radius	1.52
Depth		5.00 ft
P _L - Vertical Live Soil Pressure		5,037 psf

P_T - Total Vertical Soil Pressure


Use Boussinesq's Equation

5,637 psf

Determine Live Load from Truck

Boussinesq Equation
The Boussinesq Equation gives the pressure at any point in a soil mass under a concentrated surface load. The Boussinesq Equation may be used to find the pressure transmitted from a wheel load to a point that is not along the line of action of the load. Pavement effects are neglected.

(3-4) $p_{i} = \frac{3I_{f}W_{w}H^{3}}{}$

 $2\pi r^5$ WHERE P_L = vertical soil pressure due to live load ib/ Π^2 W_m = wheel load, ib H^2 = vertical eight polipe crown, Π I_f = impact factor I_f = distance from the point of load application to pipe crown, Π CASE II

LOAD AT HORIZONTAL DISTANCE FROM PIPE Figure 3-4 Illustration of Boussinesq Point Loading (3-5) $\Gamma = \sqrt{X^2 + H^2}$ lbs Loaded weight on center + rear axle Per side 98,134 lbs WI 42.80 in Х 6 ft 2,010.63 psf Per side P_L - Vertical Live Soil Pressure 4,021.26 psf P_T - Total Vertical Soil Pressure 4,621 psf

Client	Lithium Nevada Corp	Preparer:	RLL	12/19/2019
Project	Thacker Pass Project	Checked:	МН	
Title	36" Dia HDPE (DR17) Pipeline	Revision	А	Page 2

Pipe Selected

Pipe size

Pipe DR

Pipe Outside Diameter (Do)

Pipe Inside Diameter (D_I)

36 Inches **DR17**

36 inches

31.511 inches

Determine Pipe Deflection

Use when bury depth is 18" or at least 1 pipe diameter

Modified Iowa Equation

Spangler's Modified Iowa Formula can be written for use with solid wall PE pipe as:

$$\frac{\Delta X}{D_{M}} = \frac{1}{144} \left[\frac{K_{BED} L_{DL} P_{E} + K_{BED} P_{L}}{2E \left(\frac{1}{3} \left(\frac{1}{DR - 1} \right)^{3} + 0.061 F_{S} E' \right) \right]$$

and for use with ASTM F894 profile wall pipe as: (3-11)

$$\frac{\Delta X}{D_{I}} = \frac{P}{144} \left(\frac{K_{BED} L_{DL}}{\frac{1.24(RSC)}{D_{M}} + 0.061 F_{S} E'} \right)$$

WHERE

 ΔX = Horizontal deflection, in

 K_{BED} = Bedding factor, typically 0.1

 L_{DL} = Deflection lag factor

 P_E = Vertical soil pressure due to earth load, psf

 P_L = Vertical soil pressure due to live load, psf

 $E = \text{Apparent modulus of elasticity of pipe material, lb/in}^2$

E' =Modulus of Soil reaction, psi

 F_S = Soil Support Factor

RSC = Ring Stiffness Constant, lb/ft

DR = Dimension Ratio, 0D/t

D_M= Mean diameter (D₁+2z or D₀-t), in

Z = Centroid of wall section, in

t = Minimum wall thickness, in

 D_I = pipe inside diameter, in

 D_O = pipe outside diameter, in

K_{BED}	0.1		Typical
L_DL	1		Deflection Lag Factor
E	28,000	psi	See Table B.1.1 Below for Vehicle Loading
E'	2000	psi	See Table 3-7 below
E' _N	3000	psi	See Table 3-9 below
Bd	108		Trench Width (inches)
Do	36		Pipe Outside Diameter (inches)
DR	17		
Bd/D_O	3		
E' _N /E'	1.5		
Fs	1.05		See Table 3-10 below

Use Timoshenko's Equation

 $\Delta X/D_1 =$ 0.02951 3.0%

< 6% Therefore Design is Adequate, **Tabe 3-11 for Deflection Limit Check**

Use Boussinesq's Equation

0.024192

2%

Client	Lithium Nevada Corp	Preparer:	RLL	12/19/2019
Project	Thacker Pass Project	Checked:	МН	
Title	36" Dia HDPE (DR17) Pipeline	Revision	Α	Page 3

TABLE 3-7
Values of E' for Pipe Embedment (See Howard (8))

	E' for Degree of Embedment Compaction, lb/in ²					
Soil Type-pipe Embedment Material (Unified Classification System) ¹	Dumped	Slight, <85% Proctor, <40% Relative Density	Moderate, 85%-95% Proctor, 40%-70% Relative Density	High, >95% Proctor, >70% Relative Density		
Fine-grained Soils (LL > 50) ² Soils with medium to high plasticity; CH, MH, CH-MH	No		nsuit a competent so wise, use E' = 0.	oils engineer,		
Fine-grained Soils (LL < 50) Soils with medium to no plasticity, CL, ML, ML- CL, with less than 25% coarse grained particles.	50	200	400	1000		
Fine-grained Solis (LL < 50) Solis with medium to no plasticity, Ct., Mt., MtCt., with more than 25% coarse-grained particles; Coarse-grained Solis with Fines, GM, GC, SM, SC3 containing more than 12% fines.	100	400	1000	2000		
Coarse-grained soils with Little or No Fines GW, GP, SW, SP ³ containing less than 12% fines	200	1000	2000	3000		
Crushed Rock	1000	3000	3000	3000		
Accuracy in Terms of Percentage Deflection ⁴	±2%	±2%	±196	±0.5%		

- ASTM D-2487, USBR Designation E-3

Note: Values applicable only for fills less than 50 ft (15 m). Table does not include any safety factor. For use in predicting initial deflections only; appropriate Deflection Lag Factor must be applied for long-term deflections. If embedment falls on the borderline between two compaction categories, select lower E' value, or average the two values. Percentage Proctor based on laboratory maximum dry density from test standards using 12,800 ft-lib/cu ft (698,000 J/m²) (ASTM D-698, AASHTO T-98, USBR Designation E-11). 1 pci = 6.9 KPa.

TABLE 3-9 Values of E'_N, Native Soil Modulus of Soil Reaction, Howard ⁽¹⁾

		Native In Situ Soils		
Gra	nular	Cohe	esive	
Std. Pentration ASTM D1586 Blows/ft	Description	Unconfined Compressive Strength (TSF)	Description	E'n (psi)
> 0 - 1	very, very loose	> 0 - 0.125	very, very soft	50
1-2	very loose	0.125 - 0.25	very soft	200
2 - 4	very loose	0.25 - 0.50	soft	700
4 - 8	loose	0.50 - 1.00	medium	1,500
8 - 15	slightly compact	1.00 - 2.00	stiff	3,000
16 - 30	compact	2.00 - 4.00	very stiff	5,000
30 - 50	dense	4.00 - 6.00	hard	10,000
> 50	very dense	> 6.00	very hard	20,000
Rock	-	-	-	50,000

TABLE 3-11

Safe Deflection Limits for Pressurized Pipe

DR or SDR	Safe Deflection as % of Diameter
32.5	7.5
26	7.5
21	7.5
17	6.0
13.5	6.0
11	5.0
9	4.0
7.3	3.0

Based on Long-Term Design Deflection of Buried Pressurized Pipe given in ASTM F1962

TABLE B.1.1 Apparent Bastic Modulus for 73°F (23°C)

Duration of		3	Design Values For	73°F (23°C) (U	29	
Sustained Loading	PE 2	PE 2000		PE3XXX		XXX
	psi	MPa	psi	MPa	psi	MPa
0.5hr	62,000	428	78,000	538	82,000	565
1hr	59,000	407	74,000	510	78,000	538
2hr	57,000	393	71,000	490	74,000	510
10hr	50,000	345	62,000	428	65,000	448
12hr	48,000	331	60,000	414	63,000	434
24hr	46,000	317	57,000	393	60,000	414
100hr	42,000	290	52,000	359	55,000	379
1,000hr	35,000	241	44,000	303	46,000	317
1 year	30,000	207	38,000	262	40,000	276
10 years	26,000	179	32,000	221	34,000	234
50 years	22,000	152	28,000	193	29,000	200
100 years	21,000	145	27,000	186	28,000	193

TABLE B.2.1

	Approximate Values of Apparent Modulus for 73°F (23°C)						
Rate of Increasing Stress	For Materials Coded PE2XXX ⁽¹⁾		For Materials Coded PE3XXX ⁽¹⁾		For Materials Coded PE4XXX ⁽¹⁾		
	psi	MPa	psi	MPa	psi	MPa	
"Short term" (Results Obtained Under Tensile Testing) ⁽⁵⁾	100,000	690	125,000	862	130,000	896	
"Dynamic" @	150,000psi (1,034MPa), For All Designation Codes						

- (1) See Chapter 5 for an explanation of the PE Pipe Material Designation Code. The X's designate any numeral that is recognized under this code.
- is recognized under this code.

 (2) Under ASTM D638, "Standard Test Method for Tensile Properties of Plastics", a dog-bone shaped specimen is subjected to a constant rate of pull. The "apparent modulus" under this method is the ratio of stress to strain that is achieved at a certain defined strain. This apparent modulus is of third value for engineering design.

 (3) The dynamic modulus is the ratio of stress to strain that occurs under instantaneous rate of increasing stress, such as can occur in a water-hammer reaction in a pipeline. This modulus is used as a parameter for the computing of a localized surge pressure that results from a water hammer event.

TABLE 3-10

Soil Support Factor, Fs

E'N/E'	B _d /D ₀ 1.5	B _d /D ₀ 2.0	B _d /D ₀ 2.5	B _d /D ₀ 3.0	B _d /D ₀ 4.0	B _d /D ₀ 5.0
0.1	0.15	0.30	0.60	0.80	0.90	1.00
0.2	0.30	0.45	0.70	0.85	0.92	1.00
0.4	0.50	0.60	0.80	0.90	0.95	1.00
0.6	0.70	0.80	0.90	0.95	1.00	1.00
0.8	0.85	0.90	0.95	0.98	1.00	1.00
1.0	1.00	1.00	1.00	1.00	1.00	1.00
1.5	1.30	1.15	1.10	1.05	1.00	1.00
2.0	1.50	1.30	1.15	1.10	1.05	1.00
3.0	1.75	1.45	1.30	1.20	1.08	1.00
5.0	2.00	1.60	1.40	1.25	1.10	1.00

Client	Lithium Nevada Corp	Preparer:	RLL	
Project	Thacker Pass Project	Checked:	MH	
Title	36" Dia HDPE (DR17) Pipeline	Revision	А	Page 4
	_	_		

Check Compressive Ring Thrust

(3-13)
$$S = \frac{(P_E + P_L) DR}{288}$$

S=

333 psi

< 1150 psi for PE 4710 HDPE Therefore, design is adequate

Appendix C

Allowable Compressive Stress

Table C.1 lists allowable compressive stress values for 73°F (23°C). Values for allowable compressive stress for other temperatures may be determined by application of the same multipliers that are used for pipe pressure rating (See Table A.2).

TABLE C.1

Allowable Compressive Stress for 73°F (23°C)

		ode (1)					
T	PE:	2406	PE3	408			
1			PE 3	808			
	05	2=00	PE 3	708	PE 4710		
	PE	2708	PE 3	3710			
			PE 4708				
	psi	мРа	psi	MPa	psi	MPa	
Allowable Compressive Stress	800	5.52	1000	6.90	1150	7.93	

(1) See Chapter 5 for an explanation of the PE Pipe Material Designation Code.

Check for Constrained Buckling

Pwc Allowable buckling pressure

(3-15) $P_{WC} = \frac{5.65}{N} \sqrt{RB'E' \frac{E}{12(DR-1)^3}}$

Safety Factor (N)

2 For Plastic Pipe

(3-17)
$$R = 1 - 0.33 \frac{H_{GW}}{H}$$

Buoyancy Reduction Factor (R)

Depth of Cover (H)

Height of Ground Water Above Pipe (H_{GW})

5.00 ft 0 ft

1.00

(3-18)
$$B' = \frac{1}{1 + 4e^{(-0.065H)}}$$

Soil Support Factor (B')

Use Long Term E for Buckling (E)

0.26

28,000 Per Table B.1.1

P_{wc}=

6,962 psf

> P_{E} =

5,637

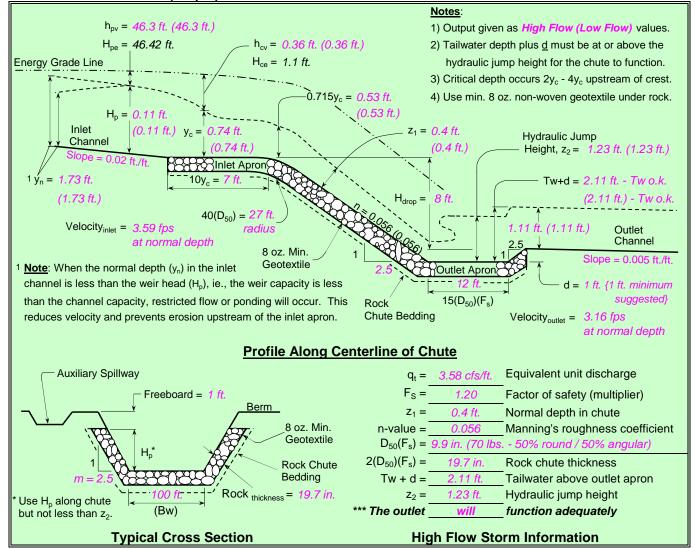
psf

Therefore, design is adequate

Rock Chute Design Data

(Version 4.01 - 04/23/03, Based on Design of Rock Chutes by Robinson, Rice, Kadavy, ASAE, 1998)

 Project:
 CGS Pond Inlet
 County:
 Thacker Pass, NV


 Designer:
 Zach Recine
 Checked by:

 Date:
 2/10/2020
 Date:

Input Channel Geometry

—→ Inlet Channel	—→ <u>Chute</u>	—→ Outlet Channel
Bw = 54.0 ft.	Bw = 100.0 ft.	Bw = 100.0 ft.
Side slopes = 2.5 (m:1)	Factor of safety = 1.20 (F _s)	Side slopes = 2.5 (m:1)
n-value = 0.080	Side slopes = $2.5 \text{ (m:1)} \rightarrow 2.0:1 \text{ max.}$	n-value = 0.035
Bed slope = 0.0200 ft./ft.	Bed slope $(2.5.1) = 0.400$ ft./ft. \rightarrow 2.5:1 max.	Bed slope = 0.0050 ft./ft.
Freeboard = 1.0 ft.	Outlet apron depth, d = 1.0 ft.	Base flow = 0.0 cfs

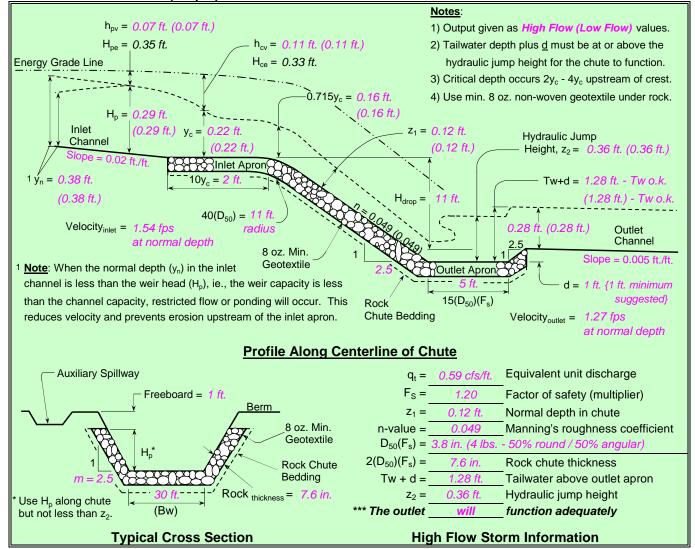
Design Storm Data (Table 2, NHCP, NRCS Grade Stabilization Structure No. 410)

Rock Chute Design Data

(Version 4.01 - 04/23/03, Based on Design of Rock Chutes by Robinson, Rice, Kadavy, ASAE, 1998)

Project: CGS Pond West Inlet

Designer: Zach Recine
Date: 2/11/2020


County: Thacker Pass, NV
Checked by:
Date:

Input Channel Geometry

—→ Inlet Channel	—→ <u>Chute</u>	—→ Outlet Channel
Bw = 30.0 ft.	Bw = 30.0 ft.	Bw = 50.0 ft.
Side slopes = 2.5 (m:1)	Factor of safety = 1.20 (F _s)	Side slopes = 2.5 (m:1)
n-value = 0.070	Side slopes = $2.5 \text{ (m:1)} \rightarrow 2.0:1 \text{ max.}$	n-value = 0.035
Bed slope = 0.0200 ft./ft.	Bed slope $(2.5.1) = 0.400$ ft./ft. \rightarrow 2.5:1 max.	Bed slope = 0.0050 ft./ft.
Freeboard = 1.0 ft.	Outlet apron depth, d = 1.0 ft.	Base flow = 0.0 cfs

Design Storm Data (Table 2, NHCP, NRCS Grade Stabilization Structure No. 410)

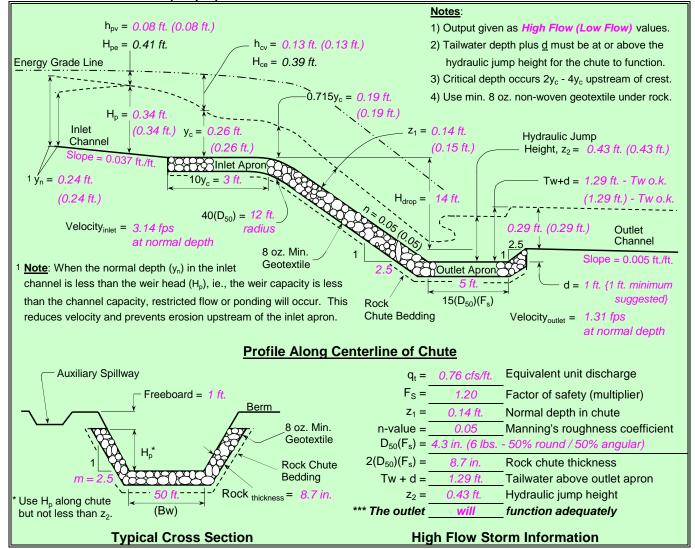
```
Drainage area = 446.0 acres
                                           Rainfall = \bigcirc 0 - 3 in. \bigcirc 3 - 5 in. \bigcirc 5+ in.
                                                                                          Note: The total required capacity is routed
Apron elev. --- Inlet = 4746.0 ft. --- Outlet = 4734.0 ft. --- (H<sub>drop</sub> = 11 ft.)
                                                                                          through the chute (principal spillway) or
    Chute capacity = Q25-year  Minimum capacity (based on a 5-year,
                                                                                          in combination with an auxiliary spillway.
                                                                                          Input tailwater (Tw):
     Total capacity = Q100-year 24-hour storm with a 0 - 3 inch rainfall)
                Q_{high} = 18.0 cfs
                                                                                        ➤ Tw (ft.) = Program
                                      High flow storm through chute -
                Q_{low} = 18.0
                                       Low flow storm through chute -
                                                                                       → Tw (ft.) = Program
                               cfs
```


Rock Chute Design Data

(Version 4.01 - 04/23/03, Based on Design of Rock Chutes by Robinson, Rice, Kadavy, ASAE, 1998)

Project: East WRSF East Pond Inlet

Designer: Zach Recine
Date: 2/10/2020


County: Thacker Pass, NV
Checked by: Date:

Input Channel Geometry

—→ Inlet Channel	—→ <u>Chute</u>	—→ Outlet Channel
Bw = 50.0 ft.	Bw = 50.0 ft.	Bw = 100.0 ft.
Side slopes = 2.5 (m:1)	Factor of safety = 1.20 (F _s)	Side slopes = 2.5 (m:1)
n-value = 0.035	Side slopes = 2.5 (m:1) \rightarrow $2.0:1$ max.	n-value = 0.035
Bed slope = 0.0370 ft./ft.	Bed slope $(2.5:1) = 0.400$ ft./ft. \rightarrow 2.5:1 max.	Bed slope = 0.0050 ft./ft.
Freeboard = 1.0 ft.	Outlet apron depth, d = 1.0 ft.	Base flow = 0.0 cfs

Design Storm Data (Table 2, NHCP, NRCS Grade Stabilization Structure No. 410)

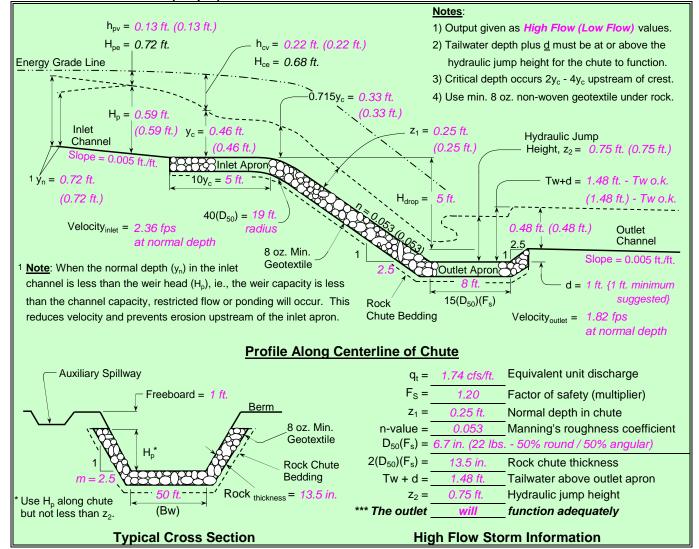
```
Rainfall = 0 0 - 3 in. 0 3 - 5 in. 0 5+ in.
     Drainage area = 50.0 acres
                                                                                       Note: The total required capacity is routed
Apron elev. --- Inlet = 5017.0 ft. --- Outlet = 5002.0 ft. --- (H<sub>drop</sub> = 14 ft.)
                                                                                       through the chute (principal spillway) or
    Chute capacity = Q25-year  Minimum capacity (based on a 5-year,
                                                                                       in combination with an auxiliary spillway.
     Total capacity = Q100-year 24-hour storm with a 0 - 3 inch rainfall)
                                                                                       Input tailwater (Tw):
               Q_{high} = 38.2 cfs
                                                                                     ➤ Tw (ft.) = Program
                                     High flow storm through chute -
               Q_{low} = 38.2
                                     Low flow storm through chute —
                                                                                    → Tw (ft.) = Program
                              cfs
```


Rock Chute Design Data

(Version 4.01 - 04/23/03, Based on Design of Rock Chutes by Robinson, Rice, Kadavy, ASAE, 1998)

Project: East WRSF South Pond Inlet

Designer: Zach Recine
Date: 2/10/2020


County: Thacker Pass, NV
Checked by: Date:

Input Channel Geometry

input onariner ocometry		
—→ <u>Inlet Channel</u>	> <u>Chute</u>	— → Outlet Channel
Bw = 50.0 ft.	Bw = 50.0 ft.	Bw = 100.0 ft.
Side slopes = 2.5 (m:1)	Factor of safety = 1.20 (F _s)	Side slopes = 2.5 (m:1)
n-value = 0.035	Side slopes = 2.5 (m:1) \rightarrow $2.0:1$ max.	n-value = 0.035
Bed slope = 0.0050 ft./ft.	Bed slope (2.5:1) = 0.400 ft./ft. \rightarrow 2.5:1 max.	Bed slope = 0.0050 ft./ft.
Freeboard = 1.0 ft.	Outlet apron depth, $d = 1.0$ ft.	Base flow = 0.0 cfs

Design Storm Data (Table 2, NHCP, NRCS Grade Stabilization Structure No. 410)

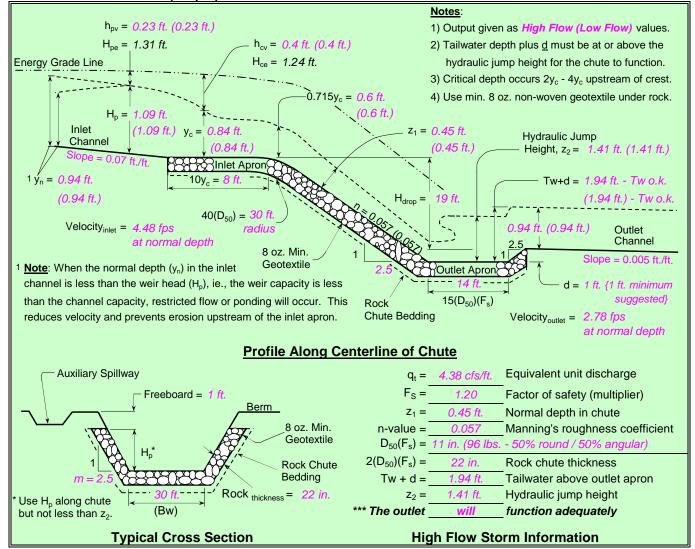
```
Drainage area = 270.0 acres
                                           Rainfall = \bigcirc 0 - 3 in. \bigcirc 3 - 5 in. \bigcirc 5+ in.
                                                                                           Note: The total required capacity is routed
Apron elev. --- Inlet = 5008.0 ft. --- Outlet = 5002.0 ft. --- (H<sub>drop</sub> = 5 ft.)
                                                                                           through the chute (principal spillway) or
    Chute capacity = Q5-year
                                        Minimum capacity (based on a 5-year,
                                                                                           in combination with an auxiliary spillway.
     Total capacity = Q10-year
                                     24-hour storm with a 0 - 3 inch rainfall)
                                                                                           Input tailwater (Tw):
                Q_{high} = 88.2 cfs
                                                                                         ➤ Tw (ft.) = Program
                                       High flow storm through chute -
                Q_{low} = 88.2
                                       Low flow storm through chute -
                                                                                         → Tw (ft.) = Program
                                cfs
```

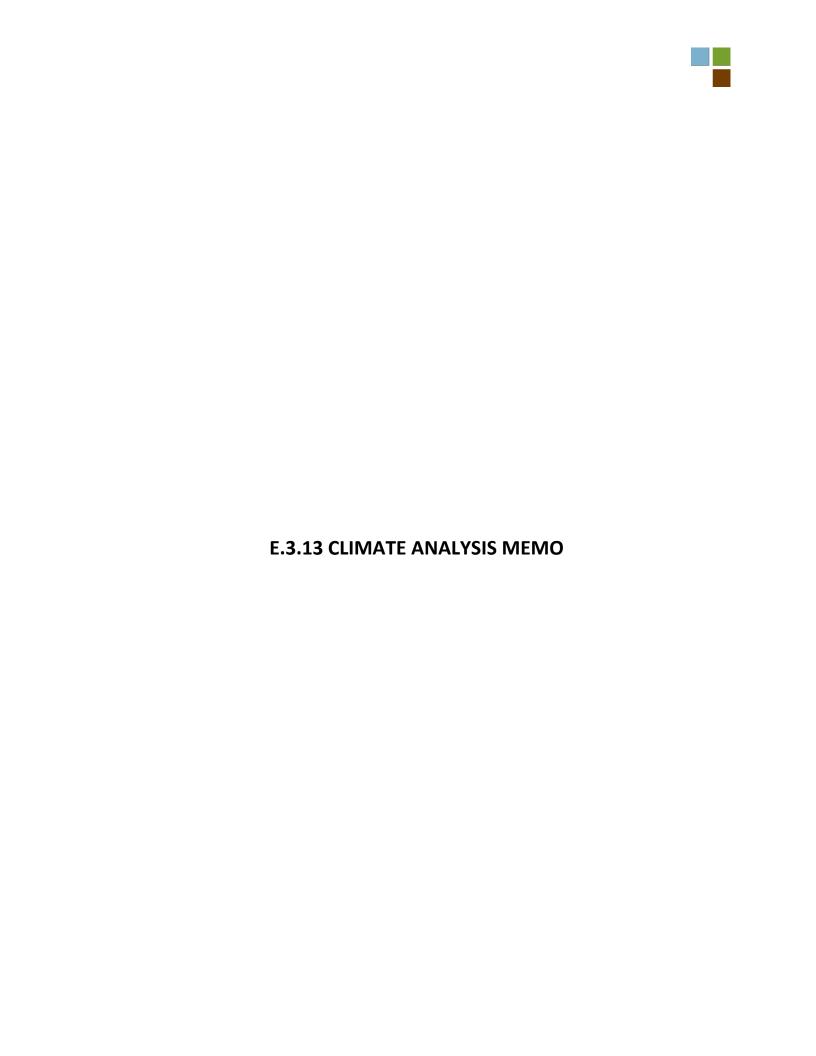

Rock Chute Design Data

(Version 4.01 - 04/23/03, Based on Design of Rock Chutes by Robinson, Rice, Kadavy, ASAE, 1998)

Project: West WRSF Pond Inlet

Designer: Zach Recine
Date: 2/10/2020


County: Thacker Pass, NV
Checked by:
Date:


Input Channel Geometry

—→ Inlet Channel	—→ <u>Chute</u>	— → Outlet Channel
Bw = 30.0 ft.	Bw = 30.0 ft.	Bw = 50.0 ft.
Side slopes = 2.5 (m:1)	Factor of safety = 1.20 (F _s)	Side slopes = 2.5 (m:1)
n-value = 0.080	Side slopes = 2.5 (m.1) \rightarrow $2.0:1$ max.	n-value = 0.035
Bed slope = 0.0700 ft./ft.	Bed slope (2.5:1) = 0.400 ft./ft. \rightarrow 2.5:1 max.	Bed slope = 0.0050 ft./ft.
Freeboard = 1.0 ft.	Outlet apron depth, d = 1.0 ft.	Base flow = 0.0 cfs

Design Storm Data (Table 2, NHCP, NRCS Grade Stabilization Structure No. 410)

```
Drainage area = 150.0 acres
                                            Rainfall = \bigcirc 0 - 3 in. \bigcirc 3 - 5 in. \bigcirc 5+ in.
                                                                                             Note: The total required capacity is routed
Apron elev. --- Inlet = \frac{4720.0}{1} ft. --- Outlet \frac{4700.0}{1} ft. --- (H<sub>drop</sub> = 19 ft.)
                                                                                             through the chute (principal spillway) or
    Chute capacity = Q25-year
                                        Minimum capacity (based on a 5-year,
                                                                                             in combination with an auxiliary spillway.
     Total capacity = Q100-year 24-hour storm with a 0 - 3 inch rainfall)
                                                                                             Input tailwater (Tw):
                Q_{high} = 136.3 cfs
                                                                                          ➤ Tw (ft.) = Program
                                       High flow storm through chute -
                Q_{low} = 136.3 cfs
                                        Low flow storm through chute -
                                                                                          → Tw (ft.) = Program
```


Ecological Resource Consultants, Inc.

35715 US Hwy. 40, Suite D204 ~ Evergreen, CO ~ 80439 ~ (303) 679-4820

Technical Memorandum

Date: December 10, 2019

To: Matt Haley, NewFields

From: Troy Thompson

Re: Thacker Pass Climate Analysis

1.0 Introduction

Ecological Resource Consultants Inc. (ERC) has evaluated available climate data for Lithium Nevada Corporation's (LNC's) Thacker Pass Project. This site is located in Humboldt County, Nevada and is located at roughly latitude 41.696° N, longitude 118.0206° W at an elevation of approximately 4600 feet above mean sea level (amsl). The evaluation was conducted to refine precipitation and evaporation values that should be used to define climate-related design criteria for mine planning and design.

2.0 Climatological Stations

Site and regional data were gathered for this analysis. LNC started recording detailed climatological data at the project site in October of 2011. Site data is collected hourly. Regionally precipitation data is available from the Western Regional Climate Center (WRCC) for the McDermitt Station (COOP No. 264935-1), Orovada 3W Station (COOP No. 262818-1) and the Kings River Valley Station (COOP No. 264236-1). Monthly data was available from the regional sites. The location of each station relative to the site is given in **Figure 1**. McDermitt started collecting data in 1892, Orovada 3W started in 1911 and Kings River Valley started in 1956. Each of the three stations has data gaps and the years of data judged by ERC to be sufficient for inclusion are given in **Table 1**. The table also lists pertinent information about each station.

Figure 1. Station Locations (from Google Earth)

Table 1. Meteorological Station Data

Site	Distance from Project & Direction	Elevation (ft)	Years Precipitation Data Available	Mean Annual Precipitation over Record (in)	Mean Annual Precip 2012- 2018 (in)	Evaporation Data Available
Site	NA	4,600	2012-2019	12.55	12.22	Yes
McDermitt	25 miles NE	4,500	1980-1996, 1998-2019	8.19	7.20	No
Orovada 3W	14 miles SE	4,300	1912, 1914- 1917, 1926- 1945, 1947, 1951-1964, 1967-2003, 2006-2019	10.62	9.28	No
Kings River Valley	12 miles NW	4,240	1957, 1959- 1961, 1969- 1971, 1981, 1983, 1985- 2001, 2012- 2019	8.88	8.73	No

Data suggests that precipitation at the site is greater than that observed at regional stations. In order to evaluate how data from the different stations correlate to site precipitation, the overlapping periods of record were compared. Data was first evaluated using double mass curves and monthly precipitation data. Double mass curves plot the cumulative precipitation at sites with the idea that sites with good correlation plot along a line with a consistent slope. For our assessment we plotted the cumulative precipitation at each of the three regional sites versus cumulative precipitation at the project site for the period of January 2012 through October 2019. Results are presented in **Figure 2**.

80 Cumulative Precipitation at Regional Sites (in) 70 60 50 40 30 McDermitt 20 Orovada 3W 10 Kings River Valley 0 20 40 60 80 100 **Cumulative Project Site Precipitation (in)**

Figure 2. Monthly Precipitation Double Mass Curves Comparing Regional Stations to the Site (1/2012 – 10/2019)

Some observations can be made when considering the double mass curve data

- Until roughly 35 inches on the X axis, which shows project site data, all three lines plotted relatively straight. The cumulative precipitation at the project site reached 35 inches in December of 2014. This suggests that site data from 2012 2014 correlated very well with regional data.
- Starting at roughly 35 inches on the X axis the slope of the Kings River Valley line increases. Starting at roughly 42 inches on the X axis the slopes of the McDermitt and the Orovada 3W lines increase. Increases in slopes on this plot indicate a point where the ratio of precipitation at the regional station increases as compared to the project site.
- Data from the McDermitt and Kings River Valley stations are nearly identical from 2012-2014.
 After this point they diverge suggesting that one or more of these stations does not have consistent data

Given the non-linearity in the graph and the breaks discussed above there is reason to believe that one or more of the data sets could be in question. The similar trends between data from the McDermitt and Orovada 3W in **Figure 2** suggests that there may be consistency between data recorded at these sites. A double mass curve comparing cumulative precipitation at these sites from 2012 through October 2019 was completed with results shown in **Figure 3**.

70

80

60

10

0 0

10

20

30

70 Cumulative Precipitation at McDermtt (in) 60 50 40 30 20

Figure 3. Monthly Precipitation Double Mass Curves for McDermitt and Orovada 3W Stations (1/2012 - 10/2019)

The consistent slope of the line comparing precipitation at McDermitt and Orovada 3W suggests consistency at both sites with Orovada 3W receiving roughly 24% more precipitation than McDermitt. As these two sites were found to produce consistent data and Figure 2 shows that data from Kings River Valley are not consistent, Kings River Valley data was dropped from our assessment.

40

Cumulative Precipitation at Orovada 3W (in)

50

ERC then compared the correlation between monthly site data and monthly data at McDermitt and Orovada 3W in order to evaluate which station's data can be more closely related to site data. Figure 4 shows the correlation between the site and McDermitt and Figure 5 presents this data for the site and Orovada 3W.

Figure 4. Correlation of Monthly Precipitation Data for the Site and McDermitt Station (1/2012 - 10/2019)

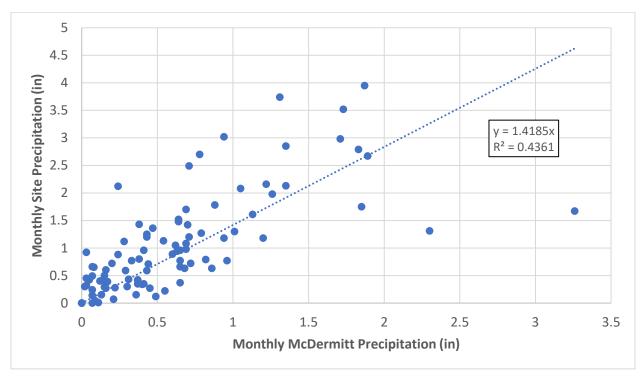



Figure 5. Correlation of Monthly Precipitation Data for the Site and Orovada 3W Station (1/2012 - 10/2019)

Given that site data correlates better with Orovada 3W than McDermitt (correlation coefficients of 0.63 vs. 0.44) and average annual precipitation at the site from 2012-2018 (12.22 inches) is more similar to Orovada 3W (9.28 inches) than McDermitt (7.20 inches), Orovada was carried forward in the analysis.

3.0 Monthly Site Precipitation Estimates

Monthly estimates of site data were then developed for the full period of record where data is available at the Orovada 3W site. For October 2011 – October 2019 monthly site estimates were taken as actual data recorded at the site. For earlier times, monthly site data was estimated by multiplying the calculated site to Orovada 3W correlation coefficient by the monthly value recorded at Orovada 3W for the years of available data presented in **Table 1**. This produced a synthetic a 91-year precipitation data set for the site. This full data set is provided in **Appendix A**. Monthly statistics for the 91 years of data is provided in **Table 2**.

Table 2. Statistics for Estimated Site Monthly Precipitation Based on Synthetic 91-Year Record (in)

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Annual
Mean	1.27	1.14	1.17	1.47	1.58	1.16	0.32	0.34	0.58	0.99	1.10	1.18	12.29
StdDev	0.77	0.80	0.79	0.94	1.16	1.08	0.37	0.70	0.71	0.89	0.78	0.97	3.39
Min	0.07	0.06	0.00	0.08	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	5.80
Max	3.52	3.77	3.02	5.69	6.34	4.69	1.82	4.33	2.97	3.68	3.07	4.64	21.76

The long-term mean annual precipitation at the site is estimated to be 12.29 inches, which is very similar to the average of 12.55 obtained from use of site data alone. The range of annual totals at the site is estimated to be 5.80 to 21.76 with an annual standard deviation of 3.39 inches. It is recommended that this data be used for current design calculations. As additional site data is collected, estimates should be updated.

4.0 Monthly Runoff Coefficients

For storage and water balance calculations, the portion of precipitation that results in runoff is needed. Runoff as a percentage of monthly precipitation was estimated using the National Resource Conservation Service (NRCS) Curve Number method combined with daily precipitation recorded at the site station. For a given curve number, runoff was estimated by determining the potential maximum retention after runoff ($S_{0.20}$) as provided by the NRCS in the TR-55 report, **Equation 1**. The potential maximum retention was then converted to the 5% retention value ($S_{0.05}$), as detailed by Lim, Engel, Muthukirshnan, and Harbor in the *Effects of Initial Abstraction and Urbanization of Estimated Runoff Using CN Technology*, **Equation 2**. Using this value, the depth of runoff could be obtained by **Equation 3**. These estimated runoff percentages represent the average annual amount of runoff out of the total average annual precipitation for a range of selected curve numbers, as provided in **Table 3**. Note that if estimating runoff from a specific storm event, runoff should be calculated for that event as percentages will be higher for a single event than they are for annual averages.

Equation 1

$$S = \frac{1000}{CN} - 10$$

Equation 2

$$S_{0.05} = 1.33 S_{0.20}^{-1.15}$$

Equation 3

$$Q = \left\{ egin{array}{ll} 0 & ext{for } P \leq 0.05S \ rac{(P-0.05S_{0.05})^2}{P+0.95S_{0.05}} & ext{for } P > 0.05S \end{array}
ight.$$

Where: $S = S_{0.20}$ = Potential maximum retention after runoff

CN = Curve number

 $S_{0.05}$ = Converted maximum retention with an assumed 5% storage

P = Precipitation (in)

Q = Runoff depth (in)

This analysis was completed using the 94 months of daily precipitation data from the site. Total daily runoff was compared to total daily precipitation over the full period of record. Runoff as a percentage of precipitation was determined for the full period. Resulting runoff percentages for a range of Curve Numbers from 60 to 95 were calculated and are presented in **Table 3**. The low values in the table are a function of the relatively low daily precipitation accumulations.

Table 3. Estimated Runoff as a Percentage of Annual Precipitation

Curve Number	65	70	75	80	85	90	95	99
Average Annual Runoff	0.4%	0.9%	1.9%	3.6%	6.9%	13.5%	29.2%	70.6%
Percentage								

5.0 24-Hour Storm Depths and Distribution

Precipitation frequency estimates for the site were obtained from NOAA Atlas 14 Vol 1 based on the site coordinates for a range of 24-hour storm events. The storm depths were developed from NOAA's point precipitation estimator and resulted in the storm depths presented in **Table 4**.

Table 4. NOAA Atlas 14 Vol 1 24-Hour Storm Depths for Project Site

Recurrence Interval (years)	2-year	5-year	10-year	25-year	50-year	100- year	200- year	500- year	1,000- year
Precipitation Depth (in)	1.13	1.41	1.64	1.96	2.21	2.48	2.75	3.12	3.41

The distribution of 24-hour storms were evaluated for use in design. To develop a distribution, ERC utilized the intensity, duration and frequency (IDF) data from the NOAA point precipitation website. Examples of the IDF data for the 100-year, 24-hour storm is given in **Table 5**. General point precipitation frequency data recommended for use at the site for other durations and frequencies are provided in **Appendix B**.

Table 5. NOAA Atlas 14 Vol 1 Precipitation Depths for the 100-year, 24-hour Storm

Duration	5 min	10 min	15 min	30 min	60 min	2 hr	3 hr	6 hr	12 hr	24 hr
Precipitation Depth (in)	0.38	0.58	0.72	0.97	1.20	1.35	1.44	1.53	2.17	2.48

6.0 Evaporation Data

The project site weather station collects the following data on an hourly basis:

- Precipitation
- Temperature at 2 meters
- Temperature at 10 meters
- Wind speed
- Relative humidity
- Atmospheric pressure
- Solar radiation

This extensive climatological data set allowed ERC to estimate site specific evaporation. Evaporation was calculated following the Penman-Monteith procedure using FAO-56 Method (Zotarelli, 2010). Hourly data was compiled to generate daily data with minimum and maximum temperature and relative humidity defined as the high and low values for each day. Pan evaporation at the site was estimated by taking evapotranspiration (ET) rates determined from the Penman-Monteith method using a short-grass reference crop and multiplying values by 1.2 to convert them to pan evaporation. A summary of site evaporation data calculated from site data using the Penman-Monteith method is provided in **Table 6**. Data suggests that the mean annual site pan evaporation is approximately 71 inches.

Year	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Annual
2011										4.34	2.10	1.86	
2012	2.10	2.15	4.10	5.87	9.00	11.11	13.14	11.81	8.49	5.22	2.43	1.31	76.75
2013	0.94	1.97	4.46	6.13	8.13	10.91	13.82	11.47	7.38	4.15	2.62	1.27	73.24
2014	2.14	2.37	3.89	5.85	8.85	10.78	12.84	9.70	8.19	4.84	2.15	1.25	72.85
2015	1.57	2.75	4.89	6.15	7.14	11.92	11.01	11.42	7.63	4.73	1.87	1.38	72.48
2016	1.04	2.30	3.50	5.98	5.10	7.95	13.25	12.21	7.81	4.19	2.31	1.07	66.70
2017	0.93	1.90	3.74	4.58	7.70	10.22	13.61	11.65	7.36	4.60	2.41	1.56	70.26
2018	1.81	2.24	3.32	5.43	7.32	10.60	13.40	11.70	8.43	4.30	2.34	1.04	71.92
2019	1.26	1.35	3.05	5.15	6.00	9.40	12.03	11.27	6.55	4.28			
Minimum	0.93	1.35	3.05	4.58	5.10	7.95	11.01	9.70	6.55	4.15	1.87	1.04	66.70
Mean	1.48	2.13	3.87	5.64	7.41	10.36	12.89	11.40	7.73	4.54	2.30	1.27	71.01
Median	1.42	2.20	3.82	5.86	7.51	10.69	13.20	11.56	7.72	4.34	2.32	1.29	71.92
Maximum	2.14	2.75	4.89	6.15	9.00	11.92	13.82	12.21	8.49	5.22	2.62	1.86	76.75

Table 6. Calculated Monthly Site Pan Evaporation

Monthly pan evaporation estimates at the site were then compared with pan evaporation measurements taken from the Rye Patch Dam site for verification. Pan evaporation data is available at Rye Patch for the months of March through November. Comparisons of the data sets are provided in **Table 7**. The table shows that values calculated from site data compare well with data measured at Rye Patch. It is recommended that values calculated from site data be used for further evaluations.

Month	Calculated from Site Data Using P- M (in)	Rye Patch Station (in)	Difference (in)
January	1.48	NA	NA
February	2.13	NA	NA
March	3.87	NA	NA
April	5.64	NA	NA
May	7.41	8.55	1.14
June	10.36	9.95	-0.41
July	12.89	12.80	-0.09
August	11.40	11.30	-0.10
September	7.73	8.12	0.39
October	4.54	4.90	0.36
November	2.30	NA	NA
December	1.27	NA	NA
Annual	71.01	NA	NA
May - Oct	54.33	55.62	1.29

Table 7. Monthly Pan Evaporation Comparison

7.0 Summary and Conclusions

Ecological Resource Consultants Inc. completed an evaluation of precipitation and evaporation for design purposes at the Thacker Pass site. Estimates were derived using approximately eight years of daily site precipitation data supplemented with regional climatological data. Long-term annual average precipitation at the site is predicted to be approximately 12.29 inches, which is only slightly less than the average of 12.22 inches recorded over the short period of record at the site station. The range of annual

precipitation at the site over a 91-year period of record that is based on data from the Orovada 3W station is estimated to be 5.80 inches to 21.76 inches.

Short-term (24-hour) storms from the 1-year to the 500-year event were defined for the site using NOAA's point precipitation estimator. The 100-year, 24-hour storm was determined to be 2.48 inches. Annual pan evaporation for the site is estimated to be 71.01 inches based on hourly data collected on site.

References

Lim, K. J., Engel, B. A., Muthukrishnan, S. and Harbor, J. (2006), EFFECTS OF INITIAL ABSTRACTION AND URBANIZATION ON ESTIMATED RUNOFF USING CN TECHNOLOGY. JAWRA Journal of the American Water Resources Association, 42: 629-643

Maidment, ed., Handbook of Hydrology, McGraw-Hill, Inc., 1993.

National Oceanic and Atmospheric Administration, Atlas 14, Volume 1, Version 5. Point Precipitation Frequency Estimates, https://hdsc.nws.noaa.gov/hdsc/pfds/pfds map cont.html

Shevenell, Lisa, statewide Potential Evapotranspiration Maps for Nevada, Nevada Bureau of Mines and Geology Report 48, MacKay School of Mines, University of Nevada Reno, 1996.

United States Department of Agriculture (1986). Urban hydrology for small watersheds (PDF). Technical Release 55 (TR-55) (Second ed.). Natural Resources Conservation Service, Conservation Engineering Division.

United States Department of Agriculture, National Engineering Handbook, Part 630 – Hydrology, 2008.

Western Regional Climate Center, http://www.wrcc.dri.edu/

Zotarelli, Lincoln et al. 2010. Step by Step Calculation of the Penman-Monteith Evapotranspiration (FAO-56 Method). University of Florida. United States Department of Agriculture. February.

Appendix A Synthetic Monthly Project Site Precipitation

Estimated Site Precipitation Based on Correlation to Orovada 3W

YEAR	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ОСТ	NOV	DEC	ANN
1912	0.69	0.86	1.67	1.89	1.6	0.96	0.62	0.44	0.8	1.48	1.04	0.15	12.2
1914	2.68	0.73	0.11	2.03	0.78	4.48	0.46	0	1.32	0.47	0	1.17	14.23
1915	0.68	2.61	1.04	2.9	2.5	0.64	0.65	0	0.49	0	0.62	0.84	12.97
1916	1.32	1.21	0.81	0.78	1.09	0.16	0.32	0.07	0.09	2.72	0.53	0.63	9.73
1917	1.03	0.66	0.45	1.08	3.73	0.5	0.08	0.34	0.38	0	0.54	0.11	8.9
1926	1.52	1.2	0.09	2.31	1.88	0	0.1	0.02	0	0.61	1.98	0.47	10.18
1927	1.03	2.33	1.27	1.44	1.54	1.56	0.02	0.02	0.07	1.68	2.14	0.47	13.57
1928	0.74	0.65	1.89	1.16	0.06	0.45	0.03	0.05	0.13	0.48	1.34	0.93	7.91
1929	1.11	1.44	1.41	1.57	0.16	0.95	0	0	0	0.21	0	0.78	7.63
1930	2.49	0.94	1.01	1.02	2.84	0.92	0.09	0.19	0.58	0.76	1.63	0	12.47
1931	0.84	1.25	0.73	0.21	0.32	1.78	0	0.05	0.21	0.31	0.95	1.84	8.49
1932	1.15	0.6	1.88	0.85	2.91	1.98	0.48	0.01	0.03	0.26	0.42	0.6	11.17
1933	1.4	0.16	0.5	0.8	1.16	0.02	0.08	0.1	0.49	1.82	0.03	0.93	7.49
1934	0.96	3.77	0.86	1.62	0.85	1.6	0.01	0	0.09	1.6	1.72	1.13	14.21
1935	1.28	1.27	1.29	5.69	2.78	0	0.05	0.01	0.01	0.96	0.85	1.81	16
1936	1.97	1.88	0.41	0.8	1.12	1.56	0.65	0.19	0.38	0.01	0	1.17	10.14
1937	0.99	2.25	1.41	1.08	1.83	0.38	0.66	0	0.09	0.53	1.52	1.01	11.75
1938	1.55	2.96	1.82	3.68	2.46	3.41	0.32	0.21	0.44	3.48	1.17	0.26	21.76
1939	1.16	1.27	0.57	0.47	0.97	0.6	0.49	0.06	0.71	2.72	0.41	1.33	10.76
1940	2.73	1.47	1.58	0.94	0	0.36	0.23	0.06	2.97	3.52	1.63	2.11	17.6
1941	1.49	2	1.05	2.91	2.33	2.14	1.34	1.17	0.33	1.66	1.41	1.29	19.12
1942	1.87	1.04	0.38	1.79	3.07	1.49	0.02	0	0.16	0.33	2.27	2.76	15.18
1943	1.84	0.73	0.52	1.19	1.09	1.52	0.03	0	0	0.88	0.14	0.09	8.03
1944	1.54	2.53	0.54	2.33	1.01	4.26	0.4	0	0.52	0.45	3.07	0.84	17.49
1945	1.58	1.79	2.38	0.4	2.86	1.13	0.32	0.02	0.27	1.47	1.64	2.38	16.24
1947	0.09	0.46	0.79	1.51	2.29	1.1	0	0.13	0.03	1.49	1.02	0.6	9.51
1951	1.34	1.81	0.36	1.76	1.49	0.15	0	0.18	0	1.56	0.53	2.34	11.52
1952	2.21	1.43	1.23	0.88	1.32	4.42	0.57	0	2.42	0	0.99	1.07	16.54
1953	1.2	0.73	0.02	0.88	4.43	1.5	0	0.3	0	0.22	0.58	1.04	10.9
1954	0.47	0.58	2.23	0.54	0.1	0.46	0	0.01	0	0	1.02	1.08	6.49
1955	1.28	0.42	0.53	1.4	1.65	0.73	0.18	0	0	0.18	1.07	3.52	10.96
1956	3.52	1.13	0	2.13	3.35	0.33	1.18	0	0.64	2.42	0.02	0.91	15.63
1957	1.26	1.49	2.7	2.13	6.34	0.34	0	0.02	0.34	2.36	2.15	1.6	20.73
1958	1.18	2.51	1.66	2.42	0.44	3.32	0	0.5	0	0.31	0.48	0.48	13.3

Estimated Site Precipitation Based on Correlation to Orovada 3W

YEAR	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ОСТ	NOV	DEC	ANN
1959	1.36	1.37	0.53	0.08	1.8	1.05	0	0.39	1.27	0.46	0	0.52	8.83
1960	0.97	1.6	1.62	0.72	1.27	0.08	1.82	0.16	0	0.54	2.8	1.44	13.02
1961	0.29	1	2.96	0.11	0.62	0.7	1	0.44	1.44	0.62	0.65	1.15	10.98
1962	1.25	3	1.74	0.31	1.78	0.52	0	0.16	0.11	0.81	1.47	0.1	11.25
1963	1.23	1.24	0.55	1.57	2.59	2.06	0	0	0.42	1.01	1.66	0.39	12.72
1964	1.65	0.06	0.55	1.67	1.5	3.07	0.37	0.53	0	1.44	1.96	4.28	17.08
1967	2.45	0.19	1.23	2.33	2.33	1.16	0.32	0.17	0.39	0.56	0.84	0.01	11.98
1968	0.66	1.59	0.46	1.19	0.8	0.62	0	2.2	0	0.61	2.77	1.6	12.5
1969	3.06	1.23	0.32	1.76	0	1.32	0.02	0	0	1.75	0.34	1.7	11.5
1970	3.07	0.06	0.13	1.41	1.42	4.69	0.26	0.58	0.02	0.38	2.39	1.62	16.03
1971	0.55	0.32	1.82	1.33	2.59	2.53	0	0	1.74	0.81	1.46	1.7	14.85
1972	0.93	0.7	0.95	0.4	0.11	1.5	0	0	0.63	1.2	2.22	0.79	9.43
1973	2.26	0.72	1.67	2.33	1.11	0.37	0.05	0.46	0.81	0.4	1.82	1.59	13.59
1974	0.82	0.34	1.64	1.88	0	0	0.87	0.36	0	2.2	0.3	1.39	9.8
1975	1.02	1.62	2.62	0.93	0.42	1.66	0.33	1.05	0.25	3.1	0.56	0.32	13.88
1976	0.6	1.64	0.38	1.49	0.34	1.7	1.5	4.33	2.38	0.32	0.24	0.06	14.98
1977	0.53	0.36	0.49	0.14	3.07	2.85	0.79	1.17	0.45	0	1.46	1.11	12.42
1978	1.75	1.32	2.06	3.01	0.69	1.23	0.15	0	2.04	0.01	0.55	0.14	12.95
1979	1.32	1.17	2.31	1.29	0.42	0.73	0.55	1.64	0	1.65	1.05	0.73	12.86
1980	2.2	1.2	0.95	0.52	2.39	0.55	0.18	0.17	0.94	0.49	1.11	0.39	11.09
1981	0.97	0.64	1.49	0.7	2.41	0.22	0.37	0.11	0.26	1.87	2.18	1.63	12.85
1982	0.49	0.44	1.68	0.57	0.24	1.96	0.64	0	1.76	1.13	0.93	0.92	10.76
1983	1.21	1.55	2.54	3.82	1.16	1.72	0.06	0.91	0.94	0.92	1.87	4.64	21.34
1984	0.23	0.6	2.04	1.95	1.27	1.39	0.24	0.68	0.23	2.52	2.73	0.26	14.14
1985	0.24	0.47	0.72	0.45	1.49	0.02	0.69	0.15	1.51	0.8	2.92	0.34	9.8
1986	0.09	3.01	0.63	1.76	1.56	1.16	0.66	0.09	1.73	0.11	0.37	0.17	11.34
1987	1.15	0.52	1.82	1.21	1.6	0.57	0.4	0.74	0	1.15	1.03	1.83	12.02
1988	1.47	0.11	0.11	1.6	0.86	1.2	0	0	0.34	0	2.26	1.15	9.1
1989	0.07	0.27	2.78	1.49	1.56	0.03	0	0.19	1.09	0.76	0.92	0.27	9.43
1990	0.82	0.73	0.87	1.41	1.88	0.1	0.74	0.71	0.19	0.05	0.26	0.81	8.57
1991	0.16	0.17	2.35	2.69	2.82	1.7	0.05	0.09	0.61	1.29	0.53	0.73	13.19
1992	0.11	1.05	0.87	0.3	0.03	1.46	0.25	0	0	0.52	0.34	0.87	5.8
1993	1.25	0.57	1.37	0.52	0.57	1.31	0.69	4.01	0	0.99	0.23	1.15	12.66
1994	0.14	0.42	0	2.52	1.09	1.16	0	0	1.32	0.53	2.64	1.28	11.1

Estimated Site Precipitation Based on Correlation to Orovada 3W

YEAR	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ОСТ	NOV	DEC	ANN
1995	2.76	0.24	2.41	2.33	2.91	1.13	0.77	0	0.15	0.05	0.18	1.94	14.87
1996	1.64	1.13	1.4	1.17	1.28	0.89	0.1	0.18	0.47	0.86	0.74	2.03	11.89
1997	1.97	0.36	0.45	1.59	0.47	1.52	0.57	0.09	0.17	0.4	0.84	1.04	9.47
1998	1.63	2.22	2.76	2.9	3.84	1.16	0.32	0	2.8	1.9	1.11	0.11	20.75
1999	1.8	1.16	0.42	0.56	0.86	0.87	0	0.19	0.72	0.44	0.55	0.13	7.7
2000	1.91	2.68	1.34	1.9	0.93	0.07	0	0.38	0.97	2.38	0.15	0.86	13.57
2001	0.92	0.99	0.5	1.32	0.26	0.13	0.86	0	0.41	0.06	2.02	1.56	9.03
2002	1.26	0.81	0.5	0.82	1.15	0.54	0.16	0.03	0.68	0.19	1.27	0.57	7.98
2003	0.94	0.49	0.63	1.66	2.62	0	0.29	0.79	0.38	0	1.68	2.43	11.91
2006	1.31	0.97	0.86	3.47	1.67	0.63	0	0	0.06	0.17	1.13	0.82	11.09
2007	0.09	1.79	0.21	1.02	0.19	0.73	0	0	1.04	2.07	0.55	0.95	8.64
2008	0.91	0.89	0.52	0.27	1.68	0.34	0.05	0.11	0.16	0.54	1.16	1.37	8
2009	1.73	0.55	0.73	1.48	1.02	3.98	0.33	0.47	0.18	0.77	0.31	1.24	12.79
2010	1.47	0.6	1.46	2.28	2.19	0.88	0.62	0.18	0.36	3.68	0.95	3.68	18.35
2011	0.25	0.74	2.35	1.7	1.72	1.16	0.27	0.02	0.02	1.16	0.61	0.04	10.04
2012	1.7	0.27	1.05	1.2	0.3	0.41	0.4	0.5	0.71	1.13	1.12	2.7	11.49
2013	0.96	0.15	0.3	0.29	2.16	0.42	0.37	0.66	1.18	0.98	0.77	0.32	8.56
2014	0.41	2.12	3.02	1.42	0.59	0.12	0.63	1.08	2.85	0.49	1.2	1.78	15.71
2015	0.35	0.8	0.45	1.18	3.52	0.35	0.77	0.07	0.22	1.75	0.63	3.74	13.83
2016	2.49	0.24	1.43	0.79	1.98	0.88	0.01	0	0.92	1.27	0.65	2.67	13.33
2017	2.98	1.61	0.94	2.13	0.89	1.31	0.04	0.39	0.28	0.27	1.3	0.14	12.28
2018	0.59	0.6	2.08	1.48	1.67	0.42	0	0	0	1.25	0.72	1.52	10.33
2019	1.36	2.79	0.96	0.66	3.95	0.34	0.43	0.15	0.77	0.72			
					Pei	riod of Reco	rd Statistics	5					
MEAN	1.27	1.14	1.17	1.47	1.58	1.16	0.32	0.34	0.58	0.99	1.10	1.18	12.29
S.D.	0.77	0.80	0.79	0.94	1.16	1.08	0.37	0.70	0.71	0.89	0.78	0.97	3.39
SKEW	0.65	0.99	0.56	1.35	1.09	1.59	1.54	4.13	1.74	1.14	0.67	1.41	0.74
MAX	3.52	3.77	3.02	5.69	6.34	4.69	1.82	4.33	2.97	3.68	3.07	4.64	21.76
MIN	0.07	0.06	0.00	0.08	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	5.80
YRS	91	91	91	91	91	91	91	91	91	91	90	90	90

Appendix B

Point Precipitation Frequency Data for Project Site

NOAA Atlas 14, Volume 1, Version 5 Location name: Orovada, Nevada, USA* Latitude: 41.696°, Longitude: -118.0206° Elevation: 4622.8 ft**

* source: ESRI Maps ** source: USGS

POINT PRECIPITATION FREQUENCY ESTIMATES

Sanja Perica, Sarah Dietz, Sarah Heim, Lillian Hiner, Kazungu Maitaria, Deborah Martin, Sandra Pavlovic, Ishani Roy, Carl Trypaluk, Dale Unruh, Fenglin Yan, Michael Yekta, Tan Zhao, Geoffrey Bonnin, Daniel Brewer, Li-Chuan Chen, Tye Parzybok, John Yarchoan

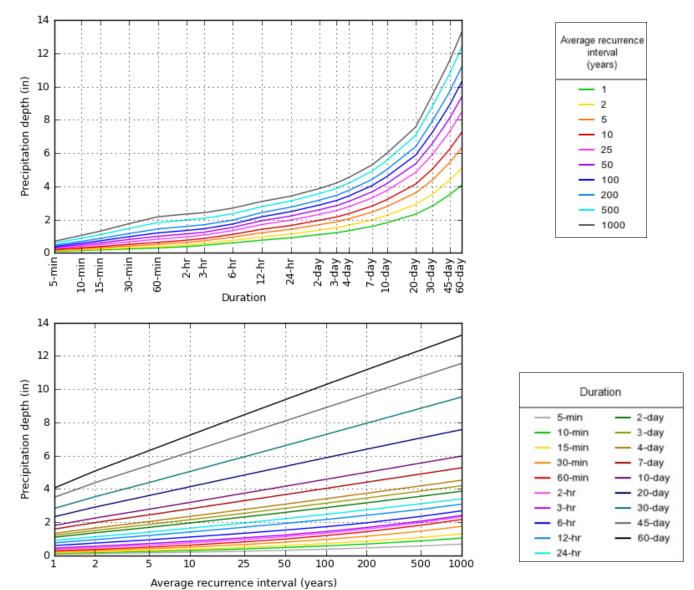
NOAA, National Weather Service, Silver Spring, Maryland

PF_tabular | PF_graphical | Maps_&_aerials

PF tabular

PDS	S-based point precipitation frequency estimates with 90% confidence intervals (in inches) ¹									
Duration				Avera	ge recurren	ce interval (years)			
Duration	1	2	5	10	25	50	100	200	500	1000
5-min	0.092 (0.081-0.108)	0.117 (0.102-0.138)	0.161 (0.139-0.188)	0.200 (0.171-0.233)	0.260 (0.218-0.306)	0.316 (0.258-0.376)	0.381 (0.302-0.459)	0.456 (0.350-0.557)	0.578 (0.421-0.723)	0.690 (0.483-0.882)
10-min	0.139 (0.123-0.164)	0.179 (0.156-0.210)	0.245 (0.212-0.287)	0.304 (0.260-0.356)	0.396 (0.332-0.466)	0.481 (0.393-0.572)	0.581 (0.461-0.699)	0.695 (0.534-0.848)	0.879 (0.641-1.10)	1.05 (0.736-1.34)
15-min	0.173 (0.153-0.204)	0.222 (0.193-0.261)	0.304 (0.263-0.355)	0.377 (0.323-0.441)	0.491 (0.411-0.578)	0.596 (0.487-0.709)	0.720 (0.571-0.867)	0.861 (0.662-1.05)	1.09 (0.795-1.36)	1.30 (0.912-1.67)
30-min	0.233 (0.206-0.274)	0.298 (0.260-0.351)	0.409 (0.354-0.479)	0.508 (0.435-0.594)	0.661 (0.554-0.778)	0.803 (0.656-0.955)	0.970 (0.769-1.17)	1.16 (0.891-1.42)	1.47 (1.07-1.84)	1.75 (1.23-2.24)
60-min	0.289 (0.255-0.339)	0.369 (0.322-0.434)	0.507 (0.438-0.593)	0.629 (0.538-0.735)	0.819 (0.686-0.963)	0.994 (0.812-1.18)	1.20 (0.952-1.45)	1.44 (1.10-1.75)	1.82 (1.33-2.27)	2.17 (1.52-2.78)
2-hr	0.377 (0.337-0.428)	0.475 (0.426-0.540)	0.628 (0.560-0.711)	0.760 (0.672-0.859)	0.964 (0.837-1.10)	1.14 (0.969-1.31)	1.35 (1.12-1.56)	1.59 (1.29-1.87)	1.98 (1.54-2.38)	2.33 (1.75-2.87)
3-hr	0.448 (0.406-0.501)	0.560 (0.506-0.625)	0.722 (0.651-0.807)	0.860 (0.770-0.962)	1.07 (0.939-1.20)	1.24 (1.07-1.40)	1.44 (1.23-1.65)	1.69 (1.40-1.95)	2.07 (1.66-2.44)	2.41 (1.88-2.90)
6-hr	0.599 (0.545-0.664)	0.748 (0.678-0.833)	0.945 (0.857-1.05)	1.11 (0.999-1.23)	1.34 (1.19-1.50)	1.53 (1.35-1.72)	1.73 (1.50-1.97)	1.97 (1.68-2.26)	2.35 (1.95-2.75)	2.69 (2.18-3.20)
12-hr	0.760 (0.689-0.843)	0.956 (0.868-1.06)	1.21 (1.09-1.34)	1.42 (1.28-1.57)	1.70 (1.52-1.89)	1.93 (1.70-2.16)	2.17 (1.89-2.44)	2.42 (2.07-2.75)	2.77 (2.32-3.21)	3.09 (2.54-3.63)
24-hr	0.903 (0.815-1.01)	1.13 (1.02-1.26)	1.41 (1.28-1.57)	1.64 (1.48-1.83)	1.96 (1.76-2.18)	2.21 (1.98-2.46)	2.48 (2.20-2.75)	2.75 (2.42-3.06)	3.12 (2.72-3.48)	3.41 (2.95-3.82)
2-day	1.10 (0.989-1.22)	1.37 (1.23-1.52)	1.69 (1.53-1.88)	1.96 (1.76-2.17)	2.32 (2.08-2.57)	2.59 (2.31-2.87)	2.88 (2.56-3.18)	3.17 (2.80-3.51)	3.56 (3.11-3.95)	3.87 (3.35-4.31)
3-day	1.21 (1.09-1.35)	1.51 (1.36-1.69)	1.87 (1.69-2.08)	2.15 (1.94-2.40)	2.54 (2.28-2.82)	2.84 (2.54-3.15)	3.15 (2.80-3.49)	3.46 (3.06-3.85)	3.88 (3.39-4.32)	4.20 (3.64-4.69)
4-day	1.33 (1.20-1.49)	1.65 (1.49-1.85)	2.04 (1.84-2.28)	2.35 (2.12-2.63)	2.77 (2.48-3.08)	3.09 (2.76-3.44)	3.41 (3.04-3.80)	3.75 (3.32-4.18)	4.19 (3.67-4.68)	4.53 (3.94-5.08)
7-day	1.59 (1.43-1.77)	1.98 (1.79-2.21)	2.45 (2.21-2.73)	2.81 (2.53-3.13)	3.30 (2.95-3.66)	3.66 (3.27-4.07)	4.04 (3.59-4.49)	4.41 (3.89-4.92)	4.90 (4.29-5.49)	5.28 (4.59-5.93)
10-day	1.81 (1.62-2.01)	2.25 (2.03-2.50)	2.78 (2.50-3.09)	3.20 (2.86-3.55)	3.75 (3.35-4.16)	4.16 (3.71-4.62)	4.58 (4.06-5.09)	5.00 (4.41-5.57)	5.56 (4.86-6.21)	5.98 (5.19-6.70)
20-day	2.33 (2.11-2.57)	2.91 (2.65-3.22)	3.61 (3.27-3.98)	4.14 (3.74-4.56)	4.84 (4.37-5.33)	5.36 (4.82-5.91)	5.88 (5.26-6.49)	6.39 (5.70-7.07)	7.07 (6.25-7.84)	7.57 (6.65-8.43)
30-day	2.83 (2.56-3.13)	3.54 (3.20-3.91)	4.39 (3.97-4.85)	5.05 (4.56-5.58)	5.93 (5.34-6.56)	6.60 (5.92-7.29)	7.28 (6.49-8.05)	7.96 (7.06-8.82)	8.85 (7.79-9.86)	9.53 (8.33-10.7)
45-day	3.50 (3.16-3.87)	4.38 (3.96-4.84)	5.42 (4.91-5.99)	6.23 (5.62-6.88)	7.29 (6.55-8.05)	8.09 (7.25-8.94)	8.89 (7.93-9.84)	9.69 (8.60-10.8)	10.8 (9.45-12.0)	11.6 (10.1-12.9)
60-day	4.05 (3.66-4.50)	5.08 (4.59-5.64)	6.31 (5.70-7.00)	7.24 (6.54-8.03)	8.46 (7.61-9.38)	9.36 (8.40-10.4)	10.3 (9.17-11.4)	11.2 (9.92-12.4)	12.4 (10.9-13.8)	13.2 (11.6-14.8)

¹ Precipitation frequency (PF) estimates in this table are based on frequency analysis of partial duration series (PDS).


Numbers in parenthesis are PF estimates at lower and upper bounds of the 90% confidence interval. The probability that precipitation frequency estimates (for a given duration and average recurrence interval) will be greater than the upper bound (or less than the lower bound) is 5%. Estimates at upper bounds are not checked against probable maximum precipitation (PMP) estimates and may be higher than currently valid PMP values. Please refer to NOAA Atlas 14 document for more information.

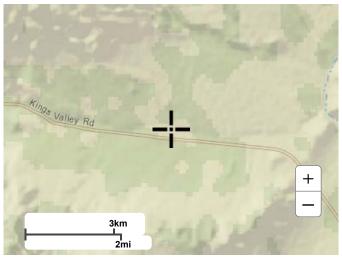
Back to Top

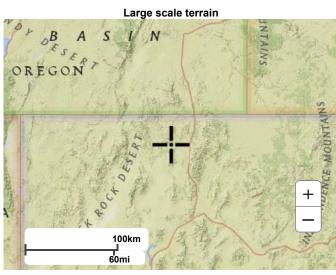
PF graphical

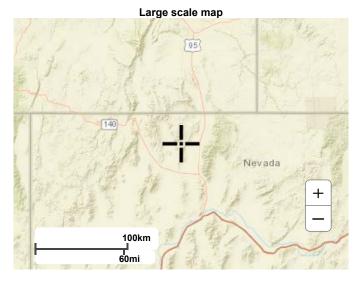
1 of 4 12/12/2018, 2:21 PM

PDS-based depth-duration-frequency (DDF) curves Latitude: 41.6960°, Longitude: -118.0206°

NOAA Atlas 14, Volume 1, Version 5

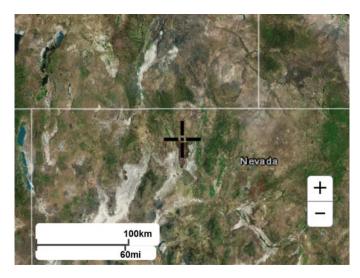

Created (GMT): Wed Dec 12 21:21:26 2018


Back to Top


Maps & aerials

Small scale terrain

2 of 4 12/12/2018, 2:21 PM



Large scale aerial

3 of 4

Back to Top

US Department of Commerce

National Oceanic and Atmospheric Administration

National Weather Service

National Water Center

1325 East West Highway

Silver Spring, MD 20910

Questions?: HDSC.Questions@noaa.gov

<u>Disclaimer</u>

4 of 4

APPENDIX F Technical Specifications

APPENDIX F.1 General

April 2, 2020 NewFields Project No. 475.0385.000

Lithium Nevada Corp. 3685 Lakeside Drive Reno, Nevada 89509

Attention: Brett Rabe

VP of Engineering

RE: TECHNICAL SPECIFICATIONS

Thacker Pass Project

Humboldt County, Nevada

Transmitted herewith are the Technical Specifications for the Thacker Pass Project and the associated infrastructure. These Technical Specifications cover material quality and placement criteria for earthworks, geosynthetics, piping, and other related elements of the project as shown on the Issued for Construction Drawings. Construction Drawings are submitted under separate cover.

If you have any questions or require additional information, please contact the undersigned.

Sincerely,

NewFields Mining Design & Technical Services

P:\Projects\0385.000 Lithium Nevada Thacker Pass Project\I-TECH SPECS\0-0385-000-SP-GEN-0.docx

Matt Haley, P.E.

Project Manager

MH/KCW/jdh

Reviewed by:

Keith Williams, P.E. Principal Engineer

CLIENT Lithium Nevada Corporation

PROJECT NO 475.0385.000

PROJECT: THACKER PASS PROJECT

TITLE: GENERAL SPECIFICATIONS FOR THE CONSTRUCTION OF THE CTFS, WRSF, CGS, AND MINE FACILITIES & PROCESS PLANT STORMWATER MANAGEMENT

SPECIFICATION NO. 0-0385-000-SP-GEN-0

			APPROVALS			
REV	DATE	PAGES	AUTHOR	REVIEW	CLIENT	REMARKS
0	04/02/2020	5	МН	KCW	BR	Issued for Construction

1.	INTRODUCTION	. 1
	LIST OF SPECIFICATIONS	
3.	SCOPE OF WORK	. 3
4.	RECORD OF CONSTRUCTION REPORT	. 3
	OF TABLES	
Tab	le 2-1: List of Specifications	. 3

1. INTRODUCTION

These Specifications and the associated Drawings (issued separately) constitute the earthworks, geosynthetics, concrete, and piping package associated with the Lithium Nevada Corporation (LNC), Thacker Pass Project. The Project is located in northern Nevada in Humboldt County, approximately 20 miles west-northwest of Orovada, 62 miles north-northwest of Winnemucca, and approximately 20 miles south of the Oregon border. The area is located approximately 4,920 feet above mean sea level (amsl) at the southern end of the McDermitt Caldera and covers approximately 3,367 ha.

Definition of Terms

- "Owner" is defined as LNC. The Owner's properly authorized representative will act on behalf of the Owner.
- "Construction Manager" is defined as a representative appointed and authorized by the Owner to act as a liaison between the Owner, the General Contractor, the Lining Contractor and the Engineer. Depending on staff availability, the Owner may act as the Construction Manager.
- "Engineer" is defined as NewFields (Engineer of Record), appointed and authorized by the Owner. The Engineer shall be a registered Professional Engineer in the State of Nevada. The Owner must identify the Engineer in writing to the General Contractor.
- "Inspector" is defined as the party or parties representing the Owner under the supervision of the Engineer. The Inspectors will perform Construction Quality Assurance (CQA) observations and testing for the project. A supervisory inspector with a minimum of five (5) years of experience in earthworks and geosynthetics testing shall review all work performed by inspectors on the job site. Resumes of all inspectors shall be submitted to the Owner for approval.
- "General Contractor" is defined as the party that has executed the contract agreement for the specified Work with the Owner or its authorized representative(s)/agent(s). It is anticipated that the General Contractor shall perform all earthwork related activities and shall subcontract geomembrane lining installation, fencing installation, pipeline installation, and other related construction activities as defined in the Scope of Work.
- "Lining Contractor" and "Lining Quality Control (CQC)" are defined as the party(ies) contracted by the General Contractor to install the geomembrane and complete CQC activities for the specified Work.
- "Pipeline Contractor" is defined as the party(ies) contracted by the General Contractor to install the HDPE and steel pipelines for the project.
- > "Fencing Contractor" is defined as the party(ies) contracted by the General Contractor to install the fencing for the project.

- "Construction Quality Control (CQC)" refers to the systematic inspections and testing completed to control the quality of construction and to ensure conformance with the project specifications.
- "Construction Quality Assurance (CQA)" refers to the overview and inspection program consisting of systematic observations, CQC document review, and independent testing completed to provide adequate confidence that the construction conforms to the design.
- "Specifications" are defined as this document, all supplemental addenda, and any modifications furnished by the Owner, the Engineer, or others that apply to the Work.
- "Drawings" are defined as the Construction Drawings for the project furnished by the Owner, Engineer, or others that apply to the Work.
- "Manufacturer" is defined as the supplier of any specified materials.
- "Site" is defined as the Thacker Pass project being built by the Owner and where the Work is to be completed as described in these Specifications and detailed on the Drawings.
- "Contract" is defined as the document executed by the Owner or its authorized representative(s)/agent(s) with the General Contractor to complete specified portions of the Work.
- "Work" is defined as the entire completed construction or the various separately identifiable parts thereof as shown on the **Drawings** and as described in the **Specifications** and **Contract**.
- "Modifications" are defined as changes made to the Specifications or the Drawings that are approved by the Owner and Engineer in writing, after the Specifications and Drawings have been issued for construction. These also refer to changes to design elements in the field to account for unforeseen conditions.
- "Plant" is defined as all equipment, supplies, accommodations, temporary offices, etc., required to complete the Work.
- "Units" these Specifications and the Drawings use English units; however, metric units are used when appropriate.

2. LIST OF SPECIFICATIONS

A list of the Specifications for the project is presented in Table 2-1.

Table 2-1: List of Specifications

Document Number	Subject	Rev	Date
0-0378-000-SP-GEN-0	General	0	04/02/2020
1-0378-000-SP-EW-0	Earthworks	0	04/02/2020
2-0378-000-SP-GM-0	Geomembrane Liner	0	04/02/2020
3-0378-000-SP-GT-0	Geotextile	0	04/02/2020
4-0378-000-SP-GN-0	Geonet	0	04/02/2020
5-0378-000-SP-HDP-0	High Density Polyethylene Pipe	0	04/02/2020
6-0378-000-SP-CPeP-0	Corrugated Polyethylene Pipe	0	04/02/2020
7-0378-000-SP-SSP-0	Stainless Steel Pipe	0	04/02/2020
8-0378-000-SP-CMP-0	Corrugated Metal Pipe	0	04/02/2020
9-0378-000-SP-C0-0	Concrete	0	04/02/2020

3. SCOPE OF WORK

The technical specifications are for construction of the Clay Tailings Filter Stack (CTFS), Waste Rock Storage Facilities (WRSF), Coarse Gangue Stockpile, sediment ponds, stormwater diversion channels & berms, roads, and other associated infrastructure as shown on the following Issued for Construction drawing sets:

- Clay Tailings Filter Stack & Process Plant Sediment Pond
- Waste Rock Storage Facilities and Coarse Gangue Stockpile
- Mine Surface Water Control Features

4. RECORD OF CONSTRUCTION REPORT

At the completion of the project, the Engineer shall produce a Record of Construction (ROC) Report for submission to the Nevada Division of Environmental Protection – Bureau of Mining Regulation and Reclamation (NDEP-BMRR). The ROC Report shall be submitted within 30 days of the completion of the Work pursuant to NAC 445A.427. The ROC Report shall include the following:

- 1. As-built drawings of the process components;
- 2. A summary of the CQA procedures which were carried out during construction; and
- 3. A description of significant modifications to the design that were made during constructions.

Details of required elements including survey and testing frequency as defined in these Specifications.

APPENDIX F.2 Earthworks

CLIENT Lithium Nevada Corporation

PROJECT NO 475.0385.000

PROJECT: THACKER PASS PROJECT

TITLE: TECHNICAL SPECIFICATIONS FOR EARTHWORKS

MATERIALS AND CONSTRUCTION

1-0385-000-SP-EW-0

			APPROVALS			
REV	DATE	PAGES	AUTHOR	REVIEW	CLIENT	REMARKS
0	04/02/2020	34	МН	KCW	BR	Issued for Construction

TABLE OF CONTENTS

1.	GENERAL
2.	CODES AND STANDARDS
	2.1. American Association of State Highway and Transportation Officials (AASHTO): 1
	2.2. American Society for Testing and Materials (ASTM):
	2.3. United States Bureau of Reclamation (USBR):
	2.4. United States Department of Transportation- Federal Highway Administration (USDOT-
3.	FHWA):
3. 4.	DUST CONTROL
4 . 5.	WEATHER LIMITATIONS
_	
6.	EARTHWORKS
	6.2. Clear and Grub, and Growth Media Removal
	6.3. Over-excavation of Existing Surface Soils
	6.4. Surface Foundation Preparation and Compaction
	6.5. Excavations and Borrow Areas
	6.5.1. General6
	6.5.2. Rock Excavation
	6.5.3. Borrow Activities
	6.6. Fill Materials
	6.6.1. Rockfill9
	6.6.2. Common Fill
	6.6.3. Liner Bedding
	6.6.4. Select Gravel
	6.6.5. Overliner
	6.6.6. Wearing Course
	6.6.7. Pipe Bedding and Pipe Backfill16
	6.6.8. Filter Sand
	6.6.9. Riprap
	6.6.10. Structural Tailings21
	6.6.11. Non-Structural Tailings21
	6.6.12. Chimney Drain
7.	LINER SURFACE PREPARATION OF AREAS TO RECEIVE GEOSYNTHETIC LINING22
8.	COMPACTION EQUIPMENT

9.	8.1. Smooth Drum Vibratory Roller	24 24 25 25 26
	CONSTRUCTION TOLERANCES	
11.	TESTING FREQUENCIES	27
	OF TABLES	
	e 11-1: Test Methods	
Tab	e 11-2: Test Frequency – Surface Preparation/Liner Bedding	28
Tab	e 11-3: Test Frequency – Rockfill	28
Tab	e 11-4: Test Frequency – Common Fill	28
Tab	e 11-5: Test Frequency – Select Gravel	29
Tab	e 11-6: Test Frequency – Overliner	29
Tab	e 11-7: Test Frequency – Wearing Course	29
Tab	e 11-8: Test Frequency – Pipe Backfill and Pipe Bedding	30
Tab	le 11-9: Test Frequency – Filter Sand	30
Tab	e 11-10: Test Frequency – Riprap	31
Tab	e 11-11: Test Frequency – Structural Tailings	31
	e 11-12: Test Frequency – Non-Structural Tailings	
Tab	e 11-13: Test Frequency – Chimney Drain	32

1. GENERAL

This specification defines the requirements for the earthwork construction activities for the Thacker Pass Project owned by Lithium Nevada Corporation. The specifications set forth in this document cover the quality of materials and workmanship for earthworks construction.

Any alternatives or exceptions to this specification shall be submitted in writing to the Owner or its designated representative(s)/agent(s) and shall be approved by the Engineer.

The Definition of Terms is provided in Specification No. 0-0385-000-SP-GEN-0.

2. CODES AND STANDARDS

All tests shall be performed in accordance with the current edition of the testing standards as indicated below.

2.1. American Association of State Highway and Transportation Officials (AASHTO):

- AASHTO T103-08: "Soundness of Aggregates by Freezing and Thawing (Procedure A Total Immersion in Water)", American Association of State Highway and Transportation Officials, Washington DC, www.transportation.org.
- AASHTO T104-99: "Soundness of Aggregate by Use of Sodium Sulfate or Magnesium Sulfate", American Association of State Highway and Transportation Officials, Washington DC., www.transportation.org.

2.2. American Society for Testing and Materials (ASTM):

- ASTM C88/C88M-18: "Standard Test Method for Soundness of Aggregates by Use of Sodium Sulfate or Magnesium Sulfate", ASTM International, West Conshohocken, PA, www.astm.org.
- ASTM C117-17: "Standard Test Method for Materials Finer than 75-μm (No. 200) Sieve in Mineral Aggregates by Washing", ASTM International, West Conshohocken, PA, www.astm.org.
- ASTM C131/C131M-14: "Standard Test Method for Resistance to Degradation of Small-Size Coarse Aggregate by Abrasion and Impact in the Los Angeles Machine", ASTM International, West Conshohocken, PA, www.astm.org.
- ASTM C136/C136M-14: "Standard Test Method for Sieve Analysis of Fine and Coarse Aggregates", ASTM International, West Conshohocken, PA, www.astm.org.
- ASTM C535-16: "Standard Test Method for Resistance to Degradation of Large-Size Coarse Aggregate by Abrasion and Impact in the Los Angeles Machine", ASTM International, West Conshohocken, PA, www.astm.org.
- ASTM D 1556/D1556M-15e1: "Standard Test Methods for Density and Unit Weight of Soil in Place by Sand-Cone Method", ASTM International, West Conshohocken, PA, www.astm.org.

- ASTM D1557-12e1: "Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Modified Effort", ASTM International, West Conshohocken, PA, www.astm.org.
- ➤ WK63917 Reinstatement of D2434 68(2006): "Standard Test Method for Permeability of Granular Soils (Constant Head) (Withdrawn 2015)", ASTM International, West Conshohocken, PA, www.astm.org.
- ASTM D4318-17e1: "Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils", ASTM International, West Conshohocken, PA, www.astm.org.
- ASTM D4644-16: "Standard Test Method for Slake Durability of Shales and Other Similar Weak Rocks", ASTM International, West Conshohocken, PA, <u>www.astm.org.</u>
- ASTM D5030/D5030M-13a: "Standard Test Method for Density of Soil and Rock in Place by the Water Replacement Method in a Test Pit", ASTM International, West Conshohocken, PA, www.astm.org.
- ASTM D6913/D6913M-17: "Standard Test Methods for Particle-Size Distribution (Gradation) of Soils Using Sieve Analysis", ASTM International, West Conshohocken, PA, www.astm.org.
- ASTM D6938-17a: "Standard Test Methods for In-Place Density and Water Content of Soil and Soil-Aggregate by Nuclear Methods (Shallow Depth)", ASTM International, West Conshohocken, PA, <u>www.astm.org.</u>

2.3. United States Bureau of Reclamation (USBR):

➤ USBR 5605: "Determining Permeability and Settlement of Soils Containing Gravel, Fixed Wall Saturated Hydraulic Conductivity", U.S. Bureau of Reclamation, Washington, DC., <u>usbr.gov</u>.

2.4. United States Department of Transportation- Federal Highway Administration (USDOT-FHWA):

USDOT FLH T 521: "Standard Method of Determining Riprap Gradation by Wolman Count", United States Department of Transportation- Federal Highway Administration, Washington, DC. <a href="https://doi.org/10.1007/jhps.ncb.1007/jhps.ncb.10.1007/jhps.ncb.10.1007/jhps.ncb.10.1007/jhps.ncb.1007/jhps.nc

3. LANDSCAPE PRESERVATION

The Contractor shall exercise care at all times to preserve the natural landscape and shall conduct operations to prevent unnecessary damage, scarring or defacing of the natural surroundings in the vicinity of the Work. Movement of personnel and equipment within the Site disturbance, Site access roads, and easements provided for access to the Work shall be performed in a manner to prevent damage to the property and the environment. In no case shall the Contractor disturb any areas outside the limits of the Work as defined by the Owner.

4. DUST CONTROL

The General Contractor, for the duration of the contract, shall maintain all excavations, mass grading operations, haul roads, access roads, waste disposal areas, borrow areas, and all other work areas free from excessive dust as determined by the Owner. Industry accepted methods of dust control suitable for the area involved, such as sprinkling water from an approved source, will be permitted. Alternative methods for dust control shall be approved by the Owner.

5. WEATHER LIMITATIONS

Unless approved in the field by the Engineer, controlled fill shall not be constructed when the atmospheric temperature is at thirty-five (35) degrees Fahrenheit (F) and falling. When the temperature falls below thirty-five (35) degrees F, it shall be the responsibility of the General Contractor to protect all areas of completed surfaces against any detrimental effects by methods approved by the Engineer. Any areas that are damaged by freezing shall be removed or reconditioned, reshaped and re-compacted by the General Contractor in conformance with the requirements of this Specification. In no case shall frozen fill materials be incorporated into the mass grading operations nor shall fill be placed on frozen ground, snow or materials that have not been approved by the Inspector.

Overliner placement shall be suspended at no cost to the Owner if, in the opinion of the Engineer, the operation creates unsafe conditions due to moisture or ice build-up on the geomembrane, visibility becomes problematic or the quality of Work is being compromised. The General Contractor shall make sure material is not rutting or pumping under the construction traffic due to the excessive moisture. Materials shall not be placed on concentrations of snow or ice, nor shall concentrations of snow or ice be incorporated into the Overliner materials either prior to or during placement. Snow and ice shall be removed from the geomembrane surface prior to Overliner placement. The snow or ice shall be removed a sufficient distance from the geomembrane and Overliner material interface such that Construction Quality Assurance (CQA) personnel can examine the geomembrane conditions prior to Overliner placement. Frozen chunks in the Overliner material that could damage the geomembrane or add excessive moisture to the material once thawed are not allowed.

6. EARTHWORKS

This section presents the technical requirements for the earthworks construction for the Thacker Pass Project.

All equipment used by the General Contractor shall meet satisfactory conditions and comply with the Specifications with the approval of the Engineer. The Engineer reserves the right to request in writing a change in the required equipment or procedure of any work and the General Contractor shall comply.

6.1. Control of Surface Water and Stormwater Runoff

During the construction period, the General Contractor will be responsible for constructing and maintaining any temporary ditches, channels, and/or sediment control features required to protect the Work and control surface water flows and sediment.

The General Contractor shall submit plans for temporary surface water runoff control to the Construction Manager for review and approval. The temporary surface water runoff control, including temporary and permanent berms, channels and any other control measures, shall be built according to the line and grade indicated on the plan submitted by the General Contractor and shall be maintained throughout the Work.

The General Contractor shall construct erosion control measures required to prevent significant transport of sediments from the stockpiles, construction areas, and other areas of the Work that may be subject to the effects of runoff.

The General Contractor shall provide equipment and perform all necessary work to maintain the areas of surface and groundwater collection to remove sediments from the water before it leaves the site. The General Contractor shall provide the temporary erosion control measures and make improvements immediately to these control measures if it is deemed necessary by the Owner or Engineer.

The General Contractor shall prevent all damage to the work areas due to drying, water runoff and sediment control.

The General Contractor shall remove all temporary installations of erosion control measures when they are no longer necessary and restore the areas affected by these measures.

The General Contractor shall be responsible for the damage that results from rainfall runoff and for failed erosion control measures.

6.2. Clear and Grub, and Growth Media Removal

The area within the disturbance limits of the Thacker Pass Project is a combination of native vegetated terrain that requires removal of vegetation and topsoil stripping, previously undisturbed area, storage of organic material, and storage piles of various rock and soil materials. No clearing and stripping shall occur in an area until the area has been approved by the Owner.

Based upon studies of site vegetation and topsoil thickness conditions, the average thickness of stripping of topsoil and grubbing of vegetation is anticipated to be twelve (12)-inches.

Clearing and stripping consists of cutting vegetation at the soil level, removing this material as well as branches and any other vegetation. The vegetation and surface topsoil materials, that are considered the root zone, shall be excavated, loaded, and hauled to a stockpile location

adjacent to the work area designated by the Owner. The limits of stripping shall generally extend approximately ten (10) feet outside of the Work activity areas as shown on the Drawings. Any clearing and stripping beyond the limits shown on the Drawings, or as required by the Engineer, shall be subject to the approval of the Owner.

Topsoil stockpiles shall be leveled, trimmed, and shaped to prevent the occurrence of ponding or concentrations of surface runoff and to provide a neat appearance. Finished slopes of the stockpiles shall be graded to 2.5H:1V (horizontal to vertical) for interim reclamation. All surface water runoff shall be directed to available natural drainage courses. The General Contractor shall use proper sediment control measures approved by the Construction Manager. Clearing and stripping will be carried out using whatever method is deemed necessary, providing it is consistent with producing an acceptable end result as determined by the Owner and the Engineer. Care is to be taken to minimize erosion and excessive sediment buildup.

After stripping of the required area, the surface shall be prepared as specified on the Drawings or in the Technical Specifications. Prior to any surface treatment on a stripped area, the Engineer shall be notified to inspect the stripped area and designate the method of treatment required for continuance of Work. A survey shall be taken of the area immediately prior to and immediately after stripping operations to determine quantities and/or for verification of lift/layer thickness to be placed after stripping is complete.

6.3. Over-excavation of Existing Surface Soils

After initial clearing and grubbing operations are completed, over-excavation of any softer soils to the contact of relatively firm soils or rock shall be performed only at the direction of the Engineer. If required, over-excavation shall be performed in embankment foundation areas and facility footprints. Confirmation of adequate sub-excavation and exposure of firm soils or rock shall be made by the Inspector subject to approval by the Engineer.

6.4. Surface Foundation Preparation and Compaction

Once the work area has been cleared and stripped to the satisfaction of the Engineer, the surface shall be prepared before any overlying materials are placed. All work areas shall be graded according to the limits shown on the Drawings. Areas of both cut and fill shall be required to bring the grading of the work area to the elevations specified in the Drawings.

The upper eight (8) inches of native soils (foundation preparation) beneath cut surfaces and areas to receive fill shall be scarified, moisture conditioned, and compacted to ninety (90) percent of the maximum dry density, within three (3) percent of optimum moisture content as determined by the Modified Proctor Density Test, ASTM D1557.

Scarification and compaction can be deleted in areas which intact bedrock is exposed at the surface. The Engineer may waive this requirement if the exposed surface soils without manipulating will provide a firm, non-yielding surface for fill placement, in which case the surface shall be moistened, lightly scarified, and the first layer of fill placed.

All boulders and cobbles that are located at the surface and/or partially exposed in a finish cut or fill area that could be detrimental to the overlying construction shall be removed as directed by the Engineer.

Areas of unsuitable material as determined by the Engineer or areas of pre-existing fill not compacted to the specifications shall be excavated to the limits designated by the Engineer and replaced with compacted Common Fill.

In cut areas where six (6) inches of material suitable for use as Liner Bedding material is encountered and approved by the Engineer, native soils shall be scarified; moisture conditioned and compacted to meet the requirements of Section 6.6.3 and for finished surface preparation as defined in Section 7.

The General Contractor is responsible for maintaining surfaces in a satisfactory condition after approval of the Engineer. The General Contractor shall protect the prepared surface from weather, construction equipment and other factors.

6.5. Excavations and Borrow Areas

6.5.1. **General**

Excavation methods, techniques, and procedures shall be developed with consideration to the nature of the materials to be excavated and shall include all precautions that are necessary to preserve, in an undisturbed condition, all areas outside the lines and grades shown on the Drawings or as required by the Engineer. Excavation, shaping, etc., shall be carried out by whatever method is considered most suitable, providing it is consistent with producing an acceptable result as determined by the Engineer. Excavations shall be graded to provide drainage and prevent ponding. For excavations that cannot be graded to drain, the General Contractor shall make provisions for the equipment and labor necessary to keep the excavations free of standing water.

No excavation beyond the lines and grades shown on the Drawings or as required by the Engineer shall be completed without the prior approval of the Engineer/Owner. The General Contractor shall protect and maintain all excavations until the adjacent placement or overlying placement of material has been completed. No Work is allowed outside of approved disturbance boundaries.

All earth materials, boulders, or detached pieces of solid rock less than one (1) cubic yard in volume shall be classified as common excavation. No additional allowance above the unit prices bid for rock fill placement shall be permitted for excavation of wet or frozen materials. All excavated material may be used as fill provided it meets the requirements for the class of material in which its use is intended as specified herein.

6.5.2. Rock Excavation

Rock excavation shall be classified as material that cannot be effectively loosened or broken down in a single pass by ripping with a late model tractor-mounted hydraulic ripper, equipped with one digging point of standard Manufacturer's design that is adequately sized for use with and propelled by a crawler-type tractor, rated at a minimum 410-net flywheel horsepower and operating in low gear. All boulders or detached pieces of solid rock in excess of one cubic yard in volume shall be classified as rock excavation. These materials may be used for fill if they meet the requirements for the class of materials in which its use is intended as specified herein.

The rock excavation pricing shall not take effect if the General Contractor can rip an average of 250 cubic yards per hour over a four (4) hour time period with a D10 dozer equipped with a single ripper shank.

The General Contractor shall notify and meet with the Construction Manager at the reported site of the rock excavation prior to starting the four (4) hour time period. No additional allowance above the unit prices bid for rock fill placement shall be permitted without prior written approval by the Construction Manager and the Engineer.

Based on the results of field exploration, bedrock is expected to be encountered within the depth of excavation at some areas of the project site. Areas to receive HDPE liner in which bedrock is encountered within the depth of the excavation shall be over-excavated a minimum depth of six (6)-inches below finished grade such that the Liner Bedding can be placed where shown on the Drawings. The rock surface shall be relatively smooth such that no rock asperities extend more than one (1) inch above the surrounding area. Over-excavation in excess of the six (6)-inches specified herein shall be at the expense of the General Contractor.

6.5.3. Borrow Activities

The General Contractor shall coordinate borrow activities with the Engineer and CQA to allow the sampling and testing of materials prior to their excavation. The General Contractor shall allow the Engineer adequate time to evaluate potential borrow materials. Materials from excavations within the works or borrow areas that meet the specified requirements for other construction materials shall be stockpiled or placed in fill areas as directed by the Engineer/Owner. Unsuitable or excess materials shall be hauled to designated waste or stockpile areas approved by the Owner.

The materials obtained from borrow pits or Owner-stockpiled material shall be selected to ensure that the gradation requirements for the various construction materials are achieved and that the materials are as homogeneous as possible. Care shall be taken to avoid cross-contaminating different types of materials.

On-site borrow areas shall be developed within the limits shown on the Drawings or as required by the Owner. Should the General Contractor wish to develop additional borrow sources, written approval shall be received from the Owner prior to proceeding. Approval by the Owner may require that subsurface investigations be carried out to obtain samples as are required by the Engineer to make an appropriate assessment of the suitability of the borrow materials in the area for the intended use.

Borrow pit operations shall be subject to the approval of the Owner and Engineer and shall avoid waste of any suitable construction material therein. Clearing and stripping of any borrow area is to be completed with all salvageable topsoil stockpiled in areas designated on the Drawings or as directed by the Owner. Each borrow area shall be developed with due consideration for drainage and runoff from the excavated surfaces not to cause erosion of the adjacent terrain. Each borrow area shall be excavated in near-horizontal layers and in such a manner that water will not collect and pond except as approved by the Owner. Before being abandoned, the sides of any borrow areas outside the Work area shall be brought to stable slopes not steeper than 2.5H:1V with slope intersections rounded and contoured to provide a natural, neatly graded appearance.

Care shall be taken to minimize and control the generation of dust as discussed in Section 4.

6.6. Fill Materials

Earthfill shall not be placed until the clearing and stripping; required foundation preparations have been completed; and the foundation has been inspected and approved by the Engineer; and any required surveys completed.

All material used for fill shall be loaded and hauled to the placement site, dumped, spread, and leveled to the specified layer thickness. Fill shall be moisture conditioned and compacted to form a dense integral fill in accordance with the Technical Specifications and as approved by the Engineer. Care shall be taken at all times to avoid segregation of the material being placed and, if required by the Engineer, all pockets of segregated or undesirable material shall be removed and replaced with material that matches the surrounding material. All oversize material shall be removed from the fill material either prior to it being placed or after it is dumped and spread but prior to compaction. No additional payment will be made to remove oversized materials unless the work is specifically identified as a payment item on the Schedule of Quantities.

For most construction conditions, the fill is to be constructed in near horizontal layers with each layer being completed over the full length and breadth of the zone before placement of

subsequent layers. Each zone shall be constructed with materials meeting the specified requirements and shall be free from lenses, pockets, and layers of materials that are substantially different in gradation from the surrounding material in the same zone, as determined by the Engineer.

Except in areas approved by the Engineer, where space is limited or as otherwise specified, fill shall be placed by routing the hauling and spreading units approximately parallel to the axis of fill. The hauling equipment shall be routed in such a manner that they do not follow in the same paths but spread their travel routes evenly over the surface of the fill to aid in compaction of the fill placed.

Moisture conditioning is the operation required to increase or decrease the moisture content of material to within the specified limits. If moisture conditioning is necessary, it may be carried out by whatever method the General Contractor deems is suitable, provided it produces the moisture content specified in these Technical Specifications or designated by the Engineer. The General Contractor shall take the necessary measures to ensure that moisture is being distributed uniformly throughout each layer of material being placed immediately prior to compaction. Measures shall be adopted as are necessary to ensure that the designated moisture content is preserved after compaction until the overlying layer is placed.

All particles having dimensions that interfere with compaction in the fill as determined by the Engineer or CQA shall be removed from the zone in which they were placed either prior to or during compaction.

The rolling pattern for compaction of all zone boundaries or construction joints shall be such that the full number of roller passes required in one of the adjacent zones, or on one side of the construction joint, extends completely across the boundary or joint.

Minor deviations from the material properties and gradation limits specified in the following sections may be acceptable, subject to the review and approval of the Engineer.

6.6.1. Rockfill

Any material having more than thirty (30) percent plus three-quarter (¾) inch size rock shall be classified as rockfill. Rockfill may be obtained from excavations in areas of the facilities or borrow areas designated by the Construction Manager and approved by the Engineer. Rockfill can be placed as Common Fill in the base of the deeper fills and shall not be used in the upper two (2) feet of fills in areas that will receive Liner Bedding and concrete.

Material Properties - Rockfill may have a wide range of Unified Soil Classifications (USCS) and may contain significant variations in gradation and compaction properties. Rockfill shall have no particles larger than two-thirds (2/3) of the lift being placed, unless otherwise approved by the Engineer. Oversize materials shall be removed from the fill.

Placement Methods - Rockfill for mass grading operations shall be placed in lifts not to exceed four feet if compacted with mine haul trucks or twelve (12) inches in compacted thickness with standard construction equipment, unless authorized by the Engineer. The type of compaction equipment, and number of passes, shall be approved by the Engineer in writing based on an acceptable field fill compaction performance test.

Construction and monitoring of the field test shall be performed per U.S. Army Corps of Engineers' guidelines for test fill construction. The test fill may be located so that it is incorporated within the limits of the compacted fill areas. The moisture content of the minus three-quarter (¾) inch material shall be within three (3) percent of optimum moisture prior to placement.

The data to be collected during construction of the test fill and submitted to the Engineer for approval shall include:

- Amount of settlement after every two (2) passes of ten (10) ton minimum (static drum weight) vibratory, smooth-drum roller compactor, or a loaded haul truck to a maximum of fifteen (15) passes
- Gradation and moisture content of in-place material.
- In-place fill density at completion of the test by bulk density or nuclear gauge methods (if applicable). If needed, a water replacement method test may be required to assess compaction for rockfill.

A curve showing change in settlement versus number of passes shall be produced from the data. This curve will be used to determine the required minimum number of passes for acceptable compaction. In general, the minimum number of passes will be that number to achieve eighty (80) percent of the total settlement obtained after ten (10) complete passes of the compaction equipment. Final determination by the Engineer of the lift thickness and minimum required passes will be based on review of the test data.

6.6.2. Common Fill

Common Fill will be placed in areas where the material is not required to be of uniform character and engineering properties. Common Fill shall consist of inorganic soil and rock materials from required excavations, mine waste, or borrow material from other sources as designated by the Construction Manager and approved by the Engineer. Common Fill can be used to within six (6)-inches of finished grade in areas of the facilities which receive Liner Bedding.

In areas to be covered with geomembrane and not designated to receive Liner Bedding material, the Common fill may extend to finished grade provided finished surface preparation is performed

and matches material specifications in accordance with the Liner Bedding requirements in Section 6.6.3 and for finished surface preparation as defined in Section 7.

Material Properties – Common Fill shall contain less than thirty (30) percent rock (materials above three-quarter (¾) inch size and up to eight (8) inch maximum rock size will have a wide range of Unified Soil Classifications and may contain significant variations in gradation and compaction properties. Common Fill shall be placed in areas where the material is not required to be of uniform character and engineering properties. Common Fill shall be free of roots, grass and other organic material and consist of inorganic soil and rock materials from required excavations, mine waste, or borrow material from other sources, as approved by the Engineer.

Materials shall be considered suitable for use as Common Fill provided they contain no particles larger than eight (8) inches nominal diameter (least dimension). Materials containing rock or cobbles, and gravel from required excavations may be used subject to the Engineer's approval and provided the rock be reasonably graded such that large void spaces do not result. The maximum size rock shall be no larger than two-thirds (2/3) the lift thickness. Furthermore, the anchor trench material shall consist of non-deleterious or consolidating materials that are two (2) inch minus.

Placement Methods - Common Fill shall be placed in twelve (12) inch maximum loose lifts and compacted to ninety-two (92) percent of the maximum dry density (ASTM D1557). The moisture content during compaction shall be maintained within three (3) percent of optimum moisture content (OMC) as determined in accordance with ASTM D1557.

Anchor trench backfill shall be compacted to a minimum of ninety (90) percent of ASTM D1557 maximum dry density, and care shall be taken to prevent any damage to the geomembrane. Except as necessary for construction, ballasting and the safety of the Works, geomembrane anchor trenches shall not be filled until approved by the Engineer.

Slight variations from the specified moisture range may be acceptable subject to the acceptance of the Engineer and provided the required relative compaction specifications are achieved. The Common Fill material shall be compacted with appropriate compaction equipment capable of achieving compaction through the full thickness of the lift layer. If the Common Fill placement and compaction utilizes ninety (90) ton or larger haul trucks, the lift thickness can be increased subject to the approval of the Engineer.

6.6.3. Liner Bedding

Material Properties - Liner Bedding material shall consist primarily of a finer-grained material primarily used to provide suitable bedding for geomembrane deployment and installation.

The material gradation shall be as follows and meet the following grading requirements as determined by ASTM D6913, unless otherwise approved by the Engineer:

Sieve Size (square openings)	Percent Passing (by dry weight)
2-inch	100
No. 4	25-100
No. 200	0-100

No minimum Atterberg limits requirements are specified for Liner Bedding materials.

Placement Methods – If the existing materials do not meet the requirements of this specification, Liner Bedding will be sourced from local borrow areas or stockpiles and placed in a single lift, moisture conditioned to within three (3) percent of OMC and compacted to at least ninety (90) percent of the maximum dry density as determined by ASTM D1557.

Smooth drum finishing rollers shall be used to achieve the specified compaction. The areas that are inaccessible to large compaction equipment shall be compacted using jumping jack, plate compactors or other compaction methods approved by the Engineer. Any particles projected up from the surface greater than ¾" shall be removed by hand or other methods approved by the Engineer that achieve a smooth compacted surface.

The General Contractor shall protect the finished surface of the Liner Bedding from weather damage between placement activity and coverage by the Geomembrane Installation.

If moisture accumulates under the Geomembrane before or after welding the panels and softens the Liner Bedding layer, the geomembrane shall be removed, and the Liner Bedding shall be repaired to comply with the Specifications.

If any area of Liner Bedding does not comply with the requirements of the Specifications and is not approved by the Engineer, it shall be considered in nonconformance and the General Contractor shall be required to rework the area until acceptable. Subgrade requirements for geosynthetic installation are discussed further in Section 7.

6.6.4. Select Gravel

Material Properties - Select gravel shall be a processed or natural clean gravel material containing nonplastic fines. The select gravel shall consist of materials composed of hard, durable stone particles free from organic material and generally free of thin, flat, and elongated pieces.

The select gravel shall generally conform to the following graduation requirements as determined by ASTM C136 and C117.

Sieve Size (square openings)	Percent Passing (by dry weight)		
1-inch	100		
3/4-inch	50-100		
No. 4	0-10		
No. 40	0-5		
Non-plastic per ASTM D4318			

The select gravel material shall be nonplastic when tested in accordance with ASTM D4318.

The percent of wear when subject to the Los Angeles abrasion test (ASTM C131, 500 revolutions) shall be no greater than forty (40).

Where geotextile is encapsulating the select gravel it shall consist of a nonwoven, needle punched, polypropylene fabric meeting the requirements of latest revision to Specification 3-0378-000-SP-GT-A.

Placement Methods – Select Gravel material shall be placed with minimal compaction by mechanical means in order to maintain transmissivity and porosity of the material and to avoid damage to the geomembrane and geotextile material during placement.

6.6.5. Overliner

Material Properties - The Overliner will be native materials produced from an onsite borrow source or based on availability, Coarse Gangue material, processed and generated through a crushing and screening operation. The Overliner material shall consist of a sandy gravel material. The materials shall be composed of hard, durable stone particles reasonably free from thin, flat, and elongated pieces.

The material shall meet the following gradation limits unless otherwise approved by the Engineer:

Sieve Size (square openings)	Percent Passing (by dry weight)		
1.5 - inch	90-100		
1/2 - inch	40-80		
1/4 - inch	20-60		
No. 200	0-10		
Non-plastic per ASTM D4318			

The in-place Overliner material shall meet the grading and consistency requirements as determined in accordance with ASTM C117 and ASTM D6913. The Overliner material shall be non-plastic when tested in accordance with ASTM D4318.

The Overliner materials shall have a coefficient of permeability 1 x 10^{-4} cm/s or greater when tested in accordance with USBR 5605 - Amended with an applied stress of 32 ksf. The target permeability for the Overliner is two orders of magnitude faster than the overlying tailings material with a minimum limit of one order of magnitude faster than the overlying tailings. Based on the testing completed to date the target overliner permeability is 1×10^{-4} cm/s.

Material used for Overliner may be approved by the Engineer by visual inspection if the rock is determined to be sound and durable. However, if in the Engineer's opinion, the material is marginal or unacceptable, the Engineer may require one or more of the following laboratory tests on representative samples of the material in order to assess the quality of the material.

Overliner Material Laboratory Tests

Test Description	Test Method	Specification Requirement
Los Angeles Abrasion	ASTM C 535	50% Loss Maximum (after 500 revolutions)
Sodium Sulfate or Magnesium Sulfate Soundness	AASHTO T 104 or ASTM C88	10% Maximum Loss (after 5 cycles)
Soundness by Freezing and Thawing	AASHTO T 103	10% Maximum Loss (after 12 cycles)
Slake Durability	ASTM 4644	Classification as Type 1

Placement Methods – Overliner shall be placed to the lines and grade shown on the Drawings. Proposed equipment and placement methods shall be outlined in the General Contractor's proposal to the Owner. Proposed equipment and placement methods to minimize compaction of the Overliner materials shall also be outlined in the General Contractor's proposal to the Owner.

Before placing the Overliner, the General Contractor shall verify by a visual inspection that all geosynthetic material installed in the area is free from perforations, wrinkles, scratches and other damage. The Engineer shall inspect the geosynthetic material to verify that it is ready to receive the Overliner.

Overliner material shall be placed directly on the geomembrane and around piping with extreme care to prevent damage. This is generally done by hauling and placing the material on the geomembrane in a single lift with haulage units that exert less than 80 psi of ground pressure.

The material shall be spread with a low ground pressure crawler-type tractor or equivalent that exerts less than 20 psi of ground pressure. The material shall be placed at a minimum loose thickness such that the compacted lift thickness is not less than the design thickness shown on the drawings (General Contractor to determine allowance for settlement). At no time shall equipment operate directly on the surface of the geomembrane.

Special attention shall be taken when being placed over the Corrugated Polyethylene (CPe) and High Density Polyethylene (HDPE) pipe. All oversized material that may damage the pipework or geomembrane will be removed by whatever means necessary to ensure there is no damage. Because of the thickness of the Overliner and the potential crushing of the collector pipes and damage of the geomembrane, vehicle traffic on the Overliner shall be as minimal as possible and shall be restricted to roadways and other main access ways. Overliner thickness within roadways shall be maintained at least four (4) feet above the geomembrane surface. A minimum cover equal to 2-feet over the top of the CPe pipe shall be maintained at all times.

Placement equipment and procedures shall minimize compaction of the Overliner material and watering shall be limited to thickened access roads. Increased thicknesses of material shall be required in areas with large diameter piping to prevent crushing from haulage vehicle traffic. Haulage equipment may also necessitate increased cover material thickness within haulage

Placement of Overliner at angles of approximately forty five (45) degrees from normal is acceptable, provided the material is placed from the bottom up. Placement of Overliner parallel to the contours and across the slope is not acceptable. Placement of Overliner shall be performed in accordance with the Design Drawings and Technical Specifications in a manner which maintains the integrity of the geomembrane and allows placement of the collection pipe as shown on the drawings. A written placement procedure with proposed methods and equipment to be used shall be developed and provided to the Engineer for review and approval prior to Overliner placement on steep slopes.

The General Contractor shall not place fill materials at such times that, in the opinion of the Engineer, conditions for such operations are unsatisfactory due to precipitation, low temperatures or any other reasons. As ambient air temperature increases, wrinkles in the HDPE geomembrane will develop due to thermal expansion of the geomembrane. Placement of Overliner will cease if the wrinkles become large enough to fold over or it causes a crease to form when covered with Overliner material. Overliner material shall be placed during the cooler times of the day or during the evening when the geomembrane lays relatively flat. To minimize the effect of wrinkles, the Overliner shall be placed in an uphill direction and /or parallel to the contours. At no time, shall conditions result in movement/slippage of the Overliner materials that could potentially cause geomembrane or pipe damage.

The thickness of the Overliner shall be verified by the Engineer and areas with deficient amounts of material shall be reworked to comply with the Specifications. Overliner placement around the perimeter of the facility shall be as shown on the Drawings. Any damage to the geosynthetic material during installation shall be exposed by the General Contractor and repaired by the Geomembrane Lining Contractor. If overliner is placed at night, the General Contractor must develop an approved plan including adequate lighting.

The General Contractor shall supply a full-time laborer (one laborer per one dozer) to visually inspect one-hundred (100) percent of the Overliner placement.

6.6.6. Wearing Course

The roadway-wearing surface is to be constructed using select mine waste material. A source for the material will be provided by the Owner. Some removal of oversized rock will be required. Wearing Course shall generally conform to the following gradation requirements as determined by ASTM D6913 or as approved by the Engineer.

Material Properties - The Wearing Course materials shall consist of approved materials and shall meet the specified grading requirements as determined by ASTM D6913 or as approved by the Engineer.

Sieve Size (square openings)	Percent Passing (by dry weight)
3-inch	100
3/4-inch	50-90
No. 4	35-65
No. 16	15-40
No. 200	2-10

For optimal performance, the plasticity index for road surfacing materials shall be less than nine (9) as determined in accordance with ASTM D4318.

Placement Methods - Road wearing course materials shall be placed in lifts not to exceed six (6) inches in compacted thickness. Compaction of road wearing course material shall be to a minimum of ninety-five (95) percent of ASTM D1557 maximum dry density. The moisture content shall be sufficient to obtain adequate density.

6.6.7. Pipe Bedding and Pipe Backfill

Material Properties - Pipe bedding and backfill material shall consist of materials with the following typical characteristics:

Sieve Size (square openings)	Percent Passing (by dry weight)	
	Pipe Backfill	Pipe Bedding
4 -inch	100	
3 -inch	90-100	
1-½ -inch		100
¾ -inch	70-100	90-100
No. 4		30-70
No. 40	10-50	
No. 200	0-35	5-15
Plasticity Index	10 max	10 max

Pipe bedding and pipe backfill shall be free of organic material.

Placement Methods - The pipe embedment materials shall be stable, sufficiently workable for placement under the sides of the pipe to provide satisfactory haunching, and to be able to achieve soil compaction. The particle size of the material in contact with the pipe shall not exceed one (1) inch for pipes six (6) to sixteen (16) inches, and 1 ½ inches for larger pipes.

Backfilling shall be done as soon as possible after pipe or culvert installation. Suitable backfill, free from large lumps, clods, or rocks shall be placed alongside the structure in loose layers not exceeding eight (8) inches thick to provide a berm of compacted earth on each side of the pipe or structure (where applicable). The fill materials shall be a minimum of five (5) feet wide or the width of the pipe diameter/structure but no less than required to operate the appropriate compaction equipment.

Pipe bedding and backfill shall be placed one small layer at the time, and then spread uniformly each layer in such a matter so that no un-filled space or gaps remain in the placed material. Each eight (8) inch layer shall be moisture-conditioned near optimum, as required to facilitate compaction, and compacted to a minimum of ninety (90) percent of the maximum dry density as determined by ASTM D1557 or as directed by the Engineer.

If it is necessary to construct a haul or other vehicle road over the pipe trench, the Engineer shall be consulted prior to the initiation of trench construction for specification modification to achieve structure sufficient for such traffic loading.

Backfill shall be placed symmetrically on each side of the structure. The backfill differential on either side of the pipe shall not exceed eight (8) inches or one quarter (1/4) of the diameter of the structure (whichever is less).

Prior to adding each new layer of loose backfill material until a minimum twelve (12) inches of cover is obtained, an inspection shall be made of the inside of the structure for local or unequal deformation caused by the backfilling operation. Only hand-operated tamping equipment shall be allowed within vertical planes three (3) feet beyond the horizontal projection of the outside surfaces of the structure (or as recommended by the pipe/structure manufacturer/designer). No heavy earthmoving equipment shall be permitted over the structure until a minimum of 150 percent of the largest buried pipe diameter of compacted fill has been placed over the top of the structure (or the minimum cover recommended by the pipe manufacturer/designer). In no case shall the minimum compacted structural cover be less than twelve (12) inches.

Backfill material shall not be placed against any concrete foundation, abutment, wing wall, or culvert until the concrete has been in place at least seven (7) days or the compressive strength of the concrete is seventy five (75) percent of the required twenty eight (28) day strength. On structures that are not permanently supported laterally and that cannot tolerate horizontal movement, internal bracing or support should be placed during backfill operations.

The General Contractor shall place backfill material by methods which have been approved by the Engineer prior to pipe backfill placement. The proposed method provided to the Engineer shall demonstrate that equipment used will not disturb or damage the pipe during placement and compaction of the pipe backfill.

6.6.8. Filter Sand

Material Properties Filter sand shall consist of either native material sourced from an onsite borrow source, imported or a processed using a crushing and/or screening operation. Common Fill material used to construct the embankment near the Filter Diaphragm and Filter Layer will indicate the required physical properties for the Filter Sand material and will be specified by the Engineer at the time of placement. The Filter Sand shall have a maximum plasticity index of 5 as determined by ASTM D4318.

Laboratory testing shall be completed on all Filter Sand sources prior to placement.

Placement Methods – The Filter Sand material shall be placed, moisture conditioned and compacted in accordance with the Pipe Bedding requirements under Section 6.6.7.

6.6.9. Riprap

Material Properties - Riprap shall be hard, angular, durable and reasonably well graded rock and shall be free of overburden, spoil, organic or any other deleterious material. Rounded stone is not acceptable. The riprap shall generally conform to the following gradation requirements as determined by USDOT FLH T521 (Wolman Count). The stone shall have a minimum specific

gravity of 2.5. The riprap stone shall be such that its greatest dimension is not greater than three times its least dimension.

Riprap $D_{50} = 4$ inches

Sieve Size	% Passing	Typical Stone Mass
8 in.	100	
6 in.	70-100	10 lbs.
4 in.	50-70	3 lbs.
2 in.	2-15	0.5 lbs.

Riprap $D_{50} = 6$ inches

Sieve Size	Percent Passing (%)	Typical Stone Mass
12 in.	100	
9 in.	70-100	35 lbs.
6 in.	50-70	10 lbs.
2 in.	2-10	0.5 lbs.

Riprap $D_{50} = 9$ inches

Sieve Size	% Passing	Typical Stone Mass
18 in.	100	
15 in.	70-100	165 lbs.
9 in.	50-70	35 lbs.
6 in.	35-55	10 lbs.
3 in.	2-10	1.3 lbs.

Riprap $D_{50} = 12$ inches

Sieve Size	% Passing	Typical Stone Mass
24 in.	100	
21 in.	70-100	440 lbs.
18 in.	50-70	275 lbs.
12 in.	35-55	88 lbs.
4 in.	2-10	3 lbs.

Riprap $D_{50} = 24$ inches

Sieve Size	% Passing	Typical Stone Mass
48 in.	100	
36 in.	70-100	2,200 lbs.
30 in.	50-70	1,280 lbs.
24 in.	35-55	650 lbs.
8 in.	2-10	10 lbs.

Minor deviations from the above may be acceptable, subject to the review and approval of the Engineer. Material used for riprap may be approved by the Engineer by visual inspection if the rock is determined to be sound and durable. However, if in the Engineers opinion, the material is marginal or unacceptable, the Engineer may require the General Contractor to have performed one or more of the following laboratory tests on representative samples of the riprap in order to assess the quality of the riprap material.

Riprap Laboratory Tests

Test Description	Test Method	Specification Requirement
Los Angeles Abrasion	ASTM C 535	50% Loss Maximum (after 500 revolutions)
Sodium Sulfate or Magnesium Sulfate Soundness	AASHTO T 104 or ASTM C88	10% Maximum Loss (after 5 cycles)
Soundness by Freezing and Thawing	AASHTO T 103	10% Maximum Loss (after 12 cycles)
Slake Durability	ASTM 4644	Classification as Type 1

Placement Methods - Surfaces and piping to be protected by riprap shall be dressed to a smooth surface. All soft or objectionable material shall be removed as directed by the Engineer and replaced with an approved material. Materials underlying the riprap shall be placed in accordance with each material's specific placement specifications.

The riprap shall be placed as shown on the Drawings or as required by the Engineer in a manner that will produce a reasonably well graded mass of stone with the minimum practicable percentage of voids and good stone interlocking/contact. The entire mass of stone shall be placed in reasonable conformance with the lines, grades, and thicknesses shown on the

Drawings. Riprap shall be placed to its full thickness during a single operation and in such a manner as to avoid damaging or displacing the underlying bedding material or geotextile. The riprap minimum thickness shall be two (2) times the specified D_{50} , unless otherwise specified on the Drawings.

The larger stones shall be well distributed and the materials shall be placed and distributed so that there will be no large accumulations of either the larger or the smaller size stones. Hand placing or rearranging of individual stones by mechanical equipment may be required to achieve the results specified.

6.6.10. Structural Tailings

Material Properties – Structural Tailings will be delivered and stacked in the CTFS from the Process Plant.

Placement Methods - Structural Tailings shall be placed in the areas shown on the Drawings and free of organic and other deleterious material, in twelve (12)-inch loose lifts or as determined to be acceptable by the Engineer after testing trials are completed at the start of operations. This material shall be moisture conditioned if needed to ninety-five (95) percent of the maximum dry density as determined by ASTM D1557. Slight variations from the specified moisture range may be acceptable subject to acceptance by the Engineer and provided the required compacted densities are achieved. If oversize materials are encountered during fill placement, the Engineer should be consulted on oversize placement methodology.

The fill material shall be compacted with a pad foot and/or smooth drum vibratory compactor capable of achieving compaction through the full thickness of the lift layer. Placement shall be performed in such a manner that material placed is not rutting, pumping or exhibiting excessively deflection during compaction under haul traffic loading. If the surface exhibits excessive deflection, the material in the area of question may require stabilization using a combination of moisture reduction through active drying and re-compaction, selective placement of rocky material and re-compaction, or other means of stabilization such as geogrid placement in these areas.

6.6.11. Non-Structural Tailings

Material Properties – Non-Structural Tailings will be delivered and stacked in the CTFS from the Process Plant. The non-structural zone is designated primarily for placement of the salts and also for clay tailings with higher moisture contents than is allowed to achieve 95 percent compaction in the structural zone. The density requirement in the non-structural zone is lower than required for the structural zone.

Placement Methods - Structural Tailings shall be placed in the areas shown on the Drawings and free of organic and other deleterious material, in twelve (12)-inch loose lifts or as determined to

be acceptable by the Engineer after testing trials are completed at the start of operations. This material shall be compacted to approximately 85 percent of the maximum dry density as determined by ASTM D1557 unless otherwise approved by the Engineer based on strength testing completed during operations.

The fill material shall be compacted by routing equipment traffic over the area or compacting with a pad foot and/or smooth drum vibratory compactor capable of achieving compaction through the full thickness of the lift layer. Placement shall be performed in such a manner that excessive rutting, pumping or deflection during compaction occurs under haul traffic loading. If the surface exhibits excessive deflection, the material in the area of question may require stabilization using a combination of moisture reduction through active drying and re-compaction, selective placement and blending with drier material and re-compaction, or other means of stabilization as approved by the Engineer.

6.6.12. Chimney Drain

Material Properties – Chimney Drain material will be native sand materials produced from an onsite borrow source or sand material from the Coarse Gangue Stockpile. The Chimney Drain material shall have a coefficient of permeability 1 x 10^{-4} cm/s or greater when tested in accordance with USBR 5605 - Amended with an applied stress of 32 ksf. The target permeability for the Chimney Drain is two orders of magnitude faster than the adjacent tailings material with a minimum limit of one order of magnitude faster than the overlying tailings. Based on the testing completed to date the target overliner permeability is 1×10^{-4} cm/s.

Placement Methods – Chimney Drain construction shall be performed concurrent with tailings placement by placing the material between the Structural and Non-Structural Tailings Zones as shown on the Drawings. This material shall be compacted to approximately 85 percent of the maximum dry density as determined by ASTM D1557. Tailings or other contaminates shall be removed from the surface of the Chimney Sand prior to placing the subsequent layer of sand. The sand layer is shall be a minimum of 3 feet thick and shall be routinely surveyed during construction to confirm the thickness and determine the extents of the sand layer.

7. LINER SURFACE PREPARATION OF AREAS TO RECEIVE GEOSYNTHETIC LINING

Areas to receive geomembrane lining shall be free of angular particles protruding over three-quarter (¾) inch and hard objects that may damage the geomembrane. Where excessive coarse material is exposed at the surface, rock removal by appropriate methods or other surface finishing as directed by the Engineer will be required. Rough areas with depressions or loose material shall be covered with a cushion of fine-grained materials or for large depressions, with screened material (passed over one-half (½) inch mesh screen) or equivalent.

After placement of the Common Fill and Liner Bedding materials, some oversize and/or objectionable materials should be anticipated by the General Contractor. Removal of oversize and objectionable materials by blading, rock-raking, hand picking or other methods shall be required to meet the Specifications for finished surface preparation. All areas to receive geomembrane lining shall meet the requirements for finished surface preparation as defined herein. No separate payment shall be made for rock removal; it shall be included as part of surface preparation.

Once the General Contractor believes that the surface preparation is complete, an inspection will be completed by the geomembrane Lining Contractor, Engineer, Inspector, and Owner with the General Contractor present. The General Contractor shall fix any areas found during inspection that need repairing prior to Geomembrane Installation. Following the verification of the surface, the Lining Contractor shall sign an acceptance form and assumes full responsibility for the verified area should conditions be altered by occurrences outside the control of the General Contractor.

8. COMPACTION EQUIPMENT

Sufficient compaction equipment, of the types and sizes required to complete the work, shall be provided for compaction of the various fill materials. The use of alternative equipment will be dependent upon completion of suitable test fills to the satisfaction of the Engineer to confirm that the alternative equipment will compact the fill materials to the specified density.

Compaction equipment shall be maintained in good working condition at all times to ensure that the amount of compaction obtained is a maximum for the equipment. The General Contractor shall provide the Owner and Engineer a list of proposed compaction equipment to be used before commencing Work.

8.1. Smooth Drum Vibratory Roller

Smooth drum vibratory rollers shall be equipped with a suitable cleaning device to prevent the accumulation of material on the drum during rolling. Each roller shall have a total static weight of not less than 20,000 pounds at the drum when the roller is standing on level ground. The drum shall be not less than sixty (60) inches in diameter and seventy eight (78) inches in width. The vibration frequency of the roller drum during operation shall be between 1,100 and 1,500 vibrations per minute, and the centrifugal force developed by the roller, at 1,250 vibrations per minute, shall not be less than 38,000 pounds.

For compaction by the vibratory roller, a single coverage shall be defined as one (1) pass of the roller. A minimum overlap of twelve (12) inches shall be maintained between the surfaces traversed by adjacent passes of the roller drum. During compaction, the roller shall be propelled at two (2) miles per hour (mph) or lesser speed as approved by the Engineer. The power of the motor driving the vibrator shall be sufficient to maintain the specified frequency and centrifugal

force under the most adverse conditions that may be encountered during the compaction of the fill. Propulsion equipment for the roller shall be adequate to propel the roller at speeds up to four (4) mph.

8.2. Tamping-Foot Roller

The majority of the fill may be compacted with a tamping-foot roller. The tamping-foot roller shall be self-propelled and fully ballasted with a standard tamping-foot design developing 5,000 pounds in force per linear foot of width at rest on level ground or equivalent as approved by the Engineer.

8.3. Special Compactors

Special compactors shall be used to compact materials that, in the opinion of the Engineer, cannot be compacted properly by the specified larger vibratory roller because of location or accessibility.

Special compaction measures shall be adopted such as hand-held or small walk behind compactors or other methods approved by the Engineer to compact fill in trenches, around structures, and in other confined areas that are not accessible to the larger vibratory roller or tamping-foot roller. Such compaction shall be to the specified density for the particular material.

9. CONSTRUCTION QUALITY ASSURANCE (CQA)

The Engineer CQA team will monitor and perform the QA testing for the project. Any questions with regard to the Drawings or Technical Specifications associated with the proposed construction shall be addressed to the Engineer for clarifications in accordance with the established project protocol. The Engineer shall approve all changes to the Drawings or Specifications prior to implementing the change.

Construction Quality Control (CQC) functions are the responsibility of the General Contractor and the Lining Contractor and entail completing and recording (as detailed herein) field inspection and control for the project. CQA shall be performed under the direction of a Nevada Professional Engineer and shall be performed by a laboratory from a company that holds current accreditations from AASHTO, AMRL and CCRL.

Testing of the work by CQA does not relieve the Contractors of liability for substandard work.

The General Contractor is responsible for setting out the correct lines and grades to ensure that the Work is constructed accordingly. The project Surveyor will check lines and grades and will verify all quantity measurements and calculations.

The Engineer shall be the interpreter of the Technical Specifications, and shall direct observations and tests as considered necessary to assess and accept the quality of the Work. An Inspector under the direction of the Engineer shall make continuous observations and tests of construction operations. The Engineer shall represent the Owner and shall be responsible during construction for the following:

- > Construction observations for quality assurance
- > CQA materials testing and inspection for compliance with the Specifications
- Reporting

CQA shall be performed in accordance with the latest test methods in accordance with American Society for Testing and Materials (ASTM) and other recognized industry standards. The tests shall include Control and Record Tests.

9.1. Control Tests

CQA shall complete tests for gradation, moisture content, moisture density relationship and other tests as applicable on samples of fill materials taken from borrow areas and on the fill after spreading and prior to compaction at the frequencies listed in Section 11. Testing shall be sufficient to ensure that the fill material is in full compliance with the Technical Specifications. Materials not meeting the specified material properties shall be reworked or rejected until passing results are achieved.

9.2. Record Tests

CQA shall conduct field density, moisture content, and other tests on the compacted in-place fill and shall obtain samples of the compacted fill for related laboratory testing at such frequency as the Engineer considers necessary to determine that the compacted fill is in full compliance with the Technical Specifications. Areas with failing field tests shall be reworked until passing tests are achieved.

The Inspector, under the supervision of the Engineer, shall perform testing to classify each specified construction material type. Tests performed shall consist of grain-size distribution analyses and Atterberg limits testing to classify each material type for its specified use in construction. Additionally, moisture content, moisture-density relationships, in-place density and moisture tests shall be performed to verify that the construction conforms to the Drawings and Technical Specifications. Observations and tests performed by the Inspector shall not relieve the General Contractor of responsibility for providing adequate CQC measures nor of responsibility for damage to or loss of material before acceptance. The General Contractor shall, at his expense, furnish any labor and equipment necessary to assist the Inspector in obtaining

samples for testing. The General Contractor shall allow sufficient time for the Inspector to carry out the required testing and observations at no additional cost to the Owner.

9.3. Reporting

The Engineer shall submit daily reports of observations and tests to the Construction Manager. The reports shall be submitted in a timely fashion. Items of non-conformance will be brought to the attention of the Construction Manager as soon as possible, after identification.

A copy of all test results will be maintained at the construction site, and shall include the following:

- Date issued
- Project title and number
- Date of testing and/or sampling
- Designation or use of material tested
- > Type of test and specification
- Location of test
- Description of work activities
- Photos
- Discussion of inspection and test results and issues
- Observations regarding compliance or noncompliance with Drawings and Technical Specifications

Upon completion of construction, the Engineer shall submit a Record of Construction (ROC) Report stating that the project was completed in substantial conformance with the approved Drawings and Technical Specifications and presenting test summaries, record drawings, as-built drawings and other supporting data necessary to document the completed construction.

10. CONSTRUCTION TOLERANCES

The General Contractor shall construct the various aspects of the project to the lines and grades shown on the Drawings, or as required by the Engineer, within the following tolerances:

Finish grades and slopes for the improvements shall be in general conformance with the Drawings. Deviations from finished grades and slopes are subject to approval by the Engineer and shall not result in low spots, pockets, non-uniform slopes or contours, or result in slopes which deviate by more than 0.1 feet from the design. The overall slope shall be the same as shown on the Drawings. When specified, maximum grades shall not be exceeded.

- Unless noted otherwise on the Drawings, maximum permissible combined horizontal deviation from the lines and grades shown on the Drawings or as required by the Engineer shall be 1.0 feet. The intent of the design must be maintained.
- Pond and sump crest elevations shown on the Drawings shall be minimum allowable elevations and shall not be exceeded by more than 0.1 feet.
- All pipes shall be constructed to the following tolerances: alignment and grade shall not deviate from Manufacturer recommendations and more than five (5) percent of the nominal diameter of the pipe from a straight line between control points. All pipelines shall be constructed to the grade percentages shown on the drawings.

11. TESTING FREQUENCIES

CQA shall carry out frequent quality control and quality assurance tests to determine compliance of the Work with the Technical Specifications.

Both Control tests and Record tests count towards the total number of tests required. The latest edition of standard procedures shall be used for all activities, and in general, these will be adopted from recognized organizations such as ASTM. The Table 11-1 outlines the test methods and the minimum testing requirements for the project are presented in Tables 11-2 through 11-13.

Table 11-1: Test Methods

Test	Type of Test	Test Method
C1, R1	Atterberg Limits	ASTM D4318
C2, R2	Moisture Content	ASTM D6938 or D2216
C3, R3	Particle Size Distribution	ASTM D6913*, ASTM C136
C4, R4	Laboratory Compaction - Modified Proctor	ASTM D1557
R5a	Nuclear Density	ASTM D6938
R5b	Sand Cone	ASTM D1556
R5c	Water Replacement	ASTM D5030
C6, R6	Laboratory Permeability	ASTM D5084/ USBR 5605
C7, R7	Rigid Wall Constant Head Permeability	USBR 5605
C8, R8	Los Angeles Abrasion	ASTM C535
R9	Wolman Count	USDOT FLH T521

Notes: C = Control Tests; R = Record Tests

All samples to be washed over a No.200 sieve.

Minimum test Frequencies provided include both Control and Record Tests combined.

^a Hydrometer tests down to the 2-micron size will be carried out as directed by the Engineer but will generally not be required

Table 11-2: Test Frequency – Surface Preparation/Liner Bedding

Test	Type of Test	Frequency (one per)
R1	Atterberg Limits	Soil Type / 250,000 sf
R2	Moisture Content	Soil Type / 250,000 sf
R3	Particle Size Distribution	Soil Type / 250,000 sf
R4	Laboratory Compaction	Soil Type / 500,000 sf
R5a	Nuclear Density	50,000 ft ²

Note: Required number of tests shall be determined by whichever method of determining the frequency requires the most tests.

Table 11-3: Test Frequency - Rockfill

Activity	Frequency (one per)
Visual Inspection and Documentation	Continuous during placement activities
US Army Corps of Engineers Test Fill (EM 1110-2-2301)	Test fill for rock type

Table 11-4: Test Frequency – Common Fill

Test	Type of Test	Frequency (one per)
C1, R1	Atterberg Limits	Soil Type / 50,000 cy
C2, R2	Moisture Content	per nuclear density requirements
C3, R3	Particle Size Distribution	Soil Type / 50,000 cy
C4, R4	Laboratory Compaction	Soil Type / 200,000 cy
R5a	Nuclear Density	5,000 cy in CTFS, CGS & WRSF areas, every 1,000 cy pond areas & every 1,000 LF for anchor trenches
R5b/R5c	Sand Cone or Water Replacement Density	As Needed by CQA

Table 11-5: Test Frequency – Select Gravel

Test	Type of Test	Frequency (one per)
C1, R1	Atterberg Limits	20 cy
C3, R3	Particle Size Distribution	20 cy
C8, R8	Los Angeles Abrasion	Per Soil Type

Note: Required number of tests shall be determined by whichever method of determining the frequency requires the most tests.

Table 11-6: Test Frequency – Overliner

Test	Type of Test	Frequency (one per)
C1, R1	Atterberg Limits	Soil Type / 10,000 cy
R2	Moisture Content	Soil Type / 10,000 cy
C3,R3	Particle Size Distribution	Soil Type / 10,000 cy
C7	Rigid Wall Constant Head Permeability	100,000 cy
R8	Los Angeles Abrasion	Soil Type/ 300,000 cy

Note: Required number of tests shall be determined by whichever method of determining the frequency requires the most tests.

Table 11-7: Test Frequency – Wearing Course

Test	Type of Test	Frequency (one per)
C1,R1	Atterberg Limits	2,000 cy
C3,R3	Particle Size Distribution	2,000 cy
C4,R4	Laboratory Compaction	10,000 cy
R5a	Nuclear Density	2,500 LF

Table 11-8: Test Frequency – Pipe Backfill and Pipe Bedding

Test	Type of Test	Minimum Frequency (one per)
C1, R1	Atterberg Limits	Soil type/500 cy or 1 per structure
C2, R2	Moisture Content	per nuclear density requirements
C3, R3	Particle Size Distribution	Soil type/500 cy or 1 per structure
C4, R4	Laboratory Compaction	Soil type/500 cy or 1 per structure
R5a	Nuclear Density	15 cy*

Note: Frequency of testing for backfill for minor foundations shall be determined by the Project Field Engineer. Required number of tests shall be determined by whichever method of determining the frequency requires the most tests. *Minimum 1 per lift for each side of pipe.

Table 11-9: Test Frequency – Filter Sand

Test	Type of Test	Minimum Frequency (one per)
C1, R1	Atterberg Limits	Soil type/20 cy
C2, R2	Moisture Content	per nuclear density requirements
C3, R3	Particle Size Distribution	20 cy
C4, R4	Laboratory Compaction	Soil type/40 cy
R5a	Nuclear Density	1 per lift per each side of pipe

Table 11-10: Test Frequency – Riprap

Test	Type of Test	Frequency (one per)
Visual Inspection and Documentation		Continuous during placement
R9	Wolman Count	One per size and every 750 linear feet of channel

Table 11-11: Test Frequency – Structural Tailings

Test	Type of Test	Frequency (one per)
R1	Atterberg Limits	1 per week/ 60,000 cy
R2	Moisture Content	per nuclear density requirements
R3	Particle Size Distribution	1 per week/ 60,000 cy
R4	Laboratory Compaction	1 per week/ 60,000 cy
R5a	Nuclear Density	1 per lift/ 1 per day of placement/ 5,000 cy

Note: Required number of tests shall be determined by whichever method of determining the frequency requires the most tests.

Table 11-12: Test Frequency – Non-Structural Tailings

Test	Type of Test	Frequency (one per)
R1	Atterberg Limits	1 per week/ 60,000 cy
R2	Moisture Content	per nuclear density requirements
R3	Particle Size Distribution	1 per week/ 60,000 cy
R4	Laboratory Compaction	1 per week/ 60,000 cy
R5a	Nuclear Density	1 per lift / 1 per day of placement/ 10,000 cy

Table 11-13: Test Frequency – Chimney Drain

Test	Type of Test	Frequency (one per)
C1, R1	Atterberg Limits	Soil Type/ 1,000 cy
R2	Moisture Content	Per nuclear density requirements
C3, R3	Particle Size Distribution	Soil Type/ 1,000 cy
C4, R4	Laboratory Compaction	Soil type/ 5,000 cy
R5a	Nuclear Density	500 cy

APPENDIX F.3 Geomembrane

CLIENT Lithium Nevada Corporation

PROJECT NO 475.0385.000

PROJECT: THACKER PASS PROJECT

TITLE: TECHNICAL SPECIFICATIONS FOR HIGH DENSITY AND LINEAR LOW DENSITY POLYETHYLENE GEOMEMBRANE LINER MATERIALS AND INSTALLATION

SPECIFICATION NO. 2-0385-000-SP-GM-0

			APPROVALS		S	
REV	DATE	PAGES	AUTHOR	REVIEW	CLIENT	REMARKS
0	04/02/2020	24	МН	KCW	BR	Issued for Construction

TABLE OF CONTENTS

1.	GENERAL	1
2.	CODES AND STANDARDS	1
	2.1. American Society for Testing and Materials (ASTM) Standards	1
	2.2. Geosynthetic Research Institute (GRI) Standards	3
3.	GEOMEMBRANE	3
	3.1. Manufacturer's Quality Control	4
	3.2. Manufacturer's Warranty	4
	3.3. Submittals Post-Award	4
	3.3.1. Manufacturer Submittals	4
	3.3.2. Lining Contractor Submittals	5
	3.4. Third Party Conformance Testing (Manufacturing)	6
	3.4.1. Sampling Procedures	6
	3.4.2. Test Results	6
	3.4.3. Procedures for Conformance Test Failure	6
	3.5. HDPE Geomembrane Materials	7
4.	GEOMEMBRANE INSTALLATION	9
	4.1. General	9
	4.2. Cold Weather Procedures	11
	4.3. Hot Weather Seaming	12
	4.4. Geomembrane Installation Quality Control	12
	4.4.1. General	12
	4.4.2. Trial Welds	12
	4.4.3. Field Seaming	13
	4.4.4. Field Seam and Panel Inspection and Testing	14
	4.4.4.1. Nondestructive Testing and Inspection	14
	4.4.4.2. Continuity Testing	14
	4.4.4.3. Interseam Pressure Testing	15
	4.4.4.4. Vacuum Box Testing	15
	4.4.4.5. Spark Testing	16
	4.4.4.6. Destructive Testing	17
	4.4.4.7. Procedure in the Case of Destructive Test Failure	
	4.4.4.8. Repair Procedures	18

	4.4.5. Lining Contractor's CQC Reporting and As-Built	19
	4.5. Lining Contractor Warranty	20
5.	HYDROSTATIC TEST PROCEDURES	20
6.	CONSTRUCTION QUALITY ASSURANCE (CQA) REQUIREMENTS	20
	6.1. General	20
	6.2. CQA Inspection and Review Requirements	21
	6.3. CQA Testing Requirements	21
	6.4. CQA Reporting and Review of Lining Contractor CQC Information	
LIS1	Γ OF TABLES	
Tab	lle 3-1: HDPE Raw Material Properties	5
Tab	lle 3-2: HDPE Geomembrane - Textured	8
Tab	le 4-1: Seam Strength and Related Properties of Thermally Bonded Smooth and	
Tex	tured HDPE Geomembranes	13
Tab	le 6-1: Geomembrane CQA Sampling & Testing Guide	21
Tab	le 4-1: Seam Strength and Related Properties of Thermally Bonded Smooth and	

1. GENERAL

This Specification defines the requirements for geomembrane materials, installation, quality control and quality assurance associated with the Thacker Pass Project owned by Lithium Nevada Corporation.

Any requests for alternatives or exceptions to this Specification shall be submitted in writing to the Construction Manager and shall be approved by the Engineer and the Owner.

The Definition of Terms is provided in Specification No. 0-0385-000-SP-GEN-0.

2. CODES AND STANDARDS

All tests shall be performed in accordance with the current edition of the testing standards as indicated below.

2.1. American Society for Testing and Materials (ASTM) Standards

- ASTM D792-13: "Standard Test Methods for Density and Specific Gravity (Relative Density) of Plastics by Displacement", ASTM International, West Conshohocken, PA, www.astm.org.
- ASTM D1004-13: "Standard Test Method for Tear Resistance (Graves Tear) of Plastic Film and Sheeting", ASTM International, West Conshohocken, PA, www.astm.org.
- ASTM D1238-13: "Standard Test Method for Melt Flow Rates of Thermoplastics by Extrusion Plastometer", ASTM International, West Conshohocken, PA, www.astm.org.
- ASTM D1505-18: "Standard Test Method for Density of Plastics by the Density-Gradient Technique", ASTM International, West Conshohocken, PA, www.astm.org.
- ASTM D1557-12e1: Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Modified Effort, ASTM International, West Conshohocken, PA, www.astm.org.
- ASTM D1603-14: "Standard Test Method for Carbon Black Content in Olefin Plastics", ASTM International, West Conshohocken, PA, www.astm.org.
- ASTM D3895-19: "Standard Test Method for Oxidative-Induction Time of Polyolefins by Differential Scanning Calorimetry", ASTM International, West Conshohocken, PA, www.astm.org.
- ASTM D4218-15: "Standard Test Method for Determination of Carbon Black Content in Polyethylene Compounds By the Muffle-Furnace Technique", ASTM International, West Conshohocken, PA, <u>www.astm.org.</u>
- ASTM D4437/D4437M-16(2018): "Standard Practice for Nondestructive Testing (NDT) for Determining the Integrity of Field Seams Used in Joining Flexible Polymeric Sheet Geomembranes", ASTM International, West Conshohocken, PA, www.astm.org.

- ASTM D4833/D4833M-07(2013)e1: "Standard Test Method for Index Puncture Resistance of Geomembranes and Related Products", ASTM International, West Conshohocken, PA, www.astm.org.
- ASTM D5199-12(2019): "Standard Test Method for Measuring the Nominal Thickness of Geosynthetics", ASTM International, West Conshohocken, PA, www.astm.org.
- ASTM D5321/D5321M-19: "Standard Test Method for Determining the Shear Strength of Soil-Geosynthetic and Geosynthetic-Geosynthetic Interfaces by Direct Shear", ASTM International, West Conshohocken, PA, www.astm.org.
- ASTM D5397-19a: "Standard Test Method for Evaluation of Stress Crack Resistance of Polyolefin Geomembranes Using Notched Constant Tensile Load Test", ASTM International, West Conshohocken, PA, www.astm.org.
- ASTM D5596-03(2016): "Standard Test Method for Microscopic Evaluation of the Dispersion of Carbon Black in Polyolefin Geosynthetics", ASTM International, West Conshohocken, PA, www.astm.org.
- ASTM D5641/D5641M-16: "Standard Practice for Geomembrane Seam Evaluation by Vacuum Chamber", ASTM International, West Conshohocken, PA, www.astm.org.
- ASTM D5721-08(2018): "Standard Practice for Air-Oven Aging of Polyolefin Geomembranes", ASTM International, West Conshohocken, PA, www.astm.org.
- ASTM D5820-95(2018): "Standard Practice for Pressurized Air Channel Evaluation of Dual Seamed Geomembranes", ASTM International, West Conshohocken, PA, www.astm.org.
- ASTM D5885/D5885M-17: "Standard Test Method for Oxidative Induction Time of Polyolefin Geosynthetics by High-Pressure Differential Scanning Calorimetry", ASTM International, West Conshohocken, PA, www.astm.org.
- ASTM D5994/D5994M-10(2015)e1: "Standard Test Method for Measuring Core Thickness of Textured Geomembrane", ASTM International, West Conshohocken, PA, www.astm.org.
- ASTM D6365-99(2018): "Standard Practice for the Nondestructive Testing of Geomembrane Seams using the Spark Test", ASTM International, West Conshohocken, PA, www.astm.org.
- ➤ ASTM D6370-99(2019): "Standard Test Method for Rubber-Compositional Analysis of Thermogravimetry (TGA)", ASTM International, West Conshohocken, PA, www.astm.org.
- ASTM D6392-12(2018): "Standard Test Method for Determining the Integrity of Nonreinforced Geomembrane Seams Produced Using Thermo-Fusion Methods", ASTM International, West Conshohocken, PA, www.astm.org.
- ASTM D6693/D6693M-04(2015)e1: "Standard Test Method for Determining Tensile Properties of Nonreinforced Polyethylene and Nonreinforced Flexible Polypropylene Geomembranes", ASTM International, West Conshohocken, PA, www.astm.org.

- ASTM D6747-15: "Standard Guide for Selection of Techniques for Electrical Detection of Potential Leak Paths in Geomembranes", ASTM International, West Conshohocken, PA, www.astm.org.
- ASTM D7007-16: "Standard Practices for Electrical Methods for Locating Leaks in Geomembranes Covered with Water or Earthen Materials", ASTM International, West Conshohocken, PA, www.astm.org.
- ASTM D7238-06(2017): "Standard Test Method for Effect of Exposure of Unreinforced Polyolefin Geomembrane Using Fluorescent UV Condensation Apparatus", ASTM International, West Conshohocken, PA, www.astm.org.
- ASTM D7240-18: "Standard Practice for Leak Location using Geomembranes with an Insulating Layer in Intimate Contact with a Conductive Layer via Electrical Capacitance Technique (Conductive Geomembrane Spark Test)", ASTM International, West Conshohocken, PA, www.astm.org.
- ASTM D7466/D7466M-10(2015)e1: "Standard Test Method for Measuring Asperity Height of Textured Geomembranes", ASTM International, West Conshohocken, PA, www.astm.org.

2.2. Geosynthetic Research Institute (GRI) Standards

- ➤ GRI GM9 Revision 1, January 10, 2013: "Cold Weather Seaming of Geomembranes", Geosynthetic Institute, Folsom, PA, www.geosynthetic-institute.org.
- GRI GM10 Revision 4, July 23, 2015: "The Stress Crack Resistance of HDPE Geomembrane Sheet", Geosynthetic Institute, Folsom, PA, www.geosynthetic-institute.org.
- ➤ GRI GM13 Revision 15, September 9, 2019: "Test Properties, Testing Frequency for High Density Polyethylene (HDPE) Smooth and Textured Geomembranes", Geosynthetic Institute, Folsom, PA, www.geosynthetic-institute.org.
- ➤ GRI GM14 Revision 1, January 9, 2013: "Selecting Variable Intervals for Taking Geomembrane Destructive Seam Samples Using the Method of Attributes", Geosynthetic Institute, Folsom, PA, www.geosynthetic-institute.org.
- ➤ GRI GM19(a) Revision 9, July 28, 2017: "Seam Strength and Related Properties of Thermally Bonded Polyolefin Geomembranes", Geosynthetic Institute, Folsom, PA, www.geosynthetic-institute.org.

3. GEOMEMBRANE

There are two geomembranes specified for the Thacker Pass Project. An 80-mil High Density Polyethylene (HDPE) double-sided textured geomembrane shall be installed in the Clay Tailings Filter Stack (CTFS) and solution channel. In the Reclaim Pond an 80-mil double-sided textured HDPE geomembrane will be installed as the primary liner and a 60-mil double-sided textured

HDPE geomembrane will be installed as the secondary liner with geonet separating the two liners.

3.1. Manufacturer's Quality Control

The geomembrane shall be a high quality formulation containing approximately ninety-seven (97) percent polymer and three (3) percent carbon black with antioxidants and heat stabilizers. The material shall be resistant to ultraviolet (UV) rays. All resin shall be hexene-based, consist of all virgin material from the same Manufacturer, shall not be intermixed, and no reclaimed polymer may be added to the resin. The manufacturing process shall not use more than ten (10) percent regrind. If regrind is used, it must be similar to the parent material.

The geomembrane material shall comprise of new, first-quality products designed and manufactured specifically for the purpose of liquid containment in hydraulic structures as applied to the mining industry. The material shall be produced to be free of holes, blisters, undispersed raw materials, or any sign of contamination by foreign matter. The geomembrane shall be supplied in roll form. Each roll shall be identified with labels indicating roll number, thickness, length, width, and Manufacturer's name and date of manufacture.

The Manufacturer's laboratory must be certified by Geosynthetic Accreditation Institute (GAI) Laboratory Accreditation Program (LAP) for the tests being performed and shall have a third-party independent quality assurance program. All test results shall be provided to the Engineer and the rolls of material shall be clearly identified and correlate to the test results.

Extrudate rod or bead material shall be made from the same type of resin as the geomembrane and be from the same resin supplier as the resin used to manufacture the geomembrane.

3.2. Manufacturer's Warranty

The material shall be warranted against Manufacturer's defects as well as degradation due to UV light for exposed areas for a minimum of 20 years from the date of installation or as mutually agreed prior to award of the contract for supply between the Owner and the Geomembrane Manufacturer. The warranty shall cover the cost of material, freight and duties, handling, labor, and equipment to replace the defective or failed material.

3.3. Submittals Post-Award

3.3.1. Manufacturer Submittals

Prior to delivery, the Manufacturer shall submit a Quality Control Certificate for each roll of material. These certificates shall clearly indicate the roll or rolls which the results represent. Roll

goods shipped to the project site which do not meet or exceed the Manufacturer's published Specifications and the Specifications stated herein shall be rejected.

Resin data including the following:

- Certification stating that the resin meets the specification requirements and that it is all from the same Manufacturer (see Table 3-1).
- > Statement certifying no reclaimed polymer and no more than ten (10) percent rework of the same type of material is added to the resin (product run may be recycled).
- Copy of quality assurance and quality control certificates issued by resin supplier.

Property	Test Method	Specification
Density (g/cm³)	ASTM D1505	<u>></u> 0.932
Melt Flow Index (g/10 min)	ASTM D1238 (190/2.16)	<u><</u> 1.0
OIT (minutes)	ASTM D3895 (1 atm/200°C)	<u>≥</u> 100

Table 3-1: HDPE Raw Material Properties

Geomembrane roll, extrudate rod and bead material:

- All rolls shall be delivered with labels affixed to or markings on the selvage edge clearly stating the Manufacturer's name, product identification, material thickness, roll number, roll type, roll dimensions and roll weight.
- > Copy of quality assurance and quality control certificates issued by the Geomembrane Manufacturer.
- Certification that the geomembrane material delivered to the project complies with these Specifications.
- Certification that extrudate rod or bead is from one Manufacturer, it was obtained from the same resin supplier, and comes from the same resin type which was used to manufacture the geomembrane rolls.

It is the Manufacturer's responsibility to submit timely proposals and submittals allowing a minimum of two (2) weeks for review and approval.

3.3.2. Lining Contractor Submittals

The Lining Contractor shall supply the Construction Manager and Engineer with the following prior to commencement of work:

Panel layouts of the liner that must be approved by the Engineer prior to commencing the Work. The submittal shall include a proposed field panel "identification" code numbering system.

- Resumes for the Master Welder and other welder's with a description of their qualifications and experience for approval prior to arrival on site.
- The Lining Contractor shall submit a copy of their Quality Control Manual prior to the start of installation of any geomembrane. If there are discrepancies between this Specification and the Lining Contractor's Quality Control Manual, the more stringent requirements shall apply, unless determined otherwise by the Engineer. The Engineer shall review and approve the Lining Contractor's Quality Control Manual including logs, inspection and testing methods and forms prior to the Lining Contractor commencing the Work.

3.4. Third Party Conformance Testing (Manufacturing)

Conformance testing shall be conducted by a third party laboratory to statistically measure conformance of the geomembrane roll goods shipped to the project. Conformance testing is not the responsibility of the Lining Contractor.

3.4.1. Sampling Procedures

Samples shall be taken at a rate of one per lot or one per 1,000,000 square feet of roll goods shipped to the project, whichever results in the greater number of tests. Rolls shall be selected at random for testing and should be from different resin lots if more than one (1) resin lot is used to make the rolls.

Samples shall be removed from the roll at a random location, but shall not include any area within the first three (3) lineal feet of the end and/or edge of the roll. The sample shall be a minimum of one and a half (1.5) feet by three (3) feet in size and shall be marked with an arrow to indicate the machine direction and the Liner Manufacturer's roll and lot identification number shall be included on the sample.

3.4.2. Test Results

Conformance testing shall include the following tests. The Engineer shall review the test results for project compliance and shall provide a written report to the Construction Manager.

Thickness (ASTM D5994)

- Tensile Properties (ASTM D6693)
- Density (ASTM D1505/D792 method B)
- Carbon Black Content (ASTM D4218)

3.4.3. Procedures for Conformance Test Failure

Should any test results indicate non-conformance with the Specifications, the non-conforming roll number shall be identified and additional conformance testing shall be performed on rolls with adjacent numbers. All non-conforming rolls shall be identified and set aside.

3.5. HDPE Geomembrane Materials

Tests to be performed and minimum specifications shall include, but not be limited to, the following items presented in Table 3-2:

Table 3-2: HDPE Geomembrane - Textured (Reference: GRI Test Method GM13 Revision 15, dated 09/09/2019)

	Test	Test Value		Testing
Properties	Method	60 mil (1.5 mm)	80 mil (2.0 mm)	Frequency (minimum)
Thickness (min. avg.)		Nominal (-5%)	Nominal (-5%)	
 Lowest individual for 8 out of 10 values 	ASTM D5994	-10%	-10%	Per roll
 Lowest individual for any of the 10 values 		-15%	-15%	
Asperity Height mils (min. avg.)	D 7466	16 mil	16 mil	Every 2 nd roll ¹
Density mg/L (min. avg.)	ASTM D1505/D792	0.940 g/cc	0.940 g/cc	200,000 lbs
Tensile Properties ² (min. avg.)				
Yield strength		126 lbs/in	168 lbs/in	
Break strength	ASTM D6693 Type IV	90 lbs/in	120 lbs/in	20,000 lbs
Yield elongation	турету	12%	12%	
Break elongation		100%	100%	
Tear Resistance (min. avg.)	ASTM D1004	42 lbs	56 lbs	45,000 lbs
Puncture Resistance (min. avg.)	ASTM D4833	90 lbs	120 lbs	45,000 lbs
Stress Crack Resistance ³	ASTM D5397 (App.)	500 hrs	500 hrs	Per GRI-GM10
Carbon Black Content (range)	ASTM D4218 ⁴	2.0-3.0%	2.0-3.0%	20,000 lbs
Carbon Black Dispersion	ASTM D5596	Note 5	Note 5	45,000 lbs
Oxidative Induction Time (OIT) (min. avg.) 6				
a) Standard OIT	ASTM D3895	100 min.	100 min.	200,000 lbs
OR				200,000 ibs
b) High Pressure OIT	ASTM D5885	400 min.	400 min.	
Oven Aging at 85°C ^{6, 7}	ASTM D5721			
a) Standard OIT (min. avg.) - % retained after 90 days	ASTM D3895	55%	55%	Each formulation
OR				Each formulation
b) High Pressure OIT (min. avg.) - % retained after 90 days	ASTM D5885	80%	80%	
UV Resistance ⁸	ASTM D7238			
a) Standard OIT (min. avg.)	ASTM D3895	N.R. ⁹	N.R. ⁹	
OR				Each formulation
b) High Pressure OIT (min. avg.) - % retained after 1,600 hrs ¹⁰	ASTM D5885	50%	50%	

- 1. Alternate the measurement side for double-sided textured sheet.
- 2. Machine direction (MD) and cross-machine direction (XMD) average values should be on the basis of five (5) test specimens each direction. Yield elongation is calculated using a gauge length of 1.3 inches. Break elongation is calculated using a gauge length of 2.0 inches.
- 3. P-NCTL test is not appropriate for testing geomembranes with textured or irregular rough surfaces. Test should be conducted on smooth edges of textured rolls or on smooth sheets made from the same formulation as being used for the textured sheet materials.

 The yield stress used to calculate the applied load for the SP-NCTL test should be the Manufacturer's mean value via MQC testing.
- 4. Other methods, such as D1603 (tube furnace) or D6370 (TGA) are acceptable if an appropriate correlation to D4218 (muffle furnace) can be established.
- 5. Carbon black dispersion (only near spherical agglomerates) for ten (10) different views: Nine (9) in Categories 1 or 2 and one (1) in Category 3.
- 6. The Manufacturer has the option to select either one of the OIT methods listed to evaluate the antioxidant content in the geomembrane.
- 7. It is also recommended to evaluate samples at 30 and 60 days to compare with the 90-day response.
- 8. The condition of the test should be 20-hour UV cycle at 75°C followed by 4-hour condensation at 60°C.
- 9. Not recommended since the high temperature of the Std-OIT test produces an unrealistic result for some of the antioxidants in the UV-exposed samples.
- 10. UV resistance is based on percent-retained value regardless of the original HP-OIT value.

4. GEOMEMBRANE INSTALLATION

4.1. General

The geomembrane shall be installed within the areas shown on the Drawings or as directed by the Engineer.

The geomembrane rolls shall be stored so they are protected from puncture, dust, grease, moisture, mechanical abrasion, and excessive heat or other damage. The rolls shall be stored on a flat smooth surface (minus one (1)-inch well graded gravel rolled with a smooth drum or equivalent) and not stacked more than two rolls high. Care shall be taken to maintain identification and Manufacturer data on the roll.

Prior to deployment of geomembrane, the Lining Contractor shall inspect and accept, with the Engineer, CQA and the Construction Manager, all surfaces on which the geomembrane is to be placed. The surface on which the geomembrane is to be installed shall be free of sharp particles, rocks, or other objectionable material or debris. Sharp and/or objectionable objects shall be removed by raking, sweeping, or hand picking, as necessary.

Installation of the geomembrane shall be performed under the direction of a supervisor who has installed a minimum of 10,000,000 square feet (ft²) of the specified type of geomembrane or similar. Seaming shall be performed under the direction of a master seamer (who may also be the field installation supervisor or crew foreman) with seaming experience of a minimum of 3,000,000 ft² of the geomembrane type specified or similar product, using the same type of seaming apparatus to be used in the current project. During the seaming, the field installation supervisor or master seamer shall be present. Qualified technicians employed by the Lining Contractor shall complete all seaming, patching, testing, and other welding operations.

The geomembrane shall be placed over the prepared surfaces using methods and procedures that ensure a minimum of handling. Adequate temporary and permanent anchoring devices and ballasting shall be provided to prevent uplift and damage due to wind. The Lining Contractor is solely responsible for the safety of his operations including decisions regarding deployment in adverse weather conditions and the amount of temporary anchoring and ballasting required. The Lining Contractor shall take necessary precautions to protect the geomembrane from damage, including prohibiting workers from smoking on or near the geomembrane and wearing foot apparel that would damage the membrane.

To the extent possible, seams shall be oriented parallel to the fall line, slope or grade of the ground. The panels shall be secured temporarily with sandbags or other approved ballasting method to hold them in place until the field seams have been completed and the geomembrane has been permanently anchored. Ballast material shall conform to the specified requirements for overliner material.

The Lining Contractor shall take into account that high winds are prevalent at the project Site and may result in liner damage and delays. The Lining Contractor shall take all necessary measures to ensure that each panel is sufficiently ballasted to prevent damage or movement by wind. Fusion of panels and repairs will only be permitted under weather conditions allowing such work, and within the warranty limits of the Geomembrane Manufacturer, as approved by the Construction Manager and the Engineer.

Horizontal field seams on slopes shall be kept to a minimum and require the approval of the Engineer. Horizontal seams on steep slopes shall be avoided where possible by placing the liner at a 45-degree angle to the slope. Generally, horizontal seams are to be no closer than ten (10)-feet from the toe of the slope. Horizontal seams shall be made by lapping or shingling the uphill material over the downhill material. Panels shall be shingled in a manner that prevents water from running beneath the liner or seam.

The geomembrane shall be installed in a relaxed condition and shall be free of tension or stress upon completion of the installation. The installed geomembrane shall contain sufficient slack material to allow for thermal expansion and contraction during the annual extreme temperatures expected at the Site. Individual wrinkles should take the form of undulations in the liner but should not be large enough for the material to fold over on itself.

During installation, the Lining Contractor shall give each field panel an "identification" code number consistent with the approved layout plan. The CQC, CQA and the Engineer shall agree upon the numbering system before liner installation starts. The Lining Contractor shall update the layout plan as each panel is installed to show the location of each panel. A field panel is defined as the area of geomembrane that is to be seamed in the field (roll or portion of a roll cut in the field).

Individual panels of geomembrane material shall be laid out in a pattern that will produce the least number of seams. The material shall be overlapped prior to welding. Extreme care shall be taken by the Lining Contractor in the preparation of the areas to be welded. The joint interface shall be cleaned and prepared according to industry standard procedures, those specified by the material Manufacturer and those approved by the Engineer. Seaming shall not take place unless the panels are dry and clean. All sheeting shall be welded together by thermal methods. When placing panels together where one panel has been deployed previously, the adjacent panels will need to be allowed to equilibrate in temperature and slack before welding.

Any area showing damage due to excessive scuffing, puncture, or distress from any cause shall be replaced or repaired with an additional piece of geomembrane. Patching of panels to repair defects shall be limited. If excessive physical damage occurs to the geomembrane during or after installation (i.e. wind blowout, rock or equipment damage) the Engineer may require the

damaged area to be replaced. What constitutes excessive physical damage shall be determined in the field by the Construction Manager, Owner and the Engineer.

No "fish mouths" will be allowed within the seam area. Where "fish mouths" occur, the material shall be cut, overlapped, and the area shall be patched.

Geomembrane panels must have a finished overlap of four (4) to six (6)-inches for double-wedge welded seams and minimum six (6)-inches for extrusion welded seams. Notwithstanding this provision, sufficient overlap shall be provided to allow shear and peel tests to be performed on any seam.

Handling and storage of the geomembrane material shall be in accordance with the Manufacturer's printed instructions. Persons walking or working on the geomembrane shall not engage in activities or wear foot apparel that could damage the geomembrane.

An adequate amount of handling equipment, welding apparatuses, and testing equipment shall be maintained on site by the Lining Contractor to avoid delays due to problems with equipment failures.

4.2. Cold Weather Procedures

Cold weather installations should follow the guidelines as outlined in GRI GM9.

Seaming of geomembrane materials shall not be allowed when the sheet temperatures are less than 32° F (0° C) unless the following conditions are met:

- Seaming of the geomembrane at material temperatures below 32° F (0° C) shall be allowed if the Lining Contractor can demonstrate to the Engineer, CQA and the Construction Manager, using prequalification test seams, that field seams comply with the project Specifications, the safety of the crew is ensured, and geomembrane material can be fabricated (i.e. pipe boots, penetrations, repairs. etc.) at sub-freezing temperatures.
- The Lining Contractor shall submit to the Engineer, CQA and the Construction Manager for approval, detailed procedures for seaming at low temperatures, including the following:
 - Preheating of the geomembrane.
 - The provision of a tent or other device as necessary to prevent heat losses during seaming and rapid heat losses subsequent to seaming.
 - Number of test welds required to determine appropriate seaming parameters.

4.3. Hot Weather Seaming

Seaming of geomembrane materials shall not be allowed when the sheet temperature is above 170° F (75° C) as measured by an infrared thermometer or surface thermocouple, unless otherwise approved by the Engineer. Any approval to seam geomembrane above these limits shall be based on recommendations by the Manufacturer and on a field demonstration by the Lining Contractor using prequalification test seams to demonstrate that seams comply with the Technical Specifications.

4.4. Geomembrane Installation Quality Control

4.4.1. General

The Lining Contractor shall be fully responsible for carrying out all quality control inspection and tests on the geomembrane and shall do so to the satisfaction of the Engineer and in accordance with this Technical Specification and the Lining Contractor's Quality Control Manual. On-site physical nondestructive and destructive testing shall be completed on all joints to ensure that watertight uniform seams are achieved on a continuous basis as installation proceeds. The CQA shall randomly witness destructive tests completed by the Lining Contractor's CQC.

Fusion of panels and repairs will only be permitted under weather conditions allowing Work that is in conformance to the Specifications and within the warranty limits imposed by the Manufacturer and to the approval of the Engineer and CQA.

The Lining Contractor shall not have more than 500,000 ft² of geomembrane deployed at any time without final CQA/CQC and acceptance by the CQA. At the beginning of each day's Work, the Lining Contractor shall provide the CQA with copies of all the previous days' reports (electronic format) as well as an update of the quantity and location of geomembrane placed.

4.4.2. Trial Welds

Trial welds shall be completed to verify the performance of the welding equipment and operator prior to performing production welds or if Work stoppages or significant changes in temperature or weather conditions occur. No welding equipment or operator shall perform production welds until equipment and operator have successfully completed a trial weld and are approved by the CQA. The following procedures shall be followed for trial welds:

- Make trial welds under the same surface and environmental conditions as the production welds; i.e., in contact with subgrade and similar ambient temperature.
- Minimum of two trial welds per day per welding apparatus one made prior to the start of Work and one completed at mid-shift, Work stoppages or for every five (5) hours of seaming operations.

- Cut ten (10) each (five (5) for peel test, five (5) for shear test) one (1)-inch wide by six (6)-inch long test strips from the trial weld.
- Quantitatively test specimens for peel adhesion and for bonded seam strength (shear).
- > Trial weld specimens shall pass when the results shown in Table 4-1 are achieved in both peel and shear tests and:
- The break, when peel testing, occurs by Separation in the Plane of the sheet (SIP), not through adhesion failure separation (AD). When the seam separation is equal to or greater than twenty-five (25) percent of the track width, it is a failed test.
- Confirm the break is ductile.
- Repeat the trial weld, in its entirety, when the trial weld samples fail in either peel or shear as defined in Table 4-1 and above.
- The Lining Contractor is responsible for submitting all documentation of CQC testing to the Engineer and the Construction Manager daily.

Table 4-1: Seam Strength and Related Properties of Thermally Bonded Smooth and Textured HDPE Geomembranes (Reference: GRI Test Method GM19a Revision 9 updated 07/28/2017)

Geomembrane Nominal Thickness	60-mil (1.5 mm)	80-mil (2.0 mm)		
Hot Wedge Seams ¹				
Shear strength ² (lbs/in.)	120	160		
Shear elongation at break ³ (%)	50	50		
Peel strength ² (lbs/in.)	91	121		
Peel separation (%)	≤25	≤25		
Extrusion (Fillet) Seams				
Shear strength ² (lbs/in.)	120	160		
Shear elongation at break ³ (%)	50	50		
Peel strength ² (lbs/in.)	78	104		
Peel separation (%)	≤25	≤25		

¹ Also for hot air and ultrasonic seaming methods.

4.4.3. Field Seaming

The Lining Contractor shall have at least one Master Welder who shall provide direct supervision to the other welders. Field seaming procedures and requirements shall include:

² Elongation measurements should be omitted for field testing.

³ Value listed for shear and peel strengths are for 5 out of 5 test strip specimens. All 5 out of 5 testing results should meet or exceed the values in the table.

- > The welding equipment shall be capable of continuously monitoring and controlling the temperature in the zone of contact where the machine is fusing the material to ensure changes in environmental conditions will not affect the integrity of the weld.
- The seam area shall be cleaned of dust, mud, moisture and debris immediately ahead of the welding apparatus.
- The seam overlaps shall be aligned consistent with the requirements of the welding equipment being used. A four (4)-inch to six (6)-inch overlap shall be used for doublewedge welded seams and six (6)-inches for extrusion welded seams unless approved otherwise by the Engineer.
- Seaming shall not proceed when the ambient air temperature or adverse weather conditions jeopardize the integrity of the geomembrane installation.
- > Extrusion welding apparatus' shall be purged of heat-degraded extrudate before welding.
- > The double-wedge fusion welding process shall be used unless alternate methods are approved by the Engineer. Extrusion welding shall be permitted to weld short seams to repair small areas where double-wedge welding is not feasible, and for caps and patches.

4.4.4. Field Seam and Panel Inspection and Testing

4.4.4.1. Nondestructive Testing and Inspection

The Lining Contractor CQC and CQA shall perform visual inspections of deployed and welded geomembrane panels to identify defects, damage, or protrusion of sharp objects that may affect the integrity of the geomembrane. Defective or damaged areas shall be marked and repaired according to the Specifications and the guidelines in the Lining Contractor's Quality Control Manual.

The CQC performed by the Lining Contractor and CQA shall inspect each seam, marking their initials and date inspected at the end of each panel. Any area showing a defect shall be marked and repaired in accordance with the applicable repair procedures.

4.4.4.2. Continuity Testing

A maximum effort shall be made by the Lining Contractor to install a high quality and leak-free geomembrane liner. This implies that all seams completed in the field, patches, and extrusions shall be tested and recorded. All failures shall be isolated and repaired as directed by the Engineer and CQA. A general testing procedure for the Lining Contractor CQC is as follows:

- > Test all field seams, repairs and patches with interseam pressure, vacuum box, spark test, or other approved methods. Non-destructive testing methods are discussed in the following subsections.
- Isolate and repair all areas indicating any defects. Retest the repair.

4.4.4.3. Interseam Pressure Testing

Test procedure shall be in accordance with ASTM D5820 for interseam pressure for seams (for double-wedge welding only):

- > Seal both ends of the seam to be tested by applying heat to the end of the seam via a heat gun until flow temperature is achieved. Clamp off the ends and let cool.
- Insert a pressure gauge with needle assembly into the end of the seam and seal.
- Pressurize the air channel between the two seams to between thirty (30) psi and thirty-five (35) psi. Following pressure stabilization, take the initial pressure reading, hold the pressure a minimum of three (3) minutes and take a second reading.
- The allowable leak-down for the seam is three (3) psi maximum.
- If the pressure drop is below the maximum allowable three (3) psi, open the air channel at the end away from the pressure gauge. Air should rush out and the pressure gauge should register an immediate drop in pressure, indicating that the entire length of seam has been tested. If this does not happen, either the air channel is blocked or the equipment is faulty, and the test is not valid.
- ➤ Enter the results of the leak test on the appropriate documentation, indicating either a passed or a failed seam. If the seam fails, the repair Work and subsequent testing should be recorded on the same document.
- Repair the area where the pressure gauge/needle assembly was installed and where the air was released.

4.4.4.4. Vacuum Box Testing

Where possible, the Lining Contractor CQC shall test all extrusion seams in accordance with ASTM5641:

- Mix a solution of liquid detergent and clean water and apply an ample amount to the area to be tested. If a seam contains excess overlap or loose edges, it must be trimmed before testing.
- Place a rigid transparent vacuum box over the area and apply a slight amount of downward pressure to the box to seat the seal strip to the liner.
- Apply a vacuum of four (4) psi to eight (8) psi for a minimum of ten (10) seconds to the area. The Lining Contractor CQC shall examine the geomembrane through the viewing window for the presence of soap bubbles indicating a leak. If no bubbles appear after ten (10) seconds, consider the area leak free. Once the area is leak free, depressurize the box and move it over the next adjoining area with an appropriate overlap and repeat the process.

Enter the results of the leak test on the appropriate documentation, indicating either a passed or a failed seam. If the seam fails, the repair Work and subsequent testing should be recorded on the same document.

4.4.4.5. Spark Testing

Extrusion welded patches, caps, pipe boots, etc., in lieu of vacuum-box testing, shall be spark tested in accordance with ASTM D6365 and the following procedures:

- The seam shall be prepared for extrusion welding in accordance with the Lining Contractor's procedures.
- ➤ Just prior to applying the extrusion bead, a small-gauge copper wire (18-gauge bare copper wire or equivalent) shall be placed into the seam. The wire should be grounded at one end and placed at the edge of the top sheet of the overlap seam. Tucking the wire under the edge of the top sheet will help hold the wire in place during welding, but this should be done prior to grinding to avoid the risk of contamination of the weld area. Electrically conductive tape placed along the edge of the overlying patch can also be used instead of copper wire.
- > Apply the extrudate bead as normal and allow the weld to cool.
- Complete a calibration test on a trial seam containing a non-welded segment ensuring the identification of such a defect (non-welded segment) under the planned spark tester settings and procedures.
- Energize the spark tester and move the electrode wand near the trial seam to determine the maximum length of spark that can be generated. Adjust the output voltage setting until the spark length exceeds the greatest potential leak path distance. This is typically the diagonal distance from the embedded wire to the edge of the weld bead at a "T" joint.
- Once the output voltage has been set, testing can be started. Testing is performed by passing the electrode over the seams with the electrode in contact with the membrane or the extruded weld bead. The audible and visual indication of a spark provides the determination of a potential leak path.
- If a potential leak is detected the area can be repaired with a patch. Applying additional weld beads adjacent to the leaking weld is not an acceptable repair technique. This will only lengthen the leak path to the extent that the spark tester may not be capable of generating a spark of sufficient length to breach the lengthened gap.
- After patching, the seam must be retested until no defects are indicated.
- ➤ Enter the results of the spark test on the appropriate documentation, indicating either a passed or a failed seam. If the seam fails, the repair Work and subsequent testing should be recorded on the same document.
- When flammable gasses are present, use special care and precautions in the area to be tested.

4.4.4.6. Destructive Testing

Peel and shear seam strength testing shall be carried out on samples of seams removed from the installed panels. For these tests, the following procedures shall be followed:

- Coupon sampling of all field seams, including patches and repair areas, shall be taken by cutting perpendicular to the seams a sample approximately thirty-six (36)-inch long by a six (6)-inch wide (minimum) centered over the seam. This sample shall be cut into three twelve (12)-inch long samples and labeled with the sample number, date, time, location and seam number, and individually marked "Owner (Archive) Sample", "CQA Sample", and "Lining Contractor CQC Sample". The frequency and location shall be determined by the CQA, but shall not be less than one sample per five-hundred (500)-feet of field seam. These coupons shall be tested by the Lining Contractor on-site for peel (five (5) coupons) and shear seam strength (five (5) coupons) and thickness in accordance with ASTM D6392. The CQA shall also test the samples for conformance. If there is any discrepancy in the results, the CQA results will override the Lining Contractor's.
- ➤ Heat-welded seams shall be allowed to cool or warm to about 70°F prior to testing. Solvent seams, when used, shall be allowed to cure according to the Manufacturer's recommendations. Additionally, at the Engineer's option, approximately ten (10) percent of the coupons (size one (1)-inch by six (6)-inches) shall be sent to an independent laboratory for confirmation testing. Should the lab and field tests conflict, installation shall halt until the conflict is resolved to the satisfaction of the Engineer.

Weld specimens shall pass the requirements for shear and peel presented in Table 4-1 and as follows:

- Both weld interfaces on double-wedge welds shall be tested.
- > During testing, the break shall occur by Separation in the Plane of the sheet (SIP) not through adhesion failure separation (AD). When the seam separation is equal to or greater than twenty-five (25) percent of the track width, it is a failed test.
- > The break must be ductile.

4.4.4.7. Procedure in the Case of Destructive Test Failure

In the case that a destructive seam test fails in either shear or peel, the entire length of seam represented by this test is in question. At a minimum, the procedure for destructive test failures shall be as follows:

- 1. The Lining Contractor shall provide the Engineer with two additional destructive test samples spaced a minimum of one hundred and fifty (150) feet on either side of the failed test or at the direction of CQA and the Engineer.
- 2. The Engineer and the Construction Manager reserve the right to take additional samples as warranted to adequately assess the quality of the work.

- 3. From each destructive test sample, ten (10) test coupons will be cut. Five (5) of these samples will be tested for seam shear strength and five will be tested for peel strength. Both weld interfaces on double wedge welds shall be tested.
- 4. If passing tests are achieved from the tracking samples obtained in Item 1, the 300 feet of seam represented by the passing tests is in question. Additional samples at closer intervals can be taken or the 300 feet of seam shall be capped.
- 5. If a failing test occurs at the new destructive test location, an additional test will be taken at a minimum of 50 feet from the failed test or at the direction of CQA and the Engineer. This procedure is repeated until the extent or length of failed section is fully defined or the edge of the seam that was originally represented by the original test is reached.
- 6. If passing tests are achieved at the minimum 150-foot distance from the failed destructive test, additional destructive tests may be taken at a closer spacing from the failed test at the discretion of the Lining Contractor. If the tests at the closer interval fail, additional destructive tests at a wider interval shall be taken until the length of failed seam is fully defined.
- 7. Once the length of the defective seam is identified, the Lining Contractor shall either cut out the defective seam and wedge weld a new piece of liner in the seam area; or install a cap-patch strip over the affected seam area. Cap-patches shall be a minimum of three (3) feet in width and shall be centered over the defective seam. Extrusion welding the exposed flap of liner on wedge welded seams or additional extrusion welding of extrusion-welded seams shall not be allowed.
- 8. An additional destructive test sample shall be taken within the repaired area and tested in accordance with Item 3. Nondestructive testing by appropriate methods shall also be performed within the repaired area. In the case that the retest of the repaired area fails, the procedure as previously described shall be repeated until passing tests are achieved.

4.4.4.8. Repair Procedures

Damaged or defective geomembrane or seam areas failing a destructive or non-destructive test shall be repaired. Each repair requires a non-destructive test using either a vacuum box or spark testing methods. The Lining Contractor shall be responsible for repair of damaged or defective areas. The repair method shall be decided by the Lining Contractor but must be agreed upon by the Engineer. Procedures available include the following:

- Replacement: Remove damaged geomembrane or unacceptable seam and replace with acceptable geomembrane materials if the damage cannot be satisfactorily repaired.
- Patching: Used to repair large holes, tears, undispersed raw materials, and contamination by foreign matter.
- Capping: Used to repair large lengths of failed seams.

Abrading and rewelding of small seam areas and welding the flap on fusion-welded seams are not acceptable repair procedures and shall not be accepted by CQA.

In addition, the following procedures shall be observed:

- > Surfaces of the geomembrane that are to be repaired by extrusion welds shall be lightly abraded to remove oxidation and ensure cleanliness.
- All geomembrane shall be clean and dry at the time of repair.
- Extend patches or caps at least six (6)-inches for extrusion welds and four (4)-inches for wedge welds beyond the edge of the defect, and round the corners of the patch material. The edges of all patches are to be beveled.

Furthermore, repair verification shall be performed as follows:

- Number, date, location, repair technician, CQC and test outcome of each patch.
- Non-destructively test each repair using methods required in this Technical Specification.
- Enter the results of the repair procedures on the appropriate documentation, indicating the repair verification. If the repair fails, the repair Work and subsequent testing should be recorded on the same document.

4.4.5. Lining Contractor's CQC Reporting and As-Built

Lining Contractor's CQC will be responsible for recording and reporting the following information on a daily basis:

- Panel Deployment Log
- Seaming Log
- Trial Weld Test Results
- Destructive Testing Results
- Documentation of all seam and major patch repairs

The log formats shall be included in the Lining Contractor's Quality Control Manual and the format and information to be included on the logs is subject to approval by the Engineer and CQA.

At the completion of the installation, the Lining Contractor shall provide the CQA or Engineer and the Construction Manager the following information no later than five (5) calendar days after the installation Work has been completed:

- Completed as-built Drawings (AutoCAD compatible format) showing the surveyed geomembrane panel layout, seams, location of destructive test samples, and the location of major repairs including repaired seams, major patches and capped areas.
- Completed CQC documents (hard copy and electronic (pdf) format) including the Panel Deployment Log, Seaming Log, Trial Weld Test Results, Destructive Testing Results, and Seam Repair Log.

4.5. Lining Contractor Warranty

The Lining Contractor shall warrant the installation against workmanship defects a minimum of five (5) years from the date of installation or as mutually agreed prior to award of the Contract. This warranty shall cover the cost of material, freight and duties, handling, labor, and equipment to replace or repair defective workmanship.

5. HYDROSTATIC TEST PROCEDURES

The Ponds shall be hydrostatically tested for leakage as described herein. Hydrostatic testing and full-time CQA observations shall be employed before, during and after construction.

- Evacuate all leak detection systems of any residual fluids that may have accumulated during construction.
- Begin filling the pond with cool (not warm or hot) fresh water.
- Monitor the leak detection system and water level at regular time intervals. The time interval will depend upon how fast the water is rising in the pond.
- Record all pertinent levels as monitoring continues.
- > If, at any time during the test, leakage is discovered, immediately stop filling the pond.
- Quantify the leak rate by pumping the leak detection port.
- Lower the water level and continue to monitor and quantify the leak rate.
- When the leakage stops, the leak(s) will be bounded by the two recorded water levels.
- Visually inspect, identify suspect areas, repair and retest in accordance with the same procedures outlined above.
- Continue the test until the maximum fluid level is attained with zero leakage. The maximum fluid levels are defined as two feet below crest elevation as determined by asbuilt survey.

6. CONSTRUCTION QUALITY ASSURANCE (CQA) REQUIREMENTS

6.1. General

The Engineer shall be the interpreter of the site construction Technical Specifications, and shall make observations and tests as considered necessary to assess and accept the quality of the work. Continuous observations and tests of construction operations shall be made by Inspectors under the direction of the Engineer.

The Construction Manager shall be responsible for verification of lines and grades prior to acceptance of the completed work. The Lining Contractor shall be responsible for any surveying required during liner placement. The Lining Contractor shall also be responsible for the preparation of record (as-built) drawings for all lined areas.

The CQA activities shall be performed under the direction of an Inspector who has monitored the installation of a minimum of 5,000,000 square feet (ft²) of the specified type of geomembrane or similar.

6.2. CQA Inspection and Review Requirements

The CQA shall be responsible for inspecting the geomembrane installation to ensure that the Work is completed in accordance with the Technical Specifications. Inspections and review shall include, but not be limited to the following:

- Random visual verification of trial welding results
- Random visual verification of production seaming operations
- Random visual verification of seam testing (air tests) and results
- Random visual verification of vacuum box and spark testing
- > Random verification of the Lining Contractor CQC destructive seam strength testing
- Final inspection and approval of completed geomembrane
- Review of the Lining Contractor CQC documentation

6.3. CQA Testing Requirements

The CQA shall be responsible for the following testing:

- Trial weld verification (ten (10) percent minimum, randomly selected). Frequency to be increased at the discretion of the CQA, if conflicting results occur or poor quality is indicated.
- > Destructive Test verification. Additional test samples above minimum frequency may be collected and tested at the discretion of the CQA.

A CQA Sampling & Testing Guide is presented on Table 6-1.

Table 6-1: Geomembrane CQA Sampling & Testing Guide

Material	Tests	Frequency
HDPF	Destructive shear and peel tests (minimum).	Every 500 linear feet of seam for each welding machine (randomly located).
Geomembrane Liner	Air pressurization testing, vacuum testing, or equivalent method. (Performed by Lining Contractor and randomly observed by the Inspector.)	2. Entire length of field welded seams.

6.4. CQA Reporting and Review of Lining Contractor CQC Information

CQA and the Engineer shall be responsible for reviewing the information submitted by the Lining Contractor's CQC. This shall include the panel deployment log, seaming log and trial weld and destructive testing results as well as the as-built information.

The CQA shall also produce a daily report (weekly reports may also be required) and a summary for testing completed (Trial Weld and Destructive Test Results) to document activities associated with installation of the geomembrane. A copy of all test results will be maintained at the construction site, and shall include the following:

- Date issued
- Project title and number
- Date of testing and/or sampling
- Designation of material tested
- > Type of test and specification
- Location of test
- Observations regarding compliance or noncompliance with Drawings and Technical Specifications

As-built surveyed drawings as defined above (Section 4.4.5) provided by the Lining Contractor. Panel seam locations, destructive sample locations and repairs shall be surveyed. As-built drawings based on the required survey shall be submitted to the Construction Manager and the Engineer within five (5) business days of the completion of the liner installation. The Lining Contractor shall provide draft as-built drawings to the Engineer for review prior to finalization. As-built drawings shall be prepared and submitted in electronic format (AutoCAD v. 2018 or compatible). Copies of each drawing shall be submitted to the Construction Manager and Engineer for inclusion in the ROC Report. Drawings shall be provided in 11"x17" size and the number copies shall be determined by the Owner.

APPENDIX F.4 Geotextile

CLIENT Lithium Nevada Corporation

PROJECT NO 475.0385.000

PROJECT: THACKER PASS PROJECT

TITLE	: TECHNICAL	SPECIFICATION NO.								
MAT	ERIALS AND I	3-0385-000-SP-GT-0								
				APPROVAL						
REV	DATE	PAGES	AUTHOR	REVIEW	CLIENT	REMARKS				
0	04/02/2020	6	MH	KCW	BR	Issued for Construction				

TABLE OF CONTENTS

1.	GENERAL	. 1
2.	CODES AND STANDARDS	. 1
	2.1. American Association of State Highway and Transportation Officials (AASHTO):	. 1
	2.2. American Society for Testing and Materials (ASTM):	. 1
	2.3. Geosynthetic Research Institute (GRI):	. 2
3.	SUBMITTALS	. 2
	3.1. Post-Award	. 2
	3.2. Manufacturing	. 2
4.	SHIPMENT, STORAGE AND HANDLING	. 3
5.	MATERIAL	. 3
6.	EXECUTION	4
	6.1. Construction Quality Assurance	4
	6.2. Installation	4
7.	CERTIFICATION	. 5
LIS	T OF TABLES	
TAE	BLE OF CONTENTS	1
Tab	ole 5-1: Geotextile	4

1. GENERAL

This Specification defines the requirements for the geotextile materials and placement activities associated with the Thacker Pass Project owned by Lithium Nevada Corporation.

Any alternatives or exceptions to this Specification shall be submitted in writing to the Construction Manager and shall be approved by the Engineer and the Owner.

Geotextile shall be used beneath any riprap and as cushion for geomembrane as shown on the Drawings.

The Definition of Terms is provided in Specification No. 0-0385-000-SP-GEN-0.

2. CODES AND STANDARDS

All tests shall be performed in accordance with the current edition of the testing standards as indicated below.

2.1. American Association of State Highway and Transportation Officials (AASHTO):

➤ M288-17 – "Geotextile Specification for Highway Applications", American Association of State Highway and Transportation Officials, Washington DC, www.transportation.org.

2.2. American Society for Testing and Materials (ASTM):

- ASTM D4354-12: "Standard Practice for Sampling of Geosynthetics and Rolled Erosion Control Products (RECPs) for Testing", ASTM International, West Conshohocken, PA, www.astm.org.
- ASTM D4491/D4491M-17: "Standard Test Method for Water Permeability of Geotextiles by Permittivity" ASTM International, West Conshohocken, PA, www.astm.org.
- ASTM D4533/D4533M-15: "Standard Test Method for Trapezoid Tearing Strength of Geotextiles", ASTM International, West Conshohocken, PA, www.astm.org.
- ➤ ASTM D4632/D4632M-15a: "Standard Test Method for Grab Breaking Load and Elongation of Geotextiles", ASTM International, West Conshohocken, PA, www.astm.org.
- ASTM D4751-20: "Standard Test Method for Determining Apparent Opening Size of a Geotextile" ASTM International, West Conshohocken, PA, www.astm.org.
- > ASTM D4759-11(2018): "Standard Practice for Determining the Specification Conformance of Geosynthetics", ASTM International, West Conshohocken, PA, www.astm.org.
- > ASTM D4873/D4873M-17: "Standard Guide for Identification, Storage, and Handling of Geosynthetic Rolls and Samples", ASTM International, West Conshohocken, PA, www.astm.org.
- ➤ ASTM D5035-11(2019):— "Test Method for Breaking Strength and Elongation of Textile Fabrics" (2" Strip Method), ASTM International, West Conshohocken, PA, www.astm.org.

- ASTM D5261-10(2018): "Standard Test Method for Measuring Mass per Unit Area of Geotextiles", ASTM International, West Conshohocken, PA, www.astm.org.
- ASTM D6241-14: "Standard Test Method for Static Puncture Strength of Geotextiles and Geotextile-Related Products Using a 50-mm Probe", ASTM International, West Conshohocken, PA, www.astm.org.
- ASTM D7238-06(2017): "Standard Test Method for Effect of Exposure of Unreinforced Polyolefin Geomembrane Using Fluorescent UV Condensation Apparatus", ASTM International, West Conshohocken, PA, www.astm.org.

2.3. Geosynthetic Research Institute (GRI):

- ➤ GRI GT12(a) Revision 2, March 3, 2016: "Test Methods and Properties for Nonwoven Geotextiles Used as Protection (or Cushioning) Materials", Geosynthetic Institute, Folsom, PA, www.geosynthetic-institute.org.
- GRI GT13(a) Revision 4, June 20, 2017: "Test Methods and Properties for Geotextiles Used as Separation Between Subgrade Soil and Aggregate", Geosynthetic Institute, Folsom, PA, www.geosynthetic-institute.org.

3. SUBMITTALS

3.1. Post-Award

- Prior to material delivery to the project site, the Contractor shall provide the Engineer with a written certification or Manufacturer's quality control data indicating that the geotextile meets or exceeds the values specified herein.
- > The Contractor shall also submit the Manufacturer's quality control manual for the geotextile that will be delivered to the site.

3.2. Manufacturing

- ➤ Manufacturer quality control certificates stating the name of the Manufacturer, product name, style number, chemical composition of the filaments or yarns, and other pertinent information to fully describe the geotextile shall be provided.
- ➤ The Manufacturer is responsible for establishing and maintaining a quality control program to assure compliance with the requirements of the Specification. Documentation describing the quality control program shall be provided.
- ➤ The Manufacturer's certificate shall state that the finished geotextile meets the Minimum Average Roll Value (MARV) requirements of the Specification as evaluated under the Manufacturer's quality control program. A person having legal authority to bind the Manufacturer shall attest to the certificate.
- Mislabeling or misrepresentation of materials shall be reason to reject those geotextile products.

4. SHIPMENT, STORAGE AND HANDLING

- ➤ Geotextile labelling, shipment and storage shall follow ASTM D4873. Product labels shall clearly show the Manufacturer name, style, and roll number. Each shipping document shall include a notation certifying that the material is in accordance with the Manufacturer's certificate.
- ➤ Each geotextile roll shall be wrapped with a material that will protect the geotextile, including the ends of the roll, from damage due to shipment, water, sunlight and contaminants. The protective wrapping shall be maintained during periods of shipment and storage.
- ➤ During storage, geotextile rolls shall be elevated off the ground and adequately covered to protect them from the following: site construction damage, precipitation, extended ultraviolet radiation including sunlight, chemicals that are strong acids or strong bases, flames including welding sparks, temperatures in excess of 160° F (71° C), and any other environmental condition that may damage the property values of the geotextile.

5. MATERIAL

- > The nonwoven needle punched geotextile specified herein shall be made from staple fiber.
- ➤ The geotextile shall be of new prime quality virgin polymer of 100-percent polypropylene (97-percent polypropylene and three (3)-percent carbon black with antioxidants and heat stabilizers) or polypropylene blend designed and manufactured specifically for the purpose of separation, tensile reinforcement, planar flow, filtration and protection and shall be used as designated on the Drawings.
- The geotextile shall be able to withstand direct exposure to ultraviolet radiation from the sun for up to 30 days without any noticeable effect on index or performance properties.
- > Rolls shall be free of holes, contamination and foreign debris.
- ➤ Geotextile shall meet or exceed all material properties listed in Table 5-1 based on the specific purpose and expected conditions.

Table 5-1: Geotextile

(Reference: GRI Test Method GT12(a) Revision 2, dated 03/03/2016)

Property	Test Method (ASTM)	Unit	Mass/Unit Area (oz/yd³)					
Mass per unit area	D5261	oz/yd²	10	12	16	24	32	60
Grab tensile strength	D4632	lb	230	300	370	450	500	630
Grab tensile elongation	D4632	%	50	50	50	50	50	50
Trap. tear strength	D4533	lb	95	115	145	200	215	290
Puncture (CBR) Strength	D6241	lb	700	800	900	1100	1700	2400
UV resistance ²	D7238	%	70	70	70	70	70	70

Notes:

- 1. All values are MARV except UV resistance which is a minimum value.
- 2. Evaluation to be on 2.0 inch strip tensile specimens per ASTM 5035 after 500 lt. hours exposure.

6. EXECUTION

6.1. Construction Quality Assurance

- > The Engineer shall review the material certificates prior to installation of geotextile.
- ➤ The Engineer shall examine the geotextile rolls upon delivery to the site and report any deviations from the Specifications to the Contractor.
- ➤ The Engineer may decide to arrange for conformance testing of the rolls delivered to the job site. For this purpose, the Engineer shall take a sample three (3) feet (along roll length) by roll width according to ASTM Practice D4354. The sample shall be properly marked, wrapped and sent to an independent laboratory for conformance testing at the discretion of the Engineer.
- > The pass or fail of the conformance test results shall be determined according to ASTM D4759.

6.2. Installation

- > The geotextile shall be handled in such a manner to ensure that it is not damaged in any way.
- > The geotextile shall be installed to the lines and grades as shown on the Drawings and as described herein.
- ➤ The geotextile shall be deployed down the slope in such a manner to continuously keep the geotextile in tension by self-weight. The geotextile shall be securely anchored in an anchor trench where applicable, or by other approved or specified methods.
- > All geotextiles shall be weighted by sandbags or approved equivalent to prevent damage from the wind. Protection shall be installed during placement and shall remain in place until replaced with cover material.

- ➤ The Contractor shall take necessary precautions to prevent damage to adjacent or underlying materials during placement of the geotextile. Should damage to such material occur, the Contractor shall repair the damaged materials at his own cost and to the satisfaction of the Engineer.
- During placement of the geotextile, care shall be taken not to entrap soil, stones or excessive moisture that could hamper subsequent seaming (as applicable) of the geotextile as judged by the Engineer.
- The geotextile shall not be exposed to precipitation prior to being installed and shall not be exposed to direct sunlight for more than 15 days after installation.
- ➤ Geotextile placed on flat ground or geotextile which will be ballasted shall be overlapped a minimum of eight (8)-inches.
- ➤ Geotextile pieces shall be connected together using overlap, heat bonding or stitching methods as approved by the Engineer. Sewn seams shall be made using polymeric thread with chemical resistance equal to or exceeding that of the geotextile. All sewn seams shall be continuous. Seams shall be oriented down slopes perpendicular to grading contours unless otherwise specified. For heat seaming, fusion welding techniques recommended by the Manufacturer shall be used.
- ➤ The Contractor shall not use heavy equipment to traffic above the geotextile without approved protection.
- Material overlying the geotextile shall be carefully placed to avoid wrinkling or damage to the geotextile.
- ➤ Holes in the geotextile material shall be repaired using a patch of identical material extending a minimum six (6)-inches on all sides of the hole and heat bonded. If heat bonding is not possible, the patch shall extend a minimum of eighteen (18)-inches on all sides of the hole.
- In areas where the non-woven geotextile is used as separation or filtration, care shall be taken to install the layer without producing holes or gaps where the migration of fines into the drainage system could occur. This is accomplished by ensuring sufficient overlap of seams of eighteen (18)-inches minimum overlap and properly wrapping the edges of the geotextile within the gravel areas being protected or by over running the edges of the geotextile beyond the area requiring separation or filtration.

7. CERTIFICATION

At the completion of the geotextile installation, the Contractor shall provide the Owner with a certification stating that the geotextile was installed in accordance with the Technical Specifications. The certification shall be provided to the Owner prior to the demobilization of the installation personnel from the site unless agreed otherwise by the Owner.

APPENDIX F.5 Geonet

CLIENT Lithium Nevada Corporation

PROJECT NO 475.0385.000

PROJECT: THACKER PASS PROJECT

	: TECHNICAL	SPECIFICATION NO. 4-0385-000-SP-GN-0				
				APPROVALS	6	
REV	DATE	PAGES	AUTHOR	REVIEW	CLIENT	REMARKS
0	04/02/2020	6	MH	KCW	BR	Issued for Construction

TABLE OF CONTENTS

1.	GENERAL	1
2.	CODES AND STANDARDS	1
	2.1. American Society for Testing and Materials (ASTM)	1
	2.2. Geosynthetic Research Institute (GRI)	2
3.	SUBMITTALS POST-AWARD	2
	3.1. Submittals during Manufacturing	2
	3.2. Shipment, Storage and Handling	2
	3.3. Warranty	3
4.	PRODUCT	3
	4.1. Geonet Properties	3
5.	EXECUTION	3
	5.1. Construction Quality Assurance (CQA)	3
	5.2. Installation	4
	5.3. Seams and Overlaps	4
	5.4. Repairs	4
6.	CERTIFICATION	5
LIST	OF TABLES	

1. GENERAL

This Specification defines the requirements for geonet materials, installation, quality control and quality assurance associated with the Thacker Pass Project owned by Lithium Nevada Corporation.

Any alternatives or exceptions to this Specification shall be submitted in writing to the Construction Manager and shall be approved by the Engineer and the Owner.

The Definition of Terms is provided in Specification 0-0385-000-SP-GEN-0.

Geonet will be used as an intermediate drainage layer between the primary and secondary geomembrane liners for the ponds and in the outlet channel to reduce potential erosion.

2. CODES AND STANDARDS

All tests shall be performed in accordance with the current edition of the testing standards as indicated below.

2.1. American Society for Testing and Materials (ASTM)

- ASTM D792-13: "Standard Test Methods for Density and Specific Gravity (Relative Density) of Plastics by Displacement", ASTM International, West Conshohocken, PA, www.astm.org.
- ASTM D1238-13: "Standard Test Method for Melt Flow Rates of Thermoplastics by Extrusion Plastometer," ASTM International, West Conshohocken, PA, www.astm.org.
- ASTM D1505-18: "Standard Test Method for Density of Plastics by the Density-Gradient Technique," ASTM International, West Conshohocken, PA, www.astm.org.
- ASTM D1603-14: "Standard Test Method for Carbon Black in Olefin Plastics," ASTM International, West Conshohocken, PA, www.astm.org.
- ASTM D4218-15: "Standard Test Method for Determination of Carbon Black Content in Polyethylene Compounds By the Muffle-Furnace Technique", ASTM International, West Conshohocken, PA, <u>www.astm.org.</u>
- ASTM D4716/D4716M-14: "Standard Test Method for Determining the (In-Plane) Flow Rate per Unit Width and Hydraulic Transmissivity of a Geosynthetic Using a Constant Head," ASTM International, West Conshohocken, PA, www.astm.org.
- ASTM D5035-11(2019): "Standard Test Method for Breaking Force and Elongation of Textile Fabrics (Strip Method)," ASTM International, West Conshohocken, PA, www.astm.org.
- ASTM D5199-12(2019): "Standard Test Method for Measuring Nominal Thickness of Geosynthetics," ASTM International, West Conshohocken, PA, www.astm.org.

2.2. Geosynthetic Research Institute (GRI)

- GRI GN2 and GC13 Revision 1, September 25, 2012: "Standard Guide for Joining and Attaching Geonets and Drainage Composites", Geosynthetic Institute, Folsom, PA, www.geosynthetic-institute.org.
- GRI GN4 Revision 3, January 14, 2020: "Standard Specification for Test Methods and Properties for Testing Frequency for Biplanar Geonets and Biplanar Geonet Composites," Geosynthetic Institute, Folsom, PA, www.geosynthetic-institute.org.

3. SUBMITTALS POST-AWARD

Prior to material delivery to the project Site, the Contractor shall provide the Engineer with written certification and Manufacturer's quality control data, which displays that the geonet meets, or exceeds the values specified herein.

3.1. Submittals during Manufacturing

- Manufacturer quality control certificates stating the name of the Manufacturer, product name, length, width, roll number and any other pertinent information to fully describe the geonet.
- > The Manufacturer is responsible for establishing and maintaining a quality control program to assure compliance with the requirements of this Specification. Documentation describing the quality control program shall be made available upon request.
- The Manufacturer's certificate shall state that the finished geonet meets the Minimum Average Roll Value (MARV) requirements of the Specification as evaluated under the Manufacturer's quality control program. A person having legal authority to bind the Manufacturer shall attest to the certificate.
- Mislabeling or misrepresentation of materials shall be reason to reject geonet products.

3.2. Shipment, Storage and Handling

- Product labels shall clearly show the Manufacturer or supplier name, style, and roll number. Each shipping document shall include a notation certifying that the material is in accordance with the Manufacturer's certificate.
- > Delivery of rolls of geonet will be prepared to ship by appropriate means to prevent damage to the material and to facilitate off-loading.
- > The Contractor shall provide the on-site storage location for the geonet. The Contractor shall protect the geonet from abrasions, excessive dirt and moisture. The area shall be level (no wooden pallets), smooth, protected from vandalism and close to the Work area.
- The Contractor shall handle all geonet in such a manner to ensure it is not damaged in any way.

➤ The Lining Contractor shall take all necessary precautions to prevent damage to the underlying layers during placement of the geonet.

3.3. Warranty

- > The material shall be warranted, on a prorated basis against defects for a period of twenty (20) years from the date of the geonet installation or as mutually agreed prior to award of the Contract for supply between the Owner and the Manufacturer.
- Installation shall be warranted against defects in workmanship for a period of one (1)-year from the date of geonet completion.

4. PRODUCT

4.1. Geonet Properties

The geonet shall be 200-mil (5 mm) in nominal thickness and shall be manufactured by extruding two (2) crossing strands to form a bi-planar drainage net structure.

The geonet shall meet or exceed the material property values listed in Table 4-1.

Table 4-1: Required Properties, Test Methods and Values for Geonet

Property	Test Method	Frequency (minimum)	Units	Values			
Thickness (nominal) (min.ave.)	ASTM D5199	50,000 lb	mils (mm)	200 (5.0)	250 (6.3)	275 (7.0)	300 (7.6)
Density (minimum)	ASTM D1505/ ASTM D792, Method B	50,000 lb	g/cm³	0.95	0.95	0.95	0.95
Tensile Strength (Machine Direction)	ASTM D7179	50,000 lb	lbs/in	45	60	67.5	75
Carbon Black Content	ASTM D4218 ASTM D1603 ²	100,000 lb	Percent	1.5-3	1.5-3	1.5-3	1.5-3
Melt Flow Index	ow Index ASTM D1238, 190°, 2.16kg Per Resin Lot		g/10 minutes (max.)	<u>≤</u> 1.0	<u>≤</u> 1.0	<u>≤</u> 1.0	<u><</u> 1.0
Transmissivity 1	ASTM D4716	200,000 lb	gal/min-ft	5.0	7.2	8.10	9.0

Notes: 1. Gradient of 1.0, normal load of 10,000 psf (479 kN/m²), water at 70°F (21°C), between steel plates for 15 minutes.

2. Modified.

5. EXECUTION

5.1. Construction Quality Assurance (CQA)

The CQA shall examine the geonet rolls upon delivery to the Site and report any deviations from Specifications to the Contractor and the Lining Contractor.

5.2. Installation

- The geonet rolls shall be installed in the direction of the slope and in the intended direction of flow. At no time shall any vehicles (pickup trucks, cars, utility vehicles (or similar), four wheel ATV's (or similar) be driven on the geonet. If the geonet is driven on, CQA shall inspect the area for damage and require replacement or repairs, if necessary.
- > If the project contains long, steep slopes, special care should be taken so that only full-length rolls are used at the top of the slope.
- In the presence of wind, all geonet shall be weighted down with sandbags or the equivalent. Sandbags shall be used during placement and remain until the geonet is secured.
- When an anchor trench is at the top of the slope, the geonet shall be properly anchored to resist sliding. Anchor trench compaction equipment shall not come into direct contact with the geonet.
- In applying fill material, no equipment shall drive directly across the geonet. The specified fill material shall be placed and spread utilizing vehicles with a low ground pressure.

5.3. Seams and Overlaps

- Each component of the geonet shall be secured to the like component at overlaps.
- Adjacent edges along the length of the geonet roll shall be overlapped a minimum of four (4)-inches.
- > The overlapped edges shall be joined by tying the geonet structure with cable ties. These ties shall be spaced every five (5) feet along the roll length. Ties for connecting the seams shall be resistant to degradation due to ultraviolet light and should be compatible with the process solution used for the project. Ties should be installed such that the clasp of the tie is placed between the grids of the geonet.
- Adjoining rolls across the roll width should be shingled down in the direction of the slope with a minimum of one (1)-foot overlap and joined together with cable ties spaced every one (1)-foot along the roll width.

5.4. Repairs

- Prior to covering the deployed geonet, the material shall be inspected by the Lining Contractor and CQA for proper installation and damage resulting from construction.
- Any rips, tears or damaged areas on the deployed geonet shall be patched. The patch shall extend six (6)-inches beyond the damage and shall be secured to the original geonet by tying every six (6)-inches (or as necessary) with the approved cable ties. If the area to be repaired is more than fifty (50) percent of the width of the panel, the damaged area shall be cut out and the two portions of the geonet shall be joined in accordance with Section 5.3.

6. CERTIFICATION

At the completion of the geonet installation, the Lining Contractor shall provide CQA and the Owner with a certification stating that the geonet was installed in accordance with these Specifications together with a test result report. The certification shall be provided to CQA and the Owner prior to the demobilization of the installation personnel from the Site unless agreed otherwise by the Owner.

APPENDIX F.6 HDPE Pipe

CLIENT Lithium Nevada Corporation

PROJECT NO 475.0385.000

PROJECT: THACKER PASS PROJECT

TITLE: TECHNICAL SPECIFICATIONS FOR HIGH DENSITY

POLYETHYLENE (HDPE) PIPE MATERIALS AND INSTALLATION

APPROVALS

SPECIFICATION NO. 5-0385-000-SP-HDP-0

			APPROVALS			
REV	DATE	PAGES	AUTHOR	REVIEW	CLIENT	REMARKS
0	04/02/2020	7	МН	KCW	BR	Issued for Construction

TABLE OF CONTENTS

1.	GENERAL	1
	CODES AND STANDARDS	
3.	HDPE PIPE MATERIALS	1
4.	CERTIFICATES	3
5.	SHOP AND FIELD LEAK TESTING OF PIPING SYSTEMS	3
6.	PIPE DELIVERY, HANDLING, AND STORAGE	4
7.	PIPE INSTALLATION	
	7.1. General	
	7.2. Joining	5
	7.2.1. Heat Fusion	
	7.2.2. Other Methods of Joining	5
	7.3. Marking	
	7.4. Testing	6
LIS1	T OF TABLES	

Table 3-1: Physical Material Properties for HDPE Pipe (PE 4710)2

1. GENERAL

This specification defines the requirements for High-Density Polyethylene (HDPE) PE 4710 pipe materials, installation, and quality control associated with the Thacker Pass Project owned by Lithium Nevada Corporation.

Any alternatives or exceptions to this Specification shall be submitted in writing to the Construction Manager and shall be approved by the Engineer and the Owner.

The Definition of Terms is provided in Specification No. 0-0385-000-SP-GEN-0.

2. CODES AND STANDARDS

All piping shall be of the best quality available complying with the current standards for the following:

- > ANSI: American National Standard Institute
- > ASTM: American Society of Testing and Materials
- > AWWA: American Water Works Association
- > AASHTO: American Association of State Highway Officials
- > SPI: Society of the Plastics Industry, Inc.
- PPI: Plastics Pipe Institute
- IPS: Iron Pipe Sizing
- > ISO: International Organization for Standardization

3. HDPE PIPE MATERIALS

Materials used for the manufacture of HDPE pipe and fittings shall have a standard thermoplastic material designation code of PE 4710 and comply with all requirements for ASTM D3350. The pipe shall contain no recycled compound except that generated in the Manufacturer's own plant from the resin of the same Specification and from the same raw material supplier. The dimensional and performance characteristics shall conform to the requirements of ASTM F714 for sizes four (4)-inches IPS and larger and conform to ASTM D3035 for sizes smaller than four (4)-inches IPS. In addition, materials used for the manufacture of the HDPE pipe and fittings shall meet the physical property requirements listed in Table 3-1.

Table 3-1: Physical Material Properties for HDPE Pipe (PE 4710)

Property	Unit	Standard	Nominal Value
Material Designation	-	ASTM F412	PE 4710
Cell Classification	-	ASTM D3350	445474 C (black)
Density (Natural)	g/cc	ASTM D1505	0.947
Density (Black)	g/cc	ASTM D1505	0.959
Melt Index	g/10 minutes	ASTM D1238	< 0.08
Flexural Modulus	psi	ASTM D790	140,000
Tensile Strength @ Ultimate	psi	ASTM D638	5,000
Tensile Strength @ yield	psi	ASTM D638	>3,600
PENT	hours	ASTM F1473	>500
ESCR	hours	ASTM D1693	>10,000
HDB at 73°F (23°C)	psi	ASTM D2837	1,600
Color; UV Stabilizer	% C	ASTM D1603	Black with minimum 2% carbon black with UV Stabilizer
Modulus of Elasticity (long term)	psi	ASTM D638	30,000

The pipe Manufacturer's quality control system shall be certified by an appropriate independent body to meet the requirements of the ISO 9001 Quality Management Program.

All stub ends/flange adapters, shall be of at least the same wall thickness and pressure rating and the same resin type and Manufacturer as the pipe to be joined, unless otherwise approved by the Engineer. Backing flanges for HDPE pipe shall be the convoluted type of ductile iron material (ASTM A536 grade range from 60/40/18 to 65/45/12, drilled to ANSI bolt circles, and have a pressure rating of 150 psi) unless otherwise approved by the Engineer.

Fabricated fittings intended for use in non-pressure or low pressure services may be manufactured from the same diameter and DR rating as used in the piping system (note: the pressure rating of these fittings will be approximately only 75 percent of the straight pipe of the same DR). Fittings not intended for use in pressure service shall be clearly marked or tagged.

Fabricated fittings intended for use in pressure service shall meet or exceed the design pressure of the piping system and be fabricated from pipe of at least the next numerically smaller dimension ratio unless otherwise shown on the Drawings. Ends shall be machined to match the joining pipe DR.

Where HDPE and corrugated polyethylene (CPEP) pipes are connected, manufactured fittings shall be used unless otherwise shown on the Drawings or approved by the Engineer. All other joints shall be fused or flange-jointed as shown on the Drawings. Flange assembly bolts, when specified as machine bolts, shall conform to the requirements of ASTM A307, Grade A standard, square-head machine bolts conforming to ASME/ANSI B 18.2.1 with heavy hot-pressed

hexagonal nuts. Bolt length shall be such that, after joints are made up, bolts shall protrude through the nut by at least one-half (½)-inch.

Stud bolts, when specified, shall be ASTM A193 Grade B7 with two-hex head nuts, ASTM A194 Grade 2H each for above ground service and ASTM A193 Grade B8 with Stainless Steel nuts in accordance with ASTM A194. Alternately, commercial Grade 18-8 Stainless Steel bolts and nuts may be used for buried service.

Gaskets shall be used at all flanged connections and shall be full face, black nitrile rubber gaskets (Garlock style 9122 or equal), and one-eighth (1/8)-inch thick.

4. CERTIFICATES

The General Contractor shall submit one (1) original and two (2) copies of certificates provided by the Manufacturer indicating that all materials, pipe and fittings comply with the applicable portions of this Technical Specification.

Before incorporating any piping materials into the project, a certification of materials shall be submitted by the Manufacturer or Supplier. The certificate shall include:

- Name of Manufacturer
- Name of Fabricator
- Chemical composition and coating, if any
- Product description and life expectancy, if applicable
- > Statement of Specification compliance including the name of this project
- > Signature of authorized official attesting to the information presented
- Manufacturer's recommendations for field installation and repairs

All materials shall be subject to the approval of the Engineer.

5. SHOP AND FIELD LEAK TESTING OF PIPING SYSTEMS

Any shop fabricated pipe assemblies shall be pressure checked, at the Engineers discretion, to a fully hydrostatic condition equal to the pressure rating of the pipe prior to shipment to the jobsite. The duration of the test shall be at least twenty-four (24) hours.

All pipe assemblies shall be hydrostatically pressure tested after connection to any auxiliary piping after burial or when installation is completed as described in Section 7.4.

6. PIPE DELIVERY, HANDLING, AND STORAGE

Pipe, fittings, valves and other appurtenances shall be loaded and unloaded by lifting with hoists in such a manner as to avoid damage or hazard. The interior of all pipe and fittings shall be kept free from dirt and foreign material at all times.

7. PIPE INSTALLATION

7.1. General

The pipe shall be installed to the lines and grades and generally in the manner shown on the Drawings. Where specific lines and grades are not indicated on the Drawings, the lines and grades will be determined in the field, by the Engineer, to suit the existing ground conditions. The General Contractor shall use equipment and methods acceptable to the Engineer and in accordance with the pipe Manufacturer's recommendations for handling and placement of the pipe and fittings.

The General Contractor shall provide and install all piping required to complete the piping installation in accordance with industry standard piping practices, regardless of whether such piping is specifically detailed on the Drawings. The general layout as shown on the Drawings shall be maintained. Where interference is encountered during installation or relocation of pipelines is deemed necessary, the Engineer shall be consulted before any changes are made.

All pipelines shall be erected to preserve accurate alignment. Care shall be taken, in the installation of pipeline runs where drainage is required, to ensure that the pipeline has a continuous slope to the point of drainage.

Prior to installation, each segment of pipe and all fittings shall be inspected for defects and/or damage. All pipe, fittings, and other appurtenances shall be carefully lowered into position, piece by piece. Under no circumstances shall such materials be dropped into position. Extreme care shall be taken to prevent foreign material from entering the pipe while it is being installed. Temporary end caps or other approved means shall cover open ends of the pipe when installation is not in progress.

Wherever obstructions not shown on the plans are encountered during the construction and where such obstructions interfere with the Work to the extent that an alteration in the lines or grades of the pipe is required, the Engineer shall approve any deviation or arrange for removal, relocation, or reconstruction of the obstructions.

7.2. Joining

7.2.1. Heat Fusion

Pipe and fittings shall be joined by one of the following types of thermal fusion in accordance with the Manufacturer's recommended procedures: butt fusion, saddle fusion, or socket fusion.

Upon request, the Manufacturer shall provide fusion training by authorized personnel or an authorized representative. The General Contractor shall be responsible for ensuring that personnel have received proper training in accordance with the Manufacturer's recommended procedures. Records of training shall be maintained by the General Contractor and evidence of training shall not exceed 12 months from date of construction.

Butt fusions performed between pipe ends or pipe ends and fittings shall be within the following allowable wall mismatches:

- > Two (2) DR difference for pipe and fitting diameters six (6)-inch IPS and smaller
- One (1) DR difference for above six (6) inch through 18-inch
- No difference for diameters above 18-inch.

The difference in DR is determined from the following DR values: 7, 9, 11, 13.5, 17, 21, 26, and 32.5.

7.2.2. Other Methods of Joining

Polyethylene pipe and fittings where heat fusion is not possible may be joined together or to other materials through the use of electrofusion fittings; flange adapters with backup rings; mechanical couplings designed for connecting polyethylene pipe and fittings to itself or to another material; or Mechanical Joint (MJ) adapters. All alternative joining methods and devices shall be approved by the Engineer. The Manufacturer of the joining device shall be consulted for proper installation procedures.

7.3. Marking

Pipe and tubing shall be permanently marked in accordance with all applicable standards in accordance with this Technical Specification. Marking, as follows, shall be continuously (or spaced at intervals not exceeding 5 feet) heat-stamped indent print and shall remain legible under normal handling and installation practices:

- 1. Name and/or trademark of the pipe Manufacturer
- 2. Nominal pipe size
- 3. Dimension Ratio
- 4. The letters PE followed by the polyethylene grade per ASTM D3350, followed by the Hydrostatic Design basis in 100's of psi, e.g., PE 4710

- 5. Manufacturing Standard Reference, e.g., ASTM F714
- 6. A production code from which the date and place of manufacture can be determined

Fittings shall be marked on the body or hub. Marking shall be in accordance with the applicable standard depending on the fitting type. Marking on the fitting shall include the following whenever possible:

- 1. Nominal size and Outside Diameter (OD) base (such as 12-inch IPS)
- 2. Standard material code designation (such as PE 4710)
- 3. Dimension ratio
- 4. Pressure class if for pressure service

Mechanical fittings shall be marked with size, body material designation code, pressure rating, and the Manufacturer's name or trademark.

7.4. Testing

The General Contractor shall be responsible for field setup and performance of the fusion equipment and the fusion procedure used by the operator. Upon request, the General Contractor shall verify the fusion quality by marking and testing in accordance with the Manufacturer's recommended qualification procedure. The General Contractor shall be responsible for the necessary adjustments to the setup, equipment, operation, and fusion procedure. Fusions that fail the qualification procedure shall be remade.

Hydrostatic testing shall be conducted if required by the Owner to a minimum of 110 percent of the maximum operating pressure or design pressure, whichever is greater. The field leak test shall be at least twenty-four (24) hours in duration.

APPENDIX F.7 CPe Pipe

CLIENT Lithium Nevada Corporation

PROJECT NO 475.0385.000

PROJECT: THACKER PASS PROJECT

	: TECHNICAL			SPECIFICATION NO. 6-0385-000-SP-CPEP-0		
			APPROVALS			
REV	DATE	PAGES	AUTHOR	REVIEW	CLIENT	REMARKS
0	04/02/2020	5	MH	KCW	BR	Issued for Construction

TABLE OF CONTENTS

1.	GENERAL	1
2.	CODES AND STANDARDS	1
3.	CORRUGATED POLYETHYLENE PIPE (CPEP) WITH SMOOTH INTERIOR	1
	3.1. Material Properties	
	3.2. Submittals	
	3.3. Pipe Delivery, Handling, and Storage	3
	3.4. Pipe Installation	
LIST	T OF TABLES	
Tab	le 3-1: Smooth Interior, Corrugated Exterior Perforated Pipe	2

1. GENERAL

This Specification defines the requirements for Corrugated Polyethylene Pipe (CPeP) and manifold materials, installation, and quality control associated with the Thacker Pass Project owned by Lithium Nevada Corporation.

Any alternatives or exceptions to this Specification shall be submitted in writing to the Owner or its designated representative(s)/agent(s) and shall be approved by the Engineer.

CPeP and various caps and fittings shall be used for underdrain piping as shown on the Drawings. The underdrain piping shall be placed on top of the geomembrane liner at approximately two-hundred (200) foot centers. The general layout of the underdrain piping shall be according to the Drawings. The pipe for the project is corrugated perforated dual walled smooth interior Advanced Drainage System (ADS) N-12 ST IB "Type SP" or Engineer approved equivalent. Couplings (non-watertight) shall be corrugated to match the pipe corrugations and shall provide sufficient longitudinal strength to preserve pipe alignment and prevent separation at the joints. Couplings, unless watertight connections are specified, shall be split collar or external snap couplers and shall engage at least two full corrugations on each pipe section. Where pipe is joined to other materials or fittings, or joined by other methods, the manufacturer's recommendations shall be strictly enforced.

The Definition of Terms is provided in Specification No. 0-0385-000-SP-GEN-0.

2. CODES AND STANDARDS

All pipe work shall be of the best quality available complying with the current standards for the following:

- > ANSI: American National Standard Institute
- ASTM: American Society of Testing and Materials
- AWWA: American Water Works Association
- AASHTO: American Association of State Highway Officials
- > SPI: Society of the Plastics Industry, Inc.
- > PPI: Plastics Pipe Institute

3. CORRUGATED POLYETHYLENE PIPE (CPEP) WITH SMOOTH INTERIOR

3.1. Material Properties

Pipe and fittings shall be made of virgin polyethylene compounds that conform with the applicable current edition of the AASHTO Material Specifications for cell classification as defined and described in ASTM D3350. Resins that have higher cell classifications in one or more

properties, with the exception of density, are acceptable provided the product requirements are met.

For slow crack growth resistance, acceptance of resins shall be determined by using the notched constant ligament stress (NCLS) test in accordance with ASTM F2136 except that the applied stress for the NCLS test shall be six hundred (600) psi (note: the notched depth of twenty (20) percent of the nominal thickness of the specimen is critical to this procedure). The average failure time of the five (5) test specimens must exceed twenty-four (24) hours with no single test specimen failure time of less than seventeen (17) hours.

Pipe and fittings shall be manufactured and comply with the current edition of AASHTO Standard Specifications M252 and M294. All sizes shall conform to the AASHTO classification "Type S" for smooth wall interior solid pipe and "Type SP" for smooth wall interior perforated pipe.

The minimum parallel plate stiffness values at five (5)-percent deflection when tested in accordance with ASTM D2412 shall be as presented in Table 3-1.

Pipe Stiffness Inside Diameter (minimum) (nominal) (kPa) (pii) 4, 6, 8, 10 and 12 inch 50 340 (100, 150, 200, 250 and 300 mm) 15 inch (375 mm) 42 290 275 18 inch (450 mm) 40 24 inch (600 mm) 34 235 30 inch (750 mm) 28 195 36 inch (900 mm) 22 150 42 inch (1050 mm) 20 140 48 inch (1200 mm) 18 125 60 inch (1500 mm) 14 97 Note: pii = pounds per inch per inch of deflection.

Table 3-1: Smooth Interior, Corrugated Exterior Perforated Pipe

Where perforations are specified, they shall conform to the following requirements.

- > AASHTO M252 "Class II" for four (4)-inch to ten (10)-inch diameter CPeP
- AASHTO M294 "Class II" for twelve (12)-inch to thirty-six (36)-inch diameter CPeP

Couplers and fittings shall not reduce or impair the overall integrity or function of the piping. Fittings may be either molded or fabricated. Approved fittings for corrugated pipe include in-line joint fittings, such as couplers and reducers, and branch or complimentary assembly fittings such

as tees, wyes, crosses and end caps. These fittings may be installed using dual walled split couplers or external snap couplers. Couplers shall be rated soil-tight. Couplers shall provide sufficient longitudinal strength to preserve pipe alignment and prevent separation at the joints. Only fittings supplied or recommended by the Manufacturer shall be used.

CPeP to HDPE pipe connections, if required, shall be as shown on the Drawings. If specified, shall be made using CPeP-to-HDPE adapters supplied by the CPeP manufacturer. The HDPE pipe end of the adapter shall match the DR (Dimensional Ratio) of the pipe being connected.

Pipe sizes and types shall be as specified on the Drawings, or as required by the Engineer.

3.2. Submittals

The CPeP material supplier shall submit to the Engineer, a Manufacturer's certification that all pipe and fittings they intend to supply comply with the applicable portions of the Technical Specifications.

3.3. Pipe Delivery, Handling, and Storage

Pipe, fittings, valves and other appurtenances shall be loaded and unloaded by lifting with hoists in such a manner as to avoid damage or hazard. Under no circumstances shall pipe or pipe fittings be dropped to the ground or into trenches. Pipe handled on skidways shall not be skidded or rolled against pipe already on the ground. The interior of all pipe and pipe fittings shall be kept free from dirt and foreign material at all times.

This shall include the furnishing of all materials and labor required for the replacement of installed material damaged prior to the final acceptance of the Work.

3.4. Pipe Installation

Installation of the CPeP shall be in accordance with either AASHTO Section 30 or ASTM Recommended Practice D2321, as described elsewhere in these Technical Specifications and as recommended by the Manufacturer. CPeP shall be installed to the sizes, lines, and grades shown on the Drawings. Pipes will be joined use bell and spigot pipes. For pipe connections to fittings or pipe connections without a bell and spigot a dual walled split coupler or external snap coupler shall be used. For split coupler connections the open seam of the coupler shall be turned to the side of the pipe. Pipes shall be closely monitored during backfilling activities to ensure no damage is done to the pipe or jointing system and they do not become separated.

Where specific lines and grades are not indicated on the Drawings, the lines and grades will be determined by the Engineer in the field to suit the existing ground conditions. The General Contractor shall use equipment and methods acceptable to the Engineer and in accordance with the pipe Manufacturer's recommendations for handling and placement of the pipe and fittings.

The General Contractor shall provide and install all piping required to complete the piping installation in accordance with standard practices, regardless of whether such piping is specifically detailed on the Drawings. The general layout as shown on the Drawings shall be maintained. Where interference is encountered during installation or relocation of pipelines is deemed necessary, the Engineer shall be consulted before any changes are made.

All pipelines shall be erected to preserve accurate alignment. Care shall be taken in the installation of pipeline runs where drainage is required to ensure that the pipeline has a continuous slope to the point of drainage.

Prior to installation, each segment of pipe and all fittings shall be inspected for defects or damage. All pipe, fittings and other appurtenances shall be carefully lowered into position, piece by piece. Under no circumstances shall such materials be dropped into position. Extreme care shall be taken to prevent foreign material from entering the pipe while it is being installed. Temporary end caps or other approved means shall cover open ends of the pipe when installation is not in progress.

All up gradient ends of underdrain piping shall be securely capped.

Pipe bends to form curves either in the horizontal or vertical plane shall not exceed that recommended by the Manufacturer or approved by the Engineer. The cutting of pipe for inserting fittings or closure pieces shall be done in a neat manner and with good workmanship without damage to the pipe and leaving a smooth end at right angles to the axis of the pipe.

Wherever obstructions not shown on the Drawings are encountered during construction, and where such obstructions interfere with the work to an extent that an alteration in the lines or grades of the pipe is required, the Engineer shall approve any deviation or arrange for removal, relocation, or reconstruction of the obstructions.

APPENDIX F.8 Stainless Steel Pipe

CLIENT Lithium Nevada Corporation

PROJECT NO 475.0385.000

PROJECT: THACKER PASS PROJECT

TITLE	: TECHNICA	SPECIFICATION NO.				
PIPIN	G MATERIAI	7-0385-000-SP-SSP-0				
				APPROVALS		
RF\/	DATE	PAGES	ALITHOR	REVIEW	CLIENT	REMARKS

			APPROVALS			
REV	DATE	PAGES	AUTHOR	REVIEW	CLIENT	REMARKS
0	04/02/2020	7	MH	KCW	BR	Issued for Construction

TABLE OF CONTENTS

1.	GENERAL	1
2.	CODES AND STANDARDS	1
3.	STAINLESS STEEL MATERIALS	1
	3.1. Pipe	1
	3.2. Support Structure	
	3.3. Joints	2
	Joints shall conform to the following requirements:	2
4.	SUBMITTALS	2
5.	PIPE DELIVERY, HANDLING, AND STORAGE	2
	5.1. General	
	5.2. Storage, Protection, and Handling	
	5.3. Verification of Conditions	
	5.4. Temporary Works	4
6.	INSTALLATION	
7.	PIPE PLACEMENT	5
	7.1. Flange Bolting	5
	7.2. Inspection and Testing	
8.	GEOMEMBRANE LINER PROTECTION	6
	8.1. Installation Near Geomembrane	6
	8.2. Repair of Damage	

1. GENERAL

This Specification defines the requirements for stainless steel pipe materials, installation, and quality control associated with the Thacker Pass Project owned by Lithium Nevada Corporation.

Any alternatives or exceptions to this Specification shall be submitted in writing to the Construction Manager and shall be approved by the Engineer and the Owner.

The Definition of Terms is provided in Specification No. 0-0385-000-SP-GEN-0.

2. CODES AND STANDARDS

Piping systems shall generally conform to ANSI/ASME B36.19 (Stainless Steel Pipe) plus any other applicable standards as published by ANSI, ASTM, AWWA or any of the other standards organizations in the following list:

- ANSI: American National Standards Institute
- ASME: American Society of Mechanical Engineers
- ASTM: American Society for Testing and Materials
- > AWWA: American Water Works Association
- AWS: American Welding Society
- > ISO: International Organization for Standardization
- MSS: Manufacturers Standardization Society of the Valve and Fittings Industry

3. STAINLESS STEEL MATERIALS

3.1. Pipe

The top portion of the eighteen (18) inch diameter Reclaim pond sloping pumpback pipe sleeve shall consist of ASTM A269 Grade TP316LN welded or seamless austenitic stainless steel pipe. The majority of the pipe will be cut in half, except where the flange is welded to the pipe to be connected to the remaining high density polyethylene (HDPE) pumpback tube and will act as a saddle to rest the pump when preparing it for installation.

3.2. Support Structure

The stainless steel potion of the pumpback tube will be supported by two (2), C5x9 ASTM A276 & ASTM A484 316L stainless steel channels, each anchored to the concrete foundation with an one-half (½)-inch by nine (9) inch by fifty-two (52) inch ASTM A480 316L stainless steel anchor plate and two (2) three-quarter (¾) inch ASTM A193, Grade B8M hex head stainless steel anchor bolts. The stainless steel pipe shall comply with the requirements for test methods, dimensions, and markings found in the requirements of and ASME B36.19M as follows:

3.3. Joints

Joints shall conform to the following requirements:

- Flanges:
 - 2-inch to 30-inch: Class 150 slip-on or weld neck standard weight, raised face, stainless steel ASTM A182 F316L/ANSI B16.5 A flange, welded in accordance with AWS D1.6.
- Bolting (All sizes):
 - Anchor bolts: Stainless steel hex head anchor bolts (ASTM A193, Grade B8M)
 - Stud bolt: ASTM A193, Grade B8M with two (2) hex nuts (ASTM A194, Grade 8M)
- Gaskets:
 - All sizes: ANSI (rating as shown on drawings), full face 1/16-inch-thick Gylon style, Garlock 3504, or equivalent

Dimensions of all flanges, gaskets, and bolts shall conform to ANSI B16.5 latest edition.

4. SUBMITTALS

The Contractor shall submit to the Engineer test data for each lot and a Manufacturer's certification that all pipe and fittings under their supply comply with the applicable portions of the Specifications. The certificate shall include:

- Name of Manufacturer
- Name of Fabricator
- Product description and life expectancy, if applicable
- > Statement of Specification compliance including the name of this project
- > Signature of authorized official attesting to the information presented
- Manufacturer's recommendations for field installation and repairs

All materials shall be subject to the approval of the Engineer.

5. PIPE DELIVERY, HANDLING, AND STORAGE

5.1. General

Pipe, fittings, structural members, and other appurtenances shall be loaded and unloaded by lifting with hoists in such a manner as to avoid damage or hazard. The interior of all pipe and fittings shall be kept free from dirt and foreign material at all times.

The Contractor shall execute the work in accordance with this Specification, with its references and accompanying documentation, and with industry-accepted practice for the class of work.

The Contractor shall provide all equipment, tools, qualified labor, and supervision necessary to execute the work and shall remove all equipment and excess material upon completion.

Piping shall be installed in prefabricated sections, or by site fabrication/assembly in accordance with the requirements of the Drawings and Specifications.

All consumables such as, but not limited to, welding rod, temporary gaskets, welding and cutting gases, lubricants, etc., shall be supplied by the Contractor.

5.2. Storage, Protection, and Handling

All materials shall be stored in a secured area.

All materials shall be stored and handled with precaution from damage, contamination, misplacement, or disappearance.

All new valves, hoses, gaskets, stud bolts, and other fittings and fasteners shall be warehousestored or containerized to prevent damage, deterioration, or misplacement.

Welding electrodes shall be stored at a temperature and by a method to control moisture, or in the case of low hydrogen-type coated electrodes, eliminate moisture contamination. Storage methods shall be in accordance with the Manufacturer's recommendations. Welding and pipeline installation will be completed in proximity to the completed geomembrane installation. The Contractor shall protect the geomembrane from damage from the welding and installation process.

All new piping, valves, fittings, and accessories shall be stored on timber blocking, pallets, or other suitable means; kept above the level of any standing water; and kept free from dirt, grease, paint sprays, and any other contaminants.

All necessary precautions shall be taken to ensure the exclusion of foreign matter and debris from piping, fitting, and structural members.

When handling or lifting piping, components, or piping spools, all necessary precautions shall be taken to prevent damage to the material, including sling damage. Chains shall not be employed for lifts.

5.3. Verification of Conditions

Assemblies, subassemblies, and components shall be checked for conformance to approved detail and arrangement drawings. The accuracy of the layout shall be checked with respect to orientation, elevation, and dimensioning of all piping systems.

Assemblies, subassemblies, and components shall be inspected for foreign matter and debris and cleaned as required prior to fabrication and installation. Bolting shall be checked for damage, have adequate lubrication, and have all necessary nuts and washers.

5.4. Temporary Works

The Contractor shall be responsible for the stability of partially installed pipework and shall ensure that temporary works do not cause adverse stress conditions in fabricated pipe.

6. INSTALLATION

All Work shall be done by qualified craftsman in a neat and workmanlike manner conforming to applicable codes and accepted standards for good workmanship.

All pipe welders and welding procedures for piping shall be qualified as described in Chapter V of the latest edition of the Chemical Plant and Refinery Piping Code ASME B31.3; ASME Boiler and Pressure Vessel Code, Section IX; and ASME B36.19 Stainless Steel Pipe.

All welds shall be full penetration.

All pipe materials shall be inspected prior to installation to ensure cleanliness.

Do not bend or pull pipe to a radius by any procedure that will cause wrinkling, thinning, or flattening of the pipe cross section.

During installation, care shall be taken to ensure that excessive loads and moments are not transmitted to equipment flanges due to poor alignment or unintentional "cold pull."

All pipelines shall be installed to preserve accurate alignment. Care shall be taken, in the installation of pipeline runs where drainage is required, that the pipeline will slope toward the point of drainage.

Before final assembly, the faces for each pair of flanges and the corresponding gasket shall be examined for cleanliness, damage, and defects. Flanged connections shall be assembled such that gasket contact pressure is uniform throughout the tightening operation. Where necessary, construction gaskets shall be employed before butt-welding sections of pipe to ensure that there is no misalignment. Upon completion of welding, the construction gasket shall be removed and replaced with the specified service gasket.

Flanges shall be oriented on the pipe spools so that bolt holes straddle and are equidistant from horizontal and vertical centerlines unless otherwise shown on the Drawings.

Flanged joints that have been made up and broken shall not be remade with the same gaskets. New gaskets shall be installed in all such instances.

Tack welds may be used to hold pipe edges to be welded in line, but all tack welds shall be removed by grinding before completing the joint.

Bolt threads shall be adequately greased with approved lubricant prior to assembly.

7. PIPE PLACEMENT

The pipe shall be installed to the lines and grades shown on the Drawings. Pipe fittings shall be installed at the required locations. Prior to installation, each section of pipe and each fitting shall be inspected for defects and/or damage.

The Contractor shall use equipment and methods approved by the Engineer for safe, convenient and satisfactory execution of the Work. All pipe, fittings, structural members, and other appurtenances shall be carefully lowered into place. Under no circumstances shall such materials be dropped into place. Extreme care shall be taken to prevent damage to the geomembrane liner system and to prevent foreign material from entering the pipe while it is being installed. During periods when pipe laying is not in progress, the open ends of the pipe shall be closed by a watertight plug or other means approved by the Engineer.

The cutting of pipe for inserting fittings or closure pieces shall be done in a neat and workmanship-like manner without damage to the pipe or coating. Cutting of pipe shall leave a smooth end at right angles to the axis of the pipe.

Whenever it is necessary to deflect pipe from a straight line, either in the vertical or horizontal plane, to avoid obstructions or where long radius curves are permitted, the amount of deflection allowed shall not exceed that recommended by the Manufacturer, and as required for satisfactory joining and shall be approved by the Engineer.

Wherever significant site variations not shown on the plans are encountered during the construction, and where such obstructions interfere with the Work to an extent that an alteration in the lines or grades of the pipe is required, the Engineer shall have the authority to order such deviation or to arrange for removal, relocation or reconstruction of the obstructions. If the deviation results in a change in the amount of Work done by the Contractor, an increase in the Work shall be compensated for on the basis of payment as detailed in the Contract, or on a change-order basis. A reduction of Work shall result in a similar credit to the Owner.

7.1. Flange Bolting

Coat all flange bolts with a suitable anti-seize lubricant grease prior to final joint assembly. Remove excess lubricant and leave the joint clean.

Leave not less than one (1) or more than three (3) full threads exposed beyond the nut after tightening flange bolts.

7.2. Inspection and Testing

The Engineer shall have access to the Work at all times and may inspect the Work at any stage to ensure that both materials and workmanship agree with the Specifications. Inspections and tests will be performed on the welds at the discretion of the Owner designated CQA personnel.

After installation, the Contractor shall test all piping as further described and shall correct any deficiencies indicated by such tests. The Engineer and the Owner shall be notified 24 hours in advance of all tests and shall witness all testing. Systems may be tested simultaneously if of the same test conditions. Tests may be conducted through a previously tested system, if that system has been tested at higher or equal conditions of pressure and temperature.

Due to the open nature of the pumpback tube saddle and supporting structure, hydrostatic testing will not be required.

8. GEOMEMBRANE LINER PROTECTION

8.1. Installation Near Geomembrane

When possible, welding shall be performed away from the geomembrane and assembled pieces bolted into place. If welding is necessary near the geomembrane, care shall be taken to protect the geomembrane from damage by covering the area during installation.

8.2. Repair of Damage

The General Contractor shall be responsible for the repair of any damage to the geomembrane liner that occurs during installation of the stainless steel portion of the pumpback tube.

APPENDIX F.9 Corrugated Metal Pipe

CLIENT Lithium Nevada Corporation

PROJECT NO 475.0385.000

PROJECT: THACKER PASS PROJECT

TITLE PIPE	SPECIFICATION NO. 8-0385-000-SP-CMP-0					
			APPROVALS			
REV	DATE	PAGES	AUTHOR	REVIEW	CLIENT	REMARKS
			,		U	
0	04/02/2020	3	MH	KCW	BR	Issued for Construction
					BR	

TABLE OF CONTENTS

1.	GENERAL	. 1
2.	CODES AND STANDARDS	. 1
	SUBMITTALS	
4.	MATERIAL PROPERTIES	. 1
5.	HANDLING & ASSEMBLY	. 1
6.	INSTALLATION	. 1

1. GENERAL

This Specification defines the requirements for Corrugated Metal Pipe (CMP) materials, installation, and quality control associated with the Thacker Pass Project owned by Lithium Nevada Corporation.

Any alternatives or exceptions to this Specification shall be submitted in writing to the Construction Manager and shall be approved by the Engineer and the Owner.

The Definition of Terms is provided in Specification No. 0-0385-000-SP-GEN-0.

Earthwork requirements are provided in Specification No. 1-0385-000-SP-EW-0.

2. CODES AND STANDARDS

All pipe Work shall be of the best quality available complying with the current standards for the following:

- AASHTO M36: "Standard Specification for Corrugated Steel Pipe, Metallic-Coated, for Sewers and Drains", American Association of State Highway and Transportation Officials, Washington DC., <u>www.transportation.org</u>.
- AASHTO M218: "Standard Specification for Steel Sheet, Zinc-Coated (Galvanized), for Corrugated Steel Pipe", American Association of State Highway and Transportation Officials, Washington DC., www.transportation.org.

3. SUBMITTALS

The General Contractor shall submit to the Owner and the Engineer a Manufacturer's certification that all CMP and fittings they intend to supply comply with the applicable portions of the Specifications.

4. MATERIAL PROPERTIES

The galvanized steel shall conform to the applicable requirements of AASHTO M218. Galvanizing shall be in accordance with AASHTO M36. CMP shall consist of the diameter of pipe shown on the Drawings with three (3) inch by one (1) inch corrugations. Pipe gauge shall be Number twelve (12).

5. HANDLING & ASSEMBLY

Handling and assembly shall be in accordance with the Manufacturer's recommendations.

6. INSTALLATION

CMP shall be installed to the sizes, lines, and grades shown on the Drawings. Pipe sections shall be joined with Manufacturer recommended couplers with the open seam of the coupler turned

to the side of the pipe. Pipes shall be closely monitored during backfilling activities to ensure no damage is done to the pipe and the pipe joints are not damaged or separated. All CMP damaged during construction shall be replaced at the General Contractor's expense.

The pipe shall be installed to the lines and grades and generally in the manner shown on the Drawings. Where specific lines and grades are not indicated on the Drawings, the lines and grades will be determined by the Engineer in the field to suit the existing ground conditions. The General Contractor shall use equipment and methods acceptable to the Engineer and in accordance with the pipe Manufacturer's recommendations for handling and placement of the pipe and fittings.

The General Contractor shall provide and install all piping required to complete the piping installation in accordance with good piping practices, regardless of whether such piping is specifically detailed on the Drawings. The general layout as shown on the Drawings shall be maintained.

All pipelines shall be erected to preserve accurate alignment. Care shall be taken in the installation of pipeline runs where drainage is required to ensure that the pipeline has a continuous slope to the point of drainage.

Prior to installation, each segment of pipe and all fittings shall be inspected for defects and/or damage. All pipe, fittings, and other appurtenances shall be carefully lowered into position, piece by piece. Under no circumstances shall such materials be dropped into position.

Pipe bends to form curves either in the horizontal or vertical plane shall not exceed that recommended by the Manufacturer or approved by the Engineer. The cutting of pipe for inserting fittings or closure pieces shall be done in a neat manner and with good workmanship according to manufacturer recommendations without damage to the pipe and leaving a smooth end at right angles to the axis of the pipe.

Wherever obstructions not shown on the plans are encountered during construction, and where such obstructions interfere with the Work to an extent that an alteration in the lines or grades of the pipe is required, the Engineer shall approve any deviation or arrange for removal or relocation of the obstructions.

APPENDIX F.10 Concrete

CLIENT Lithium Nevada Corporation

PROJECT NO 475.0385.000

PROJECT: THACKER PASS PROJECT

TITLE: TECHNICAL SPECIFICATIONS FOR CONCRETE MATERIALS AND CONSTRUCTION					SPECIFICATION NO. 9-0385-000-SP-CO-0	
			APPROVALS			
REV	DATE	PAGES	AUTHOR REVIEW CLIENT		CLIENT	REMARKS
0	04/02/2020	17	MH	KCW BR		Issued for Construction

TABLE OF CONTENTS

1.	GENERAL	
	1.1. Scope	1
	1.2. Reviews	
	1.3. Definition of Terms	2
	1.4. Reference Standards and Publications	2
	1.5. Submittals	3
	1.6. Quality Assurance	4
2.	GENERAL	5
	2.1. Materials	5
	2.1.1. Cements and Supplementary Cementing	5
	Portland cement shall be Type II unless otherwise shown on the drawings	
	2.1.2. Aggregates	
	2.2. Admixtures	
	2.3. Concrete Properties	6
	2.4. Construction Quality Assurance/Quality Control	
3.	PRODUCTION AND DELIVERY	
4.	FORMWORK, REINFORCEMENT, EMBEDDED METAL AND PRESTRESSING	
	4.1. Reinforcement	
	4.2. Hardware and Miscellaneous Materials	7
	4.3. Storage of Reinforcement	8
	4.4. Formwork	
	4.4.1. Formwork Removal	
	4.5. Fabrication and Placement of Reinforcement	. 10
	4.6. Fabrication and Placement of Hardware and Other Embedded Items	. 11
	4.7. Post-Tensioning	. 11
5.	PLACING, FINISHING AND CURING CONCRETE	
	5.1. Storage of Materials Used For Placing, Finishing, and Curing	. 11
	5.2. Placing of Concrete	
	5.2.1. Bonding Fresh Concrete to Rock or Hardened Concrete	
	5.3. Joints	
	5.4. Joint Filler	

5.5. Joint Sealant	
5.6. Curing and Protection	
5.6.1. Curing of Slab Surfaces	
5.6.2. Hot Weather Protection	
5.6.3. Cold Weather Protection	
5.7. Finishing and Treatment of Slab Surfaces	
5.8. Finishing of Formed Surfaces	14
6. CONSTRUCTION LOADS	
LIST OF TABLES	
Table 1. Structural Class of Concrete	5
Table 2. Grading Limits for Fine Aggregate (FA)	6
Table 3. Stripping Time	
Table 4. Minimum Cure Times	

1. GENERAL

1.1. Scope

This specification defines the requirements for concrete materials and methods of construction for cast-in-place concrete in the field, installation and quality control associate with the Thacker Pass Project owned by Lithium Nevada Corporation.

Any alternatives or exceptions to this specification shall be submitted in writing to Lithium Nevada Corporation or its designated representative with the bid.

The basis of this specification is ACI 301-16, "Specification for Structural Concrete." It is the intent of this specification to conform to the requirements of this document as a minimum standard.

The Definition of Terms is provided in Specification No. 0-0385-000-SP-GEN-0.

1.2. Reviews

The Contractor shall, at the start and during the course of Work where appropriate, meet with the Engineer for the review of the following:

- Proposed equipment and methods for storing constitutive components, mixing, and conveying concrete. The Contractor shall provide documentation that the concrete supplier meets industry certification.
- Contractor's Quality Control Program. The concrete supplier shall implement a Quality Control Plan to ensure that the Owner's and Contractor's performance requirements will be met.
- Inspection and testing of cement, aggregate, water, admixtures, reinforcement and storage of these materials.
- Proposed form material, form ties, and form release materials.
- Concrete mix designs with regard to strength, performance, shrinkage, porosity, durability and suitability for Project requirements. The concrete supplier shall submit documentation to the satisfaction of the Owner demonstrating that the proposed mix design(s) will achieve the required strength, durability, and performance requirements.
- > Periodical inspection of the mixing plant.
- > Prior to the erection of formwork, or the placement of reinforcement, or concrete, the:
 - Proposed methods of placing concrete.
 - Proposed methods and materials for supporting and securing reinforcement items to be cast-in and formwork including details of the reinforcement chairs and spacers.
 - Proposed details and positions of construction and crack control joints.
- > Immediately prior to concrete placement:

The inspection by the Engineer of formwork, reinforcement, cast-in items, and preparation of existing concrete. Inspection by the Engineer of formwork shall be for conformance with the project documents, but not for structural strength and stability, which is the sole responsibility of the Contractor.

> Prior to concrete placement:

- Sampling and testing of concrete and inspection of concrete placement procedures.
- Preparation of existing concrete for bonding to new concrete.
- Proposed curing methods, stripping times and hot and cold weather protection and concreting procedures.

1.3. Definition of Terms

"The Standard" is ACI 301-16 "Specification for Structural Concrete."

1.4. Reference Standards and Publications

Only the major reference publications are listed below. The complete list shall include all the referenced documents included in the referenced publications below. The Contractor shall have a copy of the publications highlighted in bold onsite and provide access to the Engineer to the publications.

- IBC 2018: International Building Code.
- ACI 301-16: Specification for Structural Concrete. Methods of Test and Standard Practices for Concrete.
- > ACI 318-14: Building Code Requirements for Structural Concrete.
- > ACI SP-4: Formwork for Concrete.
- ASTM A615/A615M-18e1: "Standard Specification For Deformed and Carbon Steel Bars for Concrete Reinforcement", ASTM International, West Conshohocken, PA, www.astm.org.
- ASTM C33/C33M-18: "Standard Specification for Concrete Aggregates", ASTM International, West Conshohocken, PA, www.astm.org.
- ASTM C150/C150M-19a: "Standard Specification for Portland Cement", ASTM International, West Conshohocken, PA, www.astm.org.
- ASTM C260/C260M-10a(2016): "Standard Specification for Air-Entraining Admixtures for Concrete", ASTM International, West Conshohocken, PA, www.astm.org.
- > ASTM C494/C494M-17: "Standard Specification for Chemical Admixtures for Concrete", ASTM International, West Conshohocken, PA, www.astm.org.
- ASTM C1017/C1017M-13e1: "Standard Specification for Chemical Admixtures for Use in Producing Flowing Concrete", ASTM International, West Conshohocken, PA, <u>www.astm.org.</u>

- ASTM D1752-18: "Standard Specification for Preformed Sponge Rubber, Cork and Recycled PVC Expansion Joint Fillers for Concrete Paving and Structural Construction", ASTM International, West Conshohocken, PA, www.astm.org
- > ANSI/AWS D1-4: Structural Welding Code Reinforcing Steel.
- > ACI SP66 (2004): ACI Detailing Manual.

1.5. Submittals

All proposals and submissions by the Contractor and all responses by the Engineer shall be in writing. Acceptance of the Contractor's proposals and submissions by the Engineer shall not relieve the Contractor of his responsibility for the work as defined by the contract.

Contractor submissions to the Engineer shall include qualifying documentation for all materials and products including:

- Proposed concrete mix proportions including supporting trial mix results and certification that the mix proportions will produce concrete of the specified quality and yield; anticipated slumps for each proposed mix before and after addition of superplasticizer.
- > Documentation that the plant, equipment, and all materials to be used in the concrete comply with the requirements of ACI 301.
- Mill certificates for reinforcing steel.
- Reinforcing bar detail lists and placing drawings shall be submitted to the Engineer for his records.
- Mill certificates for cement and supplementary cementing materials.
- Description of the proposed concrete batching plant and conveying systems, including capacity, admixture provision batching system, cold weather capabilities, hot weather capabilities, quality control procedures.
- Note that submissions to the Engineer and reviews of submissions by the Engineer shall be completed prior to placing any concrete or doing any concrete work. The Contractor shall schedule the submissions to allow for at least two weeks for review by the Engineer.

The Contractor may petition the Engineer for the acceptance of:

Supplementary Cementing Materials (fly ash, silica fume and granulated blast furnace slag). The petition shall include:

- Identification of the source, information on its service record in concrete subjected to similar service, and test data showing conformance with Cementitious Materials Compendium including uniformity requirements.
- Proposed dosage and timing of addition for each class of concrete as applicable.

Water-Reducing Admixture; Water-Reducing High Range Admixture (Superplasticizer); Accelerating Admixtures. The petition shall identify the:

- Manufacturer
- Proposed dosage, and timing of addition for each class of concrete, as applicable
- Type of admixture (retarding, accelerating, normal set)

1.6. Quality Assurance

Records shall be kept for all submissions and for:

- Temperature of the plastic concrete and strength tests in accordance with Sections 4.2.2.8 and 4.2.3 of the "The Standard". (See Section 1.3 of this specification for definition of "The Standard.")
- > A certificate of accuracy of the scales at the batch plant
- Temperature at the time of concrete placement
- Delivery tickets: The Contractor shall ensure that the records indicate where the delivered concrete was used so that remedial action can be taken if it is subsequently determined that the concrete is unsuitable for use.
- > Temperature records, including methods used for the placement and curing of concrete when low temperature as specified in Section 4.2.2.8, or high temperature as specified in Section 5.3.2.1.C of "The Standard" are exceeded.

2. GENERAL

Table 1. Structural Class of Concrete

CLASS #	STRUCTURAL CLASS OF CONCRETE:	Max. Size Aggregate inch	Total Ent. Air + 1%	28 Day Compressive Strength psi	Admixtures Required	Max. Water: Cement	Min-Max. slump (inches)
1.	Slabs, Beams, Columns and Walls	3/4	6	4000	AEA	0.45	3-5
2.	Waterproof, Chest Walls, Aggressive Exposure and Hydraulic Structures	3/4	6	4000	AEA & WRA	0.4	3-5

Notes

- Concrete mix designs shall be based on trial mixes prepared by the Contractor and submitted to the Engineer for review. The trials shall use a minimum of three cement factors separated by 50 lbs/yd3 with air content approximating the maximum values in.
 - Reduce air to 3% for slabs to be steel troweled, except exterior slabs.
 - All cement shall be Type II
 - AEA = Air entraining agent. WRA = water reducing agent.
 - Water: Cement = Water -to- cementitious materials ratio.
 - Fine and coarse aggregate to be Normal -density aggregate UNO on drawings.
- 2. When concrete is to be placed by pump, properties shall be measured at discharge from the hose. The sand content of the pump mix, as a ratio by weight of total aggregate, shall not be increased more than 3% from the conventionally placed concrete.
- Water reducing high range admixtures (superplasticizers) may be used to obtain higher slumps for workability subject to the Engineer's acceptance.

2.1. Materials

2.1.1. Cements and Supplementary Cementing

Portland cement shall be Type II unless otherwise shown on the drawings.

2.1.2. Aggregates

Normal-Density Fine Aggregate:

The requirements in ASTM C33 shall be modified as per Table 2.

Table 2. Grading Limits for Fine Aggregate (FA)

Total Passing Sieve: Percentage by Mass	US Standard Sieve Size No.	
95-100	4	
80-100	8	
50-80	16	
25-60	30	
5-30	50	
0-10	100	

The fineness modulus of the sand shall be not less than 2.5 not more than 2.9.

2.2. Admixtures

Water-reducing admixtures and water-reducing high range admixtures (superplasticizers) shall meet the requirements of ASTM C494, Standard Specification for Chemical Admixtures for Concrete.

Calcium chloride shall not be used. Admixtures containing chlorides may be used providing the total chloride ion content in the concrete does not exceed 0.1% by weight of cement.

2.3. Concrete Properties

Concrete strengths and maximum aggregate size shall be as per Table 2 in clause 2.1.2 above.

Concrete shall be normal density concrete unless noted otherwise on the drawings.

2.4. Construction Quality Assurance/Quality Control

The evaluation of concrete quality shall be the responsibility of the Contractor and shall be carried out as outlined in Section 1.6 of "The Standard".

The Contractor shall provide a full time coordinator who shall be present at all times during concrete work and who shall be thoroughly trained and experienced in placing the types of concrete specified and who shall direct all the work performed under this specification. The coordinator shall have the authority to request that mixing trucks return to the batch plant if delivery times are exceeded or to interrupt work if any other quality issues are not being met.

The Owner may elect to undertake independent testing but this shall not relieve the Contractor's responsibility to perform testing as described below.

Test results shall be submitted to the Engineer for review within 5 working days of the testing.

A strength test shall comprise the testing of four test cylinders. A minimum of four test cylinders shall be taken for each day of placing, and there shall be at least one test for each 100 cubic yards of concrete and for each class of concrete.

One of the cylinders shall be tested at 7 days and two at 28 days and 1 at 56 days. The test results shall be the average of the two 28-day cylinders.

The concrete shall be considered to have met strength requirements if the average of every set of three consecutive strength tests for each class of concrete exceeds the specified strength and no individual strength test is more than 500 psi below the specified strength. If these strength requirements are not met, the Engineer will require adjustments to the mix proportions and additional testing as permitted by Section 1.6 of "The Standard".

Accelerated strength tests shall not be used as an alternative to the standard cylinder test.

3. PRODUCTION AND DELIVERY

When concrete is mixed in truck mixers, a complete mixing cycle of 70 - 100 revolutions at mixing speed shall be completed before the truck leaves the plant.

Requirements of Section 4.3.2.1 of "The Standard" shall control the Contractor's additions of water to concrete (except super-plasticized concrete) including:

The specified water-to-cement ratio shall not be exceeded.

No more than 90 minutes has elapsed from the time of batching to the start of discharge.

Addition of water is only at the start of discharge (i.e., not more than 10% of the concrete has been discharged).

A 30 revolution mixing cycle shall follow water additions.

Water may not be added more than once to a load.

The amount of water added and by whose authority shall be recorded on the delivery ticket.

4. FORMWORK, REINFORCEMENT, EMBEDDED METAL AND PRESTRESSING

4.1. Reinforcement

All reinforcement shall conform to ASTM A615/A615M-18e1.

Reinforcement shall be provided in accordance with the requirements of ACI 318-14.

4.2. Hardware and Miscellaneous Materials

Dissimilar metals shall be electrically separated when embedded in concrete.

Aluminum including aluminum conduits shall not be embedded in concrete.

4.3. Storage of Reinforcement

Reinforcement shall be protected from corrosion. Special precautions shall be taken for winter conditions to ensure that reinforcement can be identified.

4.4. Formwork

The Contractor who places the concrete (the Concrete Contractor) is responsible for the adequacy of all formwork and falsework including metal deck formwork, and satisfying all codes and regulations governing formwork and falsework. The Contractor shall provide calculations for all concrete formwork and shoring, sealed by a Professional Engineer if requested by the Engineer or Owner.

The design, fabrication, erection, and use of concrete formwork shall conform to the requirements of ACI SP-4.

Falsework for suspended concrete elements shall conform to ACI SP-4.

Unless otherwise shown on the drawings, forms shall be constructed to produce the final concrete Surface Class in the following locations:

Surface Class B -

Normal Exposed Concrete – All interior and exterior columns, walls, beams, and underside of slabs.

Form Material: Form ply.

Resulting Surface: Free from honeycombing, large bug-holes or voids greater than 1/2" across and/or depth, fins or misalignments greater than 1/8".

Construction: Maximum deflection 1/270 of span; patching of form panels permitted.

Patching: Refer to Section 5.3.7 of "The Standard".

Surface Class C -

All concrete not exposed to view such as buried foundations and non-exposed faces of retaining walls.

Form Material: Shiplap or form ply.

Resulting Surface: No specific requirements other than freedom from major voids or honeycomb; minimum dimensions and reinforcement cover to be maintained.

Patching: Not normally required except in areas where reinforcement is exposed. Refer to Section 5.3.7 of "The Standard".

For Surface Class B surfaces, exterior corners and edges exposed to view including horizontal edges of tank pads and curbs shall have 1" x 1" chamfers. Edges of slabs, curbs and pads shall be hand tooled.

All sharp corners for members composed of steel fiber-reinforced concrete shall have $1" \times 1"$ chamfers or be rounded to a radius of 5/8".

4.4.1. Formwork Removal

Unless otherwise shown on the drawings or advised by the Engineer, formwork must not be removed prior to the lapsed time after concrete placement (Minimum Stripping Time) according to the Table 3 below and as otherwise prescribed in the notes following the table.

Minimum stripping times are the lesser of Column A (Minimum Stripping Time) or Column B (Time to Achieve Minimum Percentage of Specified 28 Day Strength).

Table 3. Stripping Time

	A Minimum Stripping Time (days):	B Time to Achieve Specified Strength of (%):
Foundation, pile caps, piers, grade walls, pedestals, columns, equipment bases less than 4 ft high	2	30
Foundation, pile caps, piers, grade walls, pedestals, columns, equipment bases greater than 4 ft high	4	60
Walls for liquid containment vessels	5	70
Edges of elevated slabs	2	30
Soffits of slabs without construction loads	7	70
Soffits of slabs with construction loads	14	85
Sides of beams and girders	7	70
Bottom of beams and girders without construction loads	14	85
Bottom of beams and girders with construction loads	21	90

Notes:

- 1. Minimum stripping time is the lesser of columns A or B, or as extended by Notes 2 through 5, below.
- 2. If retention of formwork is chosen as a means of curing, extend the stripping time to the required curing time. See Table 4 Minimum Cure Times.
- 3. If ambient temperatures are less than 50°F extend the stripping time to the satisfaction of the Engineer.
- 4. Stripping times "with construction loads" are based on superimposed construction loads equal to the load capacity of the member at the time that the loads are imposed, to a maximum equal to the design gravity temporary live load of the member. If the superimposed construction load is greater than this, extend the stripping time to the satisfaction of the Engineer, and see Section 4.4.1 of this specification.
- 5. If more than 10% of supplementary cementitious material is incorporated in the mix, extend the stripping time to the satisfaction of the Engineer.

4.5. Fabrication and Placement of Reinforcement

Stirrups and ties of Grade 60 ksi material must meet the bending requirements of Grade 40 ksi steel.

Bar supports and side form spacers shall be non-conductive and shall be the type pre-approved by the Engineer.

Top reinforcement in slabs in process buildings subject to wash down (i.e. all floors with slopes) shall have a minimum cover of 2 3/8", unless otherwise shown on the drawings.

Reinforcement shall be securely tied at intersections with wire not less than 16 ga. or clips. Slab reinforcement shall be carried on approved concrete pads or approved chairs providing support spacing of not more than 48". Top slab steel shall be carried on support bars of #5 minimum size supported not over 38" apart. Where temperature steel is used to support top slab steel and if temperature steel is 3/8" size, then supports shall not be over 35" apart.

Support bars or spacer bars placed directly on metal deck formwork shall be epoxy-coated or fiberglass or other non-metallic material.

Welding procedure for reinforcing bars is to be done in accordance with ANSI/AWS D1.4. Tack welding of reinforcing bars is not permitted. Reinforcing bars shall only be welded as shown on the drawings or as approved by the Engineer in writing.

4.6. Fabrication and Placement of Hardware and Other Embedded Items

Anchor bolts (rods) shall be placed to the tolerances listed in "The Standard". Templates should be used for placing anchor bolts for small equipment and tanks.

All other embedded metal such as door sills, beam support plates and trench angles, shall be set true within $\pm 1/8$ " of position shown on drawings.

4.7. Post-Tensioning

No addendum.

5. PLACING, FINISHING AND CURING CONCRETE

5.1. Storage of Materials Used For Placing, Finishing, and Curing

Store so that materials are not affected by soil/ground moisture.

5.2. Placing of Concrete

The Contractor shall notify the Engineer before placing any concrete. There shall be adequate notice such that the formwork, reinforcing and embedded metal placement can be reviewed. In no case, shall the notice be less than 24 hours. The Contractor shall verify all anchor bolt and embedded metal locations before placing concrete.

Concrete shall be deposited as closely as practical to its final position in horizontal or wedgeshaped layers not more than 18 inches deep. Lateral movement of the concrete by means of vibrators will not be permitted.

Concrete shall be dropped vertically, without lateral movement, into formwork without interference. Unconfined free fall shall be limited to 5 ft unless otherwise required or approved by the Engineer. If placement methods require free fall of more than 5 ft, the tremie method of placement will be required.

Proposed methods and equipment used for the concrete consolidation shall be in accordance with the report of ACI Committee 609 – "Consolidation of Concrete."

5.2.1. Bonding Fresh Concrete to Rock or Hardened Concrete

Surfaces of hardened concrete shall be cleaned with high pressure jets or mechanical means to expose the coarse aggregate to a reveal of 1/4" and remove all laitance and loose material. Unless otherwise shown on drawings, bonding shall be accomplished by:

- Vertical Joints –Surface shall be dampened (but not saturated) immediately prior to placing fresh concrete.
- ➤ Horizontal Joints For those horizontal joints in liquid-retaining structures or those specifically designated on the drawings or by the Engineer, a 6" layer of special bonding mix shall be placed and be well vibrated to achieve maximum bond. The concrete to be used for this special bonding mix shall be the normal mix proportions with one-half the coarse aggregate removed and the slump increased to 5".
- For other horizontal joints, treat same as "Vertical Joints".

Where roughening of the rock or hardened concrete surface is specified, the surface shall be roughened to expose the coarse aggregate to full amplitude of at least 1/4".

5.3. Joints

Joints shall be constructed and located as described on the drawings. Whenever PVC waterstop is specified, it shall be wired to the reinforcing steel with all waterstop joints properly fused to provide a continuous seal.

5.4. Joint Filler

The joint filler shall be standard cork joint filler with an insoluble phenolic resin binder, conforming to ASTM Designation D1752, Type 2.

All joints in the filler material shall be made tight so that mortar from fresh concrete will not seep through to the opposite concrete surface.

5.5. Joint Sealant

The Contractor shall supply and apply joint sealant complete with bond breakers and backup materials to expansion joints and elsewhere in concrete structures as shown on the Drawings or otherwise required by the Engineer.

Except as otherwise specified herein, surface bond breakers and backup materials shall be companion products of the joint sealant used for the work as recommended by the sealant manufacturer and approved by the Engineer.

5.6. Curing and Protection

All exposed concrete surfaces shall be cured as given in accordance with the requirements of Section 5.3.6 of "The Standard". Moist curing shall be used. Curing compounds are not permitted for this exposure class of concrete. In addition, surfaces which are to be; water-proofed, painted, coated, will receive a separate topping or grout, or is adjacent to a pour where good bond is required, shall be wet cured only (curing compounds are not permitted).

Curing may consist of formwork retained in place and/or an approved curing method. Approved methods are a, b, or c of Section 5.3.6.4 of "The Standard".

Unless otherwise shown on the drawings or advised by the Engineer, curing must be carried out for the lapsed time (Minimum Cure Times) according to the following table and otherwise prescribed in the notes below the table.

Minimum cure times are the lesser of Column A or Column B in Table 4.

Table 4. Minimum Cure Times

Element	A Cure Time (days):	B Time to Achieve Min. % of Specified Strength of:	C Method of Curing per Section 5.3.6 of "The Standard"
Foundations, pile caps, piers, grade walls, walls, pedestals, columns, equipment bases	7	70	Any
Top surfaces of slabs	7	70	As noted below or (3)

Notes:

5.6.1. Curing of Slab Surfaces

Proper curing of slabs is essential and must be done as follows. Begin curing as soon as the plastic curing membrane can be applied without damage to the newly finished surface.

The concrete surface is to be wetted immediately after final finishing and covered with a 6 mil polyethylene membrane, clear or white, and secured in place with weights so as to prevent exposure of the concrete surface during the curing period. The membrane shall cover all exposed surfaces of the concrete.

Place the membrane flat, without wrinkles, to minimize mottled discoloration.

Edges shall be lapped 1-foot minimum and tape sealed.

^{1.} The Contractor may establish the Minimum % of Specified Strength by testing field cure cylinders or by other non-destructive testing which is acceptable to the Engineer.

^{2.} Cure times shown are based on minimum ambient temperatures of 50°F. For lower temperatures the Contractor shall extend the cure times to the satisfaction of the Engineer.

^{3.} For accelerated strength concrete mixes cure times shall be the minimum defined in Table 4 above.

Provide traffic protection to protect the concrete surface and the polyethylene curing membrane.

Leave the curing membrane undisturbed for a minimum of 7 days.

Maintain a film of water under the membrane and add water as required.

5.6.2. Hot Weather Protection

The plastic concrete temperature at time of placement shall not exceed temperatures in Section 5.3.6.5 of "The Standard". When the air temperature is expected to be 80°F or higher, suitable protection shall be provided.

5.6.3. Cold Weather Protection

The minimum plastic concrete temperature at placement shall not be less than temperatures in Section 4.2.2.8 of "The Standard". When the air temperature is or is expected to fall lower than 41°F, suitable protection shall be provided.

5.7. Finishing and Treatment of Slab Surfaces

The final floor finish shall be one of the following types:

- STEEL TROWEL: Dense hard surface obtained by multiple steel trowel passes.
- NON-SLIP SWIRL: Multiple steel trowel passes but with final pass of aluminum float.
- > BROOM: Multiple steel trowel passes followed by brooming to the required texture.

Unless designated on the drawings, the following floor finishes shall be used in these areas:

- STEEL TROWEL: Control rooms, electrical rooms, dry process floors, warehouses, under FRP tanks.
- NON-SLIP SWIRL: All process floors that are rarely wetted with water.
- BROOM: Exterior concrete slabs with significant vehicular or people traffic, slabs in process areas that are frequently wetted or flooded or are subject to spillage of process materials, and under steel tanks.

5.8. Finishing of Formed Surfaces

Projecting imperfections shall be removed; depressed imperfections shall be patched by chipping to sharp margin and by filling with mortar. Patches exposed to view shall blend with surrounding surfaces. All patchwork shall be carried out immediately following the stripping of forms and while concrete is still green. Patches shall be properly installed and cured.

The required quality of formed surface shall be as designated in Section 4.5 of this specification. The particular patching procedure required for each area shall be reviewed with the Engineer prior to starting.

6. CONSTRUCTION LOADS

The Contractor shall take precautions to ensure concrete is not damaged from construction loads prior to reaching its specified strength. The Contractor shall ensure concrete is not loaded in excess of its design capacity after reaching its specified compressive strength. The Contractor shall review plans for placing construction loads with the Engineer.